/* * tclCompile.h -- * * Copyright (c) 1996-1998 Sun Microsystems, Inc. * Copyright (c) 1998-2000 by Scriptics Corporation. * Copyright (c) 2001 by Kevin B. Kenny. All rights reserved. * * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclCompile.h,v 1.64 2006/12/08 20:48:09 dgp Exp $ */ #ifndef _TCLCOMPILATION #define _TCLCOMPILATION 1 #include "tclInt.h" /* *------------------------------------------------------------------------ * Variables related to compilation. These are used in tclCompile.c, * tclExecute.c, tclBasic.c, and their clients. *------------------------------------------------------------------------ */ #ifdef TCL_COMPILE_DEBUG /* * Variable that controls whether compilation tracing is enabled and, if so, * what level of tracing is desired: * 0: no compilation tracing * 1: summarize compilation of top level cmds and proc bodies * 2: display all instructions of each ByteCode compiled * This variable is linked to the Tcl variable "tcl_traceCompile". */ MODULE_SCOPE int tclTraceCompile; /* * Variable that controls whether execution tracing is enabled and, if so, * what level of tracing is desired: * 0: no execution tracing * 1: trace invocations of Tcl procs only * 2: trace invocations of all (not compiled away) commands * 3: display each instruction executed * This variable is linked to the Tcl variable "tcl_traceExec". */ MODULE_SCOPE int tclTraceExec; #endif /* *------------------------------------------------------------------------ * Data structures related to compilation. *------------------------------------------------------------------------ */ /* * The structure used to implement Tcl "exceptions" (exceptional returns): for * example, those generated in loops by the break and continue commands, and * those generated by scripts and caught by the catch command. This * ExceptionRange structure describes a range of code (e.g., a loop body), the * kind of exceptions (e.g., a break or continue) that might occur, and the PC * offsets to jump to if a matching exception does occur. Exception ranges can * nest so this structure includes a nesting level that is used at runtime to * find the closest exception range surrounding a PC. For example, when a * break command is executed, the ExceptionRange structure for the most deeply * nested loop, if any, is found and used. These structures are also generated * for the "next" subcommands of for loops since a break there terminates the * for command. This means a for command actually generates two LoopInfo * structures. */ typedef enum { LOOP_EXCEPTION_RANGE, /* Exception's range is part of a loop. Break * and continue "exceptions" cause jumps to * appropriate PC offsets. */ CATCH_EXCEPTION_RANGE /* Exception's range is controlled by a catch * command. Errors in the range cause a jump * to a catch PC offset. */ } ExceptionRangeType; typedef struct ExceptionRange { ExceptionRangeType type; /* The kind of ExceptionRange. */ int nestingLevel; /* Static depth of the exception range. Used * to find the most deeply-nested range * surrounding a PC at runtime. */ int codeOffset; /* Offset of the first instruction byte of the * code range. */ int numCodeBytes; /* Number of bytes in the code range. */ int breakOffset; /* If LOOP_EXCEPTION_RANGE, the target PC * offset for a break command in the range. */ int continueOffset; /* If LOOP_EXCEPTION_RANGE and not -1, the * target PC offset for a continue command in * the code range. Otherwise, ignore this * range when processing a continue * command. */ int catchOffset; /* If a CATCH_EXCEPTION_RANGE, the target PC * offset for any "exception" in range. */ } ExceptionRange; /* * Structure used to map between instruction pc and source locations. It * defines for each compiled Tcl command its code's starting offset and its * source's starting offset and length. Note that the code offset increases * monotonically: that is, the table is sorted in code offset order. The * source offset is not monotonic. */ typedef struct CmdLocation { int codeOffset; /* Offset of first byte of command code. */ int numCodeBytes; /* Number of bytes for command's code. */ int srcOffset; /* Offset of first char of the command. */ int numSrcBytes; /* Number of command source chars. */ } CmdLocation; /* * TIP #280 * Structure to record additional location information for byte code. * This information is internal and not saved. I.e. tbcload'ed code * will not have this information. It records the lines for all words * of all commands found in the byte code. The association with a * ByteCode structure BC is done through the 'lineBCPtr' HashTable in * Interp, keyed by the address of BC. Also recorded is information * coming from the context, i.e. type of the frame and associated * information, like the path of a sourced file. */ typedef struct ECL { int srcOffset; /* cmd location to find the entry */ int nline; int* line; /* line information