/* * tclExecute.c -- * * This file contains procedures that execute byte-compiled Tcl commands. * * Copyright (c) 1996-1997 Sun Microsystems, Inc. * Copyright (c) 1998-2000 by Scriptics Corporation. * Copyright (c) 2001 by Kevin B. Kenny. All rights reserved. * Copyright (c) 2002-2005 by Miguel Sofer. * Copyright (c) 2005 by Donal K. Fellows. * * See the file "license.terms" for information on usage and redistribution of * this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclExecute.c,v 1.196 2005/07/21 21:49:05 dkf Exp $ */ #include "tclInt.h" #include "tclCompile.h" #include #include /* * Hack to determine whether we may expect IEEE floating point. The hack is * formally incorrect in that non-IEEE platforms might have the same precision * and range, but VAX, IBM, and Cray do not; are there any other floating * point units that we might care about? */ #if ( FLT_RADIX == 2 ) && ( DBL_MANT_DIG == 53 ) && ( DBL_MAX_EXP == 1024 ) #define IEEE_FLOATING_POINT #endif /* * The stuff below is a bit of a hack so that this file can be used in * environments that include no UNIX, i.e. no errno. Just define errno here. */ #ifdef TCL_GENERIC_ONLY # ifndef NO_FLOAT_H # include # else /* NO_FLOAT_H */ # ifndef NO_VALUES_H # include # endif /* !NO_VALUES_H */ # endif /* !NO_FLOAT_H */ # define NO_ERRNO_H #endif /* !TCL_GENERIC_ONLY */ #ifdef NO_ERRNO_H int errno; # define EDOM 33 # define ERANGE 34 #endif /* * Need DBL_MAX for IS_INF() macro... */ #ifndef DBL_MAX # ifdef MAXDOUBLE # define DBL_MAX MAXDOUBLE # else /* !MAXDOUBLE */ /* * This value is from the Solaris headers, but doubles seem to be the same * size everywhere. Long doubles aren't, but we don't use those. */ # define DBL_MAX 1.79769313486231570e+308 # endif /* MAXDOUBLE */ #endif /* !DBL_MAX */ /* * A mask (should be 2**n-1) that is used to work out when the bytecode engine * should call Tcl_AsyncReady() to see whether there is a signal that needs * handling. */ #ifndef ASYNC_CHECK_COUNT_MASK # define ASYNC_CHECK_COUNT_MASK 63 #endif /* !ASYNC_CHECK_COUNT_MASK */ /* * Boolean flag indicating whether the Tcl bytecode interpreter has been * initialized. */ static int execInitialized = 0; TCL_DECLARE_MUTEX(execMutex) #ifdef TCL_COMPILE_DEBUG /* * Variable that controls whether execution tracing is enabled and, if so, * what level of tracing is desired: * 0: no execution tracing * 1: trace invocations of Tcl procs only * 2: trace invocations of all (not compiled away) commands * 3: display each instruction executed * This variable is linked to the Tcl variable "tcl_traceExec". */ int tclTraceExec = 0; #endif /* * Mapping from expression instruction opcodes to strings; used for error * messages. Note that these entries must match the order and number of the * expression opcodes (e.g., INST_LOR) in tclCompile.h. * * Does not include the string for INST_EXPON (and beyond), as that is * disjoint for backward-compatability reasons */ static CONST char *operatorStrings[] = { "||", "&&", "|", "^", "&", "==", "!=", "<", ">", "<=", ">=", "<<", ">>", "+", "-", "*", "/", "%", "+", "-", "~", "!", "BUILTIN FUNCTION", "FUNCTION", "", "", "", "", "", "", "", "", "eq", "ne" }; /* * Mapping from Tcl result codes to strings; used for error and debugging * messages. */ #ifdef TCL_COMPILE_DEBUG static char *resultStrings[] = { "TCL_OK", "TCL_ERROR", "TCL_RETURN", "TCL_BREAK", "TCL_CONTINUE" }; #endif /* * These are used by evalstats to monitor object usage in Tcl. */ #ifdef TCL_COMPILE_STATS long tclObjsAlloced = 0; long tclObjsFreed = 0; #define TCL_MAX_SHARED_OBJ_STATS 5 long tclObjsShared[TCL_MAX_SHARED_OBJ_STATS] = { 0, 0, 0, 0, 0 }; #endif /* TCL_COMPILE_STATS */ /* * Macros for testing floating-point values for certain special cases. Test * for not-a-number by comparing a value against itself; test for infinity by * comparing against the largest floating-point value. */ #ifdef _MSC_VER #define IS_NAN(f) (_isnan((f))) #define IS_INF(f) ( ! (_finite((f)))) #else #define IS_NAN(f) ((f) != (f)) #define IS_INF(f) ( (f) > DBL_MAX || (f) < -DBL_MAX ) #endif /* * The new macro for ending an instruction; note that a reasonable C-optimiser * will resolve all branches at compile time. (result) is always a constant; * the macro NEXT_INST_F handles constant (nCleanup), NEXT_INST_V is resolved * at runtime for variable (nCleanup). * * ARGUMENTS: * pcAdjustment: how much to increment pc * nCleanup: how many objects to remove from the stack * resultHandling: 0 indicates no object should be pushed on the stack; * otherwise, push objResultPtr. If (result < 0), objResultPtr already * has the correct reference count. */ #define NEXT_INST_F(pcAdjustment, nCleanup, resultHandling) \ if (nCleanup == 0) {\ if (resultHandling != 0) {\ if ((resultHandling) > 0) {\ PUSH_OBJECT(objResultPtr);\ } else {\ *(++tosPtr) = objResultPtr;\ }\ } \ pc += (pcAdjustment);\ goto cleanup0;\ } else if (resultHandling != 0) {\ if ((resultHandling) > 0) {\ Tcl_IncrRefCount(objResultPtr);\ }\ pc += (pcAdjustment);\ switch (nCleanup) {\ case 1: goto cleanup1_pushObjResultPtr;\ case 2: goto cleanup2_pushObjResultPtr;\ default: Tcl_Panic("ERROR: bad usage of macro NEXT_INST_F");\ }\ } else {\ pc += (pcAdjustment);\ switch (nCleanup) {\ case 1: goto cleanup1;\ case 2: goto cleanup2;\ default: Tcl_Panic("ERROR: bad usage of macro NEXT_INST_F");\ }\ } #define NEXT_INST_V(pcAdjustment, nCleanup, resultHandling) \ pc += (pcAdjustment);\ cleanup = (nCleanup);\ if (resultHandling) {\ if ((resultHandling) > 0) {\ Tcl_IncrRefCount(objResultPtr);\ }\ goto cleanupV_pushObjResultPtr;\ } else {\ goto cleanupV;\ } /* * Macros used to cache often-referenced Tcl evaluation stack information * in local variables. Note that a DECACHE_STACK_INFO()-CACHE_STACK_INFO() * pair must surround any call inside TclExecuteByteCode (and a few other * procedures that use this scheme) that could result in a recursive call * to TclExecuteByteCode. */ #define CACHE_STACK_INFO() \ tosPtr = eePtr->tosPtr #define DECACHE_STACK_INFO() \ eePtr->tosPtr = tosPtr;\ checkInterp = 1 /* * Macros used to access items on the Tcl evaluation stack. PUSH_OBJECT * increments the object's ref count since it makes the stack have another * reference pointing to the object. However, POP_OBJECT does not decrement * the ref count. This is because the stack may hold the only reference to the * object, so the object would be destroyed if its ref count were decremented * before the caller had a chance to, e.g., store it in a variable. It is the * caller's responsibility to decrement the ref count when it is finished with * an object. * * WARNING! It is essential that objPtr only appear once in the PUSH_OBJECT * macro. The actual parameter might be an expression with side effects, and * this ensures that it will be executed only once. */ #define PUSH_OBJECT(objPtr) \ Tcl_IncrRefCount(*(++tosPtr) = (objPtr)) #define POP_OBJECT() \ *(tosPtr--) /* * Macros used to trace instruction execution. The macros TRACE, * TRACE_WITH_OBJ, and O2S are only used inside TclExecuteByteCode. O2S is * only used in TRACE* calls to get a string from an object. */ #ifdef TCL_COMPILE_DEBUG # define TRACE(a) \ if (traceInstructions) { \ fprintf(stdout, "%2d: %2d (%u) %s ", iPtr->numLevels, \ (tosPtr - eePtr->stackPtr), \ (unsigned int)(pc - codePtr->codeStart), \ GetOpcodeName(pc)); \ printf a; \ } # define TRACE_APPEND(a) \ if (traceInstructions) { \ printf a; \ } # define TRACE_WITH_OBJ(a, objPtr) \ if (traceInstructions) { \ fprintf(stdout, "%2d: %2d (%u) %s ", iPtr->numLevels, \ (tosPtr - eePtr->stackPtr), \ (unsigned int)(pc - codePtr->codeStart), \ GetOpcodeName(pc)); \ printf a; \ TclPrintObject(stdout, objPtr, 30); \ fprintf(stdout, "\n"); \ } # define O2S(objPtr) \ (objPtr ? TclGetString(objPtr) : "") #else /* !TCL_COMPILE_DEBUG */ # define TRACE(a) # define TRACE_APPEND(a) # define TRACE_WITH_OBJ(a, objPtr) # define O2S(objPtr) #endif /* TCL_COMPILE_DEBUG */ /* * Macro to read a string containing either a wide or an int and decide which * it is while decoding it at the same time. This enforces the policy that * integer constants between LONG_MIN and LONG_MAX (inclusive) are represented * by normal longs, and integer constants outside that range are represented * by wide ints. * * GET_WIDE_OR_INT is the same as REQUIRE_WIDE_OR_INT except it never * generates an error message. */ #define REQUIRE_WIDE_OR_INT(resultVar, objPtr, longVar, wideVar) \ (resultVar) = Tcl_GetWideIntFromObj(interp, (objPtr), &(wideVar)); \ if ((resultVar) == TCL_OK && (wideVar) >= Tcl_LongAsWide(LONG_MIN) \ && (wideVar) <= Tcl_LongAsWide(LONG_MAX)) { \ (objPtr)->typePtr = &tclIntType; \ (objPtr)->internalRep.longValue = (longVar) \ = Tcl_WideAsLong(wideVar); \ } #define GET_WIDE_OR_INT(resultVar, objPtr, longVar, wideVar) \ (resultVar) = Tcl_GetWideIntFromObj((Tcl_Interp *) NULL, (objPtr), \ &(wideVar)); \ if ((resultVar) == TCL_OK && (wideVar) >= Tcl_LongAsWide(LONG_MIN) \ && (wideVar) <= Tcl_LongAsWide(LONG_MAX)) { \ (objPtr)->typePtr = &tclIntType; \ (objPtr)->internalRep.longValue = (longVar) \ = Tcl_WideAsLong(wideVar); \ } /* * Combined with REQUIRE_WIDE_OR_INT, this gets a long value from an obj. */ #define FORCE_LONG(objPtr, longVar, wideVar) \ if ((objPtr)->typePtr == &tclWideIntType) { \ (longVar) = Tcl_WideAsLong(wideVar); \ } #define IS_INTEGER_TYPE(typePtr) \ ((typePtr) == &tclIntType || (typePtr) == &tclWideIntType) #define IS_NUMERIC_TYPE(typePtr) \ (IS_INTEGER_TYPE(typePtr) || (typePtr) == &tclDoubleType) #define W0 Tcl_LongAsWide(0) /* * For tracing that uses wide values. */ #define LLD "%" TCL_LL_MODIFIER "d" #ifndef TCL_WIDE_INT_IS_LONG /* * Extract a double value from a general numeric object. */ #define GET_DOUBLE_VALUE(doubleVar, objPtr, typePtr) \ if ((typePtr) == &tclIntType) { \ (doubleVar) = (double) (objPtr)->internalRep.longValue; \ } else if ((typePtr) == &tclWideIntType) { \ (doubleVar) = Tcl_WideAsDouble((objPtr)->internalRep.wideValue);\ } else { \ (doubleVar) = (objPtr)->internalRep.doubleValue; \ } #else /* TCL_WIDE_INT_IS_LONG */ #define GET_DOUBLE_VALUE(doubleVar, objPtr, typePtr) \ if (((typePtr) == &tclIntType) || ((typePtr) == &tclWideIntType)) { \ (doubleVar) = (double) (objPtr)->internalRep.longValue; \ } else { \ (doubleVar) = (objPtr)->internalRep.doubleValue; \ } #endif /* TCL_WIDE_INT_IS_LONG */ static Tcl_ObjType dictIteratorType = { "dictIterator", NULL, NULL, NULL, NULL }; /* * Declarations for local procedures to this file: */ static int TclExecuteByteCode _ANSI_ARGS_((Tcl_Interp *interp, ByteCode *codePtr)); #ifdef TCL_COMPILE_STATS static int EvalStatsCmd _ANSI_ARGS_((ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[])); #endif /* TCL_COMPILE_STATS */ #ifdef TCL_COMPILE_DEBUG static char * GetOpcodeName _ANSI_ARGS_((unsigned char *pc)); #endif /* TCL_COMPILE_DEBUG */ static ExceptionRange * GetExceptRangeForPc _ANSI_ARGS_((unsigned char *pc, int catchOnly, ByteCode* codePtr)); static char * GetSrcInfoForPc _ANSI_ARGS_((unsigned char *pc, ByteCode* codePtr, int *lengthPtr)); static void GrowEvaluationStack _ANSI_ARGS_((ExecEnv *eePtr)); static void IllegalExprOperandType _ANSI_ARGS_(( Tcl_Interp *interp, unsigned char *pc, Tcl_Obj *opndPtr)); static void InitByteCodeExecution _ANSI_ARGS_(( Tcl_Interp *interp)); #ifdef TCL_COMPILE_DEBUG static void PrintByteCodeInfo _ANSI_ARGS_((ByteCode *codePtr)); static char * StringForResultCode _ANSI_ARGS_((int result)); static void ValidatePcAndStackTop _ANSI_ARGS_(( ByteCode *codePtr, unsigned char *pc, int stackTop, int stackLowerBound, int checkStack)); #endif /* TCL_COMPILE_DEBUG */ static Tcl_WideInt ExponWide _ANSI_ARGS_((Tcl_WideInt w, Tcl_WideInt w2, int *errExpon)); static long ExponLong _ANSI_ARGS_((long i, long i2, int *errExpon)); /* *---------------------------------------------------------------------- * * InitByteCodeExecution -- * * This procedure is called once to initialize the Tcl bytecode * interpreter. * * Results: * None. * * Side effects: * This procedure initializes the array of instruction names. If * compiling with the TCL_COMPILE_STATS flag, it initializes the array * that counts the executions of each instruction and it creates the * "evalstats" command. It also establishes the link between the Tcl * "tcl_traceExec" and C "tclTraceExec" variables. * *---------------------------------------------------------------------- */ static void InitByteCodeExecution(interp) Tcl_Interp *interp; /* Interpreter for which the Tcl variable * "tcl_traceExec" is linked to control * instruction tracing. */ { #ifdef TCL_COMPILE_DEBUG if (Tcl_LinkVar(interp, "tcl_traceExec", (char *) &tclTraceExec, TCL_LINK_INT) != TCL_OK) { Tcl_Panic("InitByteCodeExecution: can't create link for tcl_traceExec variable"); } #endif #ifdef TCL_COMPILE_STATS Tcl_CreateObjCommand(interp, "evalstats", EvalStatsCmd, (ClientData) NULL, (Tcl_CmdDeleteProc *) NULL); #endif /* TCL_COMPILE_STATS */ } /* *---------------------------------------------------------------------- * * TclCreateExecEnv -- * * This procedure creates a new execution environment for Tcl bytecode * execution. An ExecEnv points to a Tcl evaluation stack. An ExecEnv is * typically created once for each Tcl interpreter (Interp structure) and * recursively passed to TclExecuteByteCode to execute ByteCode sequences * for nested commands. * * Results: * A newly allocated ExecEnv is returned. This points to an empty * evaluation stack of the standard initial size. * * Side effects: * The bytecode interpreter is also initialized here, as this procedure * will be called before any call to TclExecuteByteCode. * *---------------------------------------------------------------------- */ #define TCL_STACK_INITIAL_SIZE 2000 ExecEnv * TclCreateExecEnv(interp) Tcl_Interp *interp; /* Interpreter for which the execution * environment is being created. */ { ExecEnv *eePtr = (ExecEnv *) ckalloc(sizeof(ExecEnv)); Tcl_Obj **stackPtr; stackPtr = (Tcl_Obj **) ckalloc((size_t) (TCL_STACK_INITIAL_SIZE * sizeof(Tcl_Obj *))); /* * Use the bottom pointer to keep a reference count; the execution * environment holds a reference. */ stackPtr++; eePtr->stackPtr = stackPtr; stackPtr[-1] = (Tcl_Obj *) ((char *) 1); eePtr->tosPtr = stackPtr - 1; eePtr->endPtr = stackPtr + (TCL_STACK_INITIAL_SIZE - 2); TclNewIntObj(eePtr->constants[0], 0); Tcl_IncrRefCount(eePtr->constants[0]); TclNewIntObj(eePtr->constants[1], 1); Tcl_IncrRefCount(eePtr->constants[1]); Tcl_MutexLock(&execMutex); if (!execInitialized) { TclInitAuxDataTypeTable(); InitByteCodeExecution(interp); execInitialized = 1; } Tcl_MutexUnlock(&execMutex); return eePtr; } #undef TCL_STACK_INITIAL_SIZE /* *---------------------------------------------------------------------- * * TclDeleteExecEnv -- * * Frees the storage for an ExecEnv. * * Results: * None. * * Side effects: * Storage for an ExecEnv and its contained storage (e.g. the evaluation * stack) is freed. * *---------------------------------------------------------------------- */ void TclDeleteExecEnv(eePtr) ExecEnv *eePtr; /* Execution environment to free. */ { if (eePtr->stackPtr[-1] == (Tcl_Obj *) ((char *) 1)) { ckfree((char *) (eePtr->stackPtr-1)); } else { Tcl_Panic("ERROR: freeing an execEnv whose stack is still in use.\n"); } TclDecrRefCount(eePtr->constants[0]); TclDecrRefCount(eePtr->constants[1]); ckfree((char *) eePtr); } /* *---------------------------------------------------------------------- * * TclFinalizeExecution -- * * Finalizes the execution environment setup so that it can be later * reinitialized. * * Results: * None. * * Side effects: * After this call, the next time TclCreateExecEnv will be called it will * call InitByteCodeExecution. * *---------------------------------------------------------------------- */ void TclFinalizeExecution() { Tcl_MutexLock(&execMutex); execInitialized = 0; Tcl_MutexUnlock(&execMutex); TclFinalizeAuxDataTypeTable(); } /* *---------------------------------------------------------------------- * * GrowEvaluationStack -- * * This procedure grows a Tcl evaluation stack stored in an ExecEnv. * * Results: * None. * * Side effects: * The size of the evaluation stack is doubled. * *---------------------------------------------------------------------- */ static void GrowEvaluationStack(eePtr) register ExecEnv *eePtr; /* Points to the ExecEnv with an evaluation * stack to enlarge. */ { /* * The current Tcl stack elements are stored from *(eePtr->stackPtr) to * *(eePtr->endPtr) (inclusive). */ int currElems = (eePtr->endPtr - eePtr->stackPtr + 1); int newElems = 2*currElems; int currBytes = currElems * sizeof(Tcl_Obj *); int newBytes = 2*currBytes; Tcl_Obj **newStackPtr = (Tcl_Obj **) ckalloc((unsigned) newBytes); Tcl_Obj **oldStackPtr = eePtr->stackPtr; /* * We keep the stack reference count as a (char *), as that works nicely * as a portable pointer-sized counter. */ char *refCount = (char *) oldStackPtr[-1]; /* * Copy the existing stack items to the new stack space, free the old * storage if appropriate, and record the refCount of the new stack held * by the environment. */ newStackPtr++; memcpy((VOID *) newStackPtr, (VOID *) oldStackPtr, (size_t) currBytes); if (refCount == (char *) 1) { ckfree((VOID *) (oldStackPtr-1)); } else { /* * Remove the reference corresponding to the environment pointer. */ oldStackPtr[-1] = (Tcl_Obj *) (refCount-1); } eePtr->stackPtr = newStackPtr; eePtr->endPtr = newStackPtr + (newElems - 2); /* index of last usable item */ eePtr->tosPtr += (newStackPtr - oldStackPtr); newStackPtr[-1] = (Tcl_Obj *) ((char *) 1); } /* *-------------------------------------------------------------- * * TclStackAlloc -- * * Allocate memory from the execution stack; it has to be returned later * with a call to TclStackFree * * Results: * A pointer to the first byte allocated, or panics if the allocation did * not succeed. * * Side effects: * The execution stack may be grown. * *-------------------------------------------------------------- */ char * TclStackAlloc(interp, numBytes) Tcl_Interp *interp; int numBytes; { Interp *iPtr = (Interp *) interp; ExecEnv *eePtr = iPtr->execEnvPtr; int numWords; Tcl_Obj **tosPtr = eePtr->tosPtr; char **stackRefCountPtr; /* * Add two words to store * - a pointer to the used execution stack * - the number of words reserved * These will be used later by TclStackFree. */ numWords = (numBytes + 3*sizeof(void *) - 1)/sizeof(void *); while ((tosPtr + numWords) > eePtr->endPtr) { GrowEvaluationStack(eePtr); tosPtr = eePtr->tosPtr; } /* * Increase the stack's reference count, to make sure it is not freed * prematurely. */ stackRefCountPtr = (char **) (eePtr->stackPtr-1); ++*stackRefCountPtr; /* * Reserve the space in the exec stack, and store the data for freeing. */ eePtr->tosPtr += numWords; *(eePtr->tosPtr-1) = (Tcl_Obj *) stackRefCountPtr; *(eePtr->tosPtr) = (Tcl_Obj *) numWords; return (char *) (tosPtr+1); } void TclStackFree(interp) Tcl_Interp *interp; { Interp *iPtr = (Interp *) interp; ExecEnv *eePtr = iPtr->execEnvPtr; char **stackRefCountPtr; stackRefCountPtr = (char **) *(eePtr->tosPtr-1); eePtr->tosPtr -= (int) *(eePtr->tosPtr); --*stackRefCountPtr; if (*stackRefCountPtr == (char *) 0) { ckfree((VOID *) stackRefCountPtr); } } /* *-------------------------------------------------------------- * * Tcl_ExprObj -- * * Evaluate an expression in a Tcl_Obj. * * Results: * A standard Tcl object result. If the result is other than TCL_OK, then * the interpreter's result contains an error message. If the result is * TCL_OK, then a pointer to the expression's result value object is * stored in resultPtrPtr. In that case, the object's ref count is * incremented to reflect the reference returned to the caller; the * caller is then responsible for the resulting object and must, for * example, decrement the ref count when it is finished with the object. * * Side effects: * Any side effects caused by subcommands in the expression, if any. The * interpreter result is not modified unless there is an error. * *-------------------------------------------------------------- */ int Tcl_ExprObj(interp, objPtr, resultPtrPtr) Tcl_Interp *interp; /* Context in which to evaluate the * expression. */ register Tcl_Obj *objPtr; /* Points to Tcl object containing expression * to evaluate. */ Tcl_Obj **resultPtrPtr; /* Where the Tcl_Obj* that is the expression * result is stored if no errors occur. */ { Interp *iPtr = (Interp *) interp; CompileEnv compEnv; /* Compilation environment structure allocated * in frame. */ LiteralTable *localTablePtr = &(compEnv.localLitTable); register ByteCode *codePtr = NULL; /* Tcl Internal type of bytecode. Initialized * to avoid compiler warning. */ AuxData *auxDataPtr; LiteralEntry *entryPtr; Tcl_Obj *saveObjPtr, *resultPtr; char *string; int length, i, result; /* * First handle some