/* * tclExecute.c -- * * This file contains procedures that execute byte-compiled Tcl * commands. * * Copyright (c) 1996-1997 Sun Microsystems, Inc. * Copyright (c) 1998-2000 by Scriptics Corporation. * Copyright (c) 2001 by Kevin B. Kenny. All rights reserved. * * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclExecute.c,v 1.43 2001/12/10 15:44:34 msofer Exp $ */ #include "tclInt.h" #include "tclCompile.h" #ifdef NO_FLOAT_H # include "../compat/float.h" #else # include #endif #ifndef TCL_NO_MATH #include "tclMath.h" #endif /* * The stuff below is a bit of a hack so that this file can be used * in environments that include no UNIX, i.e. no errno. Just define * errno here. */ #ifndef TCL_GENERIC_ONLY #include "tclPort.h" #else #define NO_ERRNO_H #endif #ifdef NO_ERRNO_H int errno; #define EDOM 33 #define ERANGE 34 #endif /* * Boolean flag indicating whether the Tcl bytecode interpreter has been * initialized. */ static int execInitialized = 0; TCL_DECLARE_MUTEX(execMutex) #ifdef TCL_COMPILE_DEBUG /* * Variable that controls whether execution tracing is enabled and, if so, * what level of tracing is desired: * 0: no execution tracing * 1: trace invocations of Tcl procs only * 2: trace invocations of all (not compiled away) commands * 3: display each instruction executed * This variable is linked to the Tcl variable "tcl_traceExec". */ int tclTraceExec = 0; #endif typedef struct ThreadSpecificData { /* * The following global variable is use to signal matherr that Tcl * is responsible for the arithmetic, so errors can be handled in a * fashion appropriate for Tcl. Zero means no Tcl math is in * progress; non-zero means Tcl is doing math. */ int mathInProgress; } ThreadSpecificData; static Tcl_ThreadDataKey dataKey; /* * The variable below serves no useful purpose except to generate * a reference to matherr, so that the Tcl version of matherr is * linked in rather than the system version. Without this reference * the need for matherr won't be discovered during linking until after * libtcl.a has been processed, so Tcl's version won't be used. */ #ifdef NEED_MATHERR extern int matherr(); int (*tclMatherrPtr)() = matherr; #endif /* * Mapping from expression instruction opcodes to strings; used for error * messages. Note that these entries must match the order and number of the * expression opcodes (e.g., INST_LOR) in tclCompile.h. */ static char *operatorStrings[] = { "||", "&&", "|", "^", "&", "==", "!=", "<", ">", "<=", ">=", "<<", ">>", "+", "-", "*", "/", "%", "+", "-", "~", "!", "BUILTIN FUNCTION", "FUNCTION", "", "", "", "", "", "", "", "", "eq", "ne", }; /* * Mapping from Tcl result codes to strings; used for error and debugging * messages. */ #ifdef TCL_COMPILE_DEBUG static char *resultStrings[] = { "TCL_OK", "TCL_ERROR", "TCL_RETURN", "TCL_BREAK", "TCL_CONTINUE" }; #endif /* * These are used by evalstats to monitor object usage in Tcl. */ #ifdef TCL_COMPILE_STATS long tclObjsAlloced = 0; long tclObjsFreed = 0; #define TCL_MAX_SHARED_OBJ_STATS 5 long tclObjsShared[TCL_MAX_SHARED_OBJ_STATS] = { 0, 0, 0, 0, 0 }; #endif /* TCL_COMPILE_STATS */ /* * Macros for testing floating-point values for certain special cases. Test * for not-a-number by comparing a value against itself; test for infinity * by comparing against the largest floating-point value. */ #define IS_NAN(v) ((v) != (v)) #ifdef DBL_MAX # define IS_INF(v) (((v) > DBL_MAX) || ((v) < -DBL_MAX)) #else # define IS_INF(v) 0 #endif /* * Macro to adjust the program counter and restart the instruction execution * loop after each instruction is executed. */ #define ADJUST_PC(instBytes) \ pc += (instBytes); \ continue /* * Macros used to cache often-referenced Tcl evaluation stack information * in local variables. Note that a DECACHE_STACK_INFO()-CACHE_STACK_INFO() * pair must surround any call inside TclExecuteByteCode (and a few other * procedures that use this scheme) that could result in a recursive call * to TclExecuteByteCode. */ #define CACHE_STACK_INFO() \ stackPtr = eePtr->stackPtr; \ stackTop = eePtr->stackTop #define DECACHE_STACK_INFO() \ eePtr->stackTop = stackTop /* * Macros used to access items on the Tcl evaluation stack. PUSH_OBJECT * increments the object's ref count since it makes the stack have another * reference pointing to the object. However, POP_OBJECT does not decrement * the ref count. This is because the stack may hold the only reference to * the object, so the object would be destroyed if its ref count were * decremented before the caller had a chance to, e.g., store it in a * variable. It is the caller's responsibility to decrement the ref count * when it is finished with an object. * * WARNING! It is essential that objPtr only appear once in the PUSH_OBJECT * macro. The actual parameter might be an expression with side effects, * and this ensures that it will be executed only once. */ #define PUSH_OBJECT(objPtr) \ Tcl_IncrRefCount(stackPtr[++stackTop] = (objPtr)) #define POP_OBJECT() \ (stackPtr[stackTop--]) /* * Macros used to trace instruction execution. The macros TRACE, * TRACE_WITH_OBJ, and O2S are only used inside TclExecuteByteCode. * O2S is only used in TRACE* calls to get a string from an object. */ #ifdef TCL_COMPILE_DEBUG #define TRACE(a) \ if (traceInstructions) { \ fprintf(stdout, "%2d: %2d (%u) %s ", iPtr->numLevels, stackTop, \ (unsigned int)(pc - codePtr->codeStart), \ GetOpcodeName(pc)); \ printf a; \ } #define TRACE_WITH_OBJ(a, objPtr) \ if (traceInstructions) { \ fprintf(stdout, "%2d: %2d (%u) %s ", iPtr->numLevels, stackTop, \ (unsigned int)(pc - codePtr->codeStart), \ GetOpcodeName(pc)); \ printf a; \ TclPrintObject(stdout, objPtr, 30); \ fprintf(stdout, "\n"); \ } #define O2S(objPtr) \ (objPtr ? Tcl_GetString(objPtr) : "") #else #define TRACE(a) #define TRACE_WITH_OBJ(a, objPtr) #define O2S(objPtr) #endif /* TCL_COMPILE_DEBUG */ /* * Declarations for local procedures to this file: */ static int TclExecuteByteCode _ANSI_ARGS_((Tcl_Interp *interp, ByteCode *codePtr)); static int ExprAbsFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); static int ExprBinaryFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); static int ExprCallMathFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, int objc, Tcl_Obj **objv)); static int ExprDoubleFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); static int ExprIntFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); static int ExprRandFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); static int ExprRoundFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); static int ExprSrandFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); static int ExprUnaryFunc _ANSI_ARGS_((Tcl_Interp *interp, ExecEnv *eePtr, ClientData clientData)); #ifdef TCL_COMPILE_STATS static int EvalStatsCmd _ANSI_ARGS_((ClientData clientData, Tcl_Interp *interp, int argc, char **argv)); #endif #ifdef TCL_COMPILE_DEBUG static char * GetOpcodeName _ANSI_ARGS_((unsigned char *pc)); #endif static ExceptionRange * GetExceptRangeForPc _ANSI_ARGS_((unsigned char *pc, int catchOnly, ByteCode* codePtr)); static char * GetSrcInfoForPc _ANSI_ARGS_((unsigned char *pc, ByteCode* codePtr, int *lengthPtr)); static void GrowEvaluationStack _ANSI_ARGS_((ExecEnv *eePtr)); static void IllegalExprOperandType _ANSI_ARGS_(( Tcl_Interp *interp, unsigned char *pc, Tcl_Obj *opndPtr)); static void InitByteCodeExecution _ANSI_ARGS_(( Tcl_Interp *interp)); #ifdef TCL_COMPILE_DEBUG static void PrintByteCodeInfo _ANSI_ARGS_((ByteCode *codePtr)); #endif static void RecordTracebackInfo _ANSI_ARGS_(( Tcl_Interp *interp, Tcl_Obj *objPtr, int numSrcBytes)); #ifdef TCL_COMPILE_DEBUG static char * StringForResultCode _ANSI_ARGS_((int result)); static void ValidatePcAndStackTop _ANSI_ARGS_(( ByteCode *codePtr, unsigned char *pc, int stackTop, int stackLowerBound)); #endif static int VerifyExprObjType _ANSI_ARGS_((Tcl_Interp *interp, Tcl_Obj *objPtr)); /* * Table describing the built-in math functions. Entries in this table are * indexed by the values of the INST_CALL_BUILTIN_FUNC instruction's * operand byte. */ BuiltinFunc builtinFuncTable[] = { #ifndef TCL_NO_MATH {"acos", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) acos}, {"asin", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) asin}, {"atan", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) atan}, {"atan2", 2, {TCL_DOUBLE, TCL_DOUBLE}, ExprBinaryFunc, (ClientData) atan2}, {"ceil", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) ceil}, {"cos", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) cos}, {"cosh", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) cosh}, {"exp", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) exp}, {"floor", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) floor}, {"fmod", 2, {TCL_DOUBLE, TCL_DOUBLE}, ExprBinaryFunc, (ClientData) fmod}, {"hypot", 2, {TCL_DOUBLE, TCL_DOUBLE}, ExprBinaryFunc, (ClientData) hypot}, {"log", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) log}, {"log10", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) log10}, {"pow", 2, {TCL_DOUBLE, TCL_DOUBLE}, ExprBinaryFunc, (ClientData) pow}, {"sin", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) sin}, {"sinh", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) sinh}, {"sqrt", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) sqrt}, {"tan", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) tan}, {"tanh", 1, {TCL_DOUBLE}, ExprUnaryFunc, (ClientData) tanh}, #endif {"abs", 1, {TCL_EITHER}, ExprAbsFunc, 0}, {"double", 1, {TCL_EITHER}, ExprDoubleFunc, 0}, {"int", 1, {TCL_EITHER}, ExprIntFunc, 0}, {"rand", 0, {TCL_EITHER}, ExprRandFunc, 