for all words in the command */ } ECL; typedef struct ExtCmdLoc { int type; /* Context type */ Tcl_Obj* path; /* Path of the sourced file the command is in */ ECL* loc; /* Command word locations (lines) */ int nloc; /* Number of allocated entries in 'loc' */ int nuloc; /* Number of used entries in 'loc' */ } ExtCmdLoc; /* * CompileProcs need the ability to record information during compilation that * can be used by bytecode instructions during execution. The AuxData * structure provides this "auxiliary data" mechanism. An arbitrary number of * these structures can be stored in the ByteCode record (during compilation * they are stored in a CompileEnv structure). Each AuxData record holds one * word of client-specified data (often a pointer) and is given an index that * instructions can later use to look up the structure and its data. * * The following definitions declare the types of procedures that are called * to duplicate or free this auxiliary data when the containing ByteCode * objects are duplicated and freed. Pointers to these procedures are kept in * the AuxData structure. */ typedef ClientData (AuxDataDupProc) (ClientData clientData); typedef void (AuxDataFreeProc) (ClientData clientData); /* * We define a separate AuxDataType struct to hold type-related information * for the AuxData structure. This separation makes it possible for clients * outside of the TCL core to manipulate (in a limited fashion!) AuxData; for * example, it makes it possible to pickle and unpickle AuxData structs. */ typedef struct AuxDataType { char *name; /* the name of the type. Types can be * registered and found by name */ AuxDataDupProc *dupProc; /* Callback procedure to invoke when the aux * data is duplicated (e.g., when the ByteCode * structure containing the aux data is * duplicated). NULL means just copy the * source clientData bits; no proc need be * called. */ AuxDataFreeProc *freeProc; /* Callback procedure to invoke when the aux * data is freed. NULL means no proc need be * called. */ } AuxDataType; /* * The definition of the AuxData structure that holds information created * during compilation by CompileProcs and used by instructions during * execution. */ typedef struct AuxData { AuxDataType *type; /* pointer to the AuxData type associated with * this ClientData. */ ClientData clientData; /* The compilation data itself. */ } AuxData; /* * Structure defining the compilation environment. After compilation, fields * describing bytecode instructions are copied out into the more compact * ByteCode structure defined below. */ #define COMPILEENV_INIT_CODE_BYTES 250 #define COMPILEENV_INIT_NUM_OBJECTS 60 #define COMPILEENV_INIT_EXCEPT_RANGES 5 #define COMPILEENV_INIT_CMD_MAP_SIZE 40 #define COMPILEENV_INIT_AUX_DATA_SIZE 5 typedef struct CompileEnv { Interp *iPtr; /* Interpreter containing the code being * compiled. Commands and their compile procs * are specific to an interpreter so the code * emitted will depend on the interpreter. */ char *source; /* The source string being compiled by * SetByteCodeFromAny. This pointer is not * owned by the CompileEnv and must not be * freed or changed by it. */ int numSrcBytes; /* Number of bytes in source. */ Proc *procPtr; /* If a procedure is being compiled, a pointer * to its Proc structure; otherwise NULL. Used * to compile local variables. Set from * information provided by ObjInterpProc in * tclProc.c. */ int numCommands; /* Number of commands compiled. */ int exceptDepth; /* Current exception range nesting level; -1 * if not in any range currently. */ int maxExceptDepth; /* Max nesting level of exception ranges; -1 * if no ranges have been compiled. */ int maxStackDepth; /* Maximum number of stack elements needed to * execute the code. Set by compilation * procedures before returning. */ int currStackDepth; /* Current stack depth. */ LiteralTable localLitTable; /* Contains LiteralEntry's describing all Tcl * objects referenced by this compiled code. * Indexed by the string representations of * the literals. Used to avoid creating * duplicate objects. */ unsigned char *codeStart; /* Points to the first byte of the code. */ unsigned char *codeNext; /* Points to next code array byte to use. */ unsigned char *codeEnd; /* Points just after the last allocated code * array byte. */ int mallocedCodeArray; /* Set 1 if code array was expanded and * codeStart points into the heap.