common expressions specially. */ string = Tcl_GetStringFromObj(objPtr, &length); if (length == 1) { if (*string == '0') { TclNewLongObj(resultPtr, 0); Tcl_IncrRefCount(resultPtr); *resultPtrPtr = resultPtr; return TCL_OK; } else if (*string == '1') { TclNewLongObj(resultPtr, 1); Tcl_IncrRefCount(resultPtr); *resultPtrPtr = resultPtr; return TCL_OK; } } else if ((length == 2) && (*string == '!')) { if (*(string+1) == '0') { TclNewLongObj(resultPtr, 1); Tcl_IncrRefCount(resultPtr); *resultPtrPtr = resultPtr; return TCL_OK; } else if (*(string+1) == '1') { TclNewLongObj(resultPtr, 0); Tcl_IncrRefCount(resultPtr); *resultPtrPtr = resultPtr; return TCL_OK; } } /* * Get the ByteCode from the object. If it exists, make sure it hasn't * been invalidated by, e.g., someone redefining a command with a compile * procedure (this might make the compiled code wrong). If necessary, * convert the object to be a ByteCode object and compile it. Also, if * the code was compiled in/for a different interpreter, we recompile it. * * Precompiled expressions, however, are immutable and therefore they are * not recompiled, even if the epoch has changed. */ if (objPtr->typePtr == &tclByteCodeType) { codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; if (((Interp *) *codePtr->interpHandle != iPtr) || (codePtr->compileEpoch != iPtr->compileEpoch)) { if (codePtr->flags & TCL_BYTECODE_PRECOMPILED) { if ((Interp *) *codePtr->interpHandle != iPtr) { Tcl_Panic("Tcl_ExprObj: compiled expression jumped interps"); } codePtr->compileEpoch = iPtr->compileEpoch; } else { objPtr->typePtr->freeIntRepProc(objPtr); objPtr->typePtr = (Tcl_ObjType *) NULL; } } } if (objPtr->typePtr != &tclByteCodeType) { TclInitCompileEnv(interp, &compEnv, string, length); result = TclCompileExpr(interp, string, length, &compEnv); /* * Free the compilation environment's literal table bucket array if it * was dynamically allocated. */ if (localTablePtr->buckets != localTablePtr->staticBuckets) { ckfree((char *) localTablePtr->buckets); } if (result != TCL_OK) { /* * Compilation errors. Free storage allocated for compilation. */ #ifdef TCL_COMPILE_DEBUG TclVerifyLocalLiteralTable(&compEnv); #endif /*TCL_COMPILE_DEBUG*/ entryPtr = compEnv.literalArrayPtr; for (i = 0; i < compEnv.literalArrayNext; i++) { TclReleaseLiteral(interp, entryPtr->objPtr); entryPtr++; } #ifdef TCL_COMPILE_DEBUG TclVerifyGlobalLiteralTable(iPtr); #endif /*TCL_COMPILE_DEBUG*/ auxDataPtr = compEnv.auxDataArrayPtr; for (i = 0; i < compEnv.auxDataArrayNext; i++) { if (auxDataPtr->type->freeProc != NULL) { auxDataPtr->type->freeProc(auxDataPtr->clientData); } auxDataPtr++; } TclFreeCompileEnv(&compEnv); return result; } /* * Successful compilation. If the expression yielded no instructions, * push an zero object as the expression's result. */ if (compEnv.codeNext == compEnv.codeStart) { TclEmitPush(TclRegisterNewLiteral(&compEnv, "0", 1), &compEnv); } /* * Add a "done" instruction as the last instruction and change the * object into a ByteCode object. Ownership of the literal objects and * aux data items is given to the ByteCode object. */ TclEmitOpcode(INST_DONE, &compEnv); TclInitByteCodeObj(objPtr, &compEnv); TclFreeCompileEnv(&compEnv); codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; #ifdef TCL_COMPILE_DEBUG if (tclTraceCompile == 2) { TclPrintByteCodeObj(interp, objPtr); } #endif /* TCL_COMPILE_DEBUG */ } /* * Execute the expression after first saving the interpreter's result. */ saveObjPtr = Tcl_GetObjResult(interp); Tcl_IncrRefCount(saveObjPtr); Tcl_ResetResult(interp); /* * Increment the code's ref count while it is being executed. If * afterwards no references to it remain, free the code. */ codePtr->refCount++; result = TclExecuteByteCode(interp, codePtr); codePtr->refCount--; if (codePtr->refCount <= 0) { TclCleanupByteCode(codePtr); objPtr->typePtr = NULL; objPtr->internalRep.otherValuePtr = NULL; } /* * If the expression evaluated successfully, store a pointer to its value * object in resultPtrPtr then restore the old interpreter result. We * increment the object's ref count to reflect the reference that we are * returning to the caller. We also decrement the ref count of the * interpreter's result object after calling Tcl_SetResult since we next * store into that field directly. */ if (result == TCL_OK) { *resultPtrPtr = iPtr->objResultPtr; Tcl_IncrRefCount(iPtr->objResultPtr); Tcl_SetObjResult(interp, saveObjPtr); } TclDecrRefCount(saveObjPtr); return result; } /* *---------------------------------------------------------------------- * * TclCompEvalObj -- * * This procedure evaluates the script contained in a Tcl_Obj by first * compiling it and then passing it to TclExecuteByteCode. * * Results: * The return value is one of the return codes defined in tcl.h (such as * TCL_OK), and interp->objResultPtr refers to a Tcl object that either * contains the result of executing the code or an error message. * * Side effects: * Almost certainly, depending on the ByteCode's instructions. * *---------------------------------------------------------------------- */ int TclCompEvalObj(interp, objPtr) Tcl_Interp *interp; Tcl_Obj *objPtr; { register Interp *iPtr = (Interp *) interp; register ByteCode* codePtr; /* Tcl Internal type of bytecode. */ int result; Namespace *namespacePtr; /* * Check that the interpreter is ready to execute scripts */ iPtr->numLevels++; if (TclInterpReady(interp) == TCL_ERROR) { iPtr->numLevels--; return TCL_ERROR; } if (iPtr->varFramePtr != NULL) { namespacePtr = iPtr->varFramePtr->nsPtr; } else { namespacePtr = iPtr->globalNsPtr; } /* * If the object is not already of tclByteCodeType, compile it (and reset * the compilation flags in the interpreter; this should be done after any * compilation). Otherwise, check that it is "fresh" enough. */ if (objPtr->typePtr != &tclByteCodeType) { recompileObj: iPtr->errorLine = 1; result = tclByteCodeType.setFromAnyProc(interp, objPtr); if (result != TCL_OK) { iPtr->numLevels--; return result; } codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; } else { /* * Make sure the Bytecode hasn't been invalidated by, e.g., someone * redefining a command with a compile procedure (this might make the * compiled code wrong). The object needs to be recompiled if it was * compiled in/for a different interpreter, or for a different * namespace, or for the same namespace but with different name * resolution rules. Precompiled objects, however, are immutable and * therefore they are not recompiled, even if the epoch has changed. * * To be pedantically correct, we should also check that the * originating procPtr is the same as the current context procPtr * (assuming one exists at all - none for global level). This code is * #def'ed out because [info body] was changed to never return a * bytecode type object, which should obviate us from the extra checks * here. */ codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; if (((Interp *) *codePtr->interpHandle != iPtr) || (codePtr->compileEpoch != iPtr->compileEpoch) #ifdef CHECK_PROC_ORIGINATION /* [Bug: 3412 Pedantic] */ || (codePtr->procPtr != NULL && !(iPtr->varFramePtr && iPtr->varFramePtr->procPtr == codePtr->procPtr)) #endif || (codePtr->nsPtr != namespacePtr) || (codePtr->nsEpoch != namespacePtr->resolverEpoch)) { if (codePtr->flags & TCL_BYTECODE_PRECOMPILED) { if ((Interp *) *codePtr->interpHandle != iPtr) { Tcl_Panic("Tcl_EvalObj: compiled script jumped interps"); } codePtr->compileEpoch = iPtr->compileEpoch; } else { /* * This byteCode is invalid: free it and recompile */ objPtr->typePtr->freeIntRepProc(objPtr); goto recompileObj; } } } /* * Increment the code's ref count while it is being executed. If * afterwards no references to it remain, free the code. */ codePtr->refCount++; result = TclExecuteByteCode(interp, codePtr); codePtr->refCount--; if (codePtr->refCount <= 0) { TclCleanupByteCode(codePtr); } iPtr->numLevels--; return result; } /* *---------------------------------------------------------------------- * * TclExecuteByteCode -- * * This procedure executes the instructions of a ByteCode structure. It * returns when a "done" instruction is executed or an error occurs. * * Results: * The return value is one of the return codes defined in tcl.h (such as * TCL_OK), and interp->objResultPtr refers to a Tcl object that either * contains the result of executing the code or an error message. * * Side effects: * Almost certainly, depending on the ByteCode's instructions. * *---------------------------------------------------------------------- */ static int TclExecuteByteCode(interp, codePtr) Tcl_Interp *interp; /* Token for command interpreter. */ ByteCode *codePtr; /* The bytecode sequence to interpret. */ { /* * Compiler cast directive - not a real variable. * Interp *iPtr = (Interp *) interp; */ #define iPtr ((Interp *) interp) /* * Constants: variables that do not change during the execution, used * sporadically. */ ExecEnv *eePtr; /* Points to the execution environment. */ int initStackTop; /* Stack top at start of execution. */ int initCatchTop; /* Catch stack top at start of execution. */ Var *compiledLocals; Namespace *namespacePtr; /* * Globals: variables that store state, must remain valid at all times. */ int catchTop; register Tcl_Obj **tosPtr; /* Cached pointer to top of evaluation stack. */ register unsigned char *pc = codePtr->codeStart; /* The current program counter. */ int instructionCount = 0; /* Counter that is used to work out when to * call Tcl_AsyncReady() */ Tcl_Obj *expandNestList = NULL; int checkInterp = 0; /* Indicates when a check of interp readyness * is necessary. Set by DECACHE_STACK_INFO() */ /* * Transfer variables - needed only between opcodes, but not while * executing an instruction. */ register int cleanup; Tcl_Obj *objResultPtr; /* * Result variable - needed only when going to checkForcatch or other * error handlers; also used as local in some opcodes. */ int result = TCL_OK; /* Return code returned after execution. */ /* * Locals - variables that are used within opcodes or bounded sections of * the file (jumps between opcodes within a family). * NOTE: These are now defined locally where needed. */ #ifdef TCL_COMPILE_DEBUG int traceInstructions = (tclTraceExec == 3); char cmdNameBuf[21]; #endif /* * The execution uses a unified stack: first the catch stack, immediately * above it the execution stack. * * Make sure the catch stack is large enough to hold the maximum number of * catch commands that could ever be executing at the same time (this will * be no more than the exception range array's depth). Make sure the * execution stack is large enough to execute this ByteCode. */ eePtr = iPtr->execEnvPtr; initCatchTop = eePtr->tosPtr - eePtr->stackPtr; catchTop = initCatchTop; tosPtr = eePtr->tosPtr + codePtr->maxExceptDepth; while ((tosPtr + codePtr->maxStackDepth) > eePtr->endPtr) { GrowEvaluationStack(eePtr); tosPtr = eePtr->tosPtr + codePtr->maxExceptDepth; } initStackTop = tosPtr - eePtr->stackPtr; #ifdef TCL_COMPILE_DEBUG if (tclTraceExec >= 2) { PrintByteCodeInfo(codePtr); fprintf(stdout, " Starting stack top=%d\n", initStackTop); fflush(stdout); } #endif #ifdef TCL_COMPILE_STATS iPtr->stats.numExecutions++; #endif if (iPtr->varFramePtr != NULL) { namespacePtr = iPtr->varFramePtr->nsPtr; compiledLocals = iPtr->varFramePtr->compiledLocals; } else { namespacePtr = iPtr->globalNsPtr; compiledLocals = NULL; } /* * Loop executing instructions until a "done" instruction, a TCL_RETURN, * or some error. */ goto cleanup0; /* * Targets for standard instruction endings; unrolled for speed in the * most frequent cases (instructions that consume up to two stack * elements). * * This used to be a "for(;;)" loop, with each instruction doing its own * cleanup. */ { Tcl_Obj *valuePtr; cleanupV_pushObjResultPtr: switch (cleanup) { case 0: *(++tosPtr) = (objResultPtr); goto cleanup0; default: cleanup -= 2; while (cleanup--) { valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); } case 2: cleanup2_pushObjResultPtr: valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); case 1: cleanup1_pushObjResultPtr: valuePtr = *tosPtr; TclDecrRefCount(valuePtr); } *tosPtr = objResultPtr; goto cleanup0; cleanupV: switch (cleanup) { default: cleanup -= 2; while (cleanup--) { valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); } case 2: cleanup2: valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); case 1: cleanup1: valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); case 0: /* * We really want to do nothing now, but this is needed for some * compilers (SunPro CC) */ break; } } cleanup0: #ifdef TCL_COMPILE_DEBUG /* * Skip the stack depth check if an expansion is in progress */ ValidatePcAndStackTop(codePtr, pc, (tosPtr - eePtr->stackPtr), initStackTop, /*checkStack*/ (expandNestList == NULL)); if (traceInstructions) { fprintf(stdout, "%2d: %2d ", iPtr->numLevels, (tosPtr - eePtr->stackPtr)); TclPrintInstruction(codePtr, pc); fflush(stdout); } #endif /* TCL_COMPILE_DEBUG */ #ifdef TCL_COMPILE_STATS iPtr->stats.instructionCount[*pc]++; #endif /* * Check for asynchronous handlers [Bug 746722]; we do the check every * ASYNC_CHECK_COUNT_MASK instruction, of the form (2**n-1). */ if ((instructionCount++ & ASYNC_CHECK_COUNT_MASK) == 0) { if (Tcl_AsyncReady()) { int localResult; DECACHE_STACK_INFO(); localResult = Tcl_AsyncInvoke(interp, result); CACHE_STACK_INFO(); if (localResult == TCL_ERROR) { result = localResult; goto checkForCatch; } } if (Tcl_LimitReady(interp)) { int localResult; DECACHE_STACK_INFO(); localResult = Tcl_LimitCheck(interp); CACHE_STACK_INFO(); if (localResult == TCL_ERROR) { result = localResult; goto checkForCatch; } } } switch (*pc) { case INST_RETURN_IMM: { int code = TclGetInt4AtPtr(pc+1); int level = TclGetUInt4AtPtr(pc+5); Tcl_Obj *returnOpts; TRACE(("%u %u => ", code, level)); returnOpts = POP_OBJECT(); result = TclProcessReturn(interp, code, level, returnOpts); Tcl_DecrRefCount(returnOpts); if (result != TCL_OK) { Tcl_SetObjResult(interp, *tosPtr); cleanup = 1; goto processExceptionReturn; } TRACE_APPEND(("continuing to next instruction (result=\"%.30s\")", O2S(objResultPtr))); NEXT_INST_F(9, 0, 0); } case INST_RETURN_STK: TRACE(("=> ")); objResultPtr = POP_OBJECT(); result = Tcl_SetReturnOptions(interp, POP_OBJECT()); if (result != TCL_OK) { Tcl_SetObjResult(interp, objResultPtr); Tcl_DecrRefCount(objResultPtr); cleanup = 0; goto processExceptionReturn; } TRACE_APPEND(("continuing to next instruction (result=\"%.30s\")", O2S(objResultPtr))); NEXT_INST_F(1, 0, -1); case INST_DONE: if (tosPtr <= eePtr->stackPtr + initStackTop) { tosPtr--; goto abnormalReturn; } /* * Set the interpreter's object result to point to the topmost object * from the stack, and check for a possible [catch]. The stackTop's * level and refCount will be handled by "processCatch" or * "abnormalReturn". */ Tcl_SetObjResult(interp, *tosPtr); #ifdef TCL_COMPILE_DEBUG TRACE_WITH_OBJ(("=> return code=%d, result=", result), iPtr->objResultPtr); if (traceInstructions) { fprintf(stdout, "\n"); } #endif goto checkForCatch; case INST_PUSH1: #if !TCL_COMPILE_DEBUG instPush1Peephole: #endif PUSH_OBJECT(codePtr->objArrayPtr[TclGetUInt1AtPtr(pc+1)]); TRACE_WITH_OBJ(("%u => ", TclGetInt1AtPtr(pc+1)), *tosPtr); pc += 2; #if !TCL_COMPILE_DEBUG /* * Runtime peephole optimisation: check if we are pushing again. */ if (*pc == INST_PUSH1) { goto instPush1Peephole; } #endif NEXT_INST_F(0, 0, 0); case INST_PUSH4: objResultPtr = codePtr->objArrayPtr[TclGetUInt4AtPtr(pc+1)]; TRACE_WITH_OBJ(("%u => ", TclGetUInt4AtPtr(pc+1)), objResultPtr); NEXT_INST_F(5, 0, 1); case INST_POP: { Tcl_Obj *valuePtr; TRACE_WITH_OBJ(("=> discarding "), *tosPtr); valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); /* * Runtime peephole optimisation: an INST_POP is scheduled at the end * of most commands. If the next instruction is an INST_START_CMD, * fall through to it. */ pc++; #if !TCL_COMPILE_DEBUG if (*pc == INST_START_CMD) { goto instStartCmdPeephole; } #endif NEXT_INST_F(0, 0, 0); } case INST_START_CMD: #if !TCL_COMPILE_DEBUG instStartCmdPeephole: #endif /* * Remark that if the interpreter is marked for deletion its * compileEpoch is modified, so that the epoch check also verifies * that the interp is not deleted. If no outside call has been made * since the last check, it is safe to omit the check. */ iPtr->cmdCount++; if (!checkInterp || (((codePtr->compileEpoch == iPtr->compileEpoch) && (codePtr->nsEpoch == namespacePtr->resolverEpoch)) || (codePtr->flags & TCL_BYTECODE_PRECOMPILED))) { #if !TCL_COMPILE_DEBUG /* * Peephole optimisations: check if there are several * INST_START_CMD in a row. Many commands start by pushing a * literal argument or command name; optimise that case too. */ while (*(pc += 5) == INST_START_CMD) { iPtr->cmdCount++; } if (*pc == INST_PUSH1) { goto instPush1Peephole; } NEXT_INST_F(0, 0, 0); #else NEXT_INST_F(5, 0, 0); #endif } else { char *bytes; int length, opnd; Tcl_Obj *newObjResultPtr; bytes = GetSrcInfoForPc(pc, codePtr, &length); DECACHE_STACK_INFO(); result = Tcl_EvalEx(interp, bytes, length, 0); CACHE_STACK_INFO(); if (result != TCL_OK) { cleanup = 0; goto processExceptionReturn; } opnd = TclGetUInt4AtPtr(pc+1); objResultPtr = Tcl_GetObjResult(interp); TclNewObj(newObjResultPtr); Tcl_IncrRefCount(newObjResultPtr); iPtr->objResultPtr = newObjResultPtr; NEXT_INST_V(opnd, 0, -1); } case INST_DUP: objResultPtr = *tosPtr; TRACE_WITH_OBJ(("=> "), objResultPtr); NEXT_INST_F(1, 0, 1); case INST_OVER: { int opnd; opnd = TclGetUInt4AtPtr(pc+1); objResultPtr = *(tosPtr - opnd); TRACE_WITH_OBJ(("=> "), objResultPtr); NEXT_INST_F(5, 0, 1); } case INST_CONCAT1: { int opnd, length, appendLen = 0; char *bytes, *p; Tcl_Obj **currPtr; opnd = TclGetUInt1AtPtr(pc+1); /* * Compute the length to be appended. */ for (currPtr = tosPtr - (opnd-2); currPtr <= tosPtr; currPtr++) { bytes = Tcl_GetStringFromObj(*currPtr, &length); if (bytes != NULL) { appendLen += length; } } /* * If nothing is to be appended, just return the first object by * dropping all the others from the stack; this saves both the * computation and copy of the string rep of the first object, * enabling the fast '$x[set x {}]' idiom for 'K $x [set x{}]'. */ if (appendLen == 0) { TRACE_WITH_OBJ(("%u => ", opnd), objResultPtr); NEXT_INST_V(2, (opnd-1), 0); } /* * If the first object is shared, we need a new obj for the result; * otherwise, we can reuse the first object. In any case, make sure * it has enough room to accomodate all the concatenated bytes. Note * that if it is unshared its bytes are already copied by * Tcl_SetObjectLength, so that we set the loop parameters to avoid * copying them again: p points to the end of the already copied * bytes, currPtr to the second object. */ objResultPtr = *(tosPtr-(opnd-1)); bytes = Tcl_GetStringFromObj(objResultPtr, &length); #if !TCL_COMPILE_DEBUG if (!Tcl_IsShared(objResultPtr)) { Tcl_SetObjLength(objResultPtr, (length + appendLen)); p = TclGetString(objResultPtr) + length; currPtr = tosPtr - (opnd - 2); } else { #endif p = (char *) ckalloc((unsigned) (length + appendLen + 1)); TclNewObj(objResultPtr); objResultPtr->bytes = p; objResultPtr->length = length + appendLen; currPtr = tosPtr - (opnd - 1); #if !TCL_COMPILE_DEBUG } #endif /* * Append the remaining characters. */ for (; currPtr <= tosPtr; currPtr++) { bytes = Tcl_GetStringFromObj(*currPtr, &length); if (bytes != NULL) { memcpy((VOID *) p, (VOID *) bytes, (size_t) length); p += length; } } *p = '\0'; TRACE_WITH_OBJ(("%u => ", opnd), objResultPtr); NEXT_INST_V(2, opnd, 1); } case INST_EXPAND_START: { /* * Push an element to the expandNestList. This records the current * tosPtr - i.e., the point in the stack where the expanded command * starts. * * Use a Tcl_Obj as linked list element; slight mem waste, but faster * allocation than ckalloc. This also abuses the Tcl_Obj structure, as * we do not define a special tclObjType for it. It is not dangerous * as the obj is never passed anywhere, so that all manipulations are * performed here and in INST_INVOKE_EXPANDED (in case of an expansion * error, also in INST_EXPAND_STKTOP). */ Tcl_Obj *objPtr; TclNewObj(objPtr); objPtr->internalRep.twoPtrValue.ptr1 = (VOID *) (tosPtr - eePtr->stackPtr); objPtr->internalRep.twoPtrValue.ptr2 = (VOID *) expandNestList; expandNestList = objPtr; NEXT_INST_F(1, 0, 0); } case INST_EXPAND_STKTOP: { int objc, length, i; Tcl_Obj **objv, *valuePtr, *objPtr; /* * Make sure that the element at stackTop is a list; if not, remove * the element from the expand link list and leave. */ valuePtr = *tosPtr; if (Tcl_ListObjGetElements(interp, valuePtr, &objc, &objv) != TCL_OK) { result = TCL_ERROR; TRACE_WITH_OBJ(("%.30s => ERROR: ", O2S(valuePtr)), Tcl_GetObjResult(interp)); objPtr = expandNestList; expandNestList = (Tcl_Obj *) objPtr->internalRep.twoPtrValue.ptr2; TclDecrRefCount(objPtr); goto checkForCatch; } tosPtr--; /* * Make sure there is enough room in the stack to expand this list * *and* process the rest of the command (at least up to the next * argument expansion or command end). The operand is the current * stack depth, as seen by the compiler. */ length = objc + codePtr->maxStackDepth - TclGetInt4AtPtr(pc+1); while ((tosPtr + length) > eePtr->endPtr) { DECACHE_STACK_INFO(); GrowEvaluationStack(eePtr); CACHE_STACK_INFO(); } /* * Expand the list at stacktop onto the stack; free the list. */ for (i = 0; i < objc; i++) { PUSH_OBJECT(objv[i]); } TclDecrRefCount(valuePtr); NEXT_INST_F(5, 0, 0); } { /* * INVOCATION BLOCK */ int objc, pcAdjustment; case INST_INVOKE_EXPANDED: { Tcl_Obj *objPtr; objPtr = expandNestList; expandNestList = (Tcl_Obj *) objPtr->internalRep.twoPtrValue.ptr2; objc = tosPtr - eePtr->stackPtr - (ptrdiff_t) objPtr->internalRep.twoPtrValue.ptr1; TclDecrRefCount(objPtr); } if (objc == 0) { /* * Nothing was expanded, return {}. */ TclNewObj(objResultPtr); NEXT_INST_F(1, 0, 1); } pcAdjustment = 1; goto doInvocation; case INST_INVOKE_STK4: objc = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doInvocation; case INST_INVOKE_STK1: objc = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doInvocation: { Tcl_Obj **objv = (tosPtr - (objc-1)); int length; char *bytes; /* * We keep the stack reference count as a (char *), as that works * nicely as a portable pointer-sized counter. */ char **preservedStackRefCountPtr; #ifdef TCL_COMPILE_DEBUG if (tclTraceExec >= 2) { int i; if (traceInstructions) { strncpy(cmdNameBuf, TclGetString(objv[0]), 20); TRACE(("%u => call ", objc)); } else { fprintf(stdout, "%d: (%u) invoking ", iPtr->numLevels, (unsigned int)(pc - codePtr->codeStart)); } for (i = 0; i < objc; i++) { TclPrintObject(stdout, objv[i], 15); fprintf(stdout, " "); } fprintf(stdout, "\n"); fflush(stdout); } #endif /*TCL_COMPILE_DEBUG*/ /* * If trace procedures will be called, we need a command string to * pass to TclEvalObjvInternal; note that a copy of the string * will be made there to include the ending \0. */ bytes = NULL; length = 0; if (iPtr->tracePtr != NULL) { Trace *tracePtr, *nextTracePtr; for (tracePtr = iPtr->tracePtr; tracePtr != NULL; tracePtr = nextTracePtr) { nextTracePtr = tracePtr->nextPtr; if (tracePtr->level == 0 || iPtr->numLevels <= tracePtr->level) { /* * Traces will be called: get command string */ bytes = GetSrcInfoForPc(pc, codePtr, &length); break; } } } else { Command *cmdPtr; cmdPtr = (Command *) Tcl_GetCommandFromObj(interp, objv[0]); if ((cmdPtr!