0}, /* NOTE: rand takes no args. */ {"round", 1, {TCL_EITHER}, ExprRoundFunc, 0}, {"srand", 1, {TCL_INT}, ExprSrandFunc, 0}, {0}, }; /* *---------------------------------------------------------------------- * * InitByteCodeExecution -- * * This procedure is called once to initialize the Tcl bytecode * interpreter. * * Results: * None. * * Side effects: * This procedure initializes the array of instruction names. If * compiling with the TCL_COMPILE_STATS flag, it initializes the * array that counts the executions of each instruction and it * creates the "evalstats" command. It also establishes the link * between the Tcl "tcl_traceExec" and C "tclTraceExec" variables. * *---------------------------------------------------------------------- */ static void InitByteCodeExecution(interp) Tcl_Interp *interp; /* Interpreter for which the Tcl variable * "tcl_traceExec" is linked to control * instruction tracing. */ { #ifdef TCL_COMPILE_DEBUG if (Tcl_LinkVar(interp, "tcl_traceExec", (char *) &tclTraceExec, TCL_LINK_INT) != TCL_OK) { panic("InitByteCodeExecution: can't create link for tcl_traceExec variable"); } #endif #ifdef TCL_COMPILE_STATS Tcl_CreateCommand(interp, "evalstats", EvalStatsCmd, (ClientData) NULL, (Tcl_CmdDeleteProc *) NULL); #endif /* TCL_COMPILE_STATS */ } /* *---------------------------------------------------------------------- * * TclCreateExecEnv -- * * This procedure creates a new execution environment for Tcl bytecode * execution. An ExecEnv points to a Tcl evaluation stack. An ExecEnv * is typically created once for each Tcl interpreter (Interp * structure) and recursively passed to TclExecuteByteCode to execute * ByteCode sequences for nested commands. * * Results: * A newly allocated ExecEnv is returned. This points to an empty * evaluation stack of the standard initial size. * * Side effects: * The bytecode interpreter is also initialized here, as this * procedure will be called before any call to TclExecuteByteCode. * *---------------------------------------------------------------------- */ #define TCL_STACK_INITIAL_SIZE 2000 ExecEnv * TclCreateExecEnv(interp) Tcl_Interp *interp; /* Interpreter for which the execution * environment is being created. */ { ExecEnv *eePtr = (ExecEnv *) ckalloc(sizeof(ExecEnv)); eePtr->stackPtr = (Tcl_Obj **) ckalloc((unsigned) (TCL_STACK_INITIAL_SIZE * sizeof(Tcl_Obj *))); eePtr->stackTop = -1; eePtr->stackEnd = (TCL_STACK_INITIAL_SIZE - 1); Tcl_MutexLock(&execMutex); if (!execInitialized) { TclInitAuxDataTypeTable(); InitByteCodeExecution(interp); execInitialized = 1; } Tcl_MutexUnlock(&execMutex); return eePtr; } #undef TCL_STACK_INITIAL_SIZE /* *---------------------------------------------------------------------- * * TclDeleteExecEnv -- * * Frees the storage for an ExecEnv. * * Results: * None. * * Side effects: * Storage for an ExecEnv and its contained storage (e.g. the * evaluation stack) is freed. * *---------------------------------------------------------------------- */ void TclDeleteExecEnv(eePtr) ExecEnv *eePtr; /* Execution environment to free. */ { Tcl_EventuallyFree((ClientData)eePtr->stackPtr, TCL_DYNAMIC); ckfree((char *) eePtr); } /* *---------------------------------------------------------------------- * * TclFinalizeExecution -- * * Finalizes the execution environment setup so that it can be * later reinitialized. * * Results: * None. * * Side effects: * After this call, the next time TclCreateExecEnv will be called * it will call InitByteCodeExecution. * *---------------------------------------------------------------------- */ void TclFinalizeExecution() { Tcl_MutexLock(&execMutex); execInitialized = 0; Tcl_MutexUnlock(&execMutex); TclFinalizeAuxDataTypeTable(); } /* *---------------------------------------------------------------------- * * GrowEvaluationStack -- * * This procedure grows a Tcl evaluation stack stored in an ExecEnv. * * Results: * None. * * Side effects: * The size of the evaluation stack is doubled. * *---------------------------------------------------------------------- */ static void GrowEvaluationStack(eePtr) register ExecEnv *eePtr; /* Points to the ExecEnv with an evaluation * stack to enlarge. */ { /* * The current Tcl stack elements are stored from eePtr->stackPtr[0] * to eePtr->stackPtr[eePtr->stackEnd] (inclusive). */ int currElems = (eePtr->stackEnd + 1); int newElems = 2*currElems; int currBytes = currElems * sizeof(Tcl_Obj *); int newBytes = 2*currBytes; Tcl_Obj **newStackPtr = (Tcl_Obj **) ckalloc((unsigned) newBytes); /* * Copy the existing stack items to the new stack space, free the old * storage if appropriate, and mark new space as malloc'ed. */ memcpy((VOID *) newStackPtr, (VOID *) eePtr->stackPtr, (size_t) currBytes); Tcl_EventuallyFree((ClientData)eePtr->stackPtr, TCL_DYNAMIC); eePtr->stackPtr = newStackPtr; eePtr->stackEnd = (newElems - 1); /* i.e. index of last usable item */ } /* *-------------------------------------------------------------- * * Tcl_ExprObj -- * * Evaluate an expression in a Tcl_Obj. * * Results: * A standard Tcl object result. If the result is other than TCL_OK, * then the interpreter's result contains an error message. If the * result is TCL_OK, then a pointer to the expression's result value * object is stored in resultPtrPtr. In that case, the object's ref * count is incremented to reflect the reference returned to the * caller; the caller is then responsible for the resulting object * and must, for example, decrement the ref count when it is finished * with the object. * * Side effects: * Any side effects caused by subcommands in the expression, if any. * The interpreter result is not modified unless there is an error. * *-------------------------------------------------------------- */ int Tcl_ExprObj(interp, objPtr, resultPtrPtr) Tcl_Interp *interp; /* Context in which to evaluate the * expression. */ register Tcl_Obj *objPtr; /* Points to Tcl object containing * expression to evaluate. */ Tcl_Obj **resultPtrPtr; /* Where the Tcl_Obj* that is the expression * result is stored if no errors occur. */ { Interp *iPtr = (Interp *) interp; CompileEnv compEnv; /* Compilation environment structure * allocated in frame. */ LiteralTable *localTablePtr = &(compEnv.localLitTable); register ByteCode *codePtr = NULL; /* Tcl Internal type of bytecode. * Initialized to avoid compiler warning. */ AuxData *auxDataPtr; LiteralEntry *entryPtr; Tcl_Obj *saveObjPtr; char *string; int length, i, result; /* * First handle some common expressions specially. */ string = Tcl_GetStringFromObj(objPtr, &length); if (length == 1) { if (*string == '0') { *resultPtrPtr = Tcl_NewLongObj(0); Tcl_IncrRefCount(*resultPtrPtr); return TCL_OK; } else if (*string == '1') { *resultPtrPtr = Tcl_NewLongObj(1); Tcl_IncrRefCount(*resultPtrPtr); return TCL_OK; } } else if ((length == 2) && (*string == '!')) { if (*(string+1) == '0') { *resultPtrPtr = Tcl_NewLongObj(1); Tcl_IncrRefCount(*resultPtrPtr); return TCL_OK; } else if (*(string+1) == '1') { *resultPtrPtr = Tcl_NewLongObj(0); Tcl_IncrRefCount(*resultPtrPtr); return TCL_OK; } } /* * Get the ByteCode from the object. If it exists, make sure it hasn't * been invalidated by, e.g., someone redefining a command with a * compile procedure (this might make the compiled code wrong). If * necessary, convert the object to be a ByteCode object and compile it. * Also, if the code was compiled in/for a different interpreter, we * recompile it. * * Precompiled expressions, however, are immutable and therefore * they are not recompiled, even if the epoch has changed. * */ if (objPtr->typePtr == &tclByteCodeType) { codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; if (((Interp *) *codePtr->interpHandle != iPtr) || (codePtr->compileEpoch != iPtr->compileEpoch)) { if (codePtr->flags & TCL_BYTECODE_PRECOMPILED) { if ((Interp *) *codePtr->interpHandle != iPtr) { panic("Tcl_ExprObj: compiled expression jumped interps"); } codePtr->compileEpoch = iPtr->compileEpoch; } else { (*tclByteCodeType.freeIntRepProc)(objPtr); objPtr->typePtr = (Tcl_ObjType *) NULL; } } } if (objPtr->typePtr != &tclByteCodeType) { TclInitCompileEnv(interp, &compEnv, string, length); result = TclCompileExpr(interp, string, length, &compEnv); /* * Free the compilation environment's literal table bucket array if * it was dynamically allocated. */ if (localTablePtr->buckets != localTablePtr->staticBuckets) { ckfree((char *) localTablePtr->buckets); } if (result != TCL_OK) { /* * Compilation errors. Free storage allocated for compilation. */ #ifdef TCL_COMPILE_DEBUG TclVerifyLocalLiteralTable(&compEnv); #endif /*TCL_COMPILE_DEBUG*/ entryPtr = compEnv.literalArrayPtr; for (i = 0; i < compEnv.literalArrayNext; i++) { TclReleaseLiteral(interp, entryPtr->objPtr); entryPtr++; } #ifdef TCL_COMPILE_DEBUG TclVerifyGlobalLiteralTable(iPtr); #endif /*TCL_COMPILE_DEBUG*/ auxDataPtr = compEnv.auxDataArrayPtr; for (i = 0; i < compEnv.auxDataArrayNext; i++) { if (auxDataPtr->type->freeProc != NULL) { auxDataPtr->type->freeProc(auxDataPtr->clientData); } auxDataPtr++; } TclFreeCompileEnv(&compEnv); return result; } /* * Successful compilation. If the expression yielded no * instructions, push an zero object as the expression's result. */ if (compEnv.codeNext == compEnv.codeStart) { TclEmitPush(TclRegisterLiteral(&compEnv, "0", 1, /*onHeap*/ 0), &compEnv); } /* * Add a "done" instruction as the last instruction and change the * object into a ByteCode object. Ownership of the literal objects * and aux data items is given to the ByteCode object. */ compEnv.numSrcBytes = iPtr->termOffset; TclEmitOpcode(INST_DONE, &compEnv); TclInitByteCodeObj(objPtr, &compEnv); TclFreeCompileEnv(&compEnv); codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; #ifdef