/* * tclCompile.h -- * * Copyright (c) 1996-1998 Sun Microsystems, Inc. * Copyright (c) 1998-2000 by Scriptics Corporation. * Copyright (c) 2001 by Kevin B. Kenny. All rights reserved. * * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclCompile.h,v 1.40 2004/01/13 23:15:03 dgp Exp $ */ #ifndef _TCLCOMPILATION #define _TCLCOMPILATION 1 #ifndef _TCLINT #include "tclInt.h" #endif /* _TCLINT */ #ifdef BUILD_tcl # undef TCL_STORAGE_CLASS # define TCL_STORAGE_CLASS DLLEXPORT #endif /* *------------------------------------------------------------------------ * Variables related to compilation. These are used in tclCompile.c, * tclExecute.c, tclBasic.c, and their clients. *------------------------------------------------------------------------ */ #ifdef TCL_COMPILE_DEBUG /* * Variable that controls whether compilation tracing is enabled and, if so, * what level of tracing is desired: * 0: no compilation tracing * 1: summarize compilation of top level cmds and proc bodies * 2: display all instructions of each ByteCode compiled * This variable is linked to the Tcl variable "tcl_traceCompile". */ extern int tclTraceCompile; #endif #ifdef TCL_COMPILE_DEBUG /* * Variable that controls whether execution tracing is enabled and, if so, * what level of tracing is desired: * 0: no execution tracing * 1: trace invocations of Tcl procs only * 2: trace invocations of all (not compiled away) commands * 3: display each instruction executed * This variable is linked to the Tcl variable "tcl_traceExec". */ extern int tclTraceExec; #endif /* *------------------------------------------------------------------------ * Data structures related to compilation. *------------------------------------------------------------------------ */ /* * The structure used to implement Tcl "exceptions" (exceptional returns): * for example, those generated in loops by the break and continue commands, * and those generated by scripts and caught by the catch command. This * ExceptionRange structure describes a range of code (e.g., a loop body), * the kind of exceptions (e.g., a break or continue) that might occur, and * the PC offsets to jump to if a matching exception does occur. Exception * ranges can nest so this structure includes a nesting level that is used * at runtime to find the closest exception range surrounding a PC. For * example, when a break command is executed, the ExceptionRange structure * for the most deeply nested loop, if any, is found and used. These * structures are also generated for the "next" subcommands of for loops * since a break there terminates the for command. This means a for command * actually generates two LoopInfo structures. */ typedef enum { LOOP_EXCEPTION_RANGE, /* Exception's range is part of a loop. * Break and continue "exceptions" cause * jumps to appropriate PC offsets. */ CATCH_EXCEPTION_RANGE /* Exception's range is controlled by a * catch command. Errors in the range cause * a jump to a catch PC offset. */ } ExceptionRangeType; typedef struct ExceptionRange { ExceptionRangeType type; /* The kind of ExceptionRange. */ int nestingLevel; /* Static depth of the exception range. * Used to find the most deeply-nested * range surrounding a PC at runtime. */ int codeOffset; /* Offset of the first instruction byte of * the code range. */ int numCodeBytes; /* Number of bytes in the code range. */ int breakOffset; /* If LOOP_EXCEPTION_RANGE, the target PC * offset for a break command in the range. */ int continueOffset; /* If LOOP_EXCEPTION_RANGE and not -1, the * target PC offset for a continue command in * the code range. Otherwise, ignore this range * when processing a continue command. */ int catchOffset; /* If a CATCH_EXCEPTION_RANGE, the target PC * offset for any "exception" in range. */ } ExceptionRange; /* * Structure used to map between instruction pc and source locations. It * defines for each compiled Tcl command its code's starting offset and * its source's starting offset and length. Note that the code offset * increases monotonically: that is, the table is sorted in code offset * order. The source offset is not monotonic. */ typedef struct CmdLocation { int codeOffset; /* Offset of first byte of command code. */ int numCodeBytes; /* Number of bytes for command's code. */ int srcOffset; /* Offset of first char of the command. */ int numSrcBytes; /* Number of command source chars. */ } CmdLocation; /* * CompileProcs need the ability to record information during compilation * that can be used by bytecode instructions during execution. The AuxData * structure provides this "auxiliary data" mechanism. An arbitrary number * of these structures can be stored in the ByteCode record (during * compilation they are stored in a CompileEnv structure). Each AuxData * record