=NULL) && (cmdPtr->flags & CMD_HAS_EXEC_TRACES)) { bytes = GetSrcInfoForPc(pc, codePtr, &length); } } /* * A reference to part of the stack vector itself escapes our * control: increase its refCount to stop it from being * deallocated by a recursive call to ourselves. The extra * variable is needed because all others are liable to change due * to the trace procedures. */ preservedStackRefCountPtr = (char **) (eePtr->stackPtr-1); ++*preservedStackRefCountPtr; /* * Reset the instructionCount variable, since we're about to check * for async stuff anyway while processing TclEvalObjvInternal. */ instructionCount = 1; /* * Finally, let TclEvalObjvInternal handle the command. */ DECACHE_STACK_INFO(); Tcl_ResetResult(interp); result = TclEvalObjvInternal(interp, objc, objv, bytes, length, 0); CACHE_STACK_INFO(); /* * If the old stack is going to be released, it is safe to do so * now, since no references to objv are going to be used from now * on. */ --*preservedStackRefCountPtr; if (*preservedStackRefCountPtr == (char *) 0) { ckfree((VOID *) preservedStackRefCountPtr); } if (result == TCL_OK) { Tcl_Obj *objPtr; /* * Push the call's object result and continue execution with * the next instruction. */ TRACE_WITH_OBJ(("%u => ... after \"%.20s\": TCL_OK, result=", objc, cmdNameBuf), Tcl_GetObjResult(interp)); objResultPtr = Tcl_GetObjResult(interp); /* * Reset the interp's result to avoid possible duplications of * large objects [Bug 781585]. We do not call Tcl_ResetResult * to avoid any side effects caused by the resetting of * errorInfo and errorCode [Bug 804681], which are not needed * here. We chose instead to manipulate the interp's object * result directly. * * Note that the result object is now in objResultPtr, it * keeps the refCount it had in its role of * iPtr->objResultPtr. */ TclNewObj(objPtr); Tcl_IncrRefCount(objPtr); iPtr->objResultPtr = objPtr; NEXT_INST_V(pcAdjustment, objc, -1); } else { cleanup = objc; goto processExceptionReturn; } } } case INST_EVAL_STK: { /* * Note to maintainers: it is important that INST_EVAL_STK pop its * argument from the stack before jumping to checkForCatch! DO NOT * OPTIMISE! */ Tcl_Obj *objPtr; objPtr = *tosPtr; DECACHE_STACK_INFO(); result = TclCompEvalObj(interp, objPtr); CACHE_STACK_INFO(); if (result == TCL_OK) { /* * Normal return; push the eval's object result. */ objResultPtr = Tcl_GetObjResult(interp); TRACE_WITH_OBJ(("\"%.30s\" => ", O2S(objPtr)), Tcl_GetObjResult(interp)); /* * Reset the interp's result to avoid possible duplications of * large objects [Bug 781585]. We do not call Tcl_ResetResult to * avoid any side effects caused by the resetting of errorInfo and * errorCode [Bug 804681], which are not needed here. We chose * instead to manipulate the interp's object result directly. * * Note that the result object is now in objResultPtr, it keeps * the refCount it had in its role of iPtr->objResultPtr. */ TclNewObj(objPtr); Tcl_IncrRefCount(objPtr); iPtr->objResultPtr = objPtr; NEXT_INST_F(1, 1, -1); } else { cleanup = 1; goto processExceptionReturn; } } case INST_EXPR_STK: { Tcl_Obj *objPtr, *valuePtr; objPtr = *tosPtr; DECACHE_STACK_INFO(); Tcl_ResetResult(interp); result = Tcl_ExprObj(interp, objPtr, &valuePtr); CACHE_STACK_INFO(); if (result != TCL_OK) { TRACE_WITH_OBJ(("\"%.30s\" => ERROR: ", O2S(objPtr)), Tcl_GetObjResult(interp)); goto checkForCatch; } objResultPtr = valuePtr; TRACE_WITH_OBJ(("\"%.30s\" => ", O2S(objPtr)), valuePtr); NEXT_INST_F(1, 1, -1); /* already has right refct */ } /* * --------------------------------------------------------- * Start of INST_LOAD instructions. * * WARNING: more 'goto' here than your doctor recommended! The different * instructions set the value of some variables and then jump to somme * common execution code. */ { int opnd, pcAdjustment; char *part1, *part2; Var *varPtr, *arrayPtr; Tcl_Obj *objPtr; case INST_LOAD_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); varPtr = &(compiledLocals[opnd]); part1 = varPtr->name; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } TRACE(("%u => ", opnd)); if (TclIsVarDirectReadable(varPtr)) { /* * No errors, no traces: just get the value. */ objResultPtr = varPtr->value.objPtr; TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_F(2, 0, 1); } pcAdjustment = 2; cleanup = 0; arrayPtr = NULL; part2 = NULL; goto doCallPtrGetVar; case INST_LOAD_SCALAR4: opnd = TclGetUInt4AtPtr(pc+1); varPtr = &(compiledLocals[opnd]); part1 = varPtr->name; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } TRACE(("%u => ", opnd)); if (TclIsVarDirectReadable(varPtr)) { /* * No errors, no traces: just get the value. */ objResultPtr = varPtr->value.objPtr; TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_F(5, 0, 1); } pcAdjustment = 5; cleanup = 0; arrayPtr = NULL; part2 = NULL; goto doCallPtrGetVar; case INST_LOAD_ARRAY_STK: cleanup = 2; part2 = Tcl_GetString(*tosPtr); /* element name */ objPtr = *(tosPtr - 1); /* array name */ TRACE(("\"%.30s(%.30s)\" => ", O2S(objPtr), part2)); goto doLoadStk; case INST_LOAD_STK: case INST_LOAD_SCALAR_STK: cleanup = 1; part2 = NULL; objPtr = *tosPtr; /* variable name */ TRACE(("\"%.30s\" => ", O2S(objPtr))); doLoadStk: part1 = TclGetString(objPtr); varPtr = TclObjLookupVar(interp, objPtr, part2, TCL_LEAVE_ERR_MSG, "read", /*createPart1*/ 0, /*createPart2*/ 1, &arrayPtr); if (varPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } if (TclIsVarDirectReadable(varPtr) && ((arrayPtr == NULL) || TclIsVarUntraced(arrayPtr))) { /* * No errors, no traces: just get the value. */ objResultPtr = varPtr->value.objPtr; TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_V(1, cleanup, 1); } pcAdjustment = 1; goto doCallPtrGetVar; case INST_LOAD_ARRAY4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doLoadArray; case INST_LOAD_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doLoadArray: part2 = TclGetString(*tosPtr); arrayPtr = &(compiledLocals[opnd]); part1 = arrayPtr->name; while (TclIsVarLink(arrayPtr)) { arrayPtr = arrayPtr->value.linkPtr; } TRACE(("%u \"%.30s\" => ", opnd, part2)); varPtr = TclLookupArrayElement(interp, part1, part2, TCL_LEAVE_ERR_MSG, "read", 0, 1, arrayPtr); if (varPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } if (TclIsVarDirectReadable(varPtr) && ((arrayPtr == NULL) || TclIsVarUntraced(arrayPtr))) { /* * No errors, no traces: just get the value. */ objResultPtr = varPtr->value.objPtr; TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_F(pcAdjustment, 1, 1); } cleanup = 1; goto doCallPtrGetVar; doCallPtrGetVar: /* * There are either errors or the variable is traced: call * TclPtrGetVar to process fully. */ DECACHE_STACK_INFO(); objResultPtr = TclPtrGetVar(interp, varPtr, arrayPtr, part1, part2, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (objResultPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_V(pcAdjustment, cleanup, 1); } /* * End of INST_LOAD instructions. * --------------------------------------------------------- */ /* * --------------------------------------------------------- * Start of INST_STORE and related instructions. * * WARNING: more 'goto' here than your doctor recommended! The different * instructions set the value of some variables and then jump to somme * common execution code. */ { int opnd, pcAdjustment, storeFlags; char *part1, *part2; Var *varPtr, *arrayPtr; Tcl_Obj *objPtr, *valuePtr; case INST_LAPPEND_STK: valuePtr = *tosPtr; /* value to append */ part2 = NULL; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE | TCL_LIST_ELEMENT | TCL_TRACE_READS); goto doStoreStk; case INST_LAPPEND_ARRAY_STK: valuePtr = *tosPtr; /* value to append */ part2 = TclGetString(*(tosPtr - 1)); storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE | TCL_LIST_ELEMENT | TCL_TRACE_READS); goto doStoreStk; case INST_APPEND_STK: valuePtr = *tosPtr; /* value to append */ part2 = NULL; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE); goto doStoreStk; case INST_APPEND_ARRAY_STK: valuePtr = *tosPtr; /* value to append */ part2 = TclGetString(*(tosPtr - 1)); storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE); goto doStoreStk; case INST_STORE_ARRAY_STK: valuePtr = *tosPtr; part2 = TclGetString(*(tosPtr - 1)); storeFlags = TCL_LEAVE_ERR_MSG; goto doStoreStk; case INST_STORE_STK: case INST_STORE_SCALAR_STK: valuePtr = *tosPtr; part2 = NULL; storeFlags = TCL_LEAVE_ERR_MSG; doStoreStk: objPtr = *(tosPtr - 1 - (part2 != NULL)); /* variable name */ part1 = TclGetString(objPtr); #ifdef TCL_COMPILE_DEBUG if (part2 == NULL) { TRACE(("\"%.30s\" <- \"%.30s\" =>", part1, O2S(valuePtr))); } else { TRACE(("\"%.30s(%.30s)\" <- \"%.30s\" => ", part1, part2, O2S(valuePtr))); } #endif varPtr = TclObjLookupVar(interp, objPtr, part2, TCL_LEAVE_ERR_MSG, "set", /*createPart1*/ 1, /*createPart2*/ 1, &arrayPtr); if (varPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } cleanup = ((part2 == NULL)? 2 : 3); pcAdjustment = 1; goto doCallPtrSetVar; case INST_LAPPEND_ARRAY4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE | TCL_LIST_ELEMENT | TCL_TRACE_READS); goto doStoreArray; case INST_LAPPEND_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE | TCL_LIST_ELEMENT | TCL_TRACE_READS); goto doStoreArray; case INST_APPEND_ARRAY4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE); goto doStoreArray; case INST_APPEND_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE); goto doStoreArray; case INST_STORE_ARRAY4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; storeFlags = TCL_LEAVE_ERR_MSG; goto doStoreArray; case INST_STORE_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; storeFlags = TCL_LEAVE_ERR_MSG; doStoreArray: valuePtr = *tosPtr; part2 = TclGetString(*(tosPtr - 1)); arrayPtr = &(compiledLocals[opnd]); part1 = arrayPtr->name; TRACE(("%u \"%.30s\" <- \"%.30s\" => ", opnd, part2, O2S(valuePtr))); while (TclIsVarLink(arrayPtr)) { arrayPtr = arrayPtr->value.linkPtr; } varPtr = TclLookupArrayElement(interp, part1, part2, TCL_LEAVE_ERR_MSG, "set", 1, 1, arrayPtr); if (varPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } cleanup = 2; goto doCallPtrSetVar; case INST_LAPPEND_SCALAR4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE | TCL_LIST_ELEMENT | TCL_TRACE_READS); goto doStoreScalar; case INST_LAPPEND_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE | TCL_LIST_ELEMENT | TCL_TRACE_READS); goto doStoreScalar; case INST_APPEND_SCALAR4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE); goto doStoreScalar; case INST_APPEND_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; storeFlags = (TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE); goto doStoreScalar; case INST_STORE_SCALAR4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; storeFlags = TCL_LEAVE_ERR_MSG; goto doStoreScalar; case INST_STORE_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; storeFlags = TCL_LEAVE_ERR_MSG; doStoreScalar: valuePtr = *tosPtr; varPtr = &(compiledLocals[opnd]); part1 = varPtr->name; TRACE(("%u <- \"%.30s\" => ", opnd, O2S(valuePtr))); while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } cleanup = 1; arrayPtr = NULL; part2 = NULL; doCallPtrSetVar: if ((storeFlags == TCL_LEAVE_ERR_MSG) && TclIsVarDirectWritable(varPtr) && ((arrayPtr == NULL) || TclIsVarUntraced(arrayPtr))) { /* * No traces, no errors, plain 'set': we can safely inline. The * value *will* be set to what's requested, so that the stack top * remains pointing to the same Tcl_Obj. */ valuePtr = varPtr->value.objPtr; objResultPtr = *tosPtr; if (valuePtr != objResultPtr) { if (valuePtr != NULL) { TclDecrRefCount(valuePtr); } else { TclSetVarScalar(varPtr); TclClearVarUndefined(varPtr); } varPtr->value.objPtr = objResultPtr; Tcl_IncrRefCount(objResultPtr); } #ifndef TCL_COMPILE_DEBUG if (*(pc+pcAdjustment) == INST_POP) { NEXT_INST_V((pcAdjustment+1), cleanup, 0); } #else TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); #endif NEXT_INST_V(pcAdjustment, cleanup, 1); } else { DECACHE_STACK_INFO(); objResultPtr = TclPtrSetVar(interp, varPtr, arrayPtr, part1, part2, valuePtr, storeFlags); CACHE_STACK_INFO(); if (objResultPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } } #ifndef TCL_COMPILE_DEBUG if (*(pc+pcAdjustment) == INST_POP) { NEXT_INST_V((pcAdjustment+1), cleanup, 0); } #endif TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_V(pcAdjustment, cleanup, 1); } /* * End of INST_STORE and related instructions. * --------------------------------------------------------- */ /* * --------------------------------------------------------- * Start of INST_INCR instructions. * * WARNING: more 'goto' here than your doctor recommended! The different * instructions set the value of some variables and then jump to somme * common execution code. */ { Tcl_Obj *objPtr; int opnd, pcAdjustment, isWide; long i; Tcl_WideInt w; char *part1, *part2; Var *varPtr, *arrayPtr; case INST_INCR_SCALAR1: case INST_INCR_ARRAY1: case INST_INCR_ARRAY_STK: case INST_INCR_SCALAR_STK: case INST_INCR_STK: opnd = TclGetUInt1AtPtr(pc+1); objPtr = *tosPtr; if (objPtr->typePtr == &tclIntType) { i = objPtr->internalRep.longValue; isWide = 0; } else if (objPtr->typePtr == &tclWideIntType) { i = 0; /* lint */ w = objPtr->internalRep.wideValue; isWide = 1; } else { i = 0; /* lint */ REQUIRE_WIDE_OR_INT(result, objPtr, i, w); if (result != TCL_OK) { TRACE_WITH_OBJ(("%u (by %s) => ERROR converting increment amount to int: ", opnd, O2S(objPtr)), Tcl_GetObjResult(interp)); Tcl_AddErrorInfo(interp, "\n (reading increment)"); goto checkForCatch; } isWide = (objPtr->typePtr == &tclWideIntType); } tosPtr--; TclDecrRefCount(objPtr); switch (*pc) { case INST_INCR_SCALAR1: pcAdjustment = 2; goto doIncrScalar; case INST_INCR_ARRAY1: pcAdjustment = 2; goto doIncrArray; default: pcAdjustment = 1; goto doIncrStk; } case INST_INCR_ARRAY_STK_IMM: case INST_INCR_SCALAR_STK_IMM: case INST_INCR_STK_IMM: i = TclGetInt1AtPtr(pc+1); isWide = 0; pcAdjustment = 2; doIncrStk: if ((*pc == INST_INCR_ARRAY_STK_IMM) || (*pc == INST_INCR_ARRAY_STK)) { part2 = TclGetString(*tosPtr); objPtr = *(tosPtr - 1); TRACE(("\"%.30s(%.30s)\" (by %ld) => ", O2S(objPtr), part2, i)); } else { part2 = NULL; objPtr = *tosPtr; TRACE(("\"%.30s\" (by %ld) => ", O2S(objPtr), i)); } part1 = TclGetString(objPtr); varPtr = TclObjLookupVar(interp, objPtr, part2, TCL_LEAVE_ERR_MSG, "read", 0, 1, &arrayPtr); if (varPtr == NULL) { Tcl_AddObjErrorInfo(interp, "\n (reading value of variable to increment)", -1); TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } cleanup = ((part2 == NULL)? 1 : 2); goto doIncrVar; case INST_INCR_ARRAY1_IMM: opnd = TclGetUInt1AtPtr(pc+1); i = TclGetInt1AtPtr(pc+2); isWide = 0; pcAdjustment = 3; doIncrArray: part2 = TclGetString(*tosPtr); arrayPtr = &(compiledLocals[opnd]); part1 = arrayPtr->name; while (TclIsVarLink(arrayPtr)) { arrayPtr = arrayPtr->value.linkPtr; } TRACE(("%u \"%.30s\" (by %ld) => ", opnd, part2, i)); varPtr = TclLookupArrayElement(interp, part1, part2, TCL_LEAVE_ERR_MSG, "read", 0, 1, arrayPtr); if (varPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } cleanup = 1; goto doIncrVar; case INST_INCR_SCALAR1_IMM: opnd = TclGetUInt1AtPtr(pc+1); i = TclGetInt1AtPtr(pc+2); isWide = 0; pcAdjustment = 3; doIncrScalar: varPtr = &(compiledLocals[opnd]); part1 = varPtr->name; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } arrayPtr = NULL; part2 = NULL; cleanup = 0; TRACE(("%u %ld => ", opnd, i)); doIncrVar: objPtr = varPtr->value.objPtr; if (TclIsVarDirectReadable(varPtr) && ((arrayPtr == NULL) || TclIsVarUntraced(arrayPtr))) { if (objPtr->typePtr == &tclIntType && !isWide) { /* * No errors, no traces, the variable already has an integer * value: inline processing. */ i += objPtr->internalRep.longValue; if (Tcl_IsShared(objPtr)) { objPtr->refCount--; /* we know it is shared */ TclNewLongObj(objResultPtr, i); Tcl_IncrRefCount(objResultPtr); varPtr->value.objPtr = objResultPtr; } else { TclSetLongObj(objPtr, i); objResultPtr = objPtr; } goto doneIncr; } else if (objPtr->typePtr == &tclWideIntType && isWide) { /* * No errors, no traces, the variable already has a wide * integer value: inline processing. */ w += objPtr->internalRep.wideValue; if (Tcl_IsShared(objPtr)) { objPtr->refCount--; /* we know it is shared */ TclNewWideIntObj(objResultPtr, w); Tcl_IncrRefCount(objResultPtr); varPtr->value.objPtr = objResultPtr; } else { TclSetWideIntObj(objPtr, w); objResultPtr = objPtr; } goto doneIncr; } } DECACHE_STACK_INFO(); if (isWide) { objResultPtr = TclPtrIncrWideVar(interp, varPtr, arrayPtr, part1, part2, w, TCL_LEAVE_ERR_MSG); } else { objResultPtr = TclPtrIncrVar(interp, varPtr, arrayPtr, part1, part2, i, TCL_LEAVE_ERR_MSG); } CACHE_STACK_INFO(); if (objResultPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n", O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } doneIncr: TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); #ifndef TCL_COMPILE_DEBUG if (*(pc+pcAdjustment) == INST_POP) { NEXT_INST_V((pcAdjustment+1), cleanup, 0); } #endif NEXT_INST_V(pcAdjustment, cleanup, 1); } /* * End of INST_INCR instructions. * --------------------------------------------------------- */ case INST_JUMP1: { int opnd; opnd = TclGetInt1AtPtr(pc+1); TRACE(("%d => new pc %u\n", opnd, (unsigned int)(pc + opnd - codePtr->codeStart))); NEXT_INST_F(opnd, 0, 0); } case INST_JUMP4: { int opnd; opnd = TclGetInt4AtPtr(pc+1); TRACE(("%d => new pc %u\n", opnd, (unsigned int)(pc + opnd - codePtr->codeStart))); NEXT_INST_F(opnd, 0, 0); } { int jmpOffset[2]; int b; Tcl_Obj *valuePtr; case INST_JUMP_FALSE4: jmpOffset[0] = TclGetInt4AtPtr(pc+1); /* FALSE offset */ jmpOffset[1] = 5; /* TRUE offset*/ goto doCondJump; case INST_JUMP_TRUE4: jmpOffset[0] = 5; jmpOffset[1] = TclGetInt4AtPtr(pc+1); goto doCondJump; case INST_JUMP_FALSE1: jmpOffset[0] = TclGetInt1AtPtr(pc+1); jmpOffset[1] = 2; goto doCondJump; case INST_JUMP_TRUE1: jmpOffset[0] = 2; jmpOffset[1] = TclGetInt1AtPtr(pc+1); doCondJump: valuePtr = *tosPtr; if (valuePtr->typePtr == &tclIntType) { b = (valuePtr->internalRep.longValue != 0); } else if (valuePtr->typePtr == &tclDoubleType) { b = (valuePtr->internalRep.doubleValue != 0.0); } else if (valuePtr->typePtr == &tclWideIntType) { Tcl_WideInt