TCL_COMPILE_DEBUG if (tclTraceCompile == 2) { TclPrintByteCodeObj(interp, objPtr); } #endif /* TCL_COMPILE_DEBUG */ } /* * Execute the expression after first saving the interpreter's result. */ saveObjPtr = Tcl_GetObjResult(interp); Tcl_IncrRefCount(saveObjPtr); Tcl_ResetResult(interp); /* * Increment the code's ref count while it is being executed. If * afterwards no references to it remain, free the code. */ codePtr->refCount++; result = TclExecuteByteCode(interp, codePtr); codePtr->refCount--; if (codePtr->refCount <= 0) { TclCleanupByteCode(codePtr); objPtr->typePtr = NULL; objPtr->internalRep.otherValuePtr = NULL; } /* * If the expression evaluated successfully, store a pointer to its * value object in resultPtrPtr then restore the old interpreter result. * We increment the object's ref count to reflect the reference that we * are returning to the caller. We also decrement the ref count of the * interpreter's result object after calling Tcl_SetResult since we * next store into that field directly. */ if (result == TCL_OK) { *resultPtrPtr = iPtr->objResultPtr; Tcl_IncrRefCount(iPtr->objResultPtr); Tcl_SetObjResult(interp, saveObjPtr); } Tcl_DecrRefCount(saveObjPtr); return result; } /* *---------------------------------------------------------------------- * * TclCompEvalObj -- * * This procedure evaluates the script contained in a Tcl_Obj by * first compiling it and then passing it to TclExecuteByteCode. * * Results: * The return value is one of the return codes defined in tcl.h * (such as TCL_OK), and interp->objResultPtr refers to a Tcl object * that either contains the result of executing the code or an * error message. * * Side effects: * Almost certainly, depending on the ByteCode's instructions. * *---------------------------------------------------------------------- */ int TclCompEvalObj(interp, objPtr, engineCall) Tcl_Interp *interp; Tcl_Obj *objPtr; int engineCall; /* Set to 1 if it is an internal * engine call, 0 if called from * Tcl_EvalObjEx */ { register Interp *iPtr = (Interp *) interp; int evalFlags; /* Interp->evalFlags value when the * procedure was called. */ register ByteCode* codePtr; /* Tcl Internal type of bytecode. */ int oldCount = iPtr->cmdCount; /* Used to tell whether any commands * at all were executed. */ int numSrcBytes; int result; Namespace *namespacePtr; /* * Check that the interpreter is ready to execute scripts */ if (TclInterpReady(interp) == TCL_ERROR) { return TCL_ERROR; } /* * Get the ByteCode from the object. If it exists, make sure it hasn't * been invalidated by, e.g., someone redefining a command with a * compile procedure (this might make the compiled code wrong). If * necessary, convert the object to be a ByteCode object and compile it. * Also, if the code was compiled in/for a different interpreter, * or for a different namespace, or for the same namespace but * with different name resolution rules, we recompile it. * * Precompiled objects, however, are immutable and therefore * they are not recompiled, even if the epoch has changed. * * To be pedantically correct, we should also check that the * originating procPtr is the same as the current context procPtr * (assuming one exists at all - none for global level). This * code is #def'ed out because [info body] was changed to never * return a bytecode type object, which should obviate us from * the extra checks here. */ if (iPtr->varFramePtr != NULL) { namespacePtr = iPtr->varFramePtr->nsPtr; } else { namespacePtr = iPtr->globalNsPtr; } if (objPtr->typePtr == &tclByteCodeType) { codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; if (((Interp *) *codePtr->interpHandle != iPtr) || (codePtr->compileEpoch != iPtr->compileEpoch) #ifdef CHECK_PROC_ORIGINATION /* [Bug: 3412 Pedantic] */ || (codePtr->procPtr != NULL && !(iPtr->varFramePtr && iPtr->varFramePtr->procPtr == codePtr->procPtr)) #endif || (codePtr->nsPtr != namespacePtr) || (codePtr->nsEpoch != namespacePtr->resolverEpoch)) { if (codePtr->flags & TCL_BYTECODE_PRECOMPILED) { if ((Interp *) *codePtr->interpHandle != iPtr) { panic("Tcl_EvalObj: compiled script jumped interps"); } codePtr->compileEpoch = iPtr->compileEpoch; } else { tclByteCodeType.freeIntRepProc(objPtr); } } } if (objPtr->typePtr != &tclByteCodeType) { iPtr->errorLine = 1; result = tclByteCodeType.setFromAnyProc(interp, objPtr); if (result != TCL_OK) { return result;; } } else { codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; if (((Interp *) *codePtr->interpHandle != iPtr) || (codePtr->compileEpoch != iPtr->compileEpoch)) { (*tclByteCodeType.freeIntRepProc)(objPtr); iPtr->errorLine = 1; result = (*tclByteCodeType.setFromAnyProc)(interp, objPtr); if (result != TCL_OK) { return result; } } } codePtr = (ByteCode *) objPtr->internalRep.otherValuePtr; /* * Extract then reset the compilation flags in the interpreter. * Resetting the flags must be done after any compilation. */ evalFlags = iPtr->evalFlags; iPtr->evalFlags = 0; /* * Execute the commands. If the code was compiled from an empty string, * don't bother executing the code. */ numSrcBytes = codePtr->numSrcBytes; iPtr->numLevels++; if ((numSrcBytes > 0) || (codePtr->flags & TCL_BYTECODE_PRECOMPILED)) { /* * Increment the code's ref count while it is being executed. If * afterwards no references to it remain, free the code. */ codePtr->refCount++; result = TclExecuteByteCode(interp, codePtr); codePtr->refCount--; if (codePtr->refCount <= 0) { TclCleanupByteCode(codePtr); } } else { result = TCL_OK; } /* * If no commands at all were executed, check for asynchronous * handlers so that they at least get one change to execute. * This is needed to handle event loops written in Tcl with * empty bodies. */ if ((oldCount == iPtr->cmdCount) && Tcl_AsyncReady()) { result = Tcl_AsyncInvoke(interp, result); } /* * If an error occurred, record information about what was being * executed when the error occurred. */ if ((result == TCL_ERROR) && !(iPtr->flags & ERR_ALREADY_LOGGED)) { RecordTracebackInfo(interp, objPtr, numSrcBytes); } /* * Set the interpreter's termOffset member to the offset of the * character just after the last one executed. We approximate the offset * of the last character executed by using the number of characters * compiled. */ iPtr->termOffset = numSrcBytes; iPtr->flags &= ~ERR_ALREADY_LOGGED; iPtr->numLevels--; /* * Tcl_EvalObjEx needs the evalFlags for error reporting at * iPtr->numLevels 0 - we pass it here, it will reset them. */ if (!engineCall) { iPtr->evalFlags = evalFlags; } return result; } /* *---------------------------------------------------------------------- * * RecordTracebackInfo -- * * Procedure called by Tcl_EvalObj to record information about what was * being executed when the error occurred. * * Results: * None. * * Side effects: * Appends information about the script being evaluated to the * interpreter's "errorInfo" variable. * *---------------------------------------------------------------------- */ static void RecordTracebackInfo(interp, objPtr, numSrcBytes) Tcl_Interp *interp; /* The interpreter in which the error * occurred. */ Tcl_Obj *objPtr; /* Points to object containing script whose * evaluation resulted in an error. */ int numSrcBytes; /* Number of bytes compiled in script. */ { Interp *iPtr = (Interp *) interp; char buf[200]; char *ellipsis, *bytes; int length; /* * Decide how much of the command to print in the error message * (up to a certain number of bytes). */ bytes = Tcl_GetStringFromObj(objPtr, &length); length = TclMin(numSrcBytes, length); ellipsis = ""; if (length > 150) { length = 150; ellipsis = " ..."; } if (!(iPtr->flags & ERR_IN_PROGRESS)) { sprintf(buf, "\n while executing\n\"%.*s%s\"", length, bytes, ellipsis); } else { sprintf(buf, "\n invoked from within\n\"%.*s%s\"", length, bytes, ellipsis); } Tcl_AddObjErrorInfo(interp, buf, -1); } /* *---------------------------------------------------------------------- * * TclExecuteByteCode -- * * This procedure executes the instructions of a ByteCode structure. * It returns when a "done" instruction is executed or an error occurs. * * Results: * The return value is one of the return codes defined in tcl.h * (such as TCL_OK), and interp->objResultPtr refers to a Tcl object * that either contains the result of executing the code or an * error message. * * Side effects: * Almost certainly, depending on the ByteCode's instructions. * *---------------------------------------------------------------------- */ static int TclExecuteByteCode(interp, codePtr) Tcl_Interp *interp; /* Token for command interpreter. */ ByteCode *codePtr; /* The bytecode sequence to interpret. */ { Interp *iPtr = (Interp *) interp; ExecEnv *eePtr = iPtr->execEnvPtr; /* Points to the execution environment. */ register Tcl_Obj **stackPtr = eePtr->stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop = eePtr->stackTop; /* Cached top index of evaluation stack. */ register unsigned char *pc = codePtr->codeStart; /* The current program counter. */ int opnd; /* Current instruction's operand byte. */ int pcAdjustment; /* Hold pc adjustment after instruction. */ int initStackTop = stackTop;/* Stack top at start of execution. */ ExceptionRange *rangePtr; /* Points to closest loop or catch exception * range enclosing the pc. Used by various * instructions and processCatch to * process break, continue, and errors. */ int result = TCL_OK; /* Return code returned after execution. */ #ifdef TCL_COMPILE_DEBUG int traceInstructions = (tclTraceExec == 3); #endif Tcl_Obj *valuePtr, *value2Ptr, *objPtr, *elemPtr; char *bytes; int length; long