holds one word of client-specified data (often a pointer) and is * given an index that instructions can later use to look up the structure * and its data. * * The following definitions declare the types of procedures that are called * to duplicate or free this auxiliary data when the containing ByteCode * objects are duplicated and freed. Pointers to these procedures are kept * in the AuxData structure. */ typedef ClientData (AuxDataDupProc) _ANSI_ARGS_((ClientData clientData)); typedef void (AuxDataFreeProc) _ANSI_ARGS_((ClientData clientData)); /* * We define a separate AuxDataType struct to hold type-related information * for the AuxData structure. This separation makes it possible for clients * outside of the TCL core to manipulate (in a limited fashion!) AuxData; * for example, it makes it possible to pickle and unpickle AuxData structs. */ typedef struct AuxDataType { char *name; /* the name of the type. Types can be * registered and found by name */ AuxDataDupProc *dupProc; /* Callback procedure to invoke when the * aux data is duplicated (e.g., when the * ByteCode structure containing the aux * data is duplicated). NULL means just * copy the source clientData bits; no * proc need be called. */ AuxDataFreeProc *freeProc; /* Callback procedure to invoke when the * aux data is freed. NULL means no * proc need be called. */ } AuxDataType; /* * The definition of the AuxData structure that holds information created * during compilation by CompileProcs and used by instructions during * execution. */ typedef struct AuxData { AuxDataType *type; /* pointer to the AuxData type associated with * this ClientData. */ ClientData clientData; /* The compilation data itself. */ } AuxData; /* * Structure defining the compilation environment. After compilation, fields * describing bytecode instructions are copied out into the more compact * ByteCode structure defined below. */ #define COMPILEENV_INIT_CODE_BYTES 250 #define COMPILEENV_INIT_NUM_OBJECTS 60 #define COMPILEENV_INIT_EXCEPT_RANGES 5 #define COMPILEENV_INIT_CMD_MAP_SIZE 40 #define COMPILEENV_INIT_AUX_DATA_SIZE 5 typedef struct CompileEnv { Interp *iPtr; /* Interpreter containing the code being * compiled. Commands and their compile * procs are specific to an interpreter so * the code emitted will depend on the * interpreter. */ char *source; /* The source string being compiled by * SetByteCodeFromAny. This pointer is not * owned by the CompileEnv and must not be * freed or changed by it. */ int numSrcBytes; /* Number of bytes in source. */ Proc *procPtr; /* If a procedure is being compiled, a * pointer to its Proc structure; otherwise * NULL. Used to compile local variables. * Set from information provided by * ObjInterpProc in tclProc.c. */ int numCommands; /* Number of commands compiled. */ int exceptDepth; /* Current exception range nesting level; * -1 if not in any range currently. */ int maxExceptDepth; /* Max nesting level of exception ranges; * -1 if no ranges have been compiled. */ int maxStackDepth; /* Maximum number of stack elements needed * to execute the code. Set by compilation * procedures before returning. */ int currStackDepth; /* Current stack depth. */ LiteralTable localLitTable; /* Contains LiteralEntry's describing * all Tcl objects referenced by this * compiled code. Indexed by the string * representations of the literals. Used to * avoid creating duplicate objects. */ unsigned char *codeStart; /* Points to the first byte of the code. */ unsigned char *codeNext; /* Points to next code array byte to use. */ unsigned char *codeEnd; /* Points just after the last allocated * code array byte. */ int mallocedCodeArray; /* Set 1 if code array was expanded * and codeStart points into the heap.*/ LiteralEntry *literalArrayPtr; /* Points to start of LiteralEntry array. */ int literalArrayNext; /* Index of next free object array entry. */ int literalArrayEnd; /* Index just after last obj array entry. */ int mallocedLiteralArray; /* 1 if object array was expanded and * objArray points into the heap, else 0. */ ExceptionRange *exceptArrayPtr; /* Points to start of the ExceptionRange * array. */ int exceptArrayNext; /* Next free ExceptionRange array index. * exceptArrayNext is the number of ranges * and (exceptArrayNext-1) is the index of * the current range's array entry. */ int exceptArrayEnd; /* Index after the last ExceptionRange * array entry. */ int mallocedExceptArray; /* 1 if ExceptionRange array was expanded * and exceptArrayPtr points in heap, * else 0. */ CmdLocation *cmdMapPtr; /* Points to start of CmdLocation array. * numCommands is the index of the next * entry to use; (numCommands-1) is the * entry index for the last command. */ int cmdMapEnd; /* Index after last CmdLocation entry. */ int