*/ LiteralEntry *literalArrayPtr; /* Points to start of LiteralEntry array. */ int literalArrayNext; /* Index of next free object array entry. */ int literalArrayEnd; /* Index just after last obj array entry. */ int mallocedLiteralArray; /* 1 if object array was expanded and objArray * points into the heap, else 0. */ ExceptionRange *exceptArrayPtr; /* Points to start of the ExceptionRange * array. */ int exceptArrayNext; /* Next free ExceptionRange array index. * exceptArrayNext is the number of ranges and * (exceptArrayNext-1) is the index of the * current range's array entry. */ int exceptArrayEnd; /* Index after the last ExceptionRange array * entry. */ int mallocedExceptArray; /* 1 if ExceptionRange array was expanded and * exceptArrayPtr points in heap, else 0. */ CmdLocation *cmdMapPtr; /* Points to start of CmdLocation array. * numCommands is the index of the next entry * to use; (numCommands-1) is the entry index * for the last command. */ int cmdMapEnd; /* Index after last CmdLocation entry. */ int mallocedCmdMap; /* 1 if command map array was expanded and * cmdMapPtr points in the heap, else 0. */ AuxData *auxDataArrayPtr; /* Points to auxiliary data array start. */ int auxDataArrayNext; /* Next free compile aux data array index. * auxDataArrayNext is the number of aux data * items and (auxDataArrayNext-1) is index of * current aux data array entry. */ int auxDataArrayEnd; /* Index after last aux data array entry. */ int mallocedAuxDataArray; /* 1 if aux data array was expanded and * auxDataArrayPtr points in heap else 0. */ unsigned char staticCodeSpace[COMPILEENV_INIT_CODE_BYTES]; /* Initial storage for code. */ LiteralEntry staticLiteralSpace[COMPILEENV_INIT_NUM_OBJECTS]; /* Initial storage of LiteralEntry array. */ ExceptionRange staticExceptArraySpace[COMPILEENV_INIT_EXCEPT_RANGES]; /* Initial ExceptionRange array storage. */ CmdLocation staticCmdMapSpace[COMPILEENV_INIT_CMD_MAP_SIZE]; /* Initial storage for cmd location map. */ AuxData staticAuxDataArraySpace[COMPILEENV_INIT_AUX_DATA_SIZE]; /* Initial storage for aux data array. */ /* TIP #280 */ ExtCmdLoc* extCmdMapPtr; /* Extended command location information * for 'info frame'. */ int line; /* First line of the script, based on the * invoking context, then the line of the * command currently compiled. */ } CompileEnv; /* * The structure defining the bytecode instructions resulting from compiling a * Tcl script. Note that this structure is variable length: a single heap * object is allocated to hold the ByteCode structure immediately followed by * the code bytes, the literal object array, the ExceptionRange array, the * CmdLocation map, and the compilation AuxData array. */ /* * A PRECOMPILED bytecode struct is one that was generated from a compiled * image rather than implicitly compiled from source */ #define TCL_BYTECODE_PRECOMPILED 0x0001 /* * When a bytecode is compiled, interp or namespace resolvers have not been * applied yet: this is indicated by the TCL_BYTECODE_RESOLVE_VARS flag. */ #define TCL_BYTECODE_RESOLVE_VARS 0x0002 typedef struct ByteCode { TclHandle interpHandle; /* Handle for interpreter containing the * compiled code. Commands and their compile * procs are specific to an interpreter so the * code emitted will depend on the * interpreter. */ int compileEpoch; /* Value of iPtr->compileEpoch when this * ByteCode was compiled. Used to invalidate * code when, e.g., commands with compile * procs are redefined. */ Namespace *nsPtr; /* Namespace context in which this code was * compiled. If the code is executed if a * different namespace, it must be * recompiled. */ int nsEpoch; /* Value of nsPtr->resolverEpoch when this * ByteCode was compiled. Used to invalidate * code when new namespace resolution rules * are put into effect. */ int refCount; /* Reference count: set 1 when created plus 1 * for each execution of the code currently * active. This structure can be freed when * refCount becomes zero. */ unsigned int flags; /* flags describing state for the codebyte. * this variable holds ORed values from the * TCL_BYTECODE_ masks defined above */ char *source; /* The source string from which this ByteCode * was compiled. Note that this pointer is not * owned by the ByteCode and must not be freed * or modified by it. */ Proc *procPtr; /* If the ByteCode was compiled from a * procedure body, this is a pointer to its * Proc structure; otherwise NULL. This * pointer is also not owned by the ByteCode * and must not be freed by it. */ size_t structureSize; /* Number of bytes in the ByteCode structure * itself. Does not include heap space for * literal Tcl objects or storage referenced * by AuxData entries. */ int numCommands; /* Number of commands compiled. */ int numSrcBytes; /* Number of source bytes compiled. */ int numCodeBytes; /* Number of code bytes. */ int numLitObjects; /* Number of objects in literal array. */ int numExceptRanges; /* Number of ExceptionRange array elems. */ int numAuxDataItems; /* Number of AuxData items. */ int numCmdLocBytes; /* Number of bytes needed for encoded command * location information. */ int maxExceptDepth; /* Maximum nesting level of ExceptionRanges; * -1 if no ranges were compiled. */ int maxStackDepth; /* Maximum number of stack elements needed to * execute the code. */ unsigned char *codeStart; /* Points to the first byte of the code. This * is just after the final ByteCode member * cmdMapPtr. */ Tcl_Obj **objArrayPtr; /* Points to the start of the literal object * array. This is just after the last code * byte. */ ExceptionRange *exceptArrayPtr; /* Points to the start of the ExceptionRange * array. This is just after the last object * in the object array. */ AuxData *auxDataArrayPtr; /* Points to the start of the auxiliary data * array. This is just after the last entry in * the ExceptionRange array. */ unsigned char *codeDeltaStart; /* Points to the first of a sequence of bytes * that encode the change in the starting * offset of each command's code. If -127 <= * delta <= 127, it is encoded as 1 byte, * otherwise 0xFF (128) appears and the delta * is encoded by the next 4 bytes. Code deltas * are always positive. This sequence is just * after the last entry in the AuxData * array. */ unsigned char *codeLengthStart; /* Points to the first of a sequence of bytes * that encode the length of each command's * code. The encoding is the same as for code * deltas. Code lengths are always positive. * This sequence is just after the last entry * in the code delta sequence. */ unsigned char *srcDeltaStart; /* Points to the first of a sequence of bytes * that encode the change in the starting * offset of each command's source. The * encoding is the same as for code deltas. * Source deltas can be negative. This * sequence is just after the last byte in the * code length sequence. */ unsigned char *srcLengthStart; /* Points to the first of a sequence of bytes * that encode the length of each command's * source. The encoding is the same as for * code deltas. Source lengths are always * positive. This sequence is just after the * last byte in the source delta sequence. */ #ifdef TCL_COMPILE_STATS Tcl_Time createTime; /* Absolute time when the ByteCode was * created. */ #endif /* TCL_COMPILE_STATS */ } ByteCode; /* * Opcodes for the Tcl bytecode instructions. These must correspond to the * entries in the table of instruction descriptions, tclInstructionTable, in * tclCompile.c. Also, the order and number of the expression opcodes (e.g., * INST_LOR) must match the entries in the array operatorStrings in * tclExecute.c. */ /* Opcodes 0 to 9 */ #define INST_DONE 0 #define INST_PUSH1 1 #define INST_PUSH4 2 #define INST_POP 3 #define INST_DUP 4 #define INST_CONCAT1 5 #define INST_INVOKE_STK1 6 #define INST_INVOKE_STK4 7 #define INST_EVAL_STK 8 #define INST_EXPR_STK 9 /* Opcodes 10 to 23 */ #define INST_LOAD_SCALAR1 10 #define INST_LOAD_SCALAR4 11 #define INST_LOAD_SCALAR_STK 12 #define INST_LOAD_ARRAY1 13 #define INST_LOAD_ARRAY4 14 #define INST_LOAD_ARRAY_STK 15 #define INST_LOAD_STK 16 #define INST_STORE_SCALAR1 17 #define INST_STORE_SCALAR4 18 #define INST_STORE_SCALAR_STK 19 #define INST_STORE_ARRAY1 20 #define INST_STORE_ARRAY4 21 #define INST_STORE_ARRAY_STK 22 #define INST_STORE_STK 23 /* Opcodes 24 to 33 */ #define INST_INCR_SCALAR1 24 #define INST_INCR_SCALAR_STK 25 #define INST_INCR_ARRAY1 26 #define INST_INCR_ARRAY_STK 27 #define INST_INCR_STK 28 #define INST_INCR_SCALAR1_IMM 29 #define INST_INCR_SCALAR_STK_IMM 30 #define INST_INCR_ARRAY1_IMM 31 #define INST_INCR_ARRAY_STK_IMM 32 #define INST_INCR_STK_IMM 33 /* Opcodes 34 to 39 */ #define INST_JUMP1 34 #define INST_JUMP4 35 #define INST_JUMP_TRUE1 36 #define INST_JUMP_TRUE4 37 #define INST_JUMP_FALSE1 38 #define INST_JUMP_FALSE4 39 /* Opcodes 40 to 64 */ #define INST_LOR 40 #define INST_LAND 41 #define INST_BITOR 42 #define INST_BITXOR 43 #define INST_BITAND 44 #define INST_EQ 45 #define INST_NEQ 46 #define INST_LT 47 #define INST_GT 48 #define INST_LE 49 #define INST_GE 50 #define INST_LSHIFT 51 #define INST_RSHIFT 52 #define INST_ADD 53 #define INST_SUB 54 #define INST_MULT 55 #define INST_DIV 56 #define INST_MOD 57 #define INST_UPLUS 58 #define INST_UMINUS 59 #define INST_BITNOT 60 #define INST_LNOT 61 #define INST_CALL_BUILTIN_FUNC1 62 #define INST_CALL_FUNC1 63 #define INST_TRY_CVT_TO_NUMERIC 64 /* Opcodes 65 to 66 */ #define INST_BREAK 65 #define INST_CONTINUE 66 /* Opcodes 67 to 68 */ #define INST_FOREACH_START4 67 #define INST_FOREACH_STEP4 68 /* Opcodes 69 to 72 */ #define INST_BEGIN_CATCH4 69 #define INST_END_CATCH 70 #define INST_PUSH_RESULT 71 #define INST_PUSH_RETURN_CODE 72 /* Opcodes 73 to 78 */ #define INST_STR_EQ 73 #define INST_STR_NEQ 74 #define INST_STR_CMP 75 #define INST_STR_LEN 76 #define INST_STR_INDEX 77 #define INST_STR_MATCH 78 /* Opcodes 78 to 81 */ #define INST_LIST 79 #define INST_LIST_INDEX 80 #define INST_LIST_LENGTH 81 /* Opcodes 82 to 87 */ #define INST_APPEND_SCALAR1 82 #define INST_APPEND_SCALAR4 83 #define INST_APPEND_ARRAY1 84 #define INST_APPEND_ARRAY4 85 #define INST_APPEND_ARRAY_STK 86 #define INST_APPEND_STK 87 /* Opcodes 88 to 93 */ #define INST_LAPPEND_SCALAR1 88 #define INST_LAPPEND_SCALAR4 89 #define INST_LAPPEND_ARRAY1 90 #define INST_LAPPEND_ARRAY4 91 #define INST_LAPPEND_ARRAY_STK 92 #define INST_LAPPEND_STK 