i; /* * This procedure uses a stack to hold information about catch commands. * This information is the current operand stack top when starting to * execute the code for each catch command. It starts out with stack- * allocated space but uses dynamically-allocated storage if needed. */ #define STATIC_CATCH_STACK_SIZE 4 int (catchStackStorage[STATIC_CATCH_STACK_SIZE]); int *catchStackPtr = catchStackStorage; int catchTop = -1; #ifdef TCL_COMPILE_DEBUG if (tclTraceExec >= 2) { PrintByteCodeInfo(codePtr); fprintf(stdout, " Starting stack top=%d\n", eePtr->stackTop); fflush(stdout); } #endif #ifdef TCL_COMPILE_STATS iPtr->stats.numExecutions++; #endif /* * Make sure the catch stack is large enough to hold the maximum number * of catch commands that could ever be executing at the same time. This * will be no more than the exception range array's depth. */ if (codePtr->maxExceptDepth > STATIC_CATCH_STACK_SIZE) { catchStackPtr = (int *) ckalloc(codePtr->maxExceptDepth * sizeof(int)); } /* * Make sure the stack has enough room to execute this ByteCode. */ while ((stackTop + codePtr->maxStackDepth) > eePtr->stackEnd) { GrowEvaluationStack(eePtr); stackPtr = eePtr->stackPtr; } /* * Loop executing instructions until a "done" instruction, a TCL_RETURN, * or some error. */ for (;;) { #ifdef TCL_COMPILE_DEBUG ValidatePcAndStackTop(codePtr, pc, stackTop, initStackTop); if (traceInstructions) { fprintf(stdout, "%2d: %2d ", iPtr->numLevels, stackTop); TclPrintInstruction(codePtr, pc); fflush(stdout); } #endif /* TCL_COMPILE_DEBUG */ #ifdef TCL_COMPILE_STATS iPtr->stats.instructionCount[*pc]++; #endif switch (*pc) { case INST_DONE: /* * Pop the topmost object from the stack, set the interpreter's * object result to point to it, and return. */ valuePtr = POP_OBJECT(); Tcl_SetObjResult(interp, valuePtr); TclDecrRefCount(valuePtr); if (stackTop != initStackTop) { goto abnormalReturn; } TRACE_WITH_OBJ(("=> return code=%d, result=", result), iPtr->objResultPtr); #ifdef TCL_COMPILE_DEBUG if (traceInstructions) { fprintf(stdout, "\n"); } #endif goto done; case INST_PUSH1: #ifdef TCL_COMPILE_DEBUG valuePtr = codePtr->objArrayPtr[TclGetUInt1AtPtr(pc+1)]; PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("%u => ", TclGetInt1AtPtr(pc+1)), valuePtr); #else PUSH_OBJECT(codePtr->objArrayPtr[TclGetUInt1AtPtr(pc+1)]); #endif /* TCL_COMPILE_DEBUG */ ADJUST_PC(2); case INST_PUSH4: valuePtr = codePtr->objArrayPtr[TclGetUInt4AtPtr(pc+1)]; PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("%u => ", TclGetUInt4AtPtr(pc+1)), valuePtr); ADJUST_PC(5); case INST_POP: valuePtr = POP_OBJECT(); TRACE_WITH_OBJ(("=> discarding "), valuePtr); TclDecrRefCount(valuePtr); /* finished with pop'ed object. */ ADJUST_PC(1); case INST_DUP: valuePtr = stackPtr[stackTop]; PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("=> "), valuePtr); ADJUST_PC(1); case INST_OVER: opnd = TclGetUInt4AtPtr( pc+1 ); valuePtr = stackPtr[ stackTop - opnd ]; PUSH_OBJECT( valuePtr ); TRACE_WITH_OBJ(("=> "), valuePtr); ADJUST_PC( 5 ); case INST_CONCAT1: opnd = TclGetUInt1AtPtr(pc+1); { Tcl_Obj *concatObjPtr; int totalLen = 0; /* * Concatenate strings (with no separators) from the top * opnd items on the stack starting with the deepest item. * First, determine how many characters are needed. */ for (i = (stackTop - (opnd-1)); i <= stackTop; i++) { bytes = Tcl_GetStringFromObj(stackPtr[i], &length); if (bytes != NULL) { totalLen += length; } } /* * Initialize the new append string object by appending the * strings of the opnd stack objects. Also pop the objects. */ TclNewObj(concatObjPtr); if (totalLen > 0) { char *p = (char *) ckalloc((unsigned) (totalLen + 1)); concatObjPtr->bytes = p; concatObjPtr->length = totalLen; for (i = (stackTop - (opnd-1)); i <= stackTop; i++) { valuePtr = stackPtr[i]; bytes = Tcl_GetStringFromObj(valuePtr, &length); if (bytes != NULL) { memcpy((VOID *) p, (VOID *) bytes, (size_t) length); p += length; } TclDecrRefCount(valuePtr); } *p = '\0'; } else { for (i = (stackTop - (opnd-1)); i <= stackTop; i++) { Tcl_DecrRefCount(stackPtr[i]); } } stackTop -= opnd; PUSH_OBJECT(concatObjPtr); TRACE_WITH_OBJ(("%u => ", opnd), concatObjPtr); ADJUST_PC(2); } case INST_INVOKE_STK4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doInvocation; case INST_INVOKE_STK1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doInvocation: { int objc = opnd; /* The number of arguments. */ Tcl_Obj **objv; /* The array of argument objects. */ int newPcOffset; /* New inst offset for break, continue. */ Tcl_Obj **preservedStack; /* Reference to memory block containing * objv array (must be kept live throughout * trace and command invokations.) */ #ifdef TCL_COMPILE_DEBUG char cmdNameBuf[21]; #endif objv = &(stackPtr[stackTop - (objc-1)]); #ifdef TCL_COMPILE_DEBUG if (tclTraceExec >= 2) { if (traceInstructions) { strncpy(cmdNameBuf, Tcl_GetString(objv[0]), 20); TRACE(("%u => call ", objc)); } else { fprintf(stdout, "%d: (%u) invoking ", iPtr->numLevels, (unsigned int)(pc - codePtr->codeStart)); } for (i = 0; i < objc; i++) { TclPrintObject(stdout, objv[i], 15); fprintf(stdout, " "); } fprintf(stdout, "\n"); fflush(stdout); } #endif /*TCL_COMPILE_DEBUG*/ /* * If trace procedures will be called, we need a * command string to pass to TclEvalObjvInternal; note * that a copy of the string will be made there to * include the ending \0. */ bytes = NULL; length = 0; if (iPtr->tracePtr != NULL) { Trace *tracePtr, *nextTracePtr; for (tracePtr = iPtr->tracePtr; tracePtr != NULL; tracePtr = nextTracePtr) { nextTracePtr = tracePtr->nextPtr; if (iPtr->numLevels <= tracePtr->level) { /* * Traces will be called: get command string */ bytes = GetSrcInfoForPc(pc, codePtr, &length); break; } } } /* * A reference to part of the stack vector itself * escapes our control, so must use preserve/release * to stop it from being deallocated by a recursive * call to ourselves. The extra variable is needed * because all others are liable to change due to the * trace procedures. */ Tcl_Preserve((ClientData)stackPtr); preservedStack = stackPtr; /* * Finally, let TclEvalObjvInternal handle the command. */ Tcl_ResetResult(interp); DECACHE_STACK_INFO(); result = TclEvalObjvInternal(interp, objc, objv, bytes, length, 0); CACHE_STACK_INFO(); /* * If the old stack is going to be released, it is * safe to do so now, since no references to objv are * going to be used from now on. */ Tcl_Release((ClientData) preservedStack); /* * Pop the objc top stack elements and decrement their ref * counts. */ for (i = 0; i < objc; i++) { valuePtr = stackPtr[stackTop]; TclDecrRefCount(valuePtr); stackTop--; } /* * Process the result of the Tcl_ObjCmdProc call. */ switch (result) { case TCL_OK: /* * Push the call's object result and continue execution * with the next instruction. */ PUSH_OBJECT(Tcl_GetObjResult(interp)); TRACE_WITH_OBJ(("%u => ...after \"%.20s\", result=", objc, cmdNameBuf), Tcl_GetObjResult(interp)); ADJUST_PC(pcAdjustment); case TCL_BREAK: case TCL_CONTINUE: /* * The invoked command requested a break or continue. * Find the closest enclosing loop or catch exception * range, if any. If a loop is found, terminate its * execution or skip to its next iteration. If the * closest is a catch exception range, jump to its * catchOffset. If no enclosing range is found, stop * execution and return the TCL_BREAK or TCL_CONTINUE. */ rangePtr = GetExceptRangeForPc(pc, /*catchOnly*/ 0, codePtr); if (rangePtr == NULL) { TRACE(("%u => ... after \"%.20s\", no encl. loop or catch, returning %s\n", objc, cmdNameBuf, StringForResultCode(result))); goto abnormalReturn; /* no catch exists to check */ } newPcOffset = 0; switch (rangePtr->type) { case LOOP_EXCEPTION_RANGE: if (result == TCL_BREAK) { newPcOffset = rangePtr->breakOffset; } else if (rangePtr->continueOffset == -1) { TRACE(("%u => ... after \"%.20s\", %s, loop w/o continue, checking for catch\n", objc, cmdNameBuf, StringForResultCode(result))); goto checkForCatch; } else { newPcOffset = rangePtr->continueOffset; } TRACE(("%u => ... after \"%.20s\", %s, range at %d, new pc %d\n", objc, cmdNameBuf, StringForResultCode(result), rangePtr->codeOffset, newPcOffset)); break; case CATCH_EXCEPTION_RANGE: TRACE(("%u => ... after \"%.20s\", %s...