mallocedCmdMap; /* 1 if command map array was expanded and * cmdMapPtr points in the heap, else 0. */ AuxData *auxDataArrayPtr; /* Points to auxiliary data array start. */ int auxDataArrayNext; /* Next free compile aux data array index. * auxDataArrayNext is the number of aux * data items and (auxDataArrayNext-1) is * index of current aux data array entry. */ int auxDataArrayEnd; /* Index after last aux data array entry. */ int mallocedAuxDataArray; /* 1 if aux data array was expanded and * auxDataArrayPtr points in heap else 0. */ unsigned char staticCodeSpace[COMPILEENV_INIT_CODE_BYTES]; /* Initial storage for code. */ LiteralEntry staticLiteralSpace[COMPILEENV_INIT_NUM_OBJECTS]; /* Initial storage of LiteralEntry array. */ ExceptionRange staticExceptArraySpace[COMPILEENV_INIT_EXCEPT_RANGES]; /* Initial ExceptionRange array storage. */ CmdLocation staticCmdMapSpace[COMPILEENV_INIT_CMD_MAP_SIZE]; /* Initial storage for cmd location map. */ AuxData staticAuxDataArraySpace[COMPILEENV_INIT_AUX_DATA_SIZE]; /* Initial storage for aux data array. */ } CompileEnv; /* * The structure defining the bytecode instructions resulting from compiling * a Tcl script. Note that this structure is variable length: a single heap * object is allocated to hold the ByteCode structure immediately followed * by the code bytes, the literal object array, the ExceptionRange array, * the CmdLocation map, and the compilation AuxData array. */ /* * A PRECOMPILED bytecode struct is one that was generated from a compiled * image rather than implicitly compiled from source */ #define TCL_BYTECODE_PRECOMPILED 0x0001 typedef struct ByteCode { TclHandle interpHandle; /* Handle for interpreter containing the * compiled code. Commands and their compile * procs are specific to an interpreter so the * code emitted will depend on the * interpreter. */ int compileEpoch; /* Value of iPtr->compileEpoch when this * ByteCode was compiled. Used to invalidate * code when, e.g., commands with compile * procs are redefined. */ Namespace *nsPtr; /* Namespace context in which this code * was compiled. If the code is executed * if a different namespace, it must be * recompiled. */ int nsEpoch; /* Value of nsPtr->resolverEpoch when this * ByteCode was compiled. Used to invalidate * code when new namespace resolution rules * are put into effect. */ int refCount; /* Reference count: set 1 when created * plus 1 for each execution of the code * currently active. This structure can be * freed when refCount becomes zero. */ unsigned int flags; /* flags describing state for the codebyte. * this variable holds ORed values from the * TCL_BYTECODE_ masks defined above */ char *source; /* The source string from which this * ByteCode was compiled. Note that this * pointer is not owned by the ByteCode and * must not be freed or modified by it. */ Proc *procPtr; /* If the ByteCode was compiled from a * procedure body, this is a pointer to its * Proc structure; otherwise NULL. This * pointer is also not owned by the ByteCode * and must not be freed by it. */ size_t structureSize; /* Number of bytes in the ByteCode structure * itself. Does not include heap space for * literal Tcl objects or storage referenced * by AuxData entries. */ int numCommands; /* Number of commands compiled. */ int numSrcBytes; /* Number of source bytes compiled. */ int numCodeBytes; /* Number of code bytes. */ int numLitObjects; /* Number of objects in literal array. */ int numExceptRanges; /* Number of ExceptionRange array elems. */ int numAuxDataItems; /* Number of AuxData items. */ int numCmdLocBytes; /* Number of bytes needed for encoded * command location information. */ int maxExceptDepth; /* Maximum nesting level of ExceptionRanges; * -1 if no ranges were compiled. */ int maxStackDepth; /* Maximum number of stack elements needed * to execute the code. */ unsigned char *codeStart; /* Points to the first byte of the code. * This is just after the final ByteCode * member cmdMapPtr. */ Tcl_Obj **objArrayPtr; /* Points to the start of the literal * object array. This is just after the * last code byte. */ ExceptionRange *exceptArrayPtr; /* Points to the start of the ExceptionRange * array. This is just after the last * object in the object array. */ AuxData *auxDataArrayPtr; /* Points to the start of the auxiliary data * array. This is just after the last entry * in the ExceptionRange array. */ unsigned char *codeDeltaStart; /* Points to the first of a sequence of * bytes that encode the change in the * starting offset of each command's code. * If -127<=delta<=127, it is encoded as 1 * byte, otherwise 0xFF (128) appears and * the delta is encoded by the next 4 bytes. * Code deltas are always positive. This * sequence is just after the last entry in * the AuxData