w; TclGetWide(w,valuePtr); b = (w != W0); } else { /* * Taking b's address impedes it being a register variable (in gcc * at least), so we avoid doing it. */ int b1; result = Tcl_GetBooleanFromObj(interp, valuePtr, &b1); if (result != TCL_OK) { if ((*pc == INST_JUMP_FALSE1) || (*pc == INST_JUMP_FALSE4)) { jmpOffset[1] = jmpOffset[0]; } TRACE_WITH_OBJ(("%d => ERROR: ", jmpOffset[1]), Tcl_GetObjResult(interp)); goto checkForCatch; } b = b1; } #ifndef TCL_COMPILE_DEBUG NEXT_INST_F(jmpOffset[b], 1, 0); #else if (b) { if ((*pc == INST_JUMP_TRUE1) || (*pc == INST_JUMP_TRUE4)) { TRACE(("%d => %.20s true, new pc %u\n", jmpOffset[1], O2S(valuePtr), (unsigned int)(pc+jmpOffset[1] - codePtr->codeStart))); } else { TRACE(("%d => %.20s true\n", jmpOffset[0], O2S(valuePtr))); } NEXT_INST_F(jmpOffset[1], 1, 0); } else { if ((*pc == INST_JUMP_TRUE1) || (*pc == INST_JUMP_TRUE4)) { TRACE(("%d => %.20s false\n", jmpOffset[0], O2S(valuePtr))); } else { TRACE(("%d => %.20s false, new pc %u\n", jmpOffset[0], O2S(valuePtr), (unsigned int)(pc + jmpOffset[1] - codePtr->codeStart))); } NEXT_INST_F(jmpOffset[0], 1, 0); } #endif } /* * These two instructions are now redundant: the complete logic of the LOR * and LAND is now handled by the expression compiler. */ case INST_LOR: case INST_LAND: { /* * Operands must be boolean or numeric. No int->double conversions are * performed. */ int i1, i2, length; int iResult; char *s; Tcl_ObjType *t1Ptr, *t2Ptr; Tcl_Obj *valuePtr, *value2Ptr; Tcl_WideInt w; value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); t1Ptr = valuePtr->typePtr; t2Ptr = value2Ptr->typePtr; if (t1Ptr == &tclIntType) { i1 = (valuePtr->internalRep.longValue != 0); } else if (t1Ptr == &tclWideIntType) { TclGetWide(w,valuePtr); i1 = (w != W0); } else if (t1Ptr == &tclDoubleType) { i1 = (valuePtr->internalRep.doubleValue != 0.0); } else { s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { long i = 0; GET_WIDE_OR_INT(result, valuePtr, i, w); if (valuePtr->typePtr == &tclIntType) { i1 = (i != 0); } else { i1 = (w != W0); } } else { result = Tcl_GetBooleanFromObj(NULL, valuePtr, &i1); } if (result != TCL_OK) { TRACE(("\"%.20s\" => ILLEGAL TYPE %s \n", O2S(valuePtr), (t1Ptr? t1Ptr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); goto checkForCatch; } } if (t2Ptr == &tclIntType) { i2 = (value2Ptr->internalRep.longValue != 0); } else if (t2Ptr == &tclWideIntType) { TclGetWide(w,value2Ptr); i2 = (w != W0); } else if (t2Ptr == &tclDoubleType) { i2 = (value2Ptr->internalRep.doubleValue != 0.0); } else { s = Tcl_GetStringFromObj(value2Ptr, &length); if (TclLooksLikeInt(s, length)) { long i = 0; GET_WIDE_OR_INT(result, value2Ptr, i, w); if (value2Ptr->typePtr == &tclIntType) { i2 = (i != 0); } else { i2 = (w != W0); } } else { result = Tcl_GetBooleanFromObj(NULL, value2Ptr, &i2); } if (result != TCL_OK) { TRACE(("\"%.20s\" => ILLEGAL TYPE %s \n", O2S(value2Ptr), (t2Ptr? t2Ptr->name : "null"))); IllegalExprOperandType(interp, pc, value2Ptr); goto checkForCatch; } } /* * Reuse the valuePtr object already on stack if possible. */ if (*pc == INST_LOR) { iResult = (i1 || i2); } else { iResult = (i1 && i2); } if (Tcl_IsShared(valuePtr)) { TclNewLongObj(objResultPtr, iResult); TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), iResult)); NEXT_INST_F(1, 2, 1); } else { /* reuse the valuePtr object */ TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), iResult)); TclSetLongObj(valuePtr, iResult); NEXT_INST_F(1, 1, 0); } } /* * --------------------------------------------------------- * Start of INST_LIST and related instructions. */ case INST_LIST: { /* * Pop the opnd (objc) top stack elements into a new list obj and then * decrement their ref counts. */ int opnd; opnd = TclGetUInt4AtPtr(pc+1); objResultPtr = Tcl_NewListObj(opnd, (tosPtr - (opnd-1))); TRACE_WITH_OBJ(("%u => ", opnd), objResultPtr); NEXT_INST_V(5, opnd, 1); } case INST_LIST_LENGTH: { Tcl_Obj *valuePtr; int length; valuePtr = *tosPtr; result = Tcl_ListObjLength(interp, valuePtr, &length); if (result != TCL_OK) { TRACE_WITH_OBJ(("%.30s => ERROR: ", O2S(valuePtr)), Tcl_GetObjResult(interp)); goto checkForCatch; } TclNewIntObj(objResultPtr, length); TRACE(("%.20s => %d\n", O2S(valuePtr), length)); NEXT_INST_F(1, 1, 1); } case INST_LIST_INDEX: { /*** lindex with objc == 3 ***/ Tcl_Obj *valuePtr, *value2Ptr; /* * Pop the two operands */ value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); /* * Extract the desired list element */ objResultPtr = TclLindexList(interp, valuePtr, value2Ptr); if (objResultPtr == NULL) { TRACE_WITH_OBJ(("%.30s %.30s => ERROR: ", O2S(valuePtr), O2S(value2Ptr)), Tcl_GetObjResult(interp)); result = TCL_ERROR; goto checkForCatch; } /* * Stash the list element on the stack */ TRACE(("%.20s %.20s => %s\n", O2S(valuePtr), O2S(value2Ptr), O2S(objResultPtr))); NEXT_INST_F(1, 2, -1); /* already has the correct refCount */ } case INST_LIST_INDEX_IMM: { /*** lindex with objc==3 and index in bytecode stream ***/ int listc, idx, opnd; Tcl_Obj **listv; Tcl_Obj *valuePtr; /* * Pop the list and get the index */ valuePtr = *tosPtr; opnd = TclGetInt4AtPtr(pc+1); /* * Get the contents of the list, making sure that it really is a list * in the process. */ result = Tcl_ListObjGetElements(interp, valuePtr, &listc, &listv); if (result != TCL_OK) { TRACE_WITH_OBJ(("\"%.30s\" %d => ERROR: ", O2S(valuePtr), opnd), Tcl_GetObjResult(interp)); goto checkForCatch; } /* * Select the list item based on the index. Negative operand means * end-based indexing. */ if (opnd < -1) { idx = opnd+1 + listc; } else { idx = opnd; } if (idx >= 0 && idx < listc) { objResultPtr = listv[idx]; } else { TclNewObj(objResultPtr); } TRACE_WITH_OBJ(("\"%.30s\" %d => ", O2S(valuePtr), opnd), objResultPtr); NEXT_INST_F(5, 1, 1); } case INST_LIST_INDEX_MULTI: { /* * 'lindex' with multiple index args: * * Determine the count of index args. */ int numIdx, opnd; opnd = TclGetUInt4AtPtr(pc+1); numIdx = opnd-1; /* * Do the 'lindex' operation. */ objResultPtr = TclLindexFlat(interp, *(tosPtr - numIdx), numIdx, tosPtr - numIdx + 1); /* * Check for errors */ if (objResultPtr == NULL) { TRACE_WITH_OBJ(("%d => ERROR: ", opnd), Tcl_GetObjResult(interp)); result = TCL_ERROR; goto checkForCatch; } /* * Set result */ TRACE(("%d => %s\n", opnd, O2S(objResultPtr))); NEXT_INST_V(5, opnd, -1); } case INST_LSET_FLAT: { /* * Lset with 3, 5, or more args. Get the number of index args. */ int numIdx,opnd; Tcl_Obj *valuePtr, *value2Ptr; opnd = TclGetUInt4AtPtr(pc + 1); numIdx = opnd - 2; /* * Get the old value of variable, and remove the stack ref. This is * safe because the variable still references the object; the ref * count will never go zero here. */ value2Ptr = POP_OBJECT(); TclDecrRefCount(value2Ptr); /* This one should be done here */ /* * Get the new element value. */ valuePtr = *tosPtr; /* * Compute the new variable value */ objResultPtr = TclLsetFlat(interp, value2Ptr, numIdx, tosPtr - numIdx, valuePtr); /* * Check for errors */ if (objResultPtr == NULL) { TRACE_WITH_OBJ(("%d => ERROR: ", opnd), Tcl_GetObjResult(interp)); result = TCL_ERROR; goto checkForCatch; } /* * Set result */ TRACE(("%d => %s\n", opnd, O2S(objResultPtr))); NEXT_INST_V(5, (numIdx+1), -1); } case INST_LSET_LIST: { /* * 'lset' with 4 args. */ Tcl_Obj *objPtr, *valuePtr, *value2Ptr; /* * Get the old value of variable, and remove the stack ref. This is * safe because the variable still references the object; the ref * count will never go zero here. */ objPtr = POP_OBJECT(); TclDecrRefCount(objPtr); /* This one should be done here */ /* * Get the new element value, and the index list */ valuePtr = *tosPtr; value2Ptr = *(tosPtr - 1); /* * Compute the new variable value */ objResultPtr = TclLsetList(interp, objPtr, value2Ptr, valuePtr); /* * Check for errors */ if (objResultPtr == NULL) { TRACE_WITH_OBJ(("\"%.30s\" => ERROR: ", O2S(value2Ptr)), Tcl_GetObjResult(interp)); result = TCL_ERROR; goto checkForCatch; } /* * Set result */ TRACE(("=> %s\n", O2S(objResultPtr))); NEXT_INST_F(1, 2, -1); } case INST_LIST_RANGE_IMM: { /*** lrange with objc==4 and both indices in bytecode stream ***/ int listc, fromIdx, toIdx; Tcl_Obj **listv; Tcl_Obj *valuePtr; /* * Pop the list and get the indices */ valuePtr = *tosPtr; fromIdx = TclGetInt4AtPtr(pc+1); toIdx = TclGetInt4AtPtr(pc+5); /* * Get the contents of the list, making sure that it really is a list * in the process. */ result = Tcl_ListObjGetElements(interp, valuePtr, &listc, &listv); if (result != TCL_OK) { TRACE_WITH_OBJ(("\"%.30s\" %d %d => ERROR: ", O2S(valuePtr), fromIdx, toIdx), Tcl_GetObjResult(interp)); goto checkForCatch; } /* * Skip a lot of work if we're about to throw the result away (common * with uses of [lassign].) */ #ifndef TCL_COMPILE_DEBUG if (*(pc+9) == INST_POP) { NEXT_INST_F(10, 1, 0); } #endif /* * Adjust the indices for end-based handling. */ if (fromIdx < -1) { fromIdx += 1+listc; if (fromIdx < -1) { fromIdx = -1; } } else if (fromIdx > listc) { fromIdx = listc; } if (toIdx < -1) { toIdx += 1+listc; if (toIdx < -1) { toIdx = -1; } } else if (toIdx > listc) { toIdx = listc; } /* * Check if we are referring to a valid, non-empty list range, and if * so, build the list of elements in that range. */ if (fromIdx<=toIdx && fromIdx=0) { if (fromIdx<0) { fromIdx = 0; } if (toIdx >= listc) { toIdx = listc-1; } objResultPtr = Tcl_NewListObj(toIdx-fromIdx+1, listv+fromIdx); } else { TclNewObj(objResultPtr); } TRACE_WITH_OBJ(("\"%.30s\" %d %d => ", O2S(valuePtr), TclGetInt4AtPtr(pc+1), TclGetInt4AtPtr(pc+5)), objResultPtr); NEXT_INST_F(9, 1, 1); } case INST_LIST_IN: case INST_LIST_NOT_IN: { /* * Basic list containment operators. */ int found, s1len, s2len, llen, i; Tcl_Obj *valuePtr, *value2Ptr, *o; char *s1, *s2; value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); s1 = Tcl_GetStringFromObj(valuePtr, &s1len); result = Tcl_ListObjLength(interp, value2Ptr, &llen); if (result != TCL_OK) { TRACE_WITH_OBJ(("\"%.30s\" \"%.30s\" => ERROR: ", O2S(valuePtr), O2S(value2Ptr)), Tcl_GetObjResult(interp)); goto checkForCatch; } found = 0; if (llen > 0) { /* An empty list doesn't match anything */ i = 0; do { Tcl_ListObjIndex(NULL, value2Ptr, i, &o); if (o != NULL) { s2 = Tcl_GetStringFromObj(o, &s2len); } else { s2 = ""; } if (s1len == s2len) { found = (strcmp(s1, s2) == 0); } i++; } while (i < llen && found == 0); } if (*pc == INST_LIST_NOT_IN) { found = !found; } TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), found)); /* * Peep-hole optimisation: if you're about to jump, do jump from here. */ pc++; #ifndef TCL_COMPILE_DEBUG switch (*pc) { case INST_JUMP_FALSE1: NEXT_INST_F((found ? 2 : TclGetInt1AtPtr(pc+1)), 2, 0); case INST_JUMP_TRUE1: NEXT_INST_F((found ? TclGetInt1AtPtr(pc+1) : 2), 2, 0); case INST_JUMP_FALSE4: NEXT_INST_F((found ? 5 : TclGetInt4AtPtr(pc+1)), 2, 0); case INST_JUMP_TRUE4: NEXT_INST_F((found ? TclGetInt4AtPtr(pc+1) : 5), 2, 0); } #endif TclNewIntObj(objResultPtr, found); NEXT_INST_F(0, 2, 1); } /* * End of INST_LIST and related instructions. * --------------------------------------------------------- */ case INST_STR_EQ: case INST_STR_NEQ: { /* * String (in)equality check */ int iResult; Tcl_Obj *valuePtr, *value2Ptr; value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); if (valuePtr == value2Ptr) { /* * On the off-chance that the objects are the same, we don't * really have to think hard about equality. */ iResult = (*pc == INST_STR_EQ); } else { char *s1, *s2; int s1len, s2len; s1 = Tcl_GetStringFromObj(valuePtr, &s1len); s2 = Tcl_GetStringFromObj(value2Ptr, &s2len); if (s1len == s2len) { /* * We only need to check (in)equality when we have equal * length strings. */ if (*pc == INST_STR_NEQ) { iResult = (strcmp(s1, s2) != 0); } else { /* INST_STR_EQ */ iResult = (strcmp(s1, s2) == 0); } } else { iResult = (*pc == INST_STR_NEQ); } } TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), iResult)); /* * Peep-hole optimisation: if you're about to jump, do jump from here. */ pc++; #ifndef TCL_COMPILE_DEBUG switch (*pc) { case INST_JUMP_FALSE1: NEXT_INST_F((iResult? 2 : TclGetInt1AtPtr(pc+1)), 2, 0); case INST_JUMP_TRUE1: NEXT_INST_F((iResult? TclGetInt1AtPtr(pc+1) : 2), 2, 0); case INST_JUMP_FALSE4: NEXT_INST_F((iResult? 5 : TclGetInt4AtPtr(pc+1)), 2, 0); case INST_JUMP_TRUE4: NEXT_INST_F((iResult? TclGetInt4AtPtr(pc+1) : 5), 2, 0); } #endif objResultPtr = eePtr->constants[iResult]; NEXT_INST_F(0, 2, 1); } case INST_STR_CMP: { /* * String compare */ CONST char *s1, *s2; int s1len, s2len, iResult; Tcl_Obj *valuePtr, *value2Ptr; value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); /* * The comparison function should compare up to the minimum byte * length only. */ if (valuePtr == value2Ptr) { /* * In the pure equality case, set lengths too for the checks below * (or we could goto beyond it). */ iResult = s1len = s2len = 0; } else if ((valuePtr->typePtr == &tclByteArrayType) && (value2Ptr->typePtr == &tclByteArrayType)) { s1 = (char *) Tcl_GetByteArrayFromObj(valuePtr, &s1len); s2 = (char *) Tcl_GetByteArrayFromObj(value2Ptr, &s2len); iResult = memcmp(s1, s2, (size_t) ((s1len < s2len) ? s1len : s2len)); } else if (((valuePtr->typePtr == &tclStringType) && (value2Ptr->typePtr == &tclStringType))) { /* * Do a unicode-specific comparison if both of the args are of * String type. If the char length == byte length, we can do a * memcmp. In benchmark testing this proved the most efficient * check between the unicode and string comparison operations. */ s1len = Tcl_GetCharLength(valuePtr); s2len = Tcl_GetCharLength(value2Ptr); if ((s1len == valuePtr->length) && (s2len == value2Ptr->length)) { iResult = memcmp(valuePtr->bytes, value2Ptr->bytes, (unsigned) ((s1len < s2len) ? s1len : s2len)); } else { iResult = TclUniCharNcmp(Tcl_GetUnicode(valuePtr), Tcl_GetUnicode(value2Ptr), (unsigned) ((s1len < s2len) ? s1len : s2len)); } } else { /* * We can't do a simple memcmp in order to handle the special Tcl * \xC0\x80 null encoding for utf-8. */ s1 = Tcl_GetStringFromObj(valuePtr, &s1len); s2 = Tcl_GetStringFromObj(value2Ptr, &s2len); iResult = TclpUtfNcmp2(s1, s2, (size_t) ((s1len < s2len) ? s1len : s2len)); } /* * Make sure only -1,0,1 is returned */ if (iResult == 0) { iResult = s1len - s2len; } if (iResult < 0) { iResult = -1; } else if (iResult > 0) { iResult = 1; } TclNewIntObj(objResultPtr, iResult); TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), iResult)); NEXT_INST_F(1, 2, 1); } case INST_STR_LEN: { int length; Tcl_Obj *valuePtr; valuePtr = *tosPtr; if (valuePtr->typePtr == &tclByteArrayType) { (void) Tcl_GetByteArrayFromObj(valuePtr, &length); } else { length = Tcl_GetCharLength(valuePtr); } TclNewIntObj(objResultPtr, length); TRACE(("%.20s => %d\n", O2S(valuePtr), length)); NEXT_INST_F(1, 1, 1); } case INST_STR_INDEX: { /* * String compare */ int index, length; char *bytes; Tcl_Obj *valuePtr, *value2Ptr; bytes = NULL; /* lint */ value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); /* * If we have a ByteArray object, avoid indexing in the Utf string * since the byte array contains one byte per character. Otherwise, * use the Unicode string rep to get the index'th char. */ if (valuePtr->typePtr == &tclByteArrayType) { bytes = (char *)Tcl_GetByteArrayFromObj(valuePtr, &length); } else { /* * Get Unicode char length to calulate what 'end' means. */ length = Tcl_GetCharLength(valuePtr); } result = TclGetIntForIndex(interp, value2Ptr, length - 1, &index); if (result != TCL_OK) { goto checkForCatch; } if ((index >= 0) && (index < length)) { if (valuePtr->typePtr == &tclByteArrayType) { objResultPtr = Tcl_NewByteArrayObj((unsigned char *) (&bytes[index]), 1); } else if (valuePtr->bytes && length == valuePtr->length) { objResultPtr = Tcl_NewStringObj((CONST char *) (&valuePtr->bytes[index]), 1); } else { char buf[TCL_UTF_MAX]; Tcl_UniChar ch; ch = Tcl_GetUniChar(valuePtr, index); /* * This could be: Tcl_NewUnicodeObj((CONST Tcl_UniChar *)&ch, * 1) but creating the object as a string seems to be faster * in practical use. */ length = Tcl_UniCharToUtf(ch, buf); objResultPtr = Tcl_NewStringObj(buf, length); } } else { TclNewObj(objResultPtr); } TRACE(("%.20s %.20s => %s\n", O2S(valuePtr), O2S(value2Ptr), O2S(objResultPtr))); NEXT_INST_F(1, 2, 1); } case INST_STR_MATCH: { int nocase, match; Tcl_Obj *valuePtr, *value2Ptr; nocase = TclGetInt1AtPtr(pc+1); valuePtr = *tosPtr; /* String */ value2Ptr = *(tosPtr - 1); /* Pattern */ /* * Check that at least one of the objects is Unicode before promoting * both. */ if ((valuePtr->typePtr == &tclStringType) || (value2Ptr->typePtr == &tclStringType)) { Tcl_UniChar *ustring1, *ustring2; int length1, length2; ustring1 = Tcl_GetUnicodeFromObj(valuePtr, &length1); ustring2 = Tcl_GetUnicodeFromObj(value2Ptr, &length2); match = TclUniCharMatch(ustring1, length1, ustring2, length2, nocase); } else { match = Tcl_StringCaseMatch(TclGetString(valuePtr), TclGetString(value2Ptr), nocase); } /* * Reuse value2Ptr object already on stack if possible. Adjustment is * 2 due to the nocase byte */ TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), match)); objResultPtr = eePtr->constants[match]; NEXT_INST_F(2, 2, 1); } case INST_EQ: case INST_NEQ: case INST_LT: case INST_GT: case INST_LE: case INST_GE: { /* * Any type is allowed but the two operands must have the same type. * We will compute value op value2. */ Tcl_ObjType *t1Ptr, *t2Ptr; char *s1 = NULL; /* Init. avoids compiler warning. */ char *s2 = NULL; /* Init. avoids compiler warning. */ long i2 = 0; /* Init. avoids compiler warning. */ double d1 = 0.0; /* Init. avoids compiler warning. */ double d2 = 0.0; /* Init. avoids compiler warning. */ long iResult = 0; /* Init. avoids compiler warning. */ Tcl_Obj *valuePtr, *value2Ptr; int length; Tcl_WideInt w; long i; value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); /* * Be careful in the equal-object case; 'NaN' isn't supposed to be * equal to even itself. [Bug 761471] */ t1Ptr = valuePtr->typePtr; if (valuePtr == value2Ptr) { /* * If we are numeric already, or a dictionary (which is never like * a single-element list), we can proceed to the main equality * check right now. Otherwise, we need to try to coerce to a * numeric type so we can see if we've got a NaN but haven't * parsed it as numeric. */ if (!IS_NUMERIC_TYPE(t1Ptr) && (t1Ptr != &tclDictType)) { if (t1Ptr == &tclListType) { int length; /* * Only a list of length 1 can be NaN or such things. */ (void) Tcl_ListObjLength(NULL, valuePtr, &length); if (length == 1) { goto mustConvertForNaNCheck; } } else { /* * Too bad, we'll have to compute the string and try the * conversion */ mustConvertForNaNCheck: s1 = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s1, length)) { GET_WIDE_OR_INT(iResult, valuePtr, i, w); } else { (void) Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d1); } t1Ptr = valuePtr->typePtr; } } switch (*pc) { case INST_EQ: case INST_LE: case INST_GE: iResult = !((t1Ptr == &tclDoubleType) && IS_NAN(valuePtr->internalRep.doubleValue)); break; case INST_LT: case INST_GT: iResult = 0; break; case INST_NEQ: iResult = ((t1Ptr == &tclDoubleType) && IS_NAN(valuePtr->internalRep.doubleValue)); break; } goto foundResult; } t2Ptr = value2Ptr->typePtr; /* * We only want to coerce numeric validation if neither type is NULL. * A NULL type means the arg is essentially an empty object ("", {} or * [list]). */ if (!