\n", objc, cmdNameBuf, StringForResultCode(result))); goto processCatch; /* it will use rangePtr */ default: panic("TclExecuteByteCode: bad ExceptionRange type\n"); } result = TCL_OK; pc = (codePtr->codeStart + newPcOffset); continue; /* restart outer instruction loop at pc */ case TCL_ERROR: /* * The invoked command returned an error. Look for an * enclosing catch exception range, if any. */ TRACE_WITH_OBJ(("%u => ... after \"%.20s\", TCL_ERROR ", objc, cmdNameBuf), Tcl_GetObjResult(interp)); goto checkForCatch; case TCL_RETURN: /* * The invoked command requested that the current * procedure stop execution and return. First check * for an enclosing catch exception range, if any. */ TRACE(("%u => ... after \"%.20s\", TCL_RETURN\n", objc, cmdNameBuf)); goto checkForCatch; default: TRACE_WITH_OBJ(("%u => ... after \"%.20s\", OTHER RETURN CODE %d ", objc, cmdNameBuf, result), Tcl_GetObjResult(interp)); goto checkForCatch; } } case INST_EVAL_STK: objPtr = POP_OBJECT(); DECACHE_STACK_INFO(); result = TclCompEvalObj(interp, objPtr, /* engineCall */ 1); CACHE_STACK_INFO(); if (result == TCL_OK) { /* * Normal return; push the eval's object result. */ PUSH_OBJECT(Tcl_GetObjResult(interp)); TRACE_WITH_OBJ(("\"%.30s\" => ", O2S(objPtr)), Tcl_GetObjResult(interp)); TclDecrRefCount(objPtr); ADJUST_PC(1); } else if ((result == TCL_BREAK) || (result == TCL_CONTINUE)) { /* * Find the closest enclosing loop or catch exception range, * if any. If a loop is found, terminate its execution or * skip to its next iteration. If the closest is a catch * exception range, jump to its catchOffset. If no enclosing * range is found, stop execution and return that same * TCL_BREAK or TCL_CONTINUE. */ int newPcOffset = 0; /* Pc offset computed during break, * continue, error processing. Init. * to avoid compiler warning. */ rangePtr = GetExceptRangeForPc(pc, /*catchOnly*/ 0, codePtr); if (rangePtr == NULL) { TRACE(("\"%.30s\" => no encl. loop or catch, returning %s\n", O2S(objPtr), StringForResultCode(result))); Tcl_DecrRefCount(objPtr); goto abnormalReturn; /* no catch exists to check */ } switch (rangePtr->type) { case LOOP_EXCEPTION_RANGE: if (result == TCL_BREAK) { newPcOffset = rangePtr->breakOffset; } else if (rangePtr->continueOffset == -1) { TRACE(("\"%.30s\" => %s, loop w/o continue, checking for catch\n", O2S(objPtr), StringForResultCode(result))); Tcl_DecrRefCount(objPtr); goto checkForCatch; } else { newPcOffset = rangePtr->continueOffset; } result = TCL_OK; TRACE(("\"%.30s\" => %s, range at %d, new pc %d ", O2S(objPtr), StringForResultCode(result), rangePtr->codeOffset, newPcOffset)); break; case CATCH_EXCEPTION_RANGE: TRACE(("\"%.30s\" => %s ", O2S(objPtr), StringForResultCode(result))); Tcl_DecrRefCount(objPtr); goto processCatch; /* it will use rangePtr */ default: panic("TclExecuteByteCode: unrecognized ExceptionRange type %d\n", rangePtr->type); } Tcl_DecrRefCount(objPtr); pc = (codePtr->codeStart + newPcOffset); continue; /* restart outer instruction loop at pc */ } else { /* eval returned TCL_ERROR, TCL_RETURN, unknown code */ TRACE_WITH_OBJ(("\"%.30s\" => ERROR: ", O2S(objPtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); goto checkForCatch; } case INST_EXPR_STK: objPtr = POP_OBJECT(); Tcl_ResetResult(interp); DECACHE_STACK_INFO(); result = Tcl_ExprObj(interp, objPtr, &valuePtr); CACHE_STACK_INFO(); if (result != TCL_OK) { TRACE_WITH_OBJ(("\"%.30s\" => ERROR: ", O2S(objPtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); goto checkForCatch; } stackPtr[++stackTop] = valuePtr; /* already has right refct */ TRACE_WITH_OBJ(("\"%.30s\" => ", O2S(objPtr)), valuePtr); TclDecrRefCount(objPtr); ADJUST_PC(1); case INST_LOAD_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); DECACHE_STACK_INFO(); valuePtr = TclGetIndexedScalar(interp, opnd, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (valuePtr == NULL) { TRACE_WITH_OBJ(("%u => ERROR: ", opnd), Tcl_GetObjResult(interp)); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("%u => ", opnd), valuePtr); ADJUST_PC(2); case INST_LOAD_SCALAR4: opnd = TclGetUInt4AtPtr(pc+1); DECACHE_STACK_INFO(); valuePtr = TclGetIndexedScalar(interp, opnd, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (valuePtr == NULL) { TRACE_WITH_OBJ(("%u => ERROR: ", opnd), Tcl_GetObjResult(interp)); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("%u => ", opnd), valuePtr); ADJUST_PC(5); case INST_LOAD_STK: case INST_LOAD_SCALAR_STK: objPtr = POP_OBJECT(); /* scalar / variable name */ DECACHE_STACK_INFO(); valuePtr = Tcl_ObjGetVar2(interp, objPtr, NULL, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (valuePtr == NULL) { TRACE_WITH_OBJ(("\"%.30s\" => ERROR: ", O2S(objPtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("\"%.30s\" => ", O2S(objPtr)), valuePtr); TclDecrRefCount(objPtr); ADJUST_PC(1); case INST_LOAD_ARRAY4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doLoadArray; case INST_LOAD_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doLoadArray: elemPtr = POP_OBJECT(); DECACHE_STACK_INFO(); valuePtr = TclGetElementOfIndexedArray(interp, opnd, elemPtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (valuePtr == NULL) { TRACE_WITH_OBJ(("%u \"%.30s\" => ERROR: ", opnd, O2S(elemPtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("%u \"%.30s\" => ", opnd, O2S(elemPtr)),valuePtr); TclDecrRefCount(elemPtr); ADJUST_PC(pcAdjustment); case INST_LOAD_ARRAY_STK: elemPtr = POP_OBJECT(); objPtr = POP_OBJECT(); /* array name */ DECACHE_STACK_INFO(); valuePtr = Tcl_ObjGetVar2(interp, objPtr, elemPtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (valuePtr == NULL) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" => ERROR: ", O2S(objPtr), O2S(elemPtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(elemPtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("\"%.30s(%.30s)\" => ", O2S(objPtr), O2S(elemPtr)), valuePtr); TclDecrRefCount(objPtr); TclDecrRefCount(elemPtr); ADJUST_PC(1); case INST_STORE_SCALAR4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doStoreScalar; case INST_STORE_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doStoreScalar: valuePtr = POP_OBJECT(); DECACHE_STACK_INFO(); value2Ptr = TclSetIndexedScalar(interp, opnd, valuePtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u <- \"%.30s\" => ERROR: ", opnd, O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u <- \"%.30s\" => ", opnd, O2S(valuePtr)), value2Ptr); TclDecrRefCount(valuePtr); ADJUST_PC(pcAdjustment); case INST_STORE_STK: case INST_STORE_SCALAR_STK: valuePtr = POP_OBJECT(); objPtr = POP_OBJECT(); /* scalar / variable name */ DECACHE_STACK_INFO(); value2Ptr = Tcl_ObjSetVar2(interp, objPtr, NULL, valuePtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("\"%.30s\" <- \"%.30s\" => ERROR: ", O2S(objPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("\"%.30s\" <- \"%.30s\" => ", O2S(objPtr), O2S(valuePtr)), value2Ptr); TclDecrRefCount(objPtr); TclDecrRefCount(valuePtr); ADJUST_PC(1); case INST_STORE_ARRAY4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doStoreArray; case INST_STORE_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doStoreArray: valuePtr = POP_OBJECT(); elemPtr = POP_OBJECT(); DECACHE_STACK_INFO(); value2Ptr = TclSetElementOfIndexedArray(interp, opnd, elemPtr, valuePtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u \"%.30s\" <- \"%.30s\" => ERROR: ", opnd, O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u \"%.30s\" <- \"%.30s\" => ", opnd, O2S(elemPtr), O2S(valuePtr)), value2Ptr); TclDecrRefCount(elemPtr); TclDecrRefCount(valuePtr); ADJUST_PC(pcAdjustment); case INST_STORE_ARRAY_STK: valuePtr = POP_OBJECT(); elemPtr = POP_OBJECT(); objPtr = POP_OBJECT(); /* array name */ DECACHE_STACK_INFO(); value2Ptr = Tcl_ObjSetVar2(interp, objPtr, elemPtr, valuePtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" <- \"%.30s\" => ERROR: ", O2S(objPtr), O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("\"%.30s(%.30s)\" <- \"%.30s\" => ", O2S(objPtr), O2S(elemPtr), O2S(valuePtr)), value2Ptr); TclDecrRefCount(objPtr); TclDecrRefCount(elemPtr); TclDecrRefCount(valuePtr); ADJUST_PC(1); /* * START APPEND INSTRUCTIONS */ case INST_APPEND_SCALAR4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doAppendScalar; case INST_APPEND_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doAppendScalar: valuePtr = POP_OBJECT(); DECACHE_STACK_INFO(); value2Ptr = TclSetIndexedScalar(interp, opnd, valuePtr, TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u <- \"%.30s\" => ERROR: ", opnd, O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u <- \"%.30s\" => ", opnd, O2S(valuePtr)), value2Ptr); TclDecrRefCount(valuePtr); ADJUST_PC(pcAdjustment); case INST_APPEND_STK: case INST_APPEND_ARRAY_STK: valuePtr = POP_OBJECT(); /* value to append */ if (*pc == INST_APPEND_ARRAY_STK) { elemPtr = POP_OBJECT(); } else { elemPtr = NULL; } objPtr = POP_OBJECT(); /* scalar name */ DECACHE_STACK_INFO(); value2Ptr = Tcl_ObjSetVar2(interp, objPtr, elemPtr, valuePtr, TCL_LEAVE_ERR_MSG | TCL_APPEND_VALUE); CACHE_STACK_INFO(); if (value2Ptr == NULL) { if (elemPtr) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" <-+ \"%.30s\" => ERROR: ", O2S(objPtr), O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); TclDecrRefCount(elemPtr); } else { TRACE_WITH_OBJ(("\"%.30s\" <-+ \"%.30s\" => ERROR: ", O2S(objPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); } Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); if (elemPtr) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" <-+ \"%.30s\" => ", O2S(objPtr), O2S(elemPtr), O2S(valuePtr)), value2Ptr); TclDecrRefCount(elemPtr); } else { TRACE_WITH_OBJ(("\"%.30s\" <-+ \"%.30s\" => ", O2S(objPtr), O2S(valuePtr)), value2Ptr); } TclDecrRefCount(objPtr); TclDecrRefCount(valuePtr); ADJUST_PC(1); case INST_APPEND_ARRAY4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doAppendArray; case INST_APPEND_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doAppendArray: valuePtr = POP_OBJECT(); elemPtr = POP_OBJECT(); DECACHE_STACK_INFO(); value2Ptr = TclSetElementOfIndexedArray(interp, opnd, elemPtr, valuePtr, TCL_LEAVE_ERR_MSG|TCL_APPEND_VALUE); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u \"%.30s\" <-+ \"%.30s\" => ERROR: ", opnd, O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u \"%.30s\" <-+ \"%.30s\" => ", opnd, O2S(elemPtr), O2S(valuePtr)), value2Ptr); TclDecrRefCount(elemPtr); TclDecrRefCount(valuePtr); ADJUST_PC(pcAdjustment); /* * END APPEND INSTRUCTIONS */ case INST_LIST: /* * Pop the opnd (objc) top stack elements into a new list obj * and then decrement their ref counts. */ opnd = TclGetUInt4AtPtr(pc+1); valuePtr = Tcl_NewListObj(opnd, &(stackPtr[stackTop - (opnd-1)])); for (i = 0; i < opnd; i++) { TclDecrRefCount(stackPtr[stackTop--]); } PUSH_OBJECT(valuePtr); TRACE_WITH_OBJ(("%u => ", opnd), valuePtr); ADJUST_PC(5); /* * START LAPPEND INSTRUCTIONS */ case INST_LAPPEND_SCALAR4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doLappendScalar; case INST_LAPPEND_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doLappendScalar: valuePtr = POP_OBJECT(); DECACHE_STACK_INFO(); value2Ptr = TclSetIndexedScalar(interp, opnd, valuePtr, TCL_LEAVE_ERR_MSG|TCL_APPEND_VALUE|TCL_LIST_ELEMENT); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u <- \"%.30s\" => ERROR: ", opnd, O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u <- \"%.30s\" => ", opnd, O2S(valuePtr)), value2Ptr); TclDecrRefCount(valuePtr); ADJUST_PC(pcAdjustment); case INST_LAPPEND_STK: case INST_LAPPEND_ARRAY_STK: { /* * This compile function for this should be refactored * to make better use of existing LOAD/STORE instructions. */ Tcl_Obj *newValuePtr; int createdNewObj = 0; value2Ptr = POP_OBJECT(); /* value to append */ if (*pc == INST_LAPPEND_ARRAY_STK) { elemPtr = POP_OBJECT(); } else { elemPtr = NULL; } objPtr = POP_OBJECT(); /* scalar name */ DECACHE_STACK_INFO(); /* * Currently value of the list. * Use the TCL_TRACE_READS flag to ensure that if we have an * array with no elements set yet, but with a read trace on it, * we will create the variable and get read traces triggered. */ valuePtr = Tcl_ObjGetVar2(interp, objPtr, elemPtr, TCL_TRACE_READS); CACHE_STACK_INFO(); if (valuePtr == NULL) { valuePtr = Tcl_NewObj(); createdNewObj = 1; } else if (Tcl_IsShared(valuePtr)) { valuePtr = Tcl_DuplicateObj(valuePtr); createdNewObj = 1; } DECACHE_STACK_INFO(); result = Tcl_ListObjAppendElement(interp, valuePtr, value2Ptr); CACHE_STACK_INFO(); if (result != TCL_OK) { if (elemPtr) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" <- \"%.30s\" => ERROR: ", O2S(objPtr), O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); } else { TRACE_WITH_OBJ(("\"%.30s\" <-+ \"%.30s\" => ERROR: ", O2S(objPtr), O2S(value2Ptr)), Tcl_GetObjResult(interp)); } Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(value2Ptr); if (createdNewObj) Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } DECACHE_STACK_INFO(); newValuePtr = Tcl_ObjSetVar2(interp, objPtr, elemPtr, valuePtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (newValuePtr == NULL) { if (elemPtr) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" <- \"%.30s\" => ERROR: ", O2S(objPtr), O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); } else { TRACE_WITH_OBJ(("\"%.30s\" <-+ \"%.30s\" => ERROR: ", O2S(objPtr), O2S(value2Ptr)), Tcl_GetObjResult(interp)); } Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(value2Ptr); if (createdNewObj) Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(newValuePtr); if (elemPtr) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" <- \"%.30s\" => ", O2S(objPtr), O2S(elemPtr), O2S(valuePtr)), value2Ptr); TclDecrRefCount(elemPtr); } else { TRACE_WITH_OBJ(("\"%.30s\" <-+ \"%.30s\" => ", O2S(objPtr), O2S(valuePtr)), value2Ptr); } TclDecrRefCount(objPtr); TclDecrRefCount(value2Ptr); ADJUST_PC(1); } case INST_LAPPEND_ARRAY4: opnd = TclGetUInt4AtPtr(pc+1); pcAdjustment = 5; goto doLappendArray; case INST_LAPPEND_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); pcAdjustment = 2; doLappendArray: valuePtr = POP_OBJECT(); elemPtr = POP_OBJECT(); DECACHE_STACK_INFO(); value2Ptr = TclSetElementOfIndexedArray(interp, opnd, elemPtr, valuePtr, TCL_LEAVE_ERR_MSG|TCL_APPEND_VALUE|TCL_LIST_ELEMENT); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u \"%.30s\" <-+ \"%.30s\" => ERROR: ", opnd, O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u \"%.30s\" <-+ \"%.30s\" => ", opnd, O2S(elemPtr), O2S(valuePtr)), value2Ptr); TclDecrRefCount(elemPtr); TclDecrRefCount(valuePtr); ADJUST_PC(pcAdjustment); /* * END (L)APPEND INSTRUCTIONS */ case INST_INCR_SCALAR1: opnd = TclGetUInt1AtPtr(pc+1); valuePtr = POP_OBJECT(); if (valuePtr->typePtr != &tclIntType) { result = tclIntType.setFromAnyProc(interp, valuePtr); if (result != TCL_OK) { TRACE_WITH_OBJ(("%u (by %s) => ERROR converting increment amount to int: ", opnd, O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } } i = valuePtr->internalRep.longValue; DECACHE_STACK_INFO(); value2Ptr = TclIncrIndexedScalar(interp, opnd, i); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u (by %ld) => ERROR: ", opnd, i), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u (by %ld) => ", opnd, i), value2Ptr); TclDecrRefCount(valuePtr); ADJUST_PC(2); case INST_INCR_SCALAR_STK: case INST_INCR_STK: valuePtr = POP_OBJECT(); objPtr = POP_OBJECT(); /* scalar name */ if (valuePtr->typePtr != &tclIntType) { result = tclIntType.setFromAnyProc(interp, valuePtr); if (result != TCL_OK) { TRACE_WITH_OBJ(("\"%.30s\" (by %s) => ERROR converting increment amount to int: ", O2S(objPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } } i = valuePtr->internalRep.longValue; DECACHE_STACK_INFO(); value2Ptr = TclIncrVar2(interp, objPtr, (Tcl_Obj *) NULL, i, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("\"%.30s\" (by %ld) => ERROR: ", O2S(objPtr), i), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("\"%.30s\" (by %ld) => ", O2S(objPtr), i), value2Ptr); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(valuePtr); ADJUST_PC(1); case INST_INCR_ARRAY1: opnd = TclGetUInt1AtPtr(pc+1); valuePtr = POP_OBJECT(); elemPtr = POP_OBJECT(); if (valuePtr->typePtr != &tclIntType) { result = tclIntType.setFromAnyProc(interp, valuePtr); if (result != TCL_OK) { TRACE_WITH_OBJ(("%u \"%.30s\" (by %s) => ERROR converting increment amount to int: ", opnd, O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } } i = valuePtr->internalRep.longValue; DECACHE_STACK_INFO(); value2Ptr = TclIncrElementOfIndexedArray(interp, opnd, elemPtr, i); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u \"%.30s\" (by %ld) => ERROR: ", opnd, O2S(elemPtr), i), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u \"%.30s\" (by %ld) => ", opnd, O2S(elemPtr), i), value2Ptr); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); ADJUST_PC(2); case INST_INCR_ARRAY_STK: valuePtr = POP_OBJECT(); elemPtr = POP_OBJECT(); objPtr = POP_OBJECT(); /* array name */ if (valuePtr->typePtr != &tclIntType) { result = tclIntType.setFromAnyProc(interp, valuePtr); if (result != TCL_OK) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" (by %s) => ERROR converting increment amount to int: ", O2S(objPtr), O2S(elemPtr), O2S(valuePtr)), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } } i = valuePtr->internalRep.longValue; DECACHE_STACK_INFO(); value2Ptr = TclIncrVar2(interp, objPtr, elemPtr, i, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" (by %ld) => ERROR: ", O2S(objPtr), O2S(elemPtr), i), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("\"%.30s(%.30s)\" (by %ld) => ", O2S(objPtr), O2S(elemPtr), i), value2Ptr); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(elemPtr); Tcl_DecrRefCount(valuePtr); ADJUST_PC(1); case INST_INCR_SCALAR1_IMM: opnd = TclGetUInt1AtPtr(pc+1); i = TclGetInt1AtPtr(pc+2); DECACHE_STACK_INFO(); value2Ptr = TclIncrIndexedScalar(interp, opnd, i); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u %ld => ERROR: ", opnd, i), Tcl_GetObjResult(interp)); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u %ld => ", opnd, i), value2Ptr); ADJUST_PC(3); case INST_INCR_SCALAR_STK_IMM: case INST_INCR_STK_IMM: objPtr = POP_OBJECT(); /* variable name */ i = TclGetInt1AtPtr(pc+1); DECACHE_STACK_INFO(); value2Ptr = TclIncrVar2(interp, objPtr, (Tcl_Obj *) NULL, i, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("\"%.30s\" %ld => ERROR: ", O2S(objPtr), i), Tcl_GetObjResult(interp)); result = TCL_ERROR; Tcl_DecrRefCount(objPtr); goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("\"%.30s\" %ld => ", O2S(objPtr), i), value2Ptr); TclDecrRefCount(objPtr); ADJUST_PC(2); case INST_INCR_ARRAY1_IMM: opnd = TclGetUInt1AtPtr(pc+1); i = TclGetInt1AtPtr(pc+2); elemPtr = POP_OBJECT(); DECACHE_STACK_INFO(); value2Ptr = TclIncrElementOfIndexedArray(interp, opnd, elemPtr, i); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u \"%.30s\" (by %ld) => ERROR: ", opnd, O2S(elemPtr), i), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(elemPtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("%u \"%.30s\" (by %ld) => ", opnd, O2S(elemPtr), i), value2Ptr); Tcl_DecrRefCount(elemPtr); ADJUST_PC(3); case INST_INCR_ARRAY_STK_IMM: i = TclGetInt1AtPtr(pc+1); elemPtr = POP_OBJECT(); objPtr = POP_OBJECT(); /* array name */ DECACHE_STACK_INFO(); value2Ptr = TclIncrVar2(interp, objPtr, elemPtr, i, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("\"%.30s(%.30s)\" (by %ld) => ERROR: ", O2S(objPtr), O2S(elemPtr), i), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(elemPtr); result = TCL_ERROR; goto checkForCatch; } PUSH_OBJECT(value2Ptr); TRACE_WITH_OBJ(("\"%.30s(%.30s)\" (by %ld) => ", O2S(objPtr), O2S(elemPtr), i), value2Ptr); Tcl_DecrRefCount(objPtr); Tcl_DecrRefCount(elemPtr); ADJUST_PC(2); case INST_JUMP1: #ifdef TCL_COMPILE_DEBUG opnd = TclGetInt1AtPtr(pc+1); TRACE(("%d => new pc %u\n", opnd, (unsigned int)(pc + opnd - codePtr->codeStart))); pc += opnd; #else pc += TclGetInt1AtPtr(pc+1); #endif /* TCL_COMPILE_DEBUG */ continue; case INST_JUMP4: opnd = TclGetInt4AtPtr(pc+1); TRACE(("%d => new pc %u\n", opnd, (unsigned int)(pc + opnd - codePtr->codeStart))); ADJUST_PC(opnd); case INST_JUMP_TRUE4: opnd = TclGetInt4AtPtr(pc+1); pcAdjustment = 5; goto doJumpTrue; case INST_JUMP_TRUE1: opnd = TclGetInt1AtPtr(pc+1); pcAdjustment = 2; doJumpTrue: { int b; valuePtr = POP_OBJECT(); if (valuePtr->typePtr == &tclIntType) { b = (valuePtr->internalRep.longValue != 0); } else if (valuePtr->typePtr == &tclDoubleType) { b = (valuePtr->internalRep.doubleValue != 0.0); } else { result = Tcl_GetBooleanFromObj(interp, valuePtr, &b); if (result != TCL_OK) { TRACE_WITH_OBJ(("%d => ERROR: ", opnd), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } } if (b) { TRACE(("%d => %.20s true, new pc %u\n", opnd, O2S(valuePtr), (unsigned int)(pc+opnd - codePtr->codeStart))); TclDecrRefCount(valuePtr); ADJUST_PC(opnd); } else { TRACE(("%d => %.20s false\n", opnd, O2S(valuePtr))); TclDecrRefCount(valuePtr); ADJUST_PC(pcAdjustment); } } case INST_JUMP_FALSE4: opnd = TclGetInt4AtPtr(pc+1); pcAdjustment = 5; goto doJumpFalse; case INST_JUMP_FALSE1: opnd = TclGetInt1AtPtr(pc+1); pcAdjustment = 2; doJumpFalse: { int b; valuePtr = POP_OBJECT(); if (valuePtr->typePtr == &tclIntType) { b = (valuePtr->internalRep.longValue != 0); } else if (valuePtr->typePtr == &tclDoubleType) { b = (valuePtr->internalRep.doubleValue != 0.0); } else { result = Tcl_GetBooleanFromObj(interp, valuePtr, &b); if (result != TCL_OK) { TRACE_WITH_OBJ(("%d => ERROR: ", opnd), Tcl_GetObjResult(interp)); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } } if (b) { TRACE(("%d => %.20s true\n", opnd, O2S(valuePtr))); TclDecrRefCount(valuePtr); ADJUST_PC(pcAdjustment); } else { TRACE(("%d => %.20s false, new pc %u\n", opnd, O2S(valuePtr), (unsigned int)(pc + opnd - codePtr->codeStart))); TclDecrRefCount(valuePtr); ADJUST_PC(opnd); } } case INST_LOR: case INST_LAND: { /* * Operands must be boolean or numeric. No int->double * conversions are performed. */ int i1, i2; int iResult; char *s; Tcl_ObjType *t1Ptr, *t2Ptr; value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); t1Ptr = valuePtr->typePtr; t2Ptr = value2Ptr->typePtr; if ((t1Ptr == &tclIntType) || (t1Ptr == &tclBooleanType)) { i1 = (valuePtr->internalRep.longValue != 0); } else if (t1Ptr == &tclDoubleType) { i1 = (valuePtr->internalRep.doubleValue != 0.0); } else { s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i); i1 = (i != 0); } else { result = Tcl_GetBooleanFromObj((Tcl_Interp *) NULL, valuePtr, &i1); i1 = (i1 != 0); } if (result != TCL_OK) { TRACE(("\"%.20s\" => ILLEGAL TYPE %s \n", O2S(valuePtr), (t1Ptr? t1Ptr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto checkForCatch; } } if ((t2Ptr == &tclIntType) || (t2Ptr == &tclBooleanType)) { i2 = (value2Ptr->internalRep.longValue != 0); } else if (t2Ptr == &tclDoubleType) { i2 = (value2Ptr->internalRep.doubleValue != 0.0); } else { s = Tcl_GetStringFromObj(value2Ptr, &length); if (TclLooksLikeInt(s, length)) { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, value2Ptr, &i); i2 = (i != 0); } else { result = Tcl_GetBooleanFromObj((Tcl_Interp *) NULL, value2Ptr, &i2); } if (result != TCL_OK) { TRACE(("\"%.20s\" => ILLEGAL TYPE %s \n", O2S(value2Ptr), (t2Ptr? t2Ptr->name : "null"))); IllegalExprOperandType(interp, pc, value2Ptr); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto checkForCatch; } } /* * Reuse the valuePtr object already on stack if possible. */ if (*pc == INST_LOR) { iResult = (i1 || i2); } else { iResult = (i1 && i2); } if (Tcl_IsShared(valuePtr)) { PUSH_OBJECT(Tcl_NewLongObj(iResult)); TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), iResult)); TclDecrRefCount(valuePtr); } else { /* reuse the valuePtr object */ TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), iResult)); Tcl_SetLongObj(valuePtr, iResult); ++stackTop; /* valuePtr now on stk top has right r.c. */ } TclDecrRefCount(value2Ptr); } ADJUST_PC(1); case INST_LIST_LENGTH: valuePtr = POP_OBJECT(); result = Tcl_ListObjLength(interp, valuePtr, &length); if (result != TCL_OK) { TRACE_WITH_OBJ(("%.30s => ERROR: ", O2S(valuePtr)), Tcl_GetObjResult(interp)); TclDecrRefCount(valuePtr); goto checkForCatch; } PUSH_OBJECT(Tcl_NewIntObj(length)); TRACE(("%.20s => %d\n", O2S(valuePtr), length)); TclDecrRefCount(valuePtr); ADJUST_PC(1); case INST_LIST_INDEX: { /*** lindex with objc == 3 ***/ /* Pop the two operands */ value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); /* Extract the desired list element */ objPtr = TclLindexList( interp, valuePtr, value2Ptr ); if ( objPtr == NULL ) { TRACE_WITH_OBJ( ( "%.30s %.30s => ERROR: ", O2S( valuePtr ), O2S( value2Ptr ) ), Tcl_GetObjResult( interp ) ); TclDecrRefCount( value2Ptr ); TclDecrRefCount( valuePtr ); result = TCL_ERROR; goto checkForCatch; } /* Stash the list element on the stack */ PUSH_OBJECT( objPtr ); TRACE(( "%.20s %.20s => %s\n", O2S( valuePtr ), O2S( value2Ptr ), O2S( objPtr ) ) ); TclDecrRefCount( valuePtr ); TclDecrRefCount( value2Ptr ); TclDecrRefCount( objPtr ); } ADJUST_PC( 1 ); case INST_LIST_INDEX_MULTI: { /* * 'lindex' with multiple index args: * * Determine the count of index args. */ opnd = TclGetUInt4AtPtr(pc+1); /* * Do the 'lindex' operation. */ objPtr = TclLindexFlat( interp, stackPtr[ stackTop - opnd ], opnd, stackPtr + stackTop - opnd + 1 ); /* * Clean up ref counts */ for ( i = 0 ; i <= opnd ; i++ ) { Tcl_DecrRefCount( stackPtr[ stackTop -- ] ); } /* * Check for errors */ if ( objPtr == NULL ) { TRACE_WITH_OBJ( ( "%d => ERROR: ", opnd ), Tcl_GetObjResult( interp ) ); result = TCL_ERROR; goto checkForCatch; } /* * Set result */ PUSH_OBJECT( objPtr ); TRACE(( "%d => %s\n", opnd, O2S( objPtr ) )); Tcl_DecrRefCount( objPtr ); } ADJUST_PC( 5 ); case INST_LSET_FLAT: { /* * Lset with 3, 5, or more args. Get the number of index args. */ opnd = TclGetUInt4AtPtr( pc + 1 ); /* * Get the old value of variable, and remove the stack ref. * This is safe because the variable still references the * object; the ref count will never go zero here. */ value2Ptr = POP_OBJECT(); Tcl_DecrRefCount( value2Ptr ); /* * Get the new element value. */ valuePtr = POP_OBJECT(); /* * Compute the new variable value */ objPtr = TclLsetFlat( interp, value2Ptr, opnd, stackPtr + stackTop - opnd + 1, valuePtr ); Tcl_DecrRefCount( valuePtr ); /* * Clean up ref counts */ for ( i = 0 ; i < opnd ; i++ ) { Tcl_DecrRefCount( stackPtr[ stackTop -- ] ); } /* * Check for errors */ if ( objPtr == NULL ) { TRACE_WITH_OBJ( ( "%d => ERROR: ", opnd ), Tcl_GetObjResult( interp ) ); result = TCL_ERROR; goto checkForCatch; } /* * Set result */ PUSH_OBJECT( objPtr ); TRACE(( "%d => %s\n", opnd, O2S( objPtr ) )); Tcl_DecrRefCount( objPtr ); } ADJUST_PC( 5 ); case INST_LSET_LIST: { /* * 'lset' with 4 args. * * Get the old value of variable, and remove the stack ref. * This is safe because the variable still references the * object; the ref count will never go zero here. */ objPtr = POP_OBJECT(); Tcl_DecrRefCount( objPtr ); /* * Get the new element value, and the index list */ valuePtr = POP_OBJECT(); value2Ptr = POP_OBJECT(); /* * Compute the new variable value */ objPtr = TclLsetList( interp, objPtr, value2Ptr, valuePtr ); Tcl_DecrRefCount( valuePtr ); Tcl_DecrRefCount( value2Ptr ); /* * Check for errors */ if ( objPtr == NULL ) { TRACE_WITH_OBJ( ( "%d => ERROR: ", opnd ), Tcl_GetObjResult( interp ) ); result = TCL_ERROR; goto checkForCatch; } /* * Set result */ PUSH_OBJECT( objPtr ); TRACE(( "%d => %s\n", opnd, O2S( objPtr ) )); Tcl_DecrRefCount( objPtr ); } ADJUST_PC( 1 ); case INST_STR_EQ: case INST_STR_NEQ: { /* * String (in)equality check */ int iResult; value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); if (valuePtr == value2Ptr) { /* * On the off-chance that the objects are the same, * we don't really have to think hard about equality. */ iResult = (*pc == INST_STR_EQ); } else { char *s1, *s2; int s1len, s2len; s1 = Tcl_GetStringFromObj(valuePtr, &s1len); s2 = Tcl_GetStringFromObj(value2Ptr, &s2len); if (s1len == s2len) { /* * We only need to check (in)equality when * we have equal length strings. */ if (*pc == INST_STR_NEQ) { iResult = (strcmp(s1, s2) != 0); } else { /* INST_STR_EQ */ iResult = (strcmp(s1, s2) == 0); } } else { iResult = (*pc == INST_STR_NEQ); } } PUSH_OBJECT(Tcl_NewIntObj(iResult)); TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), iResult)); TclDecrRefCount(valuePtr); TclDecrRefCount(value2Ptr); } ADJUST_PC(1); case INST_STR_CMP: { /* * String compare */ char *s1, *s2; int s1len, s2len, iResult; value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); /* * The comparison function should compare up to the * minimum byte length only. */ if ((valuePtr->typePtr == &tclByteArrayType) && (value2Ptr->typePtr == &tclByteArrayType)) { s1 = (char *) Tcl_GetByteArrayFromObj(valuePtr, &s1len); s2 = (char *) Tcl_GetByteArrayFromObj(value2Ptr, &s2len); iResult = memcmp(s1, s2, (size_t) ((s1len < s2len) ? s1len : s2len)); } else if ((valuePtr->typePtr == &tclStringType) || (value2Ptr->typePtr == &tclStringType)) { /* * The alternative is to break this into more code * that does type sensitive comparison, as done in * Tcl_StringObjCmd. */ Tcl_UniChar *uni1, *uni2; uni1 = Tcl_GetUnicodeFromObj(valuePtr, &s1len); uni2 = Tcl_GetUnicodeFromObj(value2Ptr, &s2len); iResult = Tcl_UniCharNcmp(uni1, uni2, (unsigned) ((s1len < s2len) ? s1len : s2len)); } else { /* * This solution is less mem intensive, but it is * computationally expensive as the string grows. The * reason that we can't use a memcmp is that UTF-8 strings * that contain a \u0000 can't be compared with memcmp. If * we knew that the string was ascii-7 or had no null byte, * we could just do memcmp and save all the hassle. */ s1 = Tcl_GetStringFromObj(valuePtr, &s1len); s2 = Tcl_GetStringFromObj(value2Ptr, &s2len); /* * These have to be in true chars */ s1len = Tcl_NumUtfChars(s1, s1len); s2len = Tcl_NumUtfChars(s2, s2len); iResult = Tcl_UtfNcmp(s1, s2, (size_t) ((s1len < s2len) ? s1len : s2len)); } /* * Make sure only -1,0,1 is returned */ if (iResult == 0) { iResult = s1len - s2len; } if (iResult < 0) { iResult = -1; } else if (iResult > 0) { iResult = 1; } PUSH_OBJECT(Tcl_NewIntObj(iResult)); TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), iResult)); TclDecrRefCount(valuePtr); TclDecrRefCount(value2Ptr); } ADJUST_PC(1); case