array. */ unsigned char *codeLengthStart; /* Points to the first of a sequence of * bytes that encode the length of each * command's code. The encoding is the same * as for code deltas. Code lengths are * always positive. This sequence is just * after the last entry in the code delta * sequence. */ unsigned char *srcDeltaStart; /* Points to the first of a sequence of * bytes that encode the change in the * starting offset of each command's source. * The encoding is the same as for code * deltas. Source deltas can be negative. * This sequence is just after the last byte * in the code length sequence. */ unsigned char *srcLengthStart; /* Points to the first of a sequence of * bytes that encode the length of each * command's source. The encoding is the * same as for code deltas. Source lengths * are always positive. This sequence is * just after the last byte in the source * delta sequence. */ #ifdef TCL_COMPILE_STATS Tcl_Time createTime; /* Absolute time when the ByteCode was * created. */ #endif /* TCL_COMPILE_STATS */ } ByteCode; /* * Opcodes for the Tcl bytecode instructions. These must correspond to * the entries in the table of instruction descriptions, * tclInstructionTable, in tclCompile.c. Also, the order and number of * the expression opcodes (e.g., INST_LOR) must match the entries in * the array operatorStrings in tclExecute.c. */ /* Opcodes 0 to 9 */ #define INST_DONE 0 #define INST_PUSH1 1 #define INST_PUSH4 2 #define INST_POP 3 #define INST_DUP 4 #define INST_CONCAT1 5 #define INST_INVOKE_STK1 6 #define INST_INVOKE_STK4 7 #define INST_EVAL_STK 8 #define INST_EXPR_STK 9 /* Opcodes 10 to 23 */ #define INST_LOAD_SCALAR1 10 #define INST_LOAD_SCALAR4 11 #define INST_LOAD_SCALAR_STK 12 #define INST_LOAD_ARRAY1 13 #define INST_LOAD_ARRAY4 14 #define INST_LOAD_ARRAY_STK 15 #define INST_LOAD_STK 16 #define INST_STORE_SCALAR1 17 #define INST_STORE_SCALAR4 18 #define INST_STORE_SCALAR_STK 19 #define INST_STORE_ARRAY1 20 #define INST_STORE_ARRAY4 21 #define INST_STORE_ARRAY_STK 22 #define INST_STORE_STK 23 /* Opcodes 24 to 33 */ #define INST_INCR_SCALAR1 24 #define INST_INCR_SCALAR_STK 25 #define INST_INCR_ARRAY1 26 #define INST_INCR_ARRAY_STK 27 #define INST_INCR_STK 28 #define INST_INCR_SCALAR1_IMM 29 #define INST_INCR_SCALAR_STK_IMM 30 #define INST_INCR_ARRAY1_IMM 31 #define INST_INCR_ARRAY_STK_IMM 32 #define INST_INCR_STK_IMM 33 /* Opcodes 34 to 39 */ #define INST_JUMP1 34 #define INST_JUMP4 35 #define INST_JUMP_TRUE1 36 #define INST_JUMP_TRUE4 37 #define INST_JUMP_FALSE1 38 #define INST_JUMP_FALSE4 39 /* Opcodes 40 to 64 */ #define INST_LOR 40 #define INST_LAND 41 #define INST_BITOR 42 #define INST_BITXOR 43 #define INST_BITAND 44 #define INST_EQ 45 #define INST_NEQ 46 #define INST_LT 47 #define INST_GT 48 #define INST_LE 49 #define INST_GE 50 #define INST_LSHIFT 51 #define INST_RSHIFT 52 #define INST_ADD 53 #define INST_SUB 54 #define INST_MULT 55 #define INST_DIV 56 #define INST_MOD 57 #define INST_UPLUS 58 #define INST_UMINUS 59 #define INST_BITNOT 60 #define INST_LNOT 61 #define INST_CALL_BUILTIN_FUNC1 62 #define INST_CALL_FUNC1 63 #define INST_TRY_CVT_TO_NUMERIC 64 /* Opcodes 65 to 66 */ #define INST_BREAK 65 #define INST_CONTINUE 66 /* Opcodes 67 to 68 */ #define INST_FOREACH_START4 67 #define INST_FOREACH_STEP4 68 /* Opcodes 69 to 72 */ #define INST_BEGIN_CATCH4 69 #define INST_END_CATCH 70 #define INST_PUSH_RESULT 71 #define INST_PUSH_RETURN_CODE 72 /* Opcodes 73 to 78 */ #define INST_STR_EQ 73 #define INST_STR_NEQ 74 #define INST_STR_CMP 75 #define INST_STR_LEN 76 #define INST_STR_INDEX 77 #define INST_STR_MATCH 78 /* Opcodes 78 to 81 */ #define INST_LIST 79 #define INST_LIST_INDEX 80 #define INST_LIST_LENGTH 81 /* Opcodes 82 to 87 */ #define INST_APPEND_SCALAR1 82 #define INST_APPEND_SCALAR4 83 #define INST_APPEND_ARRAY1 84 #define INST_APPEND_ARRAY4 85 #define INST_APPEND_ARRAY_STK 86 #define INST_APPEND_STK 87 /* Opcodes 88 to 93 */ #define INST_LAPPEND_SCALAR1 88 #define INST_LAPPEND_SCALAR4 89 #define INST_LAPPEND_ARRAY1 90 #define INST_LAPPEND_ARRAY4 91 #define INST_LAPPEND_ARRAY_STK 92 #define INST_LAPPEND_STK 93 /* TIP #22 - LINDEX operator with flat arg list */ #define INST_LIST_INDEX_MULTI 94 /* * TIP #33 - 'lset' command. Code gen also required a Forth-like * OVER operation. */ #define INST_OVER 95 #define INST_LSET_LIST 96 #define INST_LSET_FLAT 97 #define INST_RETURN 98 #define INST_EXPON 99 /* TIP#123 - exponentiation */ #define INST_LIST_VERIFY 100 #define INST_INVOKE_EXP 101 /* The last opcode */ #define LAST_INST_OPCODE 101 /* * Table describing the Tcl bytecode instructions: their name (for * displaying code), total number of code bytes required (including * operand bytes), and a description of the type of each operand. * These operand