93 /* TIP #22 - LINDEX operator with flat arg list */ #define INST_LIST_INDEX_MULTI 94 /* * TIP #33 - 'lset' command. Code gen also required a Forth-like * OVER operation. */ #define INST_OVER 95 #define INST_LSET_LIST 96 #define INST_LSET_FLAT 97 /* TIP#90 - 'return' command. */ #define INST_RETURN_IMM 98 /* TIP#123 - exponentiation operator. */ #define INST_EXPON 99 /* TIP #157 - {expand}... language syntax support. */ #define INST_EXPAND_START 100 #define INST_EXPAND_STKTOP 101 #define INST_INVOKE_EXPANDED 102 /* * TIP #57 - 'lassign' command. Code generation requires immediate * LINDEX and LRANGE operators. */ #define INST_LIST_INDEX_IMM 103 #define INST_LIST_RANGE_IMM 104 #define INST_START_CMD 105 #define INST_LIST_IN 106 #define INST_LIST_NOT_IN 107 #define INST_PUSH_RETURN_OPTIONS 108 #define INST_RETURN_STK 109 /* * Dictionary (TIP#111) related commands. */ #define INST_DICT_GET 110 #define INST_DICT_SET 111 #define INST_DICT_UNSET 112 #define INST_DICT_INCR_IMM 113 #define INST_DICT_APPEND 114 #define INST_DICT_LAPPEND 115 #define INST_DICT_FIRST 116 #define INST_DICT_NEXT 117 #define INST_DICT_DONE 118 #define INST_DICT_UPDATE_START 119 #define INST_DICT_UPDATE_END 120 /* * Instruction to support jumps defined by tables (instead of the classic * [switch] technique of chained comparisons). */ #define INST_JUMP_TABLE 121 /* The last opcode */ #define LAST_INST_OPCODE 121 /* * Table describing the Tcl bytecode instructions: their name (for displaying * code), total number of code bytes required (including operand bytes), and a * description of the type of each operand. These operand types include signed * and unsigned integers of length one and four bytes. The unsigned integers * are used for indexes or for, e.g., the count of objects to push in a "push" * instruction. */ #define MAX_INSTRUCTION_OPERANDS 2 typedef enum InstOperandType { OPERAND_NONE, OPERAND_INT1, /* One byte signed integer. */ OPERAND_INT4, /* Four byte signed integer. */ OPERAND_UINT1, /* One byte unsigned integer. */ OPERAND_UINT4, /* Four byte unsigned integer. */ OPERAND_IDX4, /* Four byte signed index (actually an * integer, but displayed differently.) */ OPERAND_LVT1, /* One byte unsigned index into the local * variable table. */ OPERAND_LVT4 /* Four byte unsigned index into the local * variable table. */ } InstOperandType; typedef struct InstructionDesc { char *name; /* Name of instruction. */ int numBytes; /* Total number of bytes for instruction. */ int stackEffect; /* The worst-case balance stack effect of the * instruction, used for stack requirements * computations. The value INT_MIN signals * that the instruction's worst case effect is * (1-opnd1). */ int numOperands; /* Number of operands. */ InstOperandType opTypes[MAX_INSTRUCTION_OPERANDS]; /* The type of each operand. */ } InstructionDesc; MODULE_SCOPE InstructionDesc tclInstructionTable[]; /* * Compilation of some Tcl constructs such as if commands and the logical or * (||) and logical and (&&) operators in expressions requires the generation * of forward jumps. Since the PC target of these jumps isn't known when the * jumps are emitted, we record the offset of each jump in an array of * JumpFixup structures. There is one array for each sequence of jumps to one * target PC. When we learn the target PC, we update the jumps with the * correct distance. Also, if the distance is too great (> 127 bytes), we * replace the single-byte jump with a four byte jump instruction, move the * instructions after the jump down, and update the code offsets for any * commands between the jump and the target. */ typedef enum { TCL_UNCONDITIONAL_JUMP, TCL_TRUE_JUMP, TCL_FALSE_JUMP } TclJumpType; typedef struct JumpFixup { TclJumpType jumpType; /* Indicates the kind of jump. */ int codeOffset; /* Offset of the first byte of the one-byte * forward jump's code. */ int cmdIndex; /* Index of the first command after the one * for which the jump was emitted. Used to * update the code offsets for subsequent * commands if the two-byte jump at jumpPc * must be replaced with a five-byte one. */ int exceptIndex; /* Index of the first range entry in the * ExceptionRange array after the current one. * This field is used to adjust the code * offsets in subsequent ExceptionRange * records when a jump is grown from 2 bytes * to 5 bytes. */ } JumpFixup; #define JUMPFIXUP_INIT_ENTRIES 10 typedef struct JumpFixupArray { JumpFixup *fixup; /* Points to start of jump fixup array. */ int next; /* Index of next free array entry. */ int end; /* Index of last usable entry in array. */ int mallocedArray; /* 1 if array was expanded and fixups points * into the heap, else 0. */ JumpFixup staticFixupSpace[JUMPFIXUP_INIT_ENTRIES]; /* Initial storage for jump fixup array. */ } JumpFixupArray; /* * The structure describing one variable list of a foreach command. Note that * only foreach commands inside procedure bodies