( (!t1Ptr && !valuePtr->bytes) || (valuePtr->bytes && !valuePtr->length) || (!t2Ptr && !value2Ptr->bytes) || (value2Ptr->bytes && !value2Ptr->length))) { if (!IS_NUMERIC_TYPE(t1Ptr)) { s1 = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s1, length)) { GET_WIDE_OR_INT(iResult, valuePtr, i, w); } else { (void) Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d1); } t1Ptr = valuePtr->typePtr; } if (!IS_NUMERIC_TYPE(t2Ptr)) { s2 = Tcl_GetStringFromObj(value2Ptr, &length); if (TclLooksLikeInt(s2, length)) { GET_WIDE_OR_INT(iResult, value2Ptr, i2, w); } else { (void) Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, value2Ptr, &d2); } t2Ptr = value2Ptr->typePtr; } } if (!IS_NUMERIC_TYPE(t1Ptr) || !IS_NUMERIC_TYPE(t2Ptr)) { /* * One operand is not numeric. Compare as strings. NOTE: strcmp * is not correct for \x00 < \x01, but that is unlikely to occur * here. We could use the TclUtfNCmp2 to handle this. */ int s1len, s2len; s1 = Tcl_GetStringFromObj(valuePtr, &s1len); s2 = Tcl_GetStringFromObj(value2Ptr, &s2len); switch (*pc) { case INST_EQ: if (s1len == s2len) { iResult = (strcmp(s1, s2) == 0); } else { iResult = 0; } break; case INST_NEQ: if (s1len == s2len) { iResult = (strcmp(s1, s2) != 0); } else { iResult = 1; } break; case INST_LT: iResult = (strcmp(s1, s2) < 0); break; case INST_GT: iResult = (strcmp(s1, s2) > 0); break; case INST_LE: iResult = (strcmp(s1, s2) <= 0); break; case INST_GE: iResult = (strcmp(s1, s2) >= 0); break; } } else if ((t1Ptr == &tclDoubleType) || (t2Ptr == &tclDoubleType)) { /* * Compare as doubles. */ if (t1Ptr == &tclDoubleType) { d1 = valuePtr->internalRep.doubleValue; GET_DOUBLE_VALUE(d2, value2Ptr, t2Ptr); } else { /* t1Ptr is integer, t2Ptr is double */ GET_DOUBLE_VALUE(d1, valuePtr, t1Ptr); d2 = value2Ptr->internalRep.doubleValue; } switch (*pc) { case INST_EQ: iResult = d1 == d2; break; case INST_NEQ: iResult = d1 != d2; break; case INST_LT: iResult = d1 < d2; break; case INST_GT: iResult = d1 > d2; break; case INST_LE: iResult = d1 <= d2; break; case INST_GE: iResult = d1 >= d2; break; } } else if ((t1Ptr == &tclWideIntType) || (t2Ptr == &tclWideIntType)) { Tcl_WideInt w2; /* * Compare as wide ints (neither are doubles) */ if (t1Ptr == &tclIntType) { w = Tcl_LongAsWide(valuePtr->internalRep.longValue); TclGetWide(w2,value2Ptr); } else if (t2Ptr == &tclIntType) { TclGetWide(w,valuePtr); w2 = Tcl_LongAsWide(value2Ptr->internalRep.longValue); } else { TclGetWide(w,valuePtr); TclGetWide(w2,value2Ptr); } switch (*pc) { case INST_EQ: iResult = w == w2; break; case INST_NEQ: iResult = w != w2; break; case INST_LT: iResult = w < w2; break; case INST_GT: iResult = w > w2; break; case INST_LE: iResult = w <= w2; break; case INST_GE: iResult = w >= w2; break; } } else { /* * Compare as ints. */ i = valuePtr->internalRep.longValue; i2 = value2Ptr->internalRep.longValue; switch (*pc) { case INST_EQ: iResult = i == i2; break; case INST_NEQ: iResult = i != i2; break; case INST_LT: iResult = i < i2; break; case INST_GT: iResult = i > i2; break; case INST_LE: iResult = i <= i2; break; case INST_GE: iResult = i >= i2; break; } } TRACE(("%.20s %.20s => %ld\n", O2S(valuePtr), O2S(value2Ptr), iResult)); /* * Peep-hole optimisation: if you're about to jump, do jump from here. */ foundResult: pc++; #ifndef TCL_COMPILE_DEBUG switch (*pc) { case INST_JUMP_FALSE1: NEXT_INST_F((iResult? 2 : TclGetInt1AtPtr(pc+1)), 2, 0); case INST_JUMP_TRUE1: NEXT_INST_F((iResult? TclGetInt1AtPtr(pc+1) : 2), 2, 0); case INST_JUMP_FALSE4: NEXT_INST_F((iResult? 5 : TclGetInt4AtPtr(pc+1)), 2, 0); case INST_JUMP_TRUE4: NEXT_INST_F((iResult? TclGetInt4AtPtr(pc+1) : 5), 2, 0); } #endif objResultPtr = eePtr->constants[iResult]; NEXT_INST_F(0, 2, 1); } case INST_MOD: case INST_LSHIFT: case INST_RSHIFT: case INST_BITOR: case INST_BITXOR: case INST_BITAND: { /* * Only integers are allowed. We compute value op value2. */ long i = 0, i2 = 0, rem, neg_divisor = 0; long iResult = 0; /* Init. avoids compiler warning. */ Tcl_WideInt w, w2, wResult = W0; int doWide = 0; Tcl_Obj *valuePtr, *value2Ptr; value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); if (valuePtr->typePtr == &tclIntType) { i = valuePtr->internalRep.longValue; } else if (valuePtr->typePtr == &tclWideIntType) { TclGetWide(w,valuePtr); } else { /* try to convert to int */ REQUIRE_WIDE_OR_INT(result, valuePtr, i, w); if (result != TCL_OK) { TRACE(("%.20s %.20s => ILLEGAL 1st TYPE %s\n", O2S(valuePtr), O2S(value2Ptr), (valuePtr->typePtr? valuePtr->typePtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); goto checkForCatch; } } if (value2Ptr->typePtr == &tclIntType) { i2 = value2Ptr->internalRep.longValue; } else if (value2Ptr->typePtr == &tclWideIntType) { TclGetWide(w2,value2Ptr); } else { REQUIRE_WIDE_OR_INT(result, value2Ptr, i2, w2); if (result != TCL_OK) { TRACE(("%.20s %.20s => ILLEGAL 2nd TYPE %s\n", O2S(valuePtr), O2S(value2Ptr), (value2Ptr->typePtr? value2Ptr->typePtr->name : "null"))); IllegalExprOperandType(interp, pc, value2Ptr); goto checkForCatch; } } switch (*pc) { case INST_MOD: /* * This code is tricky: C doesn't guarantee much about the * quotient or remainder, and results with a negative divisor are * not specified. Tcl guarantees that the remainder will have the * same sign as the divisor and a smaller absolute value. */ if (value2Ptr->typePtr == &tclWideIntType && w2 == W0) { if (valuePtr->typePtr == &tclIntType) { TRACE(("%ld "LLD" => DIVIDE BY ZERO\n", i, w2)); } else { TRACE((LLD" "LLD" => DIVIDE BY ZERO\n", w, w2)); } goto divideByZero; } if (value2Ptr->typePtr == &tclIntType && i2 == 0) { if (valuePtr->typePtr == &tclIntType) { TRACE(("%ld %ld => DIVIDE BY ZERO\n", i, i2)); } else { TRACE((LLD" %ld => DIVIDE BY ZERO\n", w, i2)); } goto divideByZero; } if (valuePtr->typePtr == &tclWideIntType || value2Ptr->typePtr == &tclWideIntType) { Tcl_WideInt wRemainder; /* * Promote to wide */ if (valuePtr->typePtr == &tclIntType) { w = Tcl_LongAsWide(i); } else if (value2Ptr->typePtr == &tclIntType) { w2 = Tcl_LongAsWide(i2); } if ( w == LLONG_MIN && w2 == -1 ) { /* Integer overflow could happen with (LLONG_MIN % -1) * even though it is not possible in the code below. */ wRemainder = 0; } else if ( w == LLONG_MIN && w2 == LLONG_MAX ) { wRemainder = LLONG_MAX - 1; } else if ( w2 == LLONG_MIN ) { /* * In C, a modulus operation is not well defined when the * divisor is a negative number. So w % LLONG_MIN is not * well defined in the code below because -LLONG_MIN is * still a negative number. */ if (w == 0 || w == LLONG_MIN) { wRemainder = 0; } else if (w < 0) { wRemainder = w; } else { wRemainder = LLONG_MIN + w; } neg_divisor = 1; } else { if (w2 < 0) { w2 = -w2; w = -w; /* Note: -LLONG_MIN == LLONG_MIN */ neg_divisor = 1; } wRemainder = w % w2; /* * remainder is (remainder + divisor) when the remainder * is negative. Watch out for the special case of a * LLONG_MIN dividend and a negative divisor. Don't add * the divisor in that case because the remainder should * not be negative. */ if (wRemainder < 0 && !(neg_divisor && (w == LLONG_MIN))) { wRemainder += w2; } } if ((neg_divisor && (wRemainder > 0)) || (!neg_divisor && (wRemainder < 0))) { wRemainder = -wRemainder; } wResult = wRemainder; doWide = 1; break; } if ( i == LONG_MIN && i2 == -1 ) { /* * Integer overflow could happen with (LONG_MIN % -1) even * though it is not possible in the code below. */ rem = 0; } else if ( i == LONG_MIN && i2 == LONG_MAX ) { rem = LONG_MAX - 1; } else if ( i2 == LONG_MIN ) { /* * In C, a modulus operation is not well defined when the * divisor is a negative number. So i % LONG_MIN is not well * defined in the code below because -LONG_MIN is still a * negative number. */ if (i == 0 || i == LONG_MIN) { rem = 0; } else if (i < 0) { rem = i; } else { rem = LONG_MIN + i; } neg_divisor = 1; } else { if (i2 < 0) { i2 = -i2; i = -i; /* Note: -LONG_MIN == LONG_MIN */ neg_divisor = 1; } rem = i % i2; /* * remainder is (remainder + divisor) when the remainder is * negative. Watch out for the special case of a LONG_MIN * dividend and a negative divisor. Don't add the divisor in * that case because the remainder should not be negative. */ if (rem < 0 && !(neg_divisor && (i == LONG_MIN))) { rem += i2; } } if ((neg_divisor && (rem > 0)) || (!neg_divisor && (rem < 0))) { rem = -rem; } iResult = rem; break; case INST_LSHIFT: /* * Shifts are never usefully 64-bits wide! */ FORCE_LONG(value2Ptr, i2, w2); if (valuePtr->typePtr == &tclWideIntType) { #ifdef TCL_COMPILE_DEBUG w2 = Tcl_LongAsWide(i2); #endif /* TCL_COMPILE_DEBUG */ wResult = w; /* * Shift in steps when the shift gets large to prevent * annoying compiler/processor bugs. [Bug 868467] */ if (i2 >= 64) { wResult = Tcl_LongAsWide(0); } else if (i2 > 60) { wResult = w << 30; wResult <<= 30; wResult <<= i2-60; } else if (i2 > 30) { wResult = w << 30; wResult <<= i2-30; } else { wResult = w << i2; } doWide = 1; break; } /* * Shift in steps when the shift gets large to prevent annoying * compiler/processor bugs. [Bug 868467] */ if (i2 >= 64) { iResult = 0; } else if (i2 > 60) { iResult = i << 30; iResult <<= 30; iResult <<= i2-60; } else if (i2 > 30) { iResult = i << 30; iResult <<= i2-30; } else { iResult = i << i2; } break; case INST_RSHIFT: /* * The following code is a bit tricky: it ensures that right * shifts propagate the sign bit even on machines where ">>" won't * do it by default. */ /* * Shifts are never usefully 64-bits wide! */ FORCE_LONG(value2Ptr, i2, w2); if (valuePtr->typePtr == &tclWideIntType) { #ifdef TCL_COMPILE_DEBUG w2 = Tcl_LongAsWide(i2); #endif /* TCL_COMPILE_DEBUG */ if (w < 0) { wResult = ~w; } else { wResult = w; } /* * Shift in steps when the shift gets large to prevent * annoying compiler/processor bugs. [Bug 868467] */ if (i2 >= 64) { wResult = Tcl_LongAsWide(0); } else if (i2 > 60) { wResult >>= 30; wResult >>= 30; wResult >>= i2-60; } else if (i2 > 30) { wResult >>= 30; wResult >>= i2-30; } else { wResult >>= i2; } if (w < 0) { wResult = ~wResult; } doWide = 1; break; } if (i < 0) { iResult = ~i; } else { iResult = i; } /* * Shift in steps when the shift gets large to prevent annoying * compiler/processor bugs. [Bug 868467] */ if (i2 >= 64) { iResult = 0; } else if (i2 > 60) { iResult >>= 30; iResult >>= 30; iResult >>= i2-60; } else if (i2 > 30) { iResult >>= 30; iResult >>= i2-30; } else { iResult >>= i2; } if (i < 0) { iResult = ~iResult; } break; case INST_BITOR: if (valuePtr->typePtr == &tclWideIntType || value2Ptr->typePtr == &tclWideIntType) { /* * Promote to wide */ if (valuePtr->typePtr == &tclIntType) { w = Tcl_LongAsWide(i); } else if (value2Ptr->typePtr == &tclIntType) { w2 = Tcl_LongAsWide(i2); } wResult = w | w2; doWide = 1; break; } iResult = i | i2; break; case INST_BITXOR: if (valuePtr->typePtr == &tclWideIntType || value2Ptr->typePtr == &tclWideIntType) { /* * Promote to wide */ if (valuePtr->typePtr == &tclIntType) { w = Tcl_LongAsWide(i); } else if (value2Ptr->typePtr == &tclIntType) { w2 = Tcl_LongAsWide(i2); } wResult = w ^ w2; doWide = 1; break; } iResult = i ^ i2; break; case INST_BITAND: if (valuePtr->typePtr == &tclWideIntType || value2Ptr->typePtr == &tclWideIntType) { /* * Promote to wide */ if (valuePtr->typePtr == &tclIntType) { w = Tcl_LongAsWide(i); } else if (value2Ptr->typePtr == &tclIntType) { w2 = Tcl_LongAsWide(i2); } wResult = w & w2; doWide = 1; break; } iResult = i & i2; break; } /* * Reuse the valuePtr object already on stack if possible. */ if (Tcl_IsShared(valuePtr)) { if (doWide) { TclNewWideIntObj(objResultPtr, wResult); TRACE((LLD" "LLD" => "LLD"\n", w, w2, wResult)); } else { TclNewLongObj(objResultPtr, iResult); TRACE(("%ld %ld => %ld\n", i, i2, iResult)); } NEXT_INST_F(1, 2, 1); } else { /* reuse the valuePtr object */ if (doWide) { TRACE((LLD" "LLD" => "LLD"\n", w, w2, wResult)); TclSetWideIntObj(valuePtr, wResult); } else { TRACE(("%ld %ld => %ld\n", i, i2, iResult)); TclSetLongObj(valuePtr, iResult); } NEXT_INST_F(1, 1, 0); } } case INST_ADD: case INST_SUB: case INST_MULT: case INST_DIV: case INST_EXPON: { /* * Operands must be numeric and ints get converted to floats if * necessary. We compute value op value2. */ Tcl_ObjType *t1Ptr, *t2Ptr; long i = 0, i2 = 0, quot; /* Init. avoids compiler warning. */ double d1, d2; long iResult = 0; /* Init. avoids compiler warning. */ double dResult = 0.0; /* Init. avoids compiler warning. */ int doDouble = 0; /* 1 if doing floating arithmetic */ Tcl_WideInt w, w2, wquot; Tcl_WideInt wResult = W0; /* Init. avoids compiler warning. */ int doWide = 0; /* 1 if doing wide arithmetic. */ Tcl_Obj *valuePtr,*value2Ptr; int length; value2Ptr = *tosPtr; valuePtr = *(tosPtr - 1); t1Ptr = valuePtr->typePtr; t2Ptr = value2Ptr->typePtr; if (t1Ptr == &tclIntType) { i = valuePtr->internalRep.longValue; } else if (t1Ptr == &tclWideIntType) { TclGetWide(w,valuePtr); } else if ((t1Ptr == &tclDoubleType) && (valuePtr->bytes == NULL)) { /* * We can only use the internal rep directly if there is no string * rep. Otherwise the string rep might actually look like an * integer, which is preferred. */ d1 = valuePtr->internalRep.doubleValue; } else { char *s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { GET_WIDE_OR_INT(result, valuePtr, i, w); } else { result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d1); } if (result != TCL_OK) { TRACE(("%.20s %.20s => ILLEGAL 1st TYPE %s\n", s, O2S(valuePtr), (valuePtr->typePtr? valuePtr->typePtr->name: "null"))); IllegalExprOperandType(interp, pc, valuePtr); goto checkForCatch; } t1Ptr = valuePtr->typePtr; } if (t2Ptr == &tclIntType) { i2 = value2Ptr->internalRep.longValue; } else if (t2Ptr == &tclWideIntType) { TclGetWide(w2,value2Ptr); } else if ((t2Ptr == &tclDoubleType) && (value2Ptr->bytes == NULL)) { /* * We can only use the internal rep directly if there is no string * rep. Otherwise the string rep might actually look like an * integer, which is preferred. */ d2 = value2Ptr->internalRep.doubleValue; } else { char *s = Tcl_GetStringFromObj(value2Ptr, &length); if (TclLooksLikeInt(s, length)) { GET_WIDE_OR_INT(result, value2Ptr, i2, w2); } else { result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, value2Ptr, &d2); } if (result != TCL_OK) { TRACE(("%.20s %.20s => ILLEGAL 2nd TYPE %s\n", O2S(value2Ptr), s, (value2Ptr->typePtr? value2Ptr->typePtr->name : "null"))); IllegalExprOperandType(interp, pc, value2Ptr); goto checkForCatch; } t2Ptr = value2Ptr->typePtr; } if ((t1Ptr == &tclDoubleType) || (t2Ptr == &tclDoubleType)) { /* * Do double arithmetic. */ doDouble = 1; if (t1Ptr == &tclIntType) { d1 = i; /* promote value 1 to double */ } else if (t2Ptr == &tclIntType) { d2 = i2; /* promote value 2 to double */ } else if (t1Ptr == &tclWideIntType) { d1 = Tcl_WideAsDouble(w); } else if (t2Ptr == &tclWideIntType) { d2 = Tcl_WideAsDouble(w2); } switch (*pc) { case INST_ADD: dResult = d1 + d2; break; case INST_SUB: dResult = d1 - d2; break; case INST_MULT: dResult = d1 * d2; break; case INST_DIV: #ifndef IEEE_FLOATING_POINT if (d2 == 0.0) { TRACE(("%.6g %.6g => DIVIDE BY ZERO\n", d1, d2)); goto divideByZero; } #endif /* * We presume that we are running with zero-divide unmasked if * we're on an IEEE box. Otherwise, this statement might cause * demons to fly out our noses. */ dResult = d1 / d2; break; case INST_EXPON: if (d1==0.0 && d2<0.0) { TRACE(("%.6g %.6g => EXPONENT OF ZERO\n", d1, d2)); goto exponOfZero; } dResult = pow(d1, d2); break; } /* * Check now for IEEE floating-point error. */ if (IS_NAN(dResult)) { TRACE(("%.20s %.20s => IEEE FLOATING PT ERROR\n", O2S(valuePtr), O2S(value2Ptr))); TclExprFloatError(interp, dResult); result = TCL_ERROR; goto checkForCatch; } } else if ((t1Ptr == &tclWideIntType) || (t2Ptr == &tclWideIntType)) { /* * Do wide integer arithmetic. */ doWide = 1; if (t1Ptr == &tclIntType) { w = Tcl_LongAsWide(i); } else if (t2Ptr == &tclIntType) { w2 = Tcl_LongAsWide(i2); } switch (*pc) { case INST_ADD: wResult = w + w2; break; case INST_SUB: wResult = w - w2; break; case INST_MULT: wResult = w * w2; break; case INST_DIV: /* * When performing integer division, protect against integer * overflow. Round towards zero when the quotient is positive, * otherwise round towards -Infinity. */ if (w2 == W0) { TRACE((LLD" "LLD" => DIVIDE BY ZERO\n", w, w2)); goto divideByZero; } if (w == LLONG_MIN && w2 == -1) { /* Avoid integer overflow on (LLONG_MIN / -1) */ wquot = LLONG_MIN; } else { wquot = w / w2; /* * Round down to a smaller negative number if there is a * remainder and the quotient is negative or zero and the * signs don't match. Note that we don't use a modulus to * find the remainder since it is not well defined in C * when the divisor is negative. */ if (((wquot < 0) || ((wquot == 0) && ((w < 0 && w2 > 0) || (w > 0 && w2 < 0)))) && ((wquot * w2) != w)) { wquot -= 1; } } wResult = wquot; break; case INST_EXPON: { int errExpon; wResult = ExponWide(w, w2, &errExpon); if (errExpon) { TRACE((LLD" "LLD" => EXPONENT OF ZERO\n", w, w2)); goto exponOfZero; } break; } } } else { /* * Do integer arithmetic. */ switch (*pc) { case INST_ADD: iResult = i + i2; break; case INST_SUB: iResult = i - i2; break; case INST_MULT: iResult = i * i2; break; case INST_DIV: /* * When performing integer division, protect against integer * overflow. Round towards zero when the quotient is positive, * otherwise round towards -Infinity. */ if (i2 == 0) { TRACE(("%ld %ld => DIVIDE BY ZERO\n", i, i2)); goto divideByZero; } if (i == LONG_MIN && i2 == -1) { /* Avoid integer overflow on (LONG_MIN / -1) */ quot = LONG_MIN; } else { quot = i / i2; /* * Round down to a smaller negative number if there is a * remainder and the quotient is negative or zero and the * signs don't match. Note that we don't use a modulus to * find the remainder since it is not well defined in C * when the divisor is negative. */ if (((quot < 0) || ((quot == 0) && ((i<0 && i2>0) || (i>0 && i2<0)))) && ((quot * i2) != i)) { quot -= 1; } } iResult = quot; break; case INST_EXPON: { int errExpon; iResult = ExponLong(i, i2, &errExpon); if (errExpon) { TRACE(("%ld %ld => EXPONENT OF ZERO\n", i, i2)); goto exponOfZero; } break; } } } /* * Reuse the valuePtr object already on stack if possible. */ if (Tcl_IsShared(valuePtr)) { if (doDouble) { TclNewDoubleObj(objResultPtr, dResult); TRACE(("%.6g %.6g => %.6g\n", d1, d2, dResult)); } else if (doWide) { TclNewWideIntObj(objResultPtr, wResult); TRACE((LLD" "LLD" => "LLD"\n", w, w2, wResult)); } else { TclNewLongObj(objResultPtr, iResult); TRACE(("%ld %ld => %ld\n", i, i2, iResult)); } NEXT_INST_F(1, 2, 1); } else { /* reuse the valuePtr object */ if (doDouble) { /* NB: stack top is off by 1 */ TRACE(("%.6g %.6g => %.6g\n", d1, d2, dResult)); TclSetDoubleObj(valuePtr, dResult); } else if (doWide) { TRACE((LLD" "LLD" => "LLD"\n", w, w2, wResult)); TclSetWideIntObj(valuePtr, wResult); } else { TRACE(("%ld %ld => %ld\n", i, i2, iResult)); TclSetLongObj(valuePtr, iResult); } NEXT_INST_F(1, 1, 0); } } case INST_UPLUS: { /* * Operand must be numeric. */ double d; Tcl_ObjType *tPtr; Tcl_Obj *valuePtr; valuePtr = *tosPtr; tPtr = valuePtr->typePtr; if (IS_INTEGER_TYPE(tPtr) || ((tPtr == &tclDoubleType) && (valuePtr->bytes == NULL))) { /* * We already have a numeric internal rep, either some kind of * integer, or a "pure" double. (Need "pure" so that we know the * string rep of the double would not prefer to be interpreted as * an integer.) */ } else { /* * Otherwise, we need to generate a numeric internal rep. from * the string rep. */ int length; long i; /* Set but never used, needed in GET_WIDE_OR_INT */ Tcl_WideInt w; char *s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { GET_WIDE_OR_INT(result, valuePtr, i, w); } else { result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d); } if (result != TCL_OK) { TRACE(("\"%.20s\" => ILLEGAL TYPE %s \n", s, (tPtr? tPtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); goto checkForCatch; } tPtr = valuePtr->typePtr; } /* * Ensure that the operand's string rep is the same as the formatted * version of its internal rep. This makes sure that "expr +000123" * yields "83", not "000123". We implement this by _discarding_ the * string rep since we know it will be regenerated, if needed later, * by formatting the internal rep's value. */ if (Tcl_IsShared(valuePtr)) { if (tPtr == &tclIntType) { TclNewLongObj(objResultPtr, valuePtr->internalRep.longValue); } else if (tPtr == &tclWideIntType) { Tcl_WideInt w; TclGetWide(w,valuePtr); TclNewWideIntObj(objResultPtr, w); } else { TclNewDoubleObj(objResultPtr, valuePtr->internalRep.doubleValue); } TRACE_WITH_OBJ(("%s => ", O2S(objResultPtr)), objResultPtr); NEXT_INST_F(1, 1, 1); } else { TclInvalidateStringRep(valuePtr); TRACE_WITH_OBJ(("%s => ", O2S(valuePtr)), valuePtr); NEXT_INST_F(1, 0, 0); } } case INST_UMINUS: case INST_LNOT: { /* * The operand must be numeric or a boolean string as accepted by * Tcl_GetBooleanFromObj(). If the operand object is unshared modify * it directly, otherwise create a copy to modify: this is "copy on * write". Free any old string representation since it is now * invalid. */ double d; int boolvar; long i; int negate_value = 1; Tcl_WideInt w; Tcl_ObjType *tPtr; Tcl_Obj *valuePtr; valuePtr = *tosPtr; tPtr = valuePtr->typePtr; if (IS_INTEGER_TYPE(tPtr) || ((tPtr == &tclDoubleType) && (valuePtr->bytes == NULL))) { /* * We already have a numeric internal rep, either some kind of * integer, or a "pure" double. (Need "pure" so that we know the * string rep of the double would not prefer to be interpreted as * an integer.) */ } else { /* * Otherwise, we need to generate a numeric internal rep. from * the string rep. */ int length; char *s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { GET_WIDE_OR_INT(result, valuePtr, i, w); /* * An integer was parsed. If parsing a literal that is the * smallest long value, then it would have been promoted to a * wide since it would not fit in a long type without the * leading '-'. Convert back to the smallest possible long. */ if ((result == TCL_OK) && (*pc == INST_UMINUS) && (valuePtr->typePtr == &tclWideIntType) && (w == -Tcl_LongAsWide(LONG_MIN))) { valuePtr->typePtr = &tclIntType; valuePtr->internalRep.longValue = LONG_MIN; negate_value = 0; } } else { result = Tcl_GetDoubleFromObj(NULL, valuePtr, &d); } if (result == TCL_ERROR && *pc == INST_LNOT) { result = Tcl_GetBooleanFromObj(NULL, valuePtr, &boolvar); i = (long)boolvar; /* i is long, not int! */ } if (result != TCL_OK) { TRACE(("\"%.20s\" => ILLEGAL TYPE %s\n", s, (tPtr? tPtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); goto checkForCatch; } tPtr = valuePtr->typePtr; } if (*pc == INST_UMINUS) { if (Tcl_IsShared(valuePtr)) { /* * Create a new object. */ if (tPtr == &tclIntType) { i = valuePtr->internalRep.longValue; if (negate_value) { i = -i; } TclNewLongObj(objResultPtr, i); TRACE_WITH_OBJ(("%ld => ", i), objResultPtr); } else if (tPtr == &tclWideIntType) { TclGetWide(w,valuePtr); TclNewWideIntObj(objResultPtr, -w); TRACE_WITH_OBJ((LLD" => ", w), objResultPtr); } else { d = valuePtr->internalRep.doubleValue; TclNewDoubleObj(objResultPtr, -d); TRACE_WITH_OBJ(("%.6g => ", d), objResultPtr); } NEXT_INST_F(1, 1, 1); } else { /* * valuePtr is unshared. Modify it directly. */ if (tPtr == &tclIntType) { i = valuePtr->internalRep.longValue; if (negate_value) { i = -i; } TclSetLongObj(valuePtr, i); TRACE_WITH_OBJ(("%ld => ", i), valuePtr); } else if (tPtr == &tclWideIntType) { TclGetWide(w,valuePtr); TclSetWideIntObj(valuePtr, -w); TRACE_WITH_OBJ((LLD" => ", w), valuePtr); } else { d = valuePtr->internalRep.doubleValue; TclSetDoubleObj(valuePtr, -d); TRACE_WITH_OBJ(("%.6g => ", d), valuePtr); } NEXT_INST_F(1, 0, 0); } } else { /* *pc == INST_UMINUS */ if ((tPtr == &tclIntType) || (tPtr == &tclBooleanType)) { i = !valuePtr->internalRep.longValue; TRACE_WITH_OBJ(("%ld => ", i), objResultPtr); } else if (tPtr == &tclWideIntType) { TclGetWide(w,valuePtr); i = (w == W0); TRACE_WITH_OBJ((LLD" => ", w), objResultPtr); } else { i = (valuePtr->internalRep.doubleValue == 0.0); TRACE_WITH_OBJ(("%.6g => ", d), objResultPtr); } objResultPtr = eePtr->constants[i]; NEXT_INST_F(1, 1, 1); } } case INST_BITNOT: { /* * The operand must be an integer. If the operand object is unshared * modify it directly, otherwise modify a copy. Free any old string * representation since it is now invalid. */ Tcl_ObjType *tPtr; Tcl_Obj *valuePtr; Tcl_WideInt w; long i; valuePtr = *tosPtr; tPtr = valuePtr->typePtr; if (!IS_INTEGER_TYPE(tPtr)) { REQUIRE_WIDE_OR_INT(result, valuePtr, i, w); if (result != TCL_OK) { /* try to convert to double */ TRACE(("\"%.20s\" => ILLEGAL TYPE %s\n", O2S(valuePtr), (tPtr? tPtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); goto checkForCatch; } } if (valuePtr->typePtr == &tclWideIntType) { TclGetWide(w,valuePtr); if (Tcl_IsShared(valuePtr)) { TclNewWideIntObj(objResultPtr, ~w); TRACE(("0x%llx => (%llu)\n", w, ~w)); NEXT_INST_F(1, 1, 1); } else { /* * valuePtr is unshared. Modify it directly. */ TclSetWideIntObj(valuePtr, ~w); TRACE(("0x%llx => (%llu)\n", w, ~w)); NEXT_INST_F(1, 0, 0); } } else { i = valuePtr->internalRep.longValue; if (Tcl_IsShared(valuePtr)) { TclNewLongObj(objResultPtr, ~i); TRACE(("0x%lx => (%lu)\n", i, ~i)); NEXT_INST_F(1, 1, 1); } else { /* * valuePtr is unshared. Modify it directly. */ TclSetLongObj(valuePtr, ~i); TRACE(("0x%lx => (%lu)\n", i, ~i)); NEXT_INST_F(1, 0, 0); } } } case INST_CALL_BUILTIN_FUNC1: { Tcl_Panic("TclExecuteByteCode: obsolete INST_CALL_BUILTIN_FUNC1 found"); } case INST_CALL_FUNC1: { Tcl_Panic("TclExecuteByteCode: obsolete INST_CALL_FUNC1 found"); } case INST_TRY_CVT_TO_NUMERIC: { /* * Try to convert the topmost stack object to an int or double object. * This is done in order to support Tcl's policy of interpreting * operands if at all possible as first integers, else floating-point * numbers. */ double d; char *s; Tcl_ObjType *tPtr; int converted, needNew, length; Tcl_Obj *valuePtr; long i; Tcl_WideInt w; valuePtr = *tosPtr; tPtr = valuePtr->typePtr; converted = 0; if (IS_INTEGER_TYPE(tPtr) || ((tPtr == &tclDoubleType) && (valuePtr->bytes == NULL))) { /* * We already have a numeric internal rep, either some kind of * integer, or a "pure" double. (Need "pure" so that we know the * string rep of the double would not prefer to be interpreted as * an integer.) */ } else { /* * Otherwise, we need to generate a numeric internal rep. from * the string rep. */ s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { GET_WIDE_OR_INT(result, valuePtr, i, w); } else { result = Tcl_GetDoubleFromObj(NULL, valuePtr, &d); } if (result == TCL_OK) { converted = 1; } result = TCL_OK; /* reset the result variable */ tPtr = valuePtr->typePtr; } /* * Ensure that the topmost stack object, if numeric, has a string rep * the same as the formatted version of its internal rep. This is * used, e.g., to make sure that "expr {0001}" yields "1", not * "0001". We implement this by _discarding_ the string rep since we * know it will be regenerated, if needed later, by formatting the * internal rep's value. Also check if there has been an IEEE floating * point error. */ objResultPtr = valuePtr; needNew = 0; if (IS_NUMERIC_TYPE(tPtr)) { if (Tcl_IsShared(valuePtr)) { if (valuePtr->bytes != NULL) { /* * We only need to make a copy of the object when it * already had a string rep */ needNew = 1; if (tPtr == &tclIntType) { i = valuePtr->internalRep.longValue; TclNewLongObj(objResultPtr, i); } else if (tPtr == &tclWideIntType) { TclGetWide(w,valuePtr); TclNewWideIntObj(objResultPtr, w); } else { d = valuePtr->internalRep.doubleValue; TclNewDoubleObj(objResultPtr, d); } tPtr = objResultPtr->typePtr; } } else { Tcl_InvalidateStringRep(valuePtr); } if (tPtr == &tclDoubleType) { d = objResultPtr->internalRep.doubleValue; if (IS_NAN(d)) { TRACE(("\"%.20s\" => IEEE FLOATING PT ERROR\n", O2S(objResultPtr))); TclExprFloatError(interp, d); result = TCL_ERROR; goto checkForCatch; } } converted = converted; /* lint, converted not used. */ TRACE(("\"%.20s\" => numeric, %s, %s\n", O2S(valuePtr), (converted? "converted" : "not converted"), (needNew? "new Tcl_Obj" : "same Tcl_Obj"))); } else { TRACE(("\"%.20s\" => not numeric\n", O2S(valuePtr))); } if (needNew) { NEXT_INST_F(1, 1, 1); } else { NEXT_INST_F(1, 0, 0); } } case INST_BREAK: DECACHE_STACK_INFO(); Tcl_ResetResult(interp); CACHE_STACK_INFO(); result = TCL_BREAK; cleanup = 0; goto processExceptionReturn; case INST_CONTINUE: DECACHE_STACK_INFO(); Tcl_ResetResult(interp); CACHE_STACK_INFO(); result = TCL_CONTINUE; cleanup = 0; goto processExceptionReturn; case INST_FOREACH_START4: { /* * Initialize the temporary local var that holds the count of the * number of iterations of the loop body to -1. */ int opnd; ForeachInfo *infoPtr; int iterTmpIndex; Var *iterVarPtr; Tcl_Obj *oldValuePtr; opnd = TclGetUInt4AtPtr(pc+1); infoPtr = (ForeachInfo *) codePtr->auxDataArrayPtr[opnd].clientData; iterTmpIndex = infoPtr->loopCtTemp; iterVarPtr = &(compiledLocals[iterTmpIndex]); oldValuePtr = iterVarPtr->value.objPtr; if (oldValuePtr == NULL) { TclNewLongObj(iterVarPtr->value.objPtr, -1); Tcl_IncrRefCount(iterVarPtr->value.objPtr); } else { TclSetLongObj(oldValuePtr, -1); } TclSetVarScalar(iterVarPtr); TclClearVarUndefined(iterVarPtr); TRACE(("%u => loop iter count temp %d\n", opnd, iterTmpIndex)); #ifndef TCL_COMPILE_DEBUG /* * Remark that the compiler ALWAYS sets INST_FOREACH_STEP4 immediately * after INST_FOREACH_START4 - let us just fall through instead of * jumping back to the top. */ pc += 5; #else NEXT_INST_F(5, 0, 0); #endif } case INST_FOREACH_STEP4: { /* * "Step" a foreach loop (i.e., begin its next iteration) by assigning * the next value list element to each loop var. */ int opnd; ForeachInfo *infoPtr; ForeachVarList *varListPtr; int numLists; Tcl_Obj *listPtr,*valuePtr, *value2Ptr; Tcl_Obj **elements; Var *iterVarPtr, *listVarPtr; int iterNum, listTmpIndex, listLen, numVars; int varIndex, valIndex, continueLoop, j; long i; Var *varPtr; char *part1; opnd = TclGetUInt4AtPtr(pc+1); infoPtr = (ForeachInfo *) codePtr->auxDataArrayPtr[opnd].clientData; numLists = infoPtr->numLists; /* * Increment the temp holding the loop iteration number. */ iterVarPtr = &(compiledLocals[infoPtr->loopCtTemp]); valuePtr = iterVarPtr->value.objPtr; iterNum = (valuePtr->internalRep.longValue + 1); TclSetLongObj(valuePtr, iterNum); /* * Check whether all value lists are exhausted and we should stop the * loop. */ continueLoop = 0; listTmpIndex = infoPtr->firstValueTemp; for (i = 0; i < numLists; i++) { varListPtr = infoPtr->varLists[i]; numVars = varListPtr->numVars; listVarPtr = &(compiledLocals[listTmpIndex]); listPtr = listVarPtr->value.objPtr; result = Tcl_ListObjLength(interp, listPtr, &listLen); if (result != TCL_OK) { TRACE_WITH_OBJ(("%u => ERROR converting list %ld, \"%s\": ", opnd, i, O2S(listPtr)), Tcl_GetObjResult(interp)); goto checkForCatch; } if (listLen > (iterNum * numVars)) { continueLoop = 1; } listTmpIndex++; } /* * If some var in some var list still has a remaining list element * iterate one more time. Assign to var the next element from its * value list. We already checked above that each list temp holds a * valid list object (by calling Tcl_ListObjLength), but cannot rely * on that check remaining valid: one list could have been shimmered * as a side effect of setting a traced variable. */ if (continueLoop) { listTmpIndex = infoPtr->firstValueTemp; for (i = 0; i < numLists; i++) { varListPtr = infoPtr->varLists[i]; numVars = varListPtr->numVars; listVarPtr = &(compiledLocals[listTmpIndex]); listPtr = listVarPtr->value.objPtr; Tcl_ListObjGetElements(interp, listPtr, &listLen, &elements); valIndex = (iterNum * numVars); for (j = 0; j < numVars; j++) { int setEmptyStr = 0; if (valIndex >= listLen) { setEmptyStr = 1; TclNewObj(valuePtr); } else { valuePtr = elements[valIndex]; } varIndex = varListPtr->varIndexes[j]; varPtr = &(compiledLocals[varIndex]); part1 = varPtr->name; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } if (TclIsVarDirectWritable(varPtr)) { value2Ptr = varPtr->value.objPtr; if (valuePtr != value2Ptr) { if (value2Ptr != NULL) { TclDecrRefCount(value2Ptr); } else { TclSetVarScalar(varPtr); TclClearVarUndefined(varPtr); } varPtr->value.objPtr = valuePtr; Tcl_IncrRefCount(valuePtr); } } else { DECACHE_STACK_INFO(); value2Ptr = TclPtrSetVar(interp, varPtr, NULL, part1, NULL, valuePtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u => ERROR init. index temp %d: ", opnd, varIndex), Tcl_GetObjResult(interp)); if (setEmptyStr) { TclDecrRefCount(valuePtr); } result = TCL_ERROR; goto checkForCatch; } } valIndex++; } listTmpIndex++; } } TRACE(("%u => %d lists, iter %d, %s loop\n", opnd, numLists, iterNum, (continueLoop? "continue" : "exit"))); /* * Run-time peep-hole optimisation: the compiler ALWAYS follows * INST_FOREACH_STEP4 with an INST_JUMP_FALSE. We just skip that * instruction and jump direct from here. */ pc += 5; if (*pc == INST_JUMP_FALSE1) { NEXT_INST_F((continueLoop? 2 : TclGetInt1AtPtr(pc+1)), 0, 0); } else { NEXT_INST_F((continueLoop? 5 : TclGetInt4AtPtr(pc+1)), 0, 0); } } case INST_BEGIN_CATCH4: /* * Record start of the catch command with exception range index equal * to the operand. Push the current stack depth onto the special catch * stack. */ eePtr->stackPtr[++catchTop] = (Tcl_Obj *) (tosPtr - eePtr->stackPtr); TRACE(("%u => catchTop=%d, stackTop=%d\n", TclGetUInt4AtPtr(pc+1), (catchTop - initCatchTop - 1), tosPtr - eePtr->stackPtr)); NEXT_INST_F(5, 0, 0); case INST_END_CATCH: catchTop--; result = TCL_OK; TRACE(("=> catchTop=%d\n", (catchTop - initCatchTop - 1))); NEXT_INST_F(1, 0, 0); case INST_PUSH_RESULT: objResultPtr = Tcl_GetObjResult(interp); TRACE_WITH_OBJ(("=> "), objResultPtr); /* * See the comments at INST_INVOKE_STK */ { Tcl_Obj *newObjResultPtr; TclNewObj(newObjResultPtr); Tcl_IncrRefCount(newObjResultPtr); iPtr->objResultPtr = newObjResultPtr; } NEXT_INST_F(1, 0, -1); case INST_PUSH_RETURN_CODE: TclNewLongObj(objResultPtr, result); TRACE(("=> %u\n", result)); NEXT_INST_F(1, 0, 1); case INST_PUSH_RETURN_OPTIONS: objResultPtr = Tcl_GetReturnOptions(interp, result); TRACE_WITH_OBJ(("=> "), objResultPtr); NEXT_INST_F(1, 0, 1); { int opnd, opnd2, allocateDict; Tcl_Obj *dictPtr, *valPtr; Var *varPtr; char *part1; case INST_DICT_GET: opnd = TclGetUInt4AtPtr(pc+1); TRACE(("%u => ", opnd)); dictPtr = *(tosPtr - opnd); if (opnd > 1) { dictPtr = TclTraceDictPath(interp, dictPtr, opnd-1, tosPtr - (opnd-1), DICT_PATH_READ); if (dictPtr == NULL) { TRACE_WITH_OBJ(( "%u => ERROR tracing dictionary path into \"%s\": ", opnd, O2S(*(tosPtr - opnd))), Tcl_GetObjResult(interp)); result = TCL_ERROR; cleanup = opnd + 1; goto checkForCatch; } } result = Tcl_DictObjGet(interp, dictPtr, *tosPtr, &objResultPtr); if (result != TCL_OK) { TRACE_WITH_OBJ(( "%u => ERROR reading leaf dictionary key \"%s\": ", opnd, O2S(dictPtr)), Tcl_GetObjResult(interp)); cleanup = opnd + 1; goto checkForCatch; } if (objResultPtr == NULL) { Tcl_ResetResult(interp); Tcl_AppendResult(interp, "key \"", TclGetString(*tosPtr), "\" not known in dictionary", NULL); TRACE_WITH_OBJ(("%u => ERROR ", opnd), Tcl_GetObjResult(interp)); result = TCL_ERROR; cleanup = opnd + 1; goto checkForCatch; } TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_V(5, opnd+1, 1); case INST_DICT_SET: case INST_DICT_UNSET: case INST_DICT_INCR_IMM: opnd = TclGetUInt4AtPtr(pc+1); opnd2 = TclGetUInt4AtPtr(pc+5); varPtr = &(compiledLocals[opnd2]); part1 = varPtr->name; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } TRACE(("%u %u => ", opnd, opnd2)); if (TclIsVarDirectReadable(varPtr)) { dictPtr = varPtr->value.objPtr; } else { DECACHE_STACK_INFO(); dictPtr = TclPtrGetVar(interp, varPtr, NULL, part1, NULL, 0); CACHE_STACK_INFO(); } if (dictPtr == NULL) { TclNewObj(dictPtr); allocateDict = 1; } else { allocateDict = Tcl_IsShared(dictPtr); if (allocateDict) { dictPtr = Tcl_DuplicateObj(dictPtr); } } switch (*pc) { case INST_DICT_SET: cleanup = opnd + 1; result = Tcl_DictObjPutKeyList(interp, dictPtr, opnd, tosPtr-opnd, *tosPtr); break; case INST_DICT_INCR_IMM: { long value; cleanup = 1; opnd = TclGetInt4AtPtr(pc+1); result = Tcl_DictObjGet(interp, dictPtr, *tosPtr, &valPtr); if (result != TCL_OK) { break; } if (valPtr == NULL) { Tcl_DictObjPut(NULL, dictPtr, *tosPtr, Tcl_NewLongObj(opnd)); } else { #warning non-long incrementing broken result = Tcl_GetLongFromObj(interp, valPtr, &value); if (result != TCL_OK) { break; } Tcl_DictObjPut(NULL, dictPtr, *tosPtr, Tcl_NewLongObj(value + opnd)); } break; } case INST_DICT_UNSET: cleanup = opnd; result = Tcl_DictObjRemoveKeyList(interp, dictPtr, opnd, tosPtr - (opnd-1)); break; default: Tcl_Panic("Should not happen!"); } if (result != TCL_OK) { if (allocateDict) { Tcl_DecrRefCount(dictPtr); } TRACE_WITH_OBJ(("%u %u => ERROR updating dictionary: ",opnd,opnd2), Tcl_GetObjResult(interp)); goto checkForCatch; } if (TclIsVarDirectWritable(varPtr)) { if (allocateDict) { Tcl_Obj *oldValuePtr = varPtr->value.objPtr; Tcl_IncrRefCount(dictPtr); if (oldValuePtr != NULL) { Tcl_DecrRefCount(oldValuePtr); } else { TclSetVarScalar(varPtr); TclClearVarUndefined(varPtr); } varPtr->value.objPtr = dictPtr; } objResultPtr = dictPtr; } else { Tcl_IncrRefCount(dictPtr); DECACHE_STACK_INFO(); objResultPtr = TclPtrSetVar(interp, varPtr, NULL, part1, NULL, dictPtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); Tcl_DecrRefCount(dictPtr); if (objResultPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n",O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } } #ifndef TCL_COMPILE_DEBUG if (*(pc+9) == INST_POP) { NEXT_INST_V(10, cleanup, 0); } #endif TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_V(9, cleanup, 1); case INST_DICT_APPEND: case INST_DICT_LAPPEND: opnd = TclGetUInt4AtPtr(pc+1); cleanup = 2; varPtr = &(compiledLocals[opnd]); part1 = varPtr->name; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } TRACE(("%u => ", opnd)); if (TclIsVarDirectReadable(varPtr)) { dictPtr = varPtr->value.objPtr; } else { DECACHE_STACK_INFO(); dictPtr = TclPtrGetVar(interp, varPtr, NULL, part1, NULL, 0); CACHE_STACK_INFO(); } if (dictPtr == NULL) { TclNewObj(dictPtr); allocateDict = 1; } else { allocateDict = Tcl_IsShared(dictPtr); if (allocateDict) { dictPtr = Tcl_DuplicateObj(dictPtr); } } result = Tcl_DictObjGet(interp, dictPtr, *(tosPtr - 1), &valPtr); if (result != TCL_OK) { if (allocateDict) { Tcl_DecrRefCount(dictPtr); } goto checkForCatch; } /* * Note that a non-existent key results in a NULL valPtr, which is a * case handled separately below. What we *can* say at this point is * that the write-back will always succeed. */ switch (*pc) { case INST_DICT_APPEND: if (valPtr == NULL) { valPtr = *tosPtr; } else { if (Tcl_IsShared(valPtr)) { valPtr = Tcl_DuplicateObj(valPtr); } Tcl_AppendObjToObj(valPtr, *tosPtr); } break; case INST_DICT_LAPPEND: /* * More complex because list-append can fail. */ if (valPtr == NULL) { valPtr = Tcl_NewListObj(1, tosPtr); } else if (Tcl_IsShared(valPtr)) { Tcl_Obj *dupPtr = Tcl_DuplicateObj(valPtr); result = Tcl_ListObjAppendElement(interp, dupPtr, *tosPtr); if (result != TCL_OK) { Tcl_DecrRefCount(dupPtr); if (allocateDict) { Tcl_DecrRefCount(dictPtr); } goto checkForCatch; } } else { result = Tcl_ListObjAppendElement(interp, valPtr, *tosPtr); if (result != TCL_OK) { if (allocateDict) { Tcl_DecrRefCount(dictPtr); } goto checkForCatch; } } break; default: Tcl_Panic("Should not happen!"); } Tcl_DictObjPut(NULL, dictPtr, *(tosPtr - 1), valPtr); if (TclIsVarDirectWritable(varPtr)) { if (allocateDict) { Tcl_Obj *oldValuePtr = varPtr->value.objPtr; Tcl_IncrRefCount(dictPtr); if (oldValuePtr != NULL) { Tcl_DecrRefCount(oldValuePtr); } else { TclSetVarScalar(varPtr); TclClearVarUndefined(varPtr); } varPtr->value.objPtr = dictPtr; } objResultPtr = dictPtr; } else { Tcl_IncrRefCount(dictPtr); DECACHE_STACK_INFO(); objResultPtr = TclPtrSetVar(interp, varPtr, NULL, part1, NULL, dictPtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); Tcl_DecrRefCount(dictPtr); if (objResultPtr == NULL) { TRACE_APPEND(("ERROR: %.30s\n",O2S(Tcl_GetObjResult(interp)))); result = TCL_ERROR; goto checkForCatch; } } #ifndef TCL_COMPILE_DEBUG if (*(pc+9) == INST_POP) { NEXT_INST_F(6, 2, 0); } #endif TRACE_APPEND(("%.30s\n", O2S(objResultPtr))); NEXT_INST_F(5, 2, 1); } { int opnd, done; Tcl_Obj *statePtr, *dictPtr, *keyPtr, *valuePtr, *emptyPtr; Var *varPtr; Tcl_DictSearch *searchPtr; case INST_DICT_FIRST: opnd = TclGetUInt4AtPtr(pc+1); TRACE(("%u => ", opnd)); dictPtr = POP_OBJECT(); searchPtr = (Tcl_DictSearch *) ckalloc(sizeof(Tcl_DictSearch)); result = Tcl_DictObjFirst(interp, dictPtr, searchPtr, &keyPtr, &valuePtr, &done); Tcl_DecrRefCount(dictPtr); if (result != TCL_OK) { ckfree((char *) searchPtr); cleanup = 0; goto checkForCatch; } TclNewObj(statePtr); statePtr->typePtr = &dictIteratorType; statePtr->internalRep.otherValuePtr = (void *) searchPtr; varPtr = compiledLocals + opnd; if (varPtr->value.objPtr == NULL) { TclSetVarScalar(compiledLocals + opnd); TclClearVarUndefined(compiledLocals + opnd); } else if (varPtr->value.objPtr->typePtr == &dictIteratorType) { Tcl_Panic("mis-issued dictFirst!"); } else { Tcl_DecrRefCount(varPtr->value.objPtr); } varPtr->value.objPtr = statePtr; Tcl_IncrRefCount(statePtr); goto pushDictIteratorResult; case INST_DICT_NEXT: opnd = TclGetUInt4AtPtr(pc+1); TRACE(("%u => ", opnd)); statePtr = compiledLocals[opnd].value.objPtr; if (statePtr == NULL || statePtr->typePtr != &dictIteratorType) { Tcl_Panic("mis-issued dictNext!"); } searchPtr = (Tcl_DictSearch *) statePtr->internalRep.otherValuePtr; Tcl_DictObjNext(searchPtr, &keyPtr, &valuePtr, &done); pushDictIteratorResult: if (done) { TclNewObj(emptyPtr); PUSH_OBJECT(emptyPtr); PUSH_OBJECT(emptyPtr); } else { PUSH_OBJECT(valuePtr); PUSH_OBJECT(keyPtr); } TRACE_APPEND(("\"%.30s\" \"%.30s\" %d", O2S(*(tosPtr-1)), O2S(*tosPtr), done)); objResultPtr = Tcl_NewBooleanObj(done); NEXT_INST_F(5, 0, 1); case INST_DICT_DONE: opnd = TclGetUInt4AtPtr(pc+1); TRACE(("%u => ", opnd)); statePtr = compiledLocals[opnd].value.objPtr; if (statePtr == NULL) { Tcl_Panic("mis-issued dictDone!"); } if (statePtr->typePtr == &dictIteratorType) { searchPtr = (Tcl_DictSearch *) statePtr->internalRep.otherValuePtr; Tcl_DictObjDone(searchPtr); ckfree((char *) searchPtr); } /* * Set the internal variable to an empty object to signify * that we don't hold an iterator. */ Tcl_DecrRefCount(statePtr); TclNewObj(emptyPtr); compiledLocals[opnd].value.objPtr = emptyPtr; Tcl_IncrRefCount(emptyPtr); NEXT_INST_F(5, 0, 0); } { int opnd, i, length, length2, allocdict; Tcl_Obj **keyPtrPtr, **varIdxPtrPtr, *dictPtr; Var *varPtr; char *part1; case INST_DICT_UPDATE_START: opnd = TclGetUInt4AtPtr(pc+1); varPtr = &(compiledLocals[opnd]); part1 = varPtr->name; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } TRACE(("%u => ", opnd)); if (TclIsVarDirectReadable(varPtr)) { dictPtr = varPtr->value.objPtr; } else { DECACHE_STACK_INFO(); dictPtr = TclPtrGetVar(interp, varPtr, NULL, part1, NULL, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (dictPtr == NULL) { goto dictUpdateStartFailed; } } if (Tcl_ListObjGetElements(interp, *(tosPtr - 1), &length, &keyPtrPtr) != TCL_OK || Tcl_ListObjGetElements(interp, *tosPtr, &length2, &varIdxPtrPtr) != TCL_OK) { goto dictUpdateStartFailed; } if (length != length2) { Tcl_Panic("dictUpdateStart argument length mismatch"); } for (i=0 ; iname; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } DECACHE_STACK_INFO(); if (valPtr == NULL) { Tcl_UnsetVar(interp, part1, 0); } else if (TclPtrSetVar(interp, varPtr, NULL, part1, NULL, valPtr, TCL_LEAVE_ERR_MSG) == NULL) { CACHE_STACK_INFO(); dictUpdateStartFailed: cleanup = 2; result = TCL_ERROR; goto checkForCatch; } CACHE_STACK_INFO(); } NEXT_INST_F(5, 2, 0); case INST_DICT_UPDATE_END: opnd = TclGetUInt4AtPtr(pc+1); varPtr = &(compiledLocals[opnd]); part1 = varPtr->name; while (TclIsVarLink(varPtr)) { varPtr = varPtr->value.linkPtr; } TRACE(("%u => ", opnd)); if (TclIsVarDirectReadable(varPtr)) { dictPtr = varPtr->value.objPtr; } else { DECACHE_STACK_INFO(); dictPtr = TclPtrGetVar(interp, varPtr, NULL, part1, NULL, 0); CACHE_STACK_INFO(); } if (dictPtr == NULL) { NEXT_INST_F(5, 2, 0); } if (Tcl_DictObjSize(interp, dictPtr, &length) != TCL_OK || Tcl_ListObjGetElements(interp, *(tosPtr - 1), &length, &keyPtrPtr) != TCL_OK || Tcl_ListObjGetElements(interp, *tosPtr, &length2, &varIdxPtrPtr) != TCL_OK) { cleanup = 2; result = TCL_ERROR; goto checkForCatch; } allocdict = Tcl_IsShared(dictPtr); if (allocdict) { dictPtr = Tcl_DuplicateObj(dictPtr); } for (i=0 ; iname; while (TclIsVarLink(var2Ptr)) { var2Ptr = var2Ptr->value.linkPtr; } if (TclIsVarDirectReadable(var2Ptr)) { valPtr = var2Ptr->value.objPtr; } else { DECACHE_STACK_INFO(); valPtr = TclPtrGetVar(interp, var2Ptr, NULL, part1a, NULL, 0); CACHE_STACK_INFO(); } if (valPtr == NULL) { Tcl_DictObjRemove(interp, dictPtr, keyPtrPtr[i]); } else { Tcl_DictObjPut(interp, dictPtr, keyPtrPtr[i], valPtr); } } if (TclIsVarDirectWritable(varPtr)) { Tcl_IncrRefCount(dictPtr); Tcl_DecrRefCount(varPtr->value.objPtr); varPtr->value.objPtr = dictPtr; } else { DECACHE_STACK_INFO(); objResultPtr = TclPtrSetVar(interp, varPtr, NULL, part1, NULL, dictPtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (objResultPtr == NULL) { if (allocdict) { Tcl_DecrRefCount(dictPtr); } cleanup = 2; result = TCL_ERROR; goto checkForCatch; } } NEXT_INST_F(5, 2, 0); } default: Tcl_Panic("TclExecuteByteCode: unrecognized opCode %u", *pc); } /* end of switch on opCode */ /* * Division by zero in an expression. Control only reaches this point by * "goto divideByZero". */ divideByZero: Tcl_SetObjResult(interp, Tcl_NewStringObj("divide by zero", -1)); Tcl_SetErrorCode(interp, "ARITH", "DIVZERO", "divide by zero", (char *) NULL); result = TCL_ERROR; goto checkForCatch; /* * Exponentiation of zero by negative number in an expression. Control * only reaches this point by "goto exponOfZero". */ exponOfZero: Tcl_SetObjResult(interp, Tcl_NewStringObj( "exponentiation of zero by negative power", -1)); Tcl_SetErrorCode(interp, "ARITH", "DOMAIN", "exponentiation of zero by negative power", (char *) NULL); result = TCL_ERROR; goto checkForCatch; /* * Block for variables needed to process exception returns */ { ExceptionRange *rangePtr; /* Points to closest loop or catch * exception range enclosing the pc. Used * by various instructions and processCatch * to process break, continue, and * errors. */ Tcl_Obj *valuePtr; char *bytes; int length; #if TCL_COMPILE_DEBUG int opnd; #endif /* * An external evaluation (INST_INVOKE or INST_EVAL) returned * something different from TCL_OK, or else INST_BREAK or * INST_CONTINUE were called. */ processExceptionReturn: #if TCL_COMPILE_DEBUG switch (*pc) { case INST_INVOKE_STK1: opnd = TclGetUInt1AtPtr(pc+1); TRACE(("%u => ... after \"%.20s\": ", opnd, cmdNameBuf)); break; case INST_INVOKE_STK4: opnd = TclGetUInt4AtPtr(pc+1); TRACE(("%u => ... after \"%.20s\": ", opnd, cmdNameBuf)); break; case INST_EVAL_STK: /* * Note that the object at stacktop has to be used before doing * the cleanup. */ TRACE(("\"%.30s\" => ", O2S(*tosPtr))); break; default: TRACE(("=> ")); } #endif if ((result == TCL_CONTINUE) || (result == TCL_BREAK)) { rangePtr = GetExceptRangeForPc(pc, /*catchOnly*/ 0, codePtr); if (rangePtr == NULL) { TRACE_APPEND(("no encl. loop or catch, returning %s\n", StringForResultCode(result))); goto abnormalReturn; } if (rangePtr->type == CATCH_EXCEPTION_RANGE) { TRACE_APPEND(("%s ...\n", StringForResultCode(result))); goto processCatch; } while (cleanup--) { valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); } if (result == TCL_BREAK) { result = TCL_OK; pc = (codePtr->codeStart + rangePtr->breakOffset); TRACE_APPEND(("%s, range at %d, new pc %d\n", StringForResultCode(result), rangePtr->codeOffset, rangePtr->breakOffset)); NEXT_INST_F(0, 0, 0); } else { if (rangePtr->continueOffset == -1) { TRACE_APPEND(("%s, loop w/o continue, checking for catch\n", StringForResultCode(result))); goto checkForCatch; } result = TCL_OK; pc = (codePtr->codeStart + rangePtr->continueOffset); TRACE_APPEND(("%s, range at %d, new pc %d\n", StringForResultCode(result), rangePtr->codeOffset, rangePtr->continueOffset)); NEXT_INST_F(0, 0, 0); } #if TCL_COMPILE_DEBUG } else if (traceInstructions) { if ((result != TCL_ERROR) && (result != TCL_RETURN)) { Tcl_Obj *objPtr = Tcl_GetObjResult(interp); TRACE_APPEND(("OTHER RETURN CODE %d, result= \"%s\"\n ", result, O2S(objPtr))); } else { Tcl_Obj *objPtr = Tcl_GetObjResult(interp); TRACE_APPEND(("%s, result= \"%s\"\n", StringForResultCode(result), O2S(objPtr))); } #endif } /* * Execution has generated an "exception" such as TCL_ERROR. If the * exception is an error, record information about what was being * executed when the error occurred. Find the closest enclosing catch * range, if any. If no enclosing catch range is found, stop execution * and return the "exception" code. */ checkForCatch: if ((result == TCL_ERROR) && !(iPtr->flags & ERR_ALREADY_LOGGED)) { bytes = GetSrcInfoForPc(pc, codePtr, &length); if (bytes != NULL) { Tcl_LogCommandInfo(interp, codePtr->source, bytes, length); } } iPtr->flags &= ~ERR_ALREADY_LOGGED; /* * Clear all expansions that may have started after the last * INST_BEGIN_CATCH. */ while ((expandNestList != NULL) && ((catchTop == initCatchTop) || ((ptrdiff_t) eePtr->stackPtr[catchTop] <= (ptrdiff_t) expandNestList->internalRep.twoPtrValue.ptr1))) { Tcl_Obj *objPtr = expandNestList->internalRep.twoPtrValue.ptr2; TclDecrRefCount(expandNestList); expandNestList = objPtr; } /* * We must not catch an exceeded limit. Instead, it blows outwards * until we either hit another interpreter (presumably where the limit * is not exceeded) or we get to the top-level. */ if (Tcl_LimitExceeded(interp)) { #ifdef TCL_COMPILE_DEBUG if (traceInstructions) { fprintf(stdout, " ... limit exceeded, returning %s\n", StringForResultCode(result)); } #endif goto abnormalReturn; } if (catchTop == initCatchTop) { #ifdef TCL_COMPILE_DEBUG if (traceInstructions) { fprintf(stdout, " ... no enclosing catch, returning %s\n", StringForResultCode(result)); } #endif goto abnormalReturn; } rangePtr = GetExceptRangeForPc(pc, /*catchOnly*/ 1, codePtr); if (rangePtr == NULL) { /* * This is only possible when compiling a [catch] that sends its * script to INST_EVAL. Cannot correct the compiler without * breakingcompat with previous .tbc compiled scripts. */ #ifdef TCL_COMPILE_DEBUG if (traceInstructions) { fprintf(stdout, " ... no enclosing catch, returning %s\n", StringForResultCode(result)); } #endif goto abnormalReturn; } /* * A catch exception range (rangePtr) was found to handle an * "exception". It was found either by checkForCatch just above or by * an instruction during break, continue, or error processing. Jump * to its catchOffset after unwinding the operand stack to the depth * it had when starting to execute the range's catch command. */ processCatch: while (tosPtr > ((ptrdiff_t) (eePtr->stackPtr[catchTop])) + eePtr->stackPtr) { valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); } #ifdef TCL_COMPILE_DEBUG if (traceInstructions) { fprintf(stdout, " ... found catch at %d, catchTop=%d, unwound to %d, new pc %u\n", rangePtr->codeOffset, (catchTop - initCatchTop - 1), (int) eePtr->stackPtr[catchTop], (unsigned int)(rangePtr->catchOffset)); } #endif pc = (codePtr->codeStart + rangePtr->catchOffset); NEXT_INST_F(0, 0, 0); /* restart the execution loop at pc */ /* * end of infinite loop dispatching on instructions. */ /* * Abnormal return code. Restore the stack to state it had when * starting to execute the ByteCode. Panic if the stack is below the * initial level. */ abnormalReturn: { Tcl_Obj **initTosPtr = eePtr->stackPtr + initStackTop; while (tosPtr > initTosPtr) { Tcl_Obj *objPtr = POP_OBJECT(); TclDecrRefCount(objPtr); } /* * Clear all expansions. */ while (expandNestList) { Tcl_Obj *objPtr = expandNestList->internalRep.twoPtrValue.ptr2; TclDecrRefCount(expandNestList); expandNestList = objPtr; } if (tosPtr < initTosPtr) { fprintf(stderr, "\nTclExecuteByteCode: abnormal return at pc %u: stack top %d < entry stack top %d\n", (unsigned int)(pc - codePtr->codeStart), (unsigned int) (tosPtr - eePtr->stackPtr), (unsigned int) initStackTop); Tcl_Panic("TclExecuteByteCode execution failure: end stack top < start stack top"); } eePtr->tosPtr = initTosPtr - codePtr->maxExceptDepth; } } return result; #undef iPtr } #ifdef TCL_COMPILE_DEBUG /* *---------------------------------------------------------------------- * * PrintByteCodeInfo -- * * This procedure prints a summary about a bytecode object to stdout. It * is called by TclExecuteByteCode when starting to execute the bytecode * object if tclTraceExec has the value 2 or more. * * Results: * None. * * Side effects: * None. * *---------------------------------------------------------------------- */ static void PrintByteCodeInfo(codePtr) register ByteCode *codePtr; /* The bytecode whose summary is printed to * stdout. */ { Proc *procPtr = codePtr->procPtr; Interp *iPtr = (Interp *) *codePtr->interpHandle; fprintf(stdout, "\nExecuting ByteCode 0x%x, refCt %u, epoch %u, interp 0x%x (epoch %u)\n", (unsigned int) codePtr, codePtr->refCount, codePtr->compileEpoch, (unsigned int) iPtr, iPtr->compileEpoch); fprintf(stdout, " Source: "); TclPrintSource(stdout, codePtr->source, 60); fprintf(stdout, "\n Cmds %d, src %d, inst %u, litObjs %u, aux %d, stkDepth %u, code/src %.2f\n", codePtr->numCommands, codePtr->numSrcBytes, codePtr->numCodeBytes, codePtr->numLitObjects, codePtr->numAuxDataItems, codePtr->maxStackDepth, #ifdef TCL_COMPILE_STATS codePtr->numSrcBytes? ((float)codePtr->structureSize)/codePtr->numSrcBytes : #endif 0.0); #ifdef TCL_COMPILE_STATS fprintf(stdout, " Code %d = header %d+inst %d+litObj %d+exc %d+aux %d+cmdMap %d\n", codePtr->structureSize, (sizeof(ByteCode) - (sizeof(size_t) + sizeof(Tcl_Time))), codePtr->numCodeBytes, (codePtr->numLitObjects * sizeof(Tcl_Obj *)), (codePtr->numExceptRanges * sizeof(ExceptionRange)), (codePtr->numAuxDataItems * sizeof(AuxData)), codePtr->numCmdLocBytes); #endif /* TCL_COMPILE_STATS */ if (procPtr != NULL) { fprintf(stdout, " Proc 0x%x, refCt %d, args %d, compiled locals %d\n", (unsigned int) procPtr, procPtr->refCount, procPtr->numArgs, procPtr->numCompiledLocals); } } #endif /* TCL_COMPILE_DEBUG */ /* *---------------------------------------------------------------------- * * ValidatePcAndStackTop -- * * This procedure is called by TclExecuteByteCode when debugging to * verify that the program counter and stack top are valid during * execution. * * Results: * None. * * Side effects: * Prints a message to stderr and panics if either the pc or stack top * are invalid. * *---------------------------------------------------------------------- */ #ifdef TCL_COMPILE_DEBUG static void ValidatePcAndStackTop(codePtr, pc, stackTop, stackLowerBound, checkStack) register ByteCode *codePtr; /* The bytecode whose summary is printed to * stdout. */ unsigned char *pc; /* Points to first byte of a bytecode * instruction. The program counter. */ int stackTop; /* Current stack top. Must be between * stackLowerBound and stackUpperBound * (inclusive). */ int stackLowerBound; /* Smallest legal value for stackTop. */ int checkStack; /* 0 if the stack depth check should be * skipped. */ { int stackUpperBound = stackLowerBound + codePtr->maxStackDepth; /* Greatest legal value for stackTop. */ unsigned int relativePc = (unsigned int) (pc - codePtr->codeStart); unsigned int codeStart = (unsigned int) codePtr->codeStart; unsigned int codeEnd = (unsigned int) (codePtr->codeStart + codePtr->numCodeBytes); unsigned char opCode = *pc; if (((unsigned int) pc < codeStart) || ((unsigned int) pc > codeEnd)) { fprintf(stderr, "\nBad instruction pc 0x%x in TclExecuteByteCode\n", (unsigned int) pc); Tcl_Panic("TclExecuteByteCode execution failure: bad pc"); } if ((unsigned int) opCode > LAST_INST_OPCODE) { fprintf(stderr, "\nBad opcode %d at pc %u in TclExecuteByteCode\n", (unsigned int) opCode, relativePc); Tcl_Panic("TclExecuteByteCode execution failure: bad opcode"); } if (checkStack && ((stackTop < stackLowerBound) || (stackTop > stackUpperBound))) { int numChars; char *cmd = GetSrcInfoForPc(pc, codePtr, &numChars); fprintf(stderr, "\nBad stack top %d at pc %u in TclExecuteByteCode (min %i, max %i)", stackTop, relativePc, stackLowerBound, stackUpperBound); if (cmd != NULL) { Tcl_Obj *message = Tcl_NewStringObj("\n executing ", -1); Tcl_IncrRefCount(message); TclAppendLimitedToObj(message, cmd, numChars, 100, NULL); fprintf(stderr,"%s\n", Tcl_GetString(message)); Tcl_DecrRefCount(message); } else { fprintf(stderr, "\n"); } Tcl_Panic("TclExecuteByteCode execution failure: bad stack top"); } } #endif /* TCL_COMPILE_DEBUG */ /* *---------------------------------------------------------------------- * * IllegalExprOperandType -- * * Used by TclExecuteByteCode to append an error message to the interp * result when an illegal operand type is detected by an expression * instruction. The argument opndPtr holds the operand object in error. * * Results: * None. * * Side effects: * An error message is appended to the interp result. * *---------------------------------------------------------------------- */ static void IllegalExprOperandType(interp, pc, opndPtr) Tcl_Interp *interp; /* Interpreter to which error information * pertains. */ unsigned char *pc; /* Points to the instruction being executed * when the illegal type was found. */ Tcl_Obj *opndPtr; /* Points to the operand holding the value * with the illegal type. */ { unsigned char opCode = *pc; CONST char *operator = operatorStrings[opCode - INST_LOR]; if (opCode == INST_EXPON) { operator = "**"; } Tcl_SetObjResult(interp, Tcl_NewObj()); if ((opndPtr->bytes == NULL) || (opndPtr->length == 0)) { Tcl_AppendResult(interp, "can't use empty string as operand of \"", operator, "\"", (char *) NULL); } else { char *msg = "non-numeric string"; char *s, *p; int length; int looksLikeInt = 0; s = Tcl_GetStringFromObj(opndPtr, &length); p = s; /* * strtod() isn't at all consistent about detecting Inf and NaN * between platforms. */ if (length == 3) { if ((s[0]=='n' || s[0]=='N') && (s[1]=='a' || s[1]=='A') && (s[2]=='n' || s[2]=='N')) { msg = "non-numeric floating-point value"; goto makeErrorMessage; } if ((s[0]=='i' || s[0]=='I') && (s[1]=='n' || s[1]=='N') && (s[2]=='f' || s[2]=='F')) { msg = "infinite floating-point value"; goto makeErrorMessage; } } /* * We cannot use TclLooksLikeInt here because it passes strings like * "10;" [Bug 587140]. We'll accept as "looking like ints" for the * present purposes any string that looks formally like a * (decimal|octal|hex) integer. */ while (length && isspace(UCHAR(*p))) { length--; p++; } if (length && ((*p == '+') || (*p == '-'))) { length--; p++; } if (length) { if ((*p == '0') && ((*(p+1) == 'x') || (*(p+1) == 'X'))) { p += 2; length -= 2; looksLikeInt = ((length > 0) && isxdigit(UCHAR(*p))); if (looksLikeInt) { length--; p++; while (length && isxdigit(UCHAR(*p))) { length--; p++; } } } else { looksLikeInt = (length && isdigit(UCHAR(*p))); if (looksLikeInt) { length--; p++; while (length && isdigit(UCHAR(*p))) { length--; p++; } } } while (length && isspace(UCHAR(*p))) { length--; p++; } looksLikeInt = !length; } if (looksLikeInt) { /* * If something that looks like an integer could not be converted, * then it *must* be a bad octal or too large to represent [Bug * 542588]. */ if (TclCheckBadOctal(NULL, s)) { msg = "invalid octal number"; } else { msg = "integer value too large to represent"; Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", "integer value too large to represent", (char *) NULL); } } else { /* * See if the operand can be interpreted as a double in order to * improve the error message. */ double d; if (Tcl_GetDouble((Tcl_Interp *) NULL, s, &d) == TCL_OK) { msg = "floating-point value"; } } makeErrorMessage: Tcl_AppendResult(interp, "can't use ", msg, " as operand of \"", operator, "\"", (char *) NULL); } } /* *---------------------------------------------------------------------- * * GetSrcInfoForPc -- * * Given a program counter value, finds the closest command in the * bytecode code unit's CmdLocation array and returns information about * that command's source: a pointer to its first byte and the number of * characters. * * Results: * If a command is found that encloses the program counter value, a * pointer to the command's source is returned and the length of the * source is stored at *lengthPtr. If multiple commands resulted in code * at pc, information about the closest enclosing command is returned. If * no matching command is found, NULL is returned and *lengthPtr is * unchanged. * * Side effects: * None. * *---------------------------------------------------------------------- */ static char * GetSrcInfoForPc(pc, codePtr, lengthPtr) unsigned char *pc; /* The program counter value for which to * return the closest command's source info. * This points to a bytecode instruction in * codePtr's code. */ ByteCode *codePtr; /* The bytecode sequence in which to look up * the command source for the pc. */ int *lengthPtr; /* If non-NULL, the location where the length * of the command's source should be stored. * If NULL, no length is stored. */ { register int pcOffset = (pc - codePtr->codeStart); int numCmds = codePtr->numCommands; unsigned char *codeDeltaNext, *codeLengthNext; unsigned char *srcDeltaNext, *srcLengthNext; int codeOffset, codeLen, codeEnd, srcOffset, srcLen, delta, i; int bestDist = INT_MAX; /* Distance of pc to best cmd's start pc. */ int bestSrcOffset = -1; /* Initialized to avoid compiler warning. */ int bestSrcLength = -1; /* Initialized to avoid compiler warning. */ if ((pcOffset < 0) || (pcOffset >= codePtr->numCodeBytes)) { return NULL; } /* * Decode the code and source offset and length for each command. The * closest enclosing command is the last one whose code started before * pcOffset. */ codeDeltaNext = codePtr->codeDeltaStart; codeLengthNext = codePtr->codeLengthStart; srcDeltaNext = codePtr->srcDeltaStart; srcLengthNext = codePtr->srcLengthStart; codeOffset = srcOffset = 0; for (i = 0; i < numCmds; i++) { if ((unsigned int) (*codeDeltaNext) == (unsigned int) 0xFF) { codeDeltaNext++; delta = TclGetInt4AtPtr(codeDeltaNext); codeDeltaNext += 4; } else { delta = TclGetInt1AtPtr(codeDeltaNext); codeDeltaNext++; } codeOffset += delta; if ((unsigned int) (*codeLengthNext) == (unsigned int) 0xFF) { codeLengthNext++; codeLen = TclGetInt4AtPtr(codeLengthNext); codeLengthNext += 4; } else { codeLen = TclGetInt1AtPtr(codeLengthNext); codeLengthNext++; } codeEnd = (codeOffset + codeLen - 1); if ((unsigned int) (*srcDeltaNext) == (unsigned int) 0xFF) { srcDeltaNext++; delta = TclGetInt4AtPtr(srcDeltaNext); srcDeltaNext += 4; } else { delta = TclGetInt1AtPtr(srcDeltaNext); srcDeltaNext++; } srcOffset += delta; if ((unsigned int) (*srcLengthNext) == (unsigned int) 0xFF) { srcLengthNext++; srcLen = TclGetInt4AtPtr(srcLengthNext); srcLengthNext += 4; } else { srcLen = TclGetInt1AtPtr(srcLengthNext); srcLengthNext++; } if (codeOffset > pcOffset) { /* best cmd already found */ break; } else if (pcOffset <= codeEnd) { /* this cmd's code encloses pc */ int dist = (pcOffset - codeOffset); if (dist <= bestDist) { bestDist = dist; bestSrcOffset = srcOffset; bestSrcLength = srcLen; } } } if (bestDist == INT_MAX) { return NULL; } if (lengthPtr != NULL) { *lengthPtr = bestSrcLength; } return (codePtr->source + bestSrcOffset); } /* *---------------------------------------------------------------------- * * GetExceptRangeForPc -- * * Given a program counter value, return the closest enclosing * ExceptionRange. * * Results: * In the normal case, catchOnly is 0 (false) and this procedure returns * a pointer to the most closely