types include signed and unsigned integers of length * one and four bytes. The unsigned integers are used for indexes or * for, e.g., the count of objects to push in a "push" instruction. */ #define MAX_INSTRUCTION_OPERANDS 2 typedef enum InstOperandType { OPERAND_NONE, OPERAND_INT1, /* One byte signed integer. */ OPERAND_INT4, /* Four byte signed integer. */ OPERAND_UINT1, /* One byte unsigned integer. */ OPERAND_UINT4, /* Four byte unsigned integer. */ OPERAND_ULIST1 /* List of one byte unsigned integers. */ } InstOperandType; typedef struct InstructionDesc { char *name; /* Name of instruction. */ int numBytes; /* Total number of bytes for instruction. */ int stackEffect; /* The worst-case balance stack effect of the * instruction, used for stack requirements * computations. The value INT_MIN signals * that the instruction's worst case effect * is (1-opnd1). */ int numOperands; /* Number of operands. */ InstOperandType opTypes[MAX_INSTRUCTION_OPERANDS]; /* The type of each operand. */ } InstructionDesc; extern InstructionDesc tclInstructionTable[]; /* * Definitions of the values of the INST_CALL_BUILTIN_FUNC instruction's * operand byte. Each value denotes a builtin Tcl math function. These * values must correspond to the entries in the tclBuiltinFuncTable array * below and to the values stored in the tclInt.h MathFunc structure's * builtinFuncIndex field. */ #define BUILTIN_FUNC_ACOS 0 #define BUILTIN_FUNC_ASIN 1 #define BUILTIN_FUNC_ATAN 2 #define BUILTIN_FUNC_ATAN2 3 #define BUILTIN_FUNC_CEIL 4 #define BUILTIN_FUNC_COS 5 #define BUILTIN_FUNC_COSH 6 #define BUILTIN_FUNC_EXP 7 #define BUILTIN_FUNC_FLOOR 8 #define BUILTIN_FUNC_FMOD 9 #define BUILTIN_FUNC_HYPOT 10 #define BUILTIN_FUNC_LOG 11 #define BUILTIN_FUNC_LOG10 12 #define BUILTIN_FUNC_POW 13 #define BUILTIN_FUNC_SIN 14 #define BUILTIN_FUNC_SINH 15 #define BUILTIN_FUNC_SQRT 16 #define BUILTIN_FUNC_TAN 17 #define BUILTIN_FUNC_TANH 18 #define BUILTIN_FUNC_ABS 19 #define BUILTIN_FUNC_DOUBLE 20 #define BUILTIN_FUNC_INT 21 #define BUILTIN_FUNC_RAND 22 #define BUILTIN_FUNC_ROUND 23 #define BUILTIN_FUNC_SRAND 24 #define BUILTIN_FUNC_WIDE 25 #define LAST_BUILTIN_FUNC 25 /* * Table describing the built-in math functions. Entries in this table are * indexed by the values of the INST_CALL_BUILTIN_FUNC instruction's * operand byte. */ typedef int (CallBuiltinFuncProc) _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); typedef struct { char *name; /* Name of function. */ int numArgs; /* Number of arguments for function. */ Tcl_ValueType argTypes[MAX_MATH_ARGS]; /* Acceptable types for each argument. */ CallBuiltinFuncProc *proc; /* Procedure implementing this function. */ ClientData clientData; /* Additional argument to pass to the * function when invoking it. */ } BuiltinFunc; extern BuiltinFunc tclBuiltinFuncTable[]; /* * Compilation of some Tcl constructs such as if commands and the logical or * (||) and logical and (&&) operators in expressions requires the * generation of forward jumps. Since the PC target of these jumps isn't * known when the jumps are emitted, we record the offset of each jump in an * array of JumpFixup structures. There is one array for each sequence of * jumps to one target PC. When we learn the target PC, we update the jumps * with the correct distance. Also, if the distance is too great (> 127 * bytes), we replace the single-byte jump with a four byte jump * instruction, move the instructions after the jump down, and update the * code offsets for any commands between the jump and the target. */ typedef enum { TCL_UNCONDITIONAL_JUMP, TCL_TRUE_JUMP, TCL_FALSE_JUMP } TclJumpType; typedef struct JumpFixup { TclJumpType jumpType; /* Indicates the kind of jump. */ int codeOffset; /* Offset of the first byte of the one-byte * forward jump's code. */ int cmdIndex; /* Index of the first command after the one * for which the jump was emitted. Used to * update the code offsets for subsequent * commands if the two-byte jump at jumpPc * must be replaced with a five-byte one. */ int exceptIndex; /* Index of the first range entry in the * ExceptionRange array after the current * one. This field is used to adjust the * code offsets in subsequent ExceptionRange * records when a jump is grown from 2 bytes * to 5 bytes. */ } JumpFixup; #define JUMPFIXUP_INIT_ENTRIES 10 typedef struct JumpFixupArray { JumpFixup *fixup; /* Points to start of jump fixup array. */ int next; /* Index of next free array entry. */ int end; /* Index of last usable entry in array. */ int mallocedArray; /* 1 if array was expanded and fixups points * into the heap, else 0. */ JumpFixup staticFixupSpace[JUMPFIXUP_INIT_ENTRIES]; /* Initial storage for jump fixup array. */ } JumpFixupArray; /* * The structure describing one variable list