are compiled inline so a * ForeachVarList structure always describes local variables. Furthermore, * only scalar variables are supported for inline-compiled foreach loops. */ typedef struct ForeachVarList { int numVars; /* The number of variables in the list. */ int varIndexes[1]; /* An array of the indexes ("slot numbers") * for each variable in the procedure's array * of local variables. Only scalar variables * are supported. The actual size of this * field will be large enough to numVars * indexes. THIS MUST BE THE LAST FIELD IN THE * STRUCTURE! */ } ForeachVarList; /* * Structure used to hold information about a foreach command that is needed * during program execution. These structures are stored in CompileEnv and * ByteCode structures as auxiliary data. */ typedef struct ForeachInfo { int numLists; /* The number of both the variable and value * lists of the foreach command. */ int firstValueTemp; /* Index of the first temp var in a proc frame * used to point to a value list. */ int loopCtTemp; /* Index of temp var in a proc frame holding * the loop's iteration count. Used to * determine next value list element to assign * each loop var. */ ForeachVarList *varLists[1];/* An array of pointers to ForeachVarList * structures describing each var list. The * actual size of this field will be large * enough to numVars indexes. THIS MUST BE THE * LAST FIELD IN THE STRUCTURE! */ } ForeachInfo; MODULE_SCOPE AuxDataType tclForeachInfoType; /* * Structure used to hold information about a switch command that is needed * during program execution. These structures are stored in CompileEnv and * ByteCode structures as auxiliary data. */ typedef struct JumptableInfo { Tcl_HashTable hashTable; /* Hash that maps strings to signed ints (PC * offsets). */ } JumptableInfo; MODULE_SCOPE AuxDataType tclJumptableInfoType; /* * ClientData type used by the math operator commands. */ typedef struct { const char *operator; const char *expected; int numArgs; } TclOpCmdClientData; /* *---------------------------------------------------------------- * Procedures exported by tclBasic.c to be used within the engine. *---------------------------------------------------------------- */ MODULE_SCOPE int TclEvalObjvInternal(Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[], CONST char *command, int length, int flags); /* *---------------------------------------------------------------- * Procedures exported by the engine to be used by tclBasic.c *---------------------------------------------------------------- */ /* * Declaration moved to the internal stubs table * MODULE_SCOPE int TclCompEvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr); */ /* *---------------------------------------------------------------- * Procedures shared among Tcl bytecode compilation and execution * modules but not used outside: *---------------------------------------------------------------- */ MODULE_SCOPE void TclCleanupByteCode(ByteCode *codePtr); MODULE_SCOPE void TclCompileCmdWord(Tcl_Interp *interp, Tcl_Token *tokenPtr, int count, CompileEnv *envPtr); MODULE_SCOPE int TclCompileExpr(Tcl_Interp *interp, CONST char *script, int numBytes, CompileEnv *envPtr); MODULE_SCOPE void TclCompileExprWords(Tcl_Interp *interp, Tcl_Token *tokenPtr, int numWords, CompileEnv *envPtr); MODULE_SCOPE void TclCompileScript(Tcl_Interp *interp, CONST char *script, int numBytes, CompileEnv *envPtr); MODULE_SCOPE void TclCompileTokens(Tcl_Interp *interp, Tcl_Token *tokenPtr, int count, CompileEnv *envPtr); MODULE_SCOPE int TclCreateAuxData(ClientData clientData, AuxDataType *typePtr, CompileEnv *envPtr); MODULE_SCOPE int TclCreateExceptRange(ExceptionRangeType type, CompileEnv *envPtr); MODULE_SCOPE ExecEnv * TclCreateExecEnv(Tcl_Interp *interp); MODULE_SCOPE void TclDeleteExecEnv(ExecEnv *eePtr); MODULE_SCOPE void TclDeleteLiteralTable(Tcl_Interp *interp, LiteralTable *tablePtr); MODULE_SCOPE void TclEmitForwardJump(CompileEnv *envPtr, TclJumpType jumpType, JumpFixup *jumpFixupPtr); MODULE_SCOPE ExceptionRange * TclGetExceptionRangeForPc(unsigned char *pc, int catchOnly, ByteCode* codePtr); MODULE_SCOPE void TclExpandJumpFixupArray(JumpFixupArray *fixupArrayPtr); MODULE_SCOPE int TclExecuteByteCode(Tcl_Interp *interp, ByteCode *codePtr); MODULE_SCOPE void TclFinalizeAuxDataTypeTable(void); MODULE_SCOPE int TclFindCompiledLocal(CONST char *name, int nameChars, int create, int flags, Proc *procPtr); MODULE_SCOPE LiteralEntry * TclLookupLiteralEntry(Tcl_Interp *interp, Tcl_Obj *objPtr); MODULE_SCOPE int TclFixupForwardJump(CompileEnv *envPtr, JumpFixup *jumpFixupPtr, int jumpDist, int distThreshold); MODULE_SCOPE void TclFreeCompileEnv(CompileEnv *envPtr); MODULE_SCOPE void TclFreeJumpFixupArray(JumpFixupArray *fixupArrayPtr); MODULE_SCOPE void TclInitAuxDataTypeTable(void); MODULE_SCOPE void TclInitByteCodeObj(Tcl_Obj *objPtr, CompileEnv *envPtr); MODULE_SCOPE void