enclosing ExceptionRange structure * regardless of whether it is a loop or catch exception range. This is * appropriate when processing a TCL_BREAK or TCL_CONTINUE, which will be * "handled" either by a loop exception range or a closer catch range. If * catchOnly is nonzero, this procedure ignores loop exception ranges and * returns a pointer to the closest catch range. If no matching * ExceptionRange is found that encloses pc, a NULL is returned. * * Side effects: * None. * *---------------------------------------------------------------------- */ static ExceptionRange * GetExceptRangeForPc(pc, catchOnly, codePtr) unsigned char *pc; /* The program counter value for which to * search for a closest enclosing exception * range. This points to a bytecode * instruction in codePtr's code. */ int catchOnly; /* If 0, consider either loop or catch * ExceptionRanges in search. If nonzero * consider only catch ranges (and ignore any * closer loop ranges). */ ByteCode* codePtr; /* Points to the ByteCode in which to search * for the enclosing ExceptionRange. */ { ExceptionRange *rangeArrayPtr; int numRanges = codePtr->numExceptRanges; register ExceptionRange *rangePtr; int pcOffset = (pc - codePtr->codeStart); register int start; if (numRanges == 0) { return NULL; } /* * This exploits peculiarities of our compiler: nested ranges are always * *after* their containing ranges, so that by scanning backwards we are * sure that the first matching range is indeed the deepest. */ rangeArrayPtr = codePtr->exceptArrayPtr; rangePtr = rangeArrayPtr + numRanges; while (--rangePtr >= rangeArrayPtr) { start = rangePtr->codeOffset; if ((start <= pcOffset) && (pcOffset < (start + rangePtr->numCodeBytes))) { if ((!catchOnly) || (rangePtr->type == CATCH_EXCEPTION_RANGE)) { return rangePtr; } } } return NULL; } /* *---------------------------------------------------------------------- * * GetOpcodeName -- * * This procedure is called by the TRACE and TRACE_WITH_OBJ macros used * in TclExecuteByteCode when debugging. It returns the name of the * bytecode instruction at a specified instruction pc. * * Results: * A character string for the instruction. * * Side effects: * None. * *---------------------------------------------------------------------- */ #ifdef TCL_COMPILE_DEBUG static char * GetOpcodeName(pc) unsigned char *pc; /* Points to the instruction whose name should * be returned. */ { unsigned char opCode = *pc; return tclInstructionTable[opCode].name; } #endif /* TCL_COMPILE_DEBUG */ /* *---------------------------------------------------------------------- * * TclExprFloatError -- * * This procedure is called when an error occurs during a floating-point * operation. It reads errno and sets interp->objResultPtr accordingly. * * Results: * interp->objResultPtr is set to hold an error message. * * Side effects: * None. * *---------------------------------------------------------------------- */ void TclExprFloatError(interp, value) Tcl_Interp *interp; /* Where to store error message. */ double value; /* Value returned after error; used to * distinguish underflows from overflows. */ { CONST char *s; if ((errno == EDOM) || IS_NAN(value)) { s = "domain error: argument not in valid range"; Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1)); Tcl_SetErrorCode(interp, "ARITH", "DOMAIN", s, (char *) NULL); } else if ((errno == ERANGE) || IS_INF(value)) { if (value == 0.0) { s = "floating-point value too small to represent"; Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1)); Tcl_SetErrorCode(interp, "ARITH", "UNDERFLOW", s, (char *) NULL); } else { s = "floating-point value too large to represent"; Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1)); Tcl_SetErrorCode(interp, "ARITH", "OVERFLOW", s, (char *) NULL); } } else { char msg[64 + TCL_INTEGER_SPACE]; sprintf(msg, "unknown floating-point error, errno = %d", errno); Tcl_SetObjResult(interp, Tcl_NewStringObj(msg, -1)); Tcl_SetErrorCode(interp, "ARITH", "UNKNOWN", msg, (char *) NULL); } } #ifdef TCL_COMPILE_STATS /* *---------------------------------------------------------------------- * * TclLog2 -- * * Procedure used while collecting compilation statistics to determine * the log base 2 of an integer. * * Results: * Returns the log base 2 of the operand. If the argument is less than or * equal to zero, a zero is returned. * * Side effects: * None. * *---------------------------------------------------------------------- */ int TclLog2(value) register int value; /* The integer for which to compute the log * base 2. */ { register int n = value; register int result = 0; while (n > 1) { n = n >> 1; result++; } return result; } /* *---------------------------------------------------------------------- * * EvalStatsCmd -- * * Implements the "evalstats" command that prints instruction execution * counts to stdout. * * Results: * Standard Tcl results. * * Side effects: * None. * *---------------------------------------------------------------------- */ static int EvalStatsCmd(unused, interp, objc, objv) ClientData unused; /* Unused. */ Tcl_Interp *interp; /* The current interpreter. */ int objc; /* The number of arguments. */ Tcl_Obj *CONST objv[]; /* The argument strings. */ { Interp *iPtr = (Interp *) interp; LiteralTable *globalTablePtr = &(iPtr->literalTable); ByteCodeStats *statsPtr = &(iPtr->stats); double totalCodeBytes, currentCodeBytes; double totalLiteralBytes, currentLiteralBytes; double objBytesIfUnshared, strBytesIfUnshared, sharingBytesSaved; double strBytesSharedMultX, strBytesSharedOnce; double numInstructions, currentHeaderBytes; long numCurrentByteCodes, numByteCodeLits; long refCountSum, literalMgmtBytes, sum; int numSharedMultX, numSharedOnce; int decadeHigh, minSizeDecade, maxSizeDecade, length, i; char *litTableStats; LiteralEntry *entryPtr; numInstructions = 0.0; for (i = 0; i < 256; i++) { if (statsPtr->instructionCount[i] != 0) { numInstructions += statsPtr->instructionCount[i]; } } totalLiteralBytes = sizeof(LiteralTable) + iPtr->literalTable.numBuckets * sizeof(LiteralEntry *) + (statsPtr->numLiteralsCreated * sizeof(LiteralEntry)) + (statsPtr->numLiteralsCreated * sizeof(Tcl_Obj)) + statsPtr->totalLitStringBytes; totalCodeBytes = statsPtr->totalByteCodeBytes + totalLiteralBytes; numCurrentByteCodes = statsPtr->numCompilations - statsPtr->numByteCodesFreed; currentHeaderBytes = numCurrentByteCodes * (sizeof(ByteCode) - (sizeof(size_t) + sizeof(Tcl_Time))); literalMgmtBytes = sizeof(LiteralTable) + (iPtr->literalTable.numBuckets * sizeof(LiteralEntry *)) + (iPtr->literalTable.numEntries * sizeof(LiteralEntry)); currentLiteralBytes = literalMgmtBytes + iPtr->literalTable.numEntries * sizeof(Tcl_Obj) + statsPtr->currentLitStringBytes; currentCodeBytes = statsPtr->currentByteCodeBytes + currentLiteralBytes; /* * Summary statistics, total and current source and ByteCode sizes. */ fprintf(stdout, "\n----------------------------------------------------------------\n"); fprintf(stdout, "Compilation and execution statistics for interpreter 0x%x\n", (unsigned int) iPtr); fprintf(stdout, "\nNumber ByteCodes executed %ld\n", statsPtr->numExecutions); fprintf(stdout, "Number ByteCodes compiled %ld\n", statsPtr->numCompilations); fprintf(stdout, " Mean executions/compile %.1f\n", ((float)statsPtr->numExecutions) / ((float)statsPtr->numCompilations)); fprintf(stdout, "\nInstructions executed %.0f\n", numInstructions); fprintf(stdout, " Mean inst/compile %.0f\n", numInstructions / statsPtr->numCompilations); fprintf(stdout, " Mean inst/execution %.0f\n", numInstructions / statsPtr->numExecutions); fprintf(stdout, "\nTotal ByteCodes %ld\n", statsPtr->numCompilations); fprintf(stdout, " Source bytes %.6g\n", statsPtr->totalSrcBytes); fprintf(stdout, " Code bytes %.6g\n", totalCodeBytes); fprintf(stdout, " ByteCode bytes %.6g\n", statsPtr->totalByteCodeBytes); fprintf(stdout, " Literal bytes %.6g\n", totalLiteralBytes); fprintf(stdout, " table %d + bkts %d + entries %ld + objects %ld + strings %.6g\n", sizeof(LiteralTable), iPtr->literalTable.numBuckets * sizeof(LiteralEntry *), statsPtr->numLiteralsCreated * sizeof(LiteralEntry), statsPtr->numLiteralsCreated * sizeof(Tcl_Obj), statsPtr->totalLitStringBytes); fprintf(stdout, " Mean code/compile %.1f\n", totalCodeBytes / statsPtr->numCompilations); fprintf(stdout, " Mean code/source %.1f\n", totalCodeBytes / statsPtr->totalSrcBytes); fprintf(stdout, "\nCurrent (active) ByteCodes %ld\n", numCurrentByteCodes); fprintf(stdout, " Source bytes %.6g\n", statsPtr->currentSrcBytes); fprintf(stdout, " Code bytes %.6g\n", currentCodeBytes); fprintf(stdout, " ByteCode bytes %.6g\n", statsPtr->currentByteCodeBytes); fprintf(stdout, " Literal bytes %.6g\n", currentLiteralBytes); fprintf(stdout, " table %d + bkts %d + entries %d + objects %d + strings %.6g\n", sizeof(LiteralTable), iPtr->literalTable.numBuckets * sizeof(LiteralEntry *), iPtr->literalTable.numEntries * sizeof(LiteralEntry), iPtr->literalTable.numEntries * sizeof(Tcl_Obj), statsPtr->currentLitStringBytes); fprintf(stdout, " Mean code/source %.1f\n", currentCodeBytes / statsPtr->currentSrcBytes); fprintf(stdout, " Code + source bytes %.6g (%0.1f mean code/src)\n", (currentCodeBytes + statsPtr->currentSrcBytes), (currentCodeBytes / statsPtr->currentSrcBytes) + 1.0); /* * Tcl_IsShared statistics check * * This gives the refcount of each obj as Tcl_IsShared was called for it. * Shared objects must be duplicated before they can be modified. */ numSharedMultX = 0; fprintf(stdout, "\nTcl_IsShared object check (all objects):\n"); fprintf(stdout, " Object had refcount <=1 (not shared) %ld\n", tclObjsShared[1]); for (i = 2; i < TCL_MAX_SHARED_OBJ_STATS; i++) { fprintf(stdout, " refcount ==%d %ld\n", i, tclObjsShared[i]); numSharedMultX += tclObjsShared[i]; } fprintf(stdout, " refcount >=%d %ld\n", i, tclObjsShared[0]); numSharedMultX += tclObjsShared[0]; fprintf(stdout, " Total shared objects %d\n", numSharedMultX); /* * Literal table statistics. */ numByteCodeLits = 0; refCountSum = 0; numSharedMultX = 0; numSharedOnce = 0; objBytesIfUnshared = 0.0; strBytesIfUnshared = 0.0; strBytesSharedMultX = 0.0; strBytesSharedOnce = 0.0; for (i = 0; i < globalTablePtr->numBuckets; i++) { for (entryPtr = globalTablePtr->buckets[i]; entryPtr != NULL; entryPtr = entryPtr->nextPtr) { if (entryPtr->objPtr->typePtr == &tclByteCodeType) { numByteCodeLits++; } (void) Tcl_GetStringFromObj(entryPtr->objPtr, &length); refCountSum += entryPtr->refCount; objBytesIfUnshared += (entryPtr->refCount * sizeof(Tcl_Obj)); strBytesIfUnshared += (entryPtr->refCount * (length+1)); if (entryPtr->refCount > 1) { numSharedMultX++; strBytesSharedMultX += (length+1); } else { numSharedOnce++; strBytesSharedOnce += (length+1); } } } sharingBytesSaved = (objBytesIfUnshared + strBytesIfUnshared) - currentLiteralBytes; fprintf(stdout, "\nTotal objects (all interps) %ld\n", tclObjsAlloced); fprintf(stdout, "Current objects %ld\n", (tclObjsAlloced - tclObjsFreed)); fprintf(stdout, "Total literal objects %ld\n", statsPtr->numLiteralsCreated); fprintf(stdout, "\nCurrent literal objects %d (%0.1f%% of current objects)\n", globalTablePtr->numEntries, (globalTablePtr->numEntries * 100.0) / (tclObjsAlloced-tclObjsFreed)); fprintf(stdout, " ByteCode literals %ld (%0.1f%% of current literals)\n", numByteCodeLits, (numByteCodeLits * 100.0) / globalTablePtr->numEntries); fprintf(stdout, " Literals reused > 1x %d\n", numSharedMultX); fprintf(stdout, " Mean reference count %.2f\n", ((double) refCountSum) / globalTablePtr->numEntries); fprintf(stdout, " Mean len, str reused >1x %.2f\n", (numSharedMultX? (strBytesSharedMultX/numSharedMultX) : 0.0)); fprintf(stdout, " Mean len, str used 1x %.2f\n", (numSharedOnce? (strBytesSharedOnce/numSharedOnce) : 0.0)); fprintf(stdout, " Total sharing savings %.6g (%0.1f%% of bytes if no sharing)\n", sharingBytesSaved, (sharingBytesSaved * 100.0) / (objBytesIfUnshared + strBytesIfUnshared)); fprintf(stdout, " Bytes with sharing %.6g\n", currentLiteralBytes); fprintf(stdout, " table %d + bkts %d + entries %d + objects %d + strings %.6g\n", sizeof(LiteralTable), iPtr->literalTable.numBuckets * sizeof(LiteralEntry *), iPtr->literalTable.numEntries * sizeof(LiteralEntry), iPtr->literalTable.numEntries * sizeof(Tcl_Obj), statsPtr->currentLitStringBytes); fprintf(stdout, " Bytes if no sharing %.6g = objects %.6g + strings %.6g\n", (objBytesIfUnshared + strBytesIfUnshared), objBytesIfUnshared, strBytesIfUnshared); fprintf(stdout, " String sharing savings %.6g = unshared %.6g - shared %.6g\n", (strBytesIfUnshared - statsPtr->currentLitStringBytes), strBytesIfUnshared, statsPtr->currentLitStringBytes); fprintf(stdout, " Literal mgmt overhead %ld (%0.1f%% of bytes with sharing)\n", literalMgmtBytes, (literalMgmtBytes * 100.0) / currentLiteralBytes); fprintf(stdout, " table %d + buckets %d + entries %d\n", sizeof(LiteralTable), iPtr->literalTable.numBuckets * sizeof(LiteralEntry *), iPtr->literalTable.numEntries * sizeof(LiteralEntry)); /* * Breakdown of current ByteCode space requirements. */ fprintf(stdout, "\nBreakdown of current ByteCode requirements:\n"); fprintf(stdout, " Bytes Pct of Avg per\n"); fprintf(stdout, " total ByteCode\n"); fprintf(stdout, "Total %12.6g 100.00%% %8.1f\n", statsPtr->currentByteCodeBytes, statsPtr->currentByteCodeBytes / numCurrentByteCodes); fprintf(stdout, "Header %12.6g %8.1f%% %8.1f\n", currentHeaderBytes, ((currentHeaderBytes * 100.0) / statsPtr->currentByteCodeBytes), currentHeaderBytes / numCurrentByteCodes); fprintf(stdout, "Instructions %12.6g %8.1f%% %8.1f\n", statsPtr->currentInstBytes, ((statsPtr->currentInstBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentInstBytes / numCurrentByteCodes); fprintf(stdout, "Literal ptr array %12.6g %8.1f%% %8.1f\n", statsPtr->currentLitBytes, ((statsPtr->currentLitBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentLitBytes / numCurrentByteCodes); fprintf(stdout, "Exception table %12.6g %8.1f%% %8.1f\n", statsPtr->currentExceptBytes, ((statsPtr->currentExceptBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentExceptBytes / numCurrentByteCodes); fprintf(stdout, "Auxiliary data %12.6g %8.1f%% %8.1f\n", statsPtr->currentAuxBytes, ((statsPtr->currentAuxBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentAuxBytes / numCurrentByteCodes); fprintf(stdout, "Command map %12.6g %8.1f%% %8.1f\n", statsPtr->currentCmdMapBytes, ((statsPtr->currentCmdMapBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentCmdMapBytes / numCurrentByteCodes); /* * Detailed literal statistics. */ fprintf(stdout, "\nLiteral string sizes:\n"); fprintf(stdout, " Up to length Percentage\n"); maxSizeDecade = 0; for (i = 31; i >= 0; i--) { if (statsPtr->literalCount[i] > 0) { maxSizeDecade = i; break; } } sum = 0; for (i = 0; i <= maxSizeDecade; i++) { decadeHigh = (1 << (i+1)) - 1; sum += statsPtr->literalCount[i]; fprintf(stdout, " %10d %8.0f%%\n", decadeHigh, (sum * 100.0) / statsPtr->numLiteralsCreated); } litTableStats = TclLiteralStats(globalTablePtr); fprintf(stdout, "\nCurrent literal table statistics:\n%s\n", litTableStats); ckfree((char *) litTableStats); /* * Source and ByteCode size distributions. */ fprintf(stdout, "\nSource sizes:\n"); fprintf(stdout, " Up to size Percentage\n"); minSizeDecade = maxSizeDecade = 0; for (i = 0; i < 31; i++) { if (statsPtr->srcCount[i] > 0) { minSizeDecade = i; break; } } for (i = 31; i >= 0; i--) { if (statsPtr->srcCount[i] > 0) { maxSizeDecade = i; break; } } sum = 0; for (i = minSizeDecade; i <= maxSizeDecade; i++) { decadeHigh = (1 << (i+1)) - 1; sum += statsPtr->srcCount[i]; fprintf(stdout, " %10d %8.0f%%\n", decadeHigh, (sum * 100.0) / statsPtr->numCompilations); } fprintf(stdout, "\nByteCode sizes:\n"); fprintf(stdout, " Up to size Percentage\n"); minSizeDecade = maxSizeDecade = 0; for (i = 0; i < 31; i++) { if (statsPtr->byteCodeCount[i] > 0) { minSizeDecade = i; break; } } for (i = 31; i >= 0; i--) { if (statsPtr->byteCodeCount[i] > 0) { maxSizeDecade = i; break; } } sum = 0; for (i = minSizeDecade; i <= maxSizeDecade; i++) { decadeHigh = (1 << (i+1)) - 1; sum += statsPtr->byteCodeCount[i]; fprintf(stdout, " %10d %8.0f%%\n", decadeHigh, (sum * 100.0) / statsPtr->numCompilations); } fprintf(stdout, "\nByteCode longevity (excludes Current ByteCodes):\n"); fprintf(stdout, " Up to ms Percentage\n"); minSizeDecade = maxSizeDecade = 0; for (i = 0; i < 31; i++) { if (statsPtr->lifetimeCount[i] > 0) { minSizeDecade = i; break; } } for (i = 31; i >= 0; i--) { if (statsPtr->lifetimeCount[i] > 0) { maxSizeDecade = i; break; } } sum = 0; for (i = minSizeDecade; i <= maxSizeDecade; i++) { decadeHigh = (1 << (i+1)) - 1; sum += statsPtr->lifetimeCount[i]; fprintf(stdout, " %12.3f %8.0f%%\n", decadeHigh / 1000.0, (sum * 100.0) / statsPtr->numByteCodesFreed); } /* * Instruction counts. */ fprintf(stdout, "\nInstruction counts:\n"); for (i = 0; i <= LAST_INST_OPCODE; i++) { if (statsPtr->instructionCount[i]) { fprintf(stdout, "%20s %8ld %6.1f%%\n", tclInstructionTable[i].name, statsPtr->instructionCount[i], (statsPtr->instructionCount[i]*100.0) / numInstructions); } } fprintf(stdout, "\nInstructions NEVER executed:\n"); for (i = 0; i <= LAST_INST_OPCODE; i++) { if (statsPtr->instructionCount[i] == 0) { fprintf(stdout, "%20s\n", tclInstructionTable[i].name); } } #ifdef TCL_MEM_DEBUG fprintf(stdout, "\nHeap Statistics:\n"); TclDumpMemoryInfo(stdout); #endif fprintf(stdout, "\n----------------------------------------------------------------\n"); return TCL_OK; } #endif /* TCL_COMPILE_STATS */ #ifdef TCL_COMPILE_DEBUG /* *---------------------------------------------------------------------- * * StringForResultCode -- * * Procedure that returns a human-readable string representing a Tcl * result code such as TCL_ERROR. * * Results: * If the result code is one of the standard Tcl return codes, the result * is a string representing that code such as "TCL_ERROR". Otherwise, * the result string is that code formatted as a sequence of decimal * digit characters. Note that the resulting string must not be modified * by the caller. * * Side effects: * None. * *---------------------------------------------------------------------- */ static char * StringForResultCode(result) int result; /* The Tcl result code for which to generate a * string. */ { static char buf[TCL_INTEGER_SPACE]; if ((result >= TCL_OK) && (result <= TCL_CONTINUE)) { return resultStrings[result]; } TclFormatInt(buf, result); return buf; } #endif /* TCL_COMPILE_DEBUG */ /* *---------------------------------------------------------------------- * * ExponWide -- * * Procedure to return w**w2 as wide integer * * Results: * Return value is w to the power w2, unless the computation makes no * sense mathematically. In that case *errExpon is set to 1. * * Side effects: * None. * *---------------------------------------------------------------------- */ static Tcl_WideInt ExponWide(w, w2, errExpon) Tcl_WideInt w; /* The value that must be exponentiated */ Tcl_WideInt w2; /* The exponent */ int *errExpon; /* Error code */ { Tcl_WideInt result; *errExpon = 0; /* * Check for possible errors and simple/edge cases */ if (w == 0) { if (w2 < 0) { *errExpon = 1; return W0; } else if (w2 > 0) { return W0; } return Tcl_LongAsWide(1); /* By definition and analysis */ } else if (w < -1) { if (w2 < 0) { return W0; } else if (w2 == 0) { return Tcl_LongAsWide(1); } } else if (w == -1) { return (w2 & 1) ? Tcl_LongAsWide(-1) : Tcl_LongAsWide(1); } else if ((w == 1) || (w2 == 0)) { return Tcl_LongAsWide(1); } else if (w>1 && w2<0) { return W0; } /* * The general case. */ result = Tcl_LongAsWide(1); for (; w2>Tcl_LongAsWide(1) ; w*=w,w2/=2) { if (w2 & 1) { result *= w; } } return result * w; } /* *---------------------------------------------------------------------- * * ExponLong -- * * Procedure to return i**i2 as long integer * * Results: * Return value is i to the power i2, unless the computation makes no * sense mathematically. In that case *errExpon is set to 1. * * Side effects: * None. * *---------------------------------------------------------------------- */ static long ExponLong(i, i2, errExpon) long i; /* The value that must be exponentiated */ long i2; /* The exponent */ int *errExpon; /* Error code */ { long result; *errExpon = 0; /* * Check for possible errors and simple cases */ if (i == 0) { if (i2 < 0) { *errExpon = 1; return 0L; } else if (i2 > 0) { return 0L; } /* * By definition and analysis, 0**0 is 1. */ return 1L; } else if (i < -1) { if (i2 < 0) { return 0L; } else if (i2 == 0) { return 1L; } } else if (i == -1) { return (i2&1) ? -1L : 1L; } else if ((i == 1) || (i2 == 0)) { return 1L; } else if (i > 1 && i2 < 0) { return 0L; } /* * The general case */ result = 1; for (; i2>1 ; i*=i,i2/=2) { if (i2 & 1) { result *= i; } } return result * i; }