of a foreach command. Note * that only foreach commands inside procedure bodies are compiled inline so * a ForeachVarList structure always describes local variables. Furthermore, * only scalar variables are supported for inline-compiled foreach loops. */ typedef struct ForeachVarList { int numVars; /* The number of variables in the list. */ int varIndexes[1]; /* An array of the indexes ("slot numbers") * for each variable in the procedure's * array of local variables. Only scalar * variables are supported. The actual * size of this field will be large enough * to numVars indexes. THIS MUST BE THE * LAST FIELD IN THE STRUCTURE! */ } ForeachVarList; /* * Structure used to hold information about a foreach command that is needed * during program execution. These structures are stored in CompileEnv and * ByteCode structures as auxiliary data. */ typedef struct ForeachInfo { int numLists; /* The number of both the variable and value * lists of the foreach command. */ int firstValueTemp; /* Index of the first temp var in a proc * frame used to point to a value list. */ int loopCtTemp; /* Index of temp var in a proc frame * holding the loop's iteration count. Used * to determine next value list element to * assign each loop var. */ ForeachVarList *varLists[1];/* An array of pointers to ForeachVarList * structures describing each var list. The * actual size of this field will be large * enough to numVars indexes. THIS MUST BE * THE LAST FIELD IN THE STRUCTURE! */ } ForeachInfo; extern AuxDataType tclForeachInfoType; /* *---------------------------------------------------------------- * Procedures exported by tclBasic.c to be used within the engine. *---------------------------------------------------------------- */ EXTERN int TclEvalObjvInternal _ANSI_ARGS_((Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[], CONST char *command, int length, int flags)); EXTERN int TclInterpReady _ANSI_ARGS_((Tcl_Interp *interp)); /* *---------------------------------------------------------------- * Procedures exported by the engine to be used by tclBasic.c *---------------------------------------------------------------- */ EXTERN int TclCompEvalObj _ANSI_ARGS_((Tcl_Interp *interp, Tcl_Obj *objPtr)); /* *---------------------------------------------------------------- * Procedures shared among Tcl bytecode compilation and execution * modules but not used outside: *---------------------------------------------------------------- */ EXTERN void TclCleanupByteCode _ANSI_ARGS_((ByteCode *codePtr)); EXTERN int TclCompileCmdWord _ANSI_ARGS_((Tcl_Interp *interp, Tcl_Token *tokenPtr, int count, CompileEnv *envPtr)); EXTERN int TclCompileExpr _ANSI_ARGS_((Tcl_Interp *interp, CONST char *script, int numBytes, CompileEnv *envPtr)); EXTERN int TclCompileExprWords _ANSI_ARGS_((Tcl_Interp *interp, Tcl_Token *tokenPtr, int numWords, CompileEnv *envPtr)); EXTERN int TclCompileScript _ANSI_ARGS_((Tcl_Interp *interp, CONST char *script, int numBytes, CompileEnv *envPtr)); EXTERN int TclCompileTokens _ANSI_ARGS_((Tcl_Interp *interp, Tcl_Token *tokenPtr, int count, CompileEnv *envPtr)); EXTERN int TclCreateAuxData _ANSI_ARGS_((ClientData clientData, AuxDataType *typePtr, CompileEnv *envPtr)); EXTERN int TclCreateExceptRange _ANSI_ARGS_(( ExceptionRangeType type, CompileEnv *envPtr)); EXTERN ExecEnv * TclCreateExecEnv _ANSI_ARGS_((Tcl_Interp *interp)); EXTERN void TclDeleteExecEnv _ANSI_ARGS_((ExecEnv *eePtr)); EXTERN void TclDeleteLiteralTable _ANSI_ARGS_(( Tcl_Interp *interp, LiteralTable *tablePtr)); EXTERN void TclEmitForwardJump _ANSI_ARGS_((CompileEnv *envPtr, TclJumpType jumpType, JumpFixup *jumpFixupPtr)); EXTERN ExceptionRange * TclGetExceptionRangeForPc _ANSI_ARGS_(( unsigned char *pc, int catchOnly, ByteCode* codePtr)); EXTERN void TclExpandJumpFixupArray _ANSI_ARGS_(( JumpFixupArray *fixupArrayPtr)); EXTERN void TclFinalizeAuxDataTypeTable _ANSI_ARGS_((void)); EXTERN int TclFindCompiledLocal _ANSI_ARGS_((CONST char *name, int nameChars, int create, int flags, Proc *procPtr)); EXTERN LiteralEntry * TclLookupLiteralEntry _ANSI_ARGS_(( Tcl_Interp *interp, Tcl_Obj *objPtr)); EXTERN int TclFixupForwardJump _ANSI_ARGS_(( CompileEnv *envPtr, JumpFixup *jumpFixupPtr, int jumpDist, int distThreshold)); EXTERN void TclFreeCompileEnv _ANSI_ARGS_((CompileEnv *envPtr)); EXTERN void TclFreeJumpFixupArray _ANSI_ARGS_(( JumpFixupArray *fixupArrayPtr)); EXTERN void TclInitAuxDataTypeTable _ANSI_ARGS_((void)); EXTERN void TclInitByteCodeObj _ANSI_ARGS_((Tcl_Obj *objPtr, CompileEnv *envPtr)); EXTERN void TclInitCompilation _ANSI_ARGS_((void)); EXTERN void TclInitCompileEnv _ANSI_ARGS_((Tcl_Interp *interp, CompileEnv *envPtr, char *string, int numBytes)); EXTERN void TclInitJumpFixupArray _ANSI_ARGS_(( JumpFixupArray *fixupArrayPtr)); EXTERN void TclInitLiteralTable _ANSI_ARGS_(( LiteralTable *tablePtr)); #ifdef TCL_COMPILE_STATS EXTERN char * TclLiteralStats _ANSI_ARGS_(( LiteralTable *tablePtr)); EXTERN int TclLog2 _ANSI_ARGS_((int value)); #endif #ifdef TCL_COMPILE_DEBUG EXTERN void TclPrintByteCodeObj _ANSI_ARGS_((Tcl_Interp *interp, Tcl_Obj *objPtr)); #endif EXTERN int TclPrintInstruction _ANSI_ARGS_((ByteCode* codePtr, unsigned char *pc)); EXTERN void TclPrintObject _ANSI_ARGS_((FILE *outFile, Tcl_Obj *objPtr, int maxChars)); EXTERN void TclPrintSource _ANSI_ARGS_((FILE *outFile, CONST char *string, int maxChars)); EXTERN void TclRegisterAuxDataType _ANSI_ARGS_((AuxDataType *typePtr)); EXTERN int TclRegisterLiteral _ANSI_ARGS_((CompileEnv *envPtr, char *bytes, int length, int onHeap)); EXTERN void TclReleaseLiteral _ANSI_ARGS_((Tcl_Interp *interp, Tcl_Obj *objPtr)); EXTERN void TclSetCmdNameObj _ANSI_ARGS_((Tcl_Interp *interp, Tcl_Obj *objPtr, Command *cmdPtr)); #ifdef TCL_COMPILE_DEBUG EXTERN void TclVerifyGlobalLiteralTable _ANSI_ARGS_(( Interp *iPtr)); EXTERN void TclVerifyLocalLiteralTable _ANSI_ARGS_(( CompileEnv *envPtr)); #endif EXTERN int TclCompileVariableCmd _ANSI_ARGS_(( Tcl_Interp *interp, Tcl_Parse *parsePtr, CompileEnv *envPtr)); EXTERN int TclWordKnownAtCompileTime _ANSI_ARGS_(( Tcl_Token *tokenPtr, Tcl_Obj *valuePtr)); /* *---------------------------------------------------------------- * Macros used by Tcl bytecode compilation and execution modules * inside the Tcl core but not used outside. *---------------------------------------------------------------- */ /* * Form of TclRegisterLiteral with onHeap == 0. * In that case, it is safe to cast away CONSTness, and it * is cleanest to do that here, all in one place. */ #define TclRegisterNewLiteral(envPtr, bytes, length) \ TclRegisterLiteral(envPtr, (char *)(bytes), length, /*onHeap*/ 0) /* * Macro used to update the stack requirements. * It is called by the macros TclEmitOpCode, TclEmitInst1 and * TclEmitInst4. * Remark that the very last instruction of a bytecode always * reduces the stack level: INST_DONE or INST_POP, so that the * maxStackdepth is always updated. */ #define TclUpdateStackReqs(op, i, envPtr) \ {\ int delta = tclInstructionTable[(op)].stackEffect;\ if (delta) {\ if (delta < 0) {\ if((envPtr)->maxStackDepth < (envPtr)->currStackDepth) {\ (envPtr)->maxStackDepth = (envPtr)->currStackDepth;\ }\ if (delta == INT_MIN) {\ delta = 1 - (i);\ }\ }\ (envPtr)->currStackDepth += delta;\ }\ } /* * Macro to emit an opcode byte into a CompileEnv's code array. * The ANSI C "prototype" for this macro is: * * EXTERN void TclEmitOpcode _ANSI_ARGS_((unsigned char op, * CompileEnv *envPtr)); */ #define TclEmitOpcode(op, envPtr) \ if ((envPtr)->codeNext == (envPtr)->codeEnd) \ TclExpandCodeArray(envPtr); \ *(envPtr)->codeNext++ = (unsigned char) (op);\ TclUpdateStackReqs(op, 0, envPtr) /* * Macros to emit an integer operand. * The ANSI C "prototype" for these macros are: * * EXTERN void TclEmitInt1 _ANSI_ARGS_((int i, CompileEnv *envPtr)); * EXTERN void TclEmitInt4 _ANSI_ARGS_((int i, CompileEnv *envPtr)); */ #define TclEmitInt1(i, envPtr) \ if ((envPtr)->codeNext == (envPtr)->codeEnd) \ TclExpandCodeArray(envPtr); \ *(envPtr)->codeNext++ = (unsigned char) ((unsigned int) (i)) #define TclEmitInt4(i, envPtr) \ if (((envPtr)->codeNext + 4) > (envPtr)->codeEnd) { \ TclExpandCodeArray(envPtr); \ } \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 24); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 16); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 8); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) ) /* * Macros to emit an instruction with signed or unsigned integer operands. * Four byte integers are stored in "big-endian" order with the high order * byte stored at the lowest address. * The ANSI C "prototypes" for these macros are: * * EXTERN void TclEmitInstInt1 _ANSI_ARGS_((unsigned char op, int i, * CompileEnv *envPtr)); * EXTERN void TclEmitInstInt4 _ANSI_ARGS_((unsigned char op, int i, * CompileEnv *envPtr)); */ #define TclEmitInstInt1(op, i, envPtr) \ if (((envPtr)->codeNext + 2) > (envPtr)->codeEnd) { \ TclExpandCodeArray(envPtr); \ } \ *(envPtr)->codeNext++ = (unsigned char) (op); \ *(envPtr)->codeNext++ = (unsigned char) ((unsigned int) (i));\ TclUpdateStackReqs(op, i, envPtr) #define TclEmitInstInt4(op, i, envPtr) \ if (((envPtr)->codeNext + 5) > (envPtr)->codeEnd) { \ TclExpandCodeArray(envPtr); \ } \ *(envPtr)->codeNext++ = (unsigned char) (op); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 24); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 16); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) >> 8); \ *(envPtr)->codeNext++ = \ (unsigned char) ((unsigned