TclInitCompilation(void); MODULE_SCOPE void TclInitCompileEnv(Tcl_Interp *interp, CompileEnv *envPtr, char *string, int numBytes, CONST CmdFrame* invoker, int word); MODULE_SCOPE void TclInitJumpFixupArray(JumpFixupArray *fixupArrayPtr); MODULE_SCOPE void TclInitLiteralTable(LiteralTable *tablePtr); #ifdef TCL_COMPILE_STATS MODULE_SCOPE char * TclLiteralStats(LiteralTable *tablePtr); MODULE_SCOPE int TclLog2(int value); #endif #ifdef TCL_COMPILE_DEBUG MODULE_SCOPE void TclPrintByteCodeObj(Tcl_Interp *interp, Tcl_Obj *objPtr); #endif MODULE_SCOPE int TclPrintInstruction(ByteCode* codePtr, unsigned char *pc); MODULE_SCOPE void TclPrintObject(FILE *outFile, Tcl_Obj *objPtr, int maxChars); MODULE_SCOPE void TclPrintSource(FILE *outFile, CONST char *string, int maxChars); MODULE_SCOPE void TclRegisterAuxDataType(AuxDataType *typePtr); MODULE_SCOPE int TclRegisterLiteral(CompileEnv *envPtr, char *bytes, int length, int flags); MODULE_SCOPE void TclReleaseLiteral(Tcl_Interp *interp, Tcl_Obj *objPtr); MODULE_SCOPE void TclSetCmdNameObj(Tcl_Interp *interp, Tcl_Obj *objPtr, Command *cmdPtr); MODULE_SCOPE int TclSingleOpCmd(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[]); #ifdef TCL_COMPILE_DEBUG MODULE_SCOPE void TclVerifyGlobalLiteralTable(Interp *iPtr); MODULE_SCOPE void TclVerifyLocalLiteralTable(CompileEnv *envPtr); #endif MODULE_SCOPE int TclCompileVariableCmd(Tcl_Interp *interp, Tcl_Parse *parsePtr, CompileEnv *envPtr); MODULE_SCOPE int TclWordKnownAtCompileTime(Tcl_Token *tokenPtr, Tcl_Obj *valuePtr); MODULE_SCOPE int TclWordSimpleExpansion(Tcl_Token *tokenPtr); /* *---------------------------------------------------------------- * Macros and flag values used by Tcl bytecode compilation and execution * modules inside the Tcl core but not used outside. *---------------------------------------------------------------- */ #define LITERAL_ON_HEAP 0x01 #define LITERAL_NS_SCOPE 0x02 /* * Form of TclRegisterLiteral with onHeap == 0. In that case, it is safe to * cast away CONSTness, and it is cleanest to do that here, all in one place. * * int TclRegisterNewLiteral(CompileEnv *envPtr, const char *bytes, * int length); */ #define TclRegisterNewLiteral(envPtr, bytes, length) \ TclRegisterLiteral(envPtr, (char *)(bytes), length, /*flags*/ 0) /* * Form of TclRegisterNSLiteral with onHeap == 0. In that case, it is safe to * cast away CONSTness, and it is cleanest to do that here, all in one place. * * int TclRegisterNewNSLiteral(CompileEnv *envPtr, const char *bytes, * int length); */ #define TclRegisterNewNSLiteral(envPtr, bytes, length) \ TclRegisterLiteral(envPtr, (char *)(bytes), length, \ /*flags*/ LITERAL_NS_SCOPE) /* * Macro used to manually adjust the stack requirements; used in cases where * the stack effect cannot be computed from the opcode and its operands, but * is still known at compile time. * * void TclAdjustStackDepth(int delta, CompileEnv *envPtr); */ #define TclAdjustStackDepth(delta, envPtr) \ if ((delta) < 0) {\ if((envPtr)->maxStackDepth < (envPtr)->currStackDepth) {\ (envPtr)->maxStackDepth = (envPtr)->currStackDepth;\ }\ }\ (envPtr)->currStackDepth += (delta) /* * Macro used to update the stack requirements. It is called by the macros * TclEmitOpCode, TclEmitInst1 and TclEmitInst4. * Remark that the very last instruction of a bytecode always reduces the * stack level: INST_DONE or INST_POP, so that the maxStackdepth is always * updated. * * void TclUpdateStackReqs(unsigned char op, int i, CompileEnv *envPtr); */ #define TclUpdateStackReqs(op, i, envPtr) \ {\ int delta = tclInstructionTable[(op)].stackEffect;\ if (delta) {\ if (delta == INT_MIN) {\ delta = 1 - (i);\ }\ TclAdjustStackDepth(delta, envPtr);\ }\ } /* * Macro to emit an opcode byte into a CompileEnv's code array. The ANSI C * "prototype" for this macro is: * * void TclEmitOpcode(unsigned char op, CompileEnv *envPtr); */ #define TclEmitOpcode(op, envPtr) \ if ((envPtr)->codeNext == (envPtr)->codeEnd) \ TclExpandCodeArray(envPtr); \ *(envPtr)->codeNext++ = (unsigned char) (op);\ TclUpdateStackReqs(op, 0, envPtr) /* * Macros to emit an integer operand. The ANSI C "prototype" for these macros * are: * * void TclEmitInt1(int i, CompileEnv *envPtr); * void TclEmitInt4(int i, CompileEnv *envPtr); */ #define TclEmitInt1(i, envPtr) \ if ((envPtr)->codeNext == (envPtr)->codeEnd) \ TclExpandCodeArray(envPtr); \ *(envPtr)->codeNext++ = (unsigned char) ((unsigned int) (i)) #define TclEmitInt4(i, envPtr) \ if (((envPtr)->codeNext + 4) > (envPtr)->codeEnd) { \ TclExpandCodeArray(envPtr); \ } \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 24); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 16); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 8); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) ) /* * Macros to emit an instruction with signed or unsigned integer operands. * Four byte integers are stored in "big-endian" order