int) (i) );\ TclUpdateStackReqs(op, i, envPtr) /* * Macro to emit an immediate list of index deltas in the code stream. * The ANSI C "prototypes" for this macro is: * * EXTERN void TclEmitImmList1 _ANSI_ARGS_((Tcl_Obj *listPtr, * CompileEnv *envPtr)); */ #define TclEmitImmDeltaList1(listPtr, envPtr) \ { \ int numBytes = Tcl_DStringLength(listPtr) + 1; \ while (((envPtr)->codeNext + numBytes) > (envPtr)->codeEnd) { \ TclExpandCodeArray(envPtr); \ } \ memcpy((VOID *) (envPtr)->codeNext, \ (VOID *)Tcl_DStringValue(listPtr), (size_t) numBytes); \ (envPtr)->codeNext += numBytes; \ } /* * Macro to push a Tcl object onto the Tcl evaluation stack. It emits the * object's one or four byte array index into the CompileEnv's code * array. These support, respectively, a maximum of 256 (2**8) and 2**32 * objects in a CompileEnv. The ANSI C "prototype" for this macro is: * * EXTERN void TclEmitPush _ANSI_ARGS_((int objIndex, CompileEnv *envPtr)); */ #define TclEmitPush(objIndex, envPtr) \ {\ register int objIndexCopy = (objIndex);\ if (objIndexCopy <= 255) { \ TclEmitInstInt1(INST_PUSH1, objIndexCopy, (envPtr)); \ } else { \ TclEmitInstInt4(INST_PUSH4, objIndexCopy, (envPtr)); \ }\ } /* * Macros to update a (signed or unsigned) integer starting at a pointer. * The two variants depend on the number of bytes. The ANSI C "prototypes" * for these macros are: * * EXTERN void TclStoreInt1AtPtr _ANSI_ARGS_((int i, unsigned char *p)); * EXTERN void TclStoreInt4AtPtr _ANSI_ARGS_((int i, unsigned char *p)); */ #define TclStoreInt1AtPtr(i, p) \ *(p) = (unsigned char) ((unsigned int) (i)) #define TclStoreInt4AtPtr(i, p) \ *(p) = (unsigned char) ((unsigned int) (i) >> 24); \ *(p+1) = (unsigned char) ((unsigned int) (i) >> 16); \ *(p+2) = (unsigned char) ((unsigned int) (i) >> 8); \ *(p+3) = (unsigned char) ((unsigned int) (i) ) /* * Macros to update instructions at a particular pc with a new op code * and a (signed or unsigned) int operand. The ANSI C "prototypes" for * these macros are: * * EXTERN void TclUpdateInstInt1AtPc _ANSI_ARGS_((unsigned char op, int i, * unsigned char *pc)); * EXTERN void TclUpdateInstInt4AtPc _ANSI_ARGS_((unsigned char op, int i, * unsigned char *pc)); */ #define TclUpdateInstInt1AtPc(op, i, pc) \ *(pc) = (unsigned char) (op); \ TclStoreInt1AtPtr((i), ((pc)+1)) #define TclUpdateInstInt4AtPc(op, i, pc) \ *(pc) = (unsigned char) (op); \ TclStoreInt4AtPtr((i), ((pc)+1)) /* * Macro to fix up a forward jump to point to the current * code-generation position in the bytecode being created (the most * common case). The ANSI C "prototypes" for this macro is: * * EXTERN int TclFixupForwardJumpToHere _ANSI_ARGS_((CompileEnv *envPtr, * JumpFixup *fixupPtr, int threshold)); */ #define TclFixupForwardJumpToHere(envPtr, fixupPtr, threshold) \ TclFixupForwardJump((envPtr), (fixupPtr), \ (envPtr)->codeNext-(envPtr)->codeStart-(fixupPtr)->codeOffset, \ (threshold)) /* * Macros to get a signed integer (GET_INT{1,2}) or an unsigned int * (GET_UINT{1,2}) from a pointer. There are two variants for each * return type that depend on the number of bytes fetched. * The ANSI C "prototypes" for these macros are: * * EXTERN int TclGetInt1AtPtr _ANSI_ARGS_((unsigned char *p)); * EXTERN int TclGetInt4AtPtr _ANSI_ARGS_((unsigned char *p)); * EXTERN unsigned int TclGetUInt1AtPtr _ANSI_ARGS_((unsigned char *p)); * EXTERN unsigned int TclGetUInt4AtPtr _ANSI_ARGS_((unsigned char *p)); */ /* * The TclGetInt1AtPtr macro is tricky because we want to do sign * extension on the 1-byte value. Unfortunately the "char" type isn't * signed on all platforms so sign-extension doesn't always happen * automatically. Sometimes we can explicitly declare the pointer to be * signed, but other times we have to explicitly sign-extend the value * in software. */ #ifndef __CHAR_UNSIGNED__ # define TclGetInt1AtPtr(p) ((int) *((char *) p)) #else # ifdef HAVE_SIGNED_CHAR # define TclGetInt1AtPtr(p) ((int) *((signed char *) p)) # else # define TclGetInt1AtPtr(p) (((int) *((char *) p)) \ | ((*(p) & 0200) ? (-256) : 0)) # endif #endif #define TclGetInt4AtPtr(p) (((int) TclGetInt1AtPtr(p) << 24) | \ (*((p)+1) << 16) | \ (*((p)+2) << 8) | \ (*((p)+3))) #define TclGetUInt1AtPtr(p) ((unsigned int) *(p)) #define TclGetUInt4AtPtr(p) ((unsigned int) (*(p) << 24) | \ (*((p)+1) << 16) | \ (*((p)+2) << 8) | \ (*((p)+3))) /* * Macros used to compute the minimum and maximum of two integers. * The ANSI C "prototypes" for these macros are: * * EXTERN int TclMin _ANSI_ARGS_((int i, int j)); * EXTERN int TclMax _ANSI_ARGS_((int i, int j)); */ #define TclMin(i, j) ((((int) i) < ((int) j))? (i) : (j)) #define TclMax(i, j) ((((int) i) > ((int) j))? (i) : (j)) # undef TCL_STORAGE_CLASS # define TCL_STORAGE_CLASS DLLIMPORT #endif /* _TCLCOMPILATION */