with the high order * byte stored at the lowest address. The ANSI C "prototypes" for these macros * are: * * void TclEmitInstInt1(unsigned char op, int i, CompileEnv *envPtr); * void TclEmitInstInt4(unsigned char op, int i, CompileEnv *envPtr); */ #define TclEmitInstInt1(op, i, envPtr) \ if (((envPtr)->codeNext + 2) > (envPtr)->codeEnd) { \ TclExpandCodeArray(envPtr); \ } \ *(envPtr)->codeNext++ = (unsigned char) (op); \ *(envPtr)->codeNext++ = (unsigned char) ((unsigned int) (i));\ TclUpdateStackReqs(op, i, envPtr) #define TclEmitInstInt4(op, i, envPtr) \ if (((envPtr)->codeNext + 5) > (envPtr)->codeEnd) { \ TclExpandCodeArray(envPtr); \ } \ *(envPtr)->codeNext++ = (unsigned char) (op); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 24); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 16); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 8); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) );\ TclUpdateStackReqs(op, i, envPtr) /* * Macro to push a Tcl object onto the Tcl evaluation stack. It emits the * object's one or four byte array index into the CompileEnv's code array. * These support, respectively, a maximum of 256 (2**8) and 2**32 objects in a * CompileEnv. The ANSI C "prototype" for this macro is: * * void TclEmitPush(int objIndex, CompileEnv *envPtr); */ #define TclEmitPush(objIndex, envPtr) \ {\ register int objIndexCopy = (objIndex);\ if (objIndexCopy <= 255) { \ TclEmitInstInt1(INST_PUSH1, objIndexCopy, (envPtr)); \ } else { \ TclEmitInstInt4(INST_PUSH4, objIndexCopy, (envPtr)); \ }\ } /* * Macros to update a (signed or unsigned) integer starting at a pointer. The * two variants depend on the number of bytes. The ANSI C "prototypes" for * these macros are: * * void TclStoreInt1AtPtr(int i, unsigned char *p); * void TclStoreInt4AtPtr(int i, unsigned char *p); */ #define TclStoreInt1AtPtr(i, p) \ *(p) = (unsigned char) ((unsigned int) (i)) #define TclStoreInt4AtPtr(i, p) \ *(p) = (unsigned char) ((unsigned int) (i) >> 24); \ *(p+1) = (unsigned char) ((unsigned int) (i) >> 16); \ *(p+2) = (unsigned char) ((unsigned int) (i) >> 8); \ *(p+3) = (unsigned char) ((unsigned int) (i) ) /* * Macros to update instructions at a particular pc with a new op code and a * (signed or unsigned) int operand. The ANSI C "prototypes" for these macros * are: * * void TclUpdateInstInt1AtPc(unsigned char op, int i, unsigned char *pc); * void TclUpdateInstInt4AtPc(unsigned char op, int i, unsigned char *pc); */ #define TclUpdateInstInt1AtPc(op, i, pc) \ *(pc) = (unsigned char) (op); \ TclStoreInt1AtPtr((i), ((pc)+1)) #define TclUpdateInstInt4AtPc(op, i, pc) \ *(pc) = (unsigned char) (op); \ TclStoreInt4AtPtr((i), ((pc)+1)) /* * Macro to fix up a forward jump to point to the current code-generation * position in the bytecode being created (the most common case). The ANSI C * "prototypes" for this macro is: * * int TclFixupForwardJumpToHere(CompileEnv *envPtr, JumpFixup *fixupPtr, * int threshold); */ #define TclFixupForwardJumpToHere(envPtr, fixupPtr, threshold) \ TclFixupForwardJump((envPtr), (fixupPtr), \ (envPtr)->codeNext-(envPtr)->codeStart-(fixupPtr)->codeOffset, \ (threshold)) /* * Macros to get a signed integer (GET_INT{1,2}) or an unsigned int * (GET_UINT{1,2}) from a pointer. There are two variants for each return type * that depend on the number of bytes fetched. The ANSI C "prototypes" for * these macros are: * * int TclGetInt1AtPtr(unsigned char *p); * int TclGetInt4AtPtr(unsigned char *p); * unsigned int TclGetUInt1AtPtr(unsigned char *p); * unsigned int TclGetUInt4AtPtr(unsigned char *p); */ /* * The TclGetInt1AtPtr macro is tricky because we want to do sign extension on * the 1-byte value. Unfortunately the "char" type isn't signed on all * platforms so sign-extension doesn't always happen automatically. Sometimes * we can explicitly declare the pointer to be signed, but other times we have * to explicitly sign-extend the value in software. */ #ifndef __CHAR_UNSIGNED__ # define TclGetInt1AtPtr(p) ((int) *((char *) p)) #else # ifdef HAVE_SIGNED_CHAR # define TclGetInt1AtPtr(p) ((int) *((signed char *) p)) # else # define TclGetInt1AtPtr(p) (((int) *((char *) p)) \ | ((*(p) & 0200) ? (-256) : 0)) # endif #endif #define TclGetInt4AtPtr(p) (((int) TclGetInt1AtPtr(p) << 24) | \ (*((p)+1) << 16) | \ (*((p)+2) << 8) | \ (*((p)+3))) #define TclGetUInt1AtPtr(p) ((unsigned int) *(p)) #define TclGetUInt4AtPtr(p) ((unsigned int) (*(p) << 24) | \ (*((p)+1) << 16) | \ (*((p)+2) << 8) | \ (*((p)+3))) /* * Macros used to compute the minimum and maximum of two integers. The ANSI C * "prototypes" for these macros are: * * int TclMin(int i, int j); * int TclMax(int i, int j); */ #define TclMin(i, j) ((((int) i) < ((int) j))? (i) : (j)) #define TclMax(i, j) ((((int) i) > ((int) j))? (i) : (j)) #endif /* _TCLCOMPILATION */ /* * Local Variables: * mode: c * c-basic-offset: 4 * fill-column: 78 * End: */