INST_STR_LEN: { int length1; valuePtr = POP_OBJECT(); if (valuePtr->typePtr == &tclByteArrayType) { (void) Tcl_GetByteArrayFromObj(valuePtr, &length1); } else { length1 = Tcl_GetCharLength(valuePtr); } PUSH_OBJECT(Tcl_NewIntObj(length1)); TRACE(("%.20s => %d\n", O2S(valuePtr), length1)); TclDecrRefCount(valuePtr); } ADJUST_PC(1); case INST_STR_INDEX: { /* * String compare */ int index; bytes = NULL; /* lint */ value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); /* * If we have a ByteArray object, avoid indexing in the * Utf string since the byte array contains one byte per * character. Otherwise, use the Unicode string rep to * get the index'th char. */ if (valuePtr->typePtr == &tclByteArrayType) { bytes = (char *)Tcl_GetByteArrayFromObj(valuePtr, &length); } else { /* * Get Unicode char length to calulate what 'end' means. */ length = Tcl_GetCharLength(valuePtr); } result = TclGetIntForIndex(interp, value2Ptr, length - 1, &index); if (result != TCL_OK) { Tcl_DecrRefCount(value2Ptr); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } if ((index >= 0) && (index < length)) { if (valuePtr->typePtr == &tclByteArrayType) { objPtr = Tcl_NewByteArrayObj((unsigned char *) (&bytes[index]), 1); } else { char buf[TCL_UTF_MAX]; Tcl_UniChar ch; ch = Tcl_GetUniChar(valuePtr, index); /* * This could be: * Tcl_NewUnicodeObj((CONST Tcl_UniChar *)&ch, 1) * but creating the object as a string seems to be * faster in practical use. */ length = Tcl_UniCharToUtf(ch, buf); objPtr = Tcl_NewStringObj(buf, length); } } else { objPtr = Tcl_NewObj(); } PUSH_OBJECT(objPtr); TRACE(("%.20s %.20s => %s\n", O2S(valuePtr), O2S(value2Ptr), O2S(objPtr))); TclDecrRefCount(valuePtr); TclDecrRefCount(value2Ptr); } ADJUST_PC(1); case INST_STR_MATCH: { int nocase, match; nocase = TclGetInt1AtPtr(pc+1); valuePtr = POP_OBJECT(); /* String */ value2Ptr = POP_OBJECT(); /* Pattern */ /* * Check that at least one of the objects * is Unicode before promoting both. */ if ((valuePtr->typePtr == &tclStringType) || (value2Ptr->typePtr == &tclStringType)) { match = Tcl_UniCharCaseMatch(Tcl_GetUnicode(valuePtr), Tcl_GetUnicode(value2Ptr), nocase); } else { match = Tcl_StringCaseMatch(Tcl_GetString(valuePtr), Tcl_GetString(value2Ptr), nocase); } /* * Reuse value2Ptr object already on stack if possible. */ TRACE(("%.20s %.20s => %d\n", O2S(valuePtr), O2S(value2Ptr), match)); TclDecrRefCount(valuePtr); if (Tcl_IsShared(value2Ptr)) { PUSH_OBJECT(Tcl_NewIntObj(match)); TclDecrRefCount(value2Ptr); } else { /* reuse the valuePtr object */ Tcl_SetIntObj(value2Ptr, match); ++stackTop; /* valuePtr now on stk top has right r.c. */ } } /* * Adjustment is 2 due to the nocase byte */ ADJUST_PC(2); case INST_EQ: case INST_NEQ: case INST_LT: case INST_GT: case INST_LE: case INST_GE: { /* * Any type is allowed but the two operands must have the * same type. We will compute value op value2. */ Tcl_ObjType *t1Ptr, *t2Ptr; char *s1 = NULL; /* Init. avoids compiler warning. */ char *s2 = NULL; /* Init. avoids compiler warning. */ long i2 = 0; /* Init. avoids compiler warning. */ double d1 = 0.0; /* Init. avoids compiler warning. */ double d2 = 0.0; /* Init. avoids compiler warning. */ long iResult = 0; /* Init. avoids compiler warning. */ value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); t1Ptr = valuePtr->typePtr; t2Ptr = value2Ptr->typePtr; /* * We only want to coerce numeric validation if * neither type is NULL. A NULL type means the arg is * essentially an empty object ("", {} or [list]). */ if (!((((t1Ptr == NULL) && (valuePtr->bytes == NULL)) || (valuePtr->bytes && (valuePtr->length == 0))) || (((t2Ptr == NULL) && (value2Ptr->bytes == NULL)) || (value2Ptr->bytes && (value2Ptr->length == 0))))) { if ((t1Ptr != &tclIntType) && (t1Ptr != &tclDoubleType)) { s1 = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s1, length)) { (void) Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i); } else { (void) Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d1); } t1Ptr = valuePtr->typePtr; } if ((t2Ptr != &tclIntType) && (t2Ptr != &tclDoubleType)) { s2 = Tcl_GetStringFromObj(value2Ptr, &length); if (TclLooksLikeInt(s2, length)) { (void) Tcl_GetLongFromObj((Tcl_Interp *) NULL, value2Ptr, &i2); } else { (void) Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, value2Ptr, &d2); } t2Ptr = value2Ptr->typePtr; } } if (((t1Ptr != &tclIntType) && (t1Ptr != &tclDoubleType)) || ((t2Ptr != &tclIntType) && (t2Ptr != &tclDoubleType))) { /* * One operand is not numeric. Compare as strings. * NOTE: strcmp is not correct for \x00 < \x01. */ int cmpValue; s1 = Tcl_GetString(valuePtr); s2 = Tcl_GetString(value2Ptr); cmpValue = strcmp(s1, s2); switch (*pc) { case INST_EQ: iResult = (cmpValue == 0); break; case INST_NEQ: iResult = (cmpValue != 0); break; case INST_LT: iResult = (cmpValue < 0); break; case INST_GT: iResult = (cmpValue > 0); break; case INST_LE: iResult = (cmpValue <= 0); break; case INST_GE: iResult = (cmpValue >= 0); break; } } else if ((t1Ptr == &tclDoubleType) || (t2Ptr == &tclDoubleType)) { /* * Compare as doubles. */ if (t1Ptr == &tclDoubleType) { d1 = valuePtr->internalRep.doubleValue; if (t2Ptr == &tclIntType) { d2 = value2Ptr->internalRep.longValue; } else { d2 = value2Ptr->internalRep.doubleValue; } } else { /* t1Ptr is int, t2Ptr is double */ d1 = valuePtr->internalRep.longValue; d2 = value2Ptr->internalRep.doubleValue; } switch (*pc) { case INST_EQ: iResult = d1 == d2; break; case INST_NEQ: iResult = d1 != d2; break; case INST_LT: iResult = d1 < d2; break; case INST_GT: iResult = d1 > d2; break; case INST_LE: iResult = d1 <= d2; break; case INST_GE: iResult = d1 >= d2; break; } } else { /* * Compare as ints. */ i = valuePtr->internalRep.longValue; i2 = value2Ptr->internalRep.longValue; switch (*pc) { case INST_EQ: iResult = i == i2; break; case INST_NEQ: iResult = i != i2; break; case INST_LT: iResult = i < i2; break; case INST_GT: iResult = i > i2; break; case INST_LE: iResult = i <= i2; break; case INST_GE: iResult = i >= i2; break; } } /* * Reuse the valuePtr object already on stack if possible. */ if (Tcl_IsShared(valuePtr)) { PUSH_OBJECT(Tcl_NewLongObj(iResult)); TRACE(("%.20s %.20s => %ld\n", O2S(valuePtr), O2S(value2Ptr), iResult)); TclDecrRefCount(valuePtr); } else { /* reuse the valuePtr object */ TRACE(("%.20s %.20s => %ld\n", O2S(valuePtr), O2S(value2Ptr), iResult)); Tcl_SetLongObj(valuePtr, iResult); ++stackTop; /* valuePtr now on stk top has right r.c. */ } TclDecrRefCount(value2Ptr); } ADJUST_PC(1); case INST_MOD: case INST_LSHIFT: case INST_RSHIFT: case INST_BITOR: case INST_BITXOR: case INST_BITAND: { /* * Only integers are allowed. We compute value op value2. */ long i2, rem, negative; long iResult = 0; /* Init. avoids compiler warning. */ value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); if (valuePtr->typePtr == &tclIntType) { i = valuePtr->internalRep.longValue; } else { /* try to convert to int */ result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i); if (result != TCL_OK) { TRACE(("%.20s %.20s => ILLEGAL 1st TYPE %s\n", O2S(valuePtr), O2S(value2Ptr), (valuePtr->typePtr? valuePtr->typePtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto checkForCatch; } } if (value2Ptr->typePtr == &tclIntType) { i2 = value2Ptr->internalRep.longValue; } else { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, value2Ptr, &i2); if (result != TCL_OK) { TRACE(("%.20s %.20s => ILLEGAL 2nd TYPE %s\n", O2S(valuePtr), O2S(value2Ptr), (value2Ptr->typePtr? value2Ptr->typePtr->name : "null"))); IllegalExprOperandType(interp, pc, value2Ptr); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto checkForCatch; } } switch (*pc) { case INST_MOD: /* * This code is tricky: C doesn't guarantee much about * the quotient or remainder, but Tcl does. The * remainder always has the same sign as the divisor and * a smaller absolute value. */ if (i2 == 0) { TRACE(("%ld %ld => DIVIDE BY ZERO\n", i, i2)); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto divideByZero; } negative = 0; if (i2 < 0) { i2 = -i2; i = -i; negative = 1; } rem = i % i2; if (rem < 0) { rem += i2; } if (negative) { rem = -rem; } iResult = rem; break; case INST_LSHIFT: iResult = i << i2; break; case INST_RSHIFT: /* * The following code is a bit tricky: it ensures that * right shifts propagate the sign bit even on machines * where ">>" won't do it by default. */ if (i < 0) { iResult = ~((~i) >> i2); } else { iResult = i >> i2; } break; case INST_BITOR: iResult = i | i2; break; case INST_BITXOR: iResult = i ^ i2; break; case INST_BITAND: iResult = i & i2; break; } /* * Reuse the valuePtr object already on stack if possible. */ if (Tcl_IsShared(valuePtr)) { PUSH_OBJECT(Tcl_NewLongObj(iResult)); TRACE(("%ld %ld => %ld\n", i, i2, iResult)); TclDecrRefCount(valuePtr); } else { /* reuse the valuePtr object */ TRACE(("%ld %ld => %ld\n", i, i2, iResult)); Tcl_SetLongObj(valuePtr, iResult); ++stackTop; /* valuePtr now on stk top has right r.c. */ } TclDecrRefCount(value2Ptr); } ADJUST_PC(1); case INST_ADD: case INST_SUB: case INST_MULT: case INST_DIV: { /* * Operands must be numeric and ints get converted to floats * if necessary. We compute value op value2. */ Tcl_ObjType *t1Ptr, *t2Ptr; long i2, quot, rem; double d1, d2; long iResult = 0; /* Init. avoids compiler warning. */ double dResult = 0.0; /* Init. avoids compiler warning. */ int doDouble = 0; /* 1 if doing floating arithmetic */ value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); t1Ptr = valuePtr->typePtr; t2Ptr = value2Ptr->typePtr; if (t1Ptr == &tclIntType) { i = valuePtr->internalRep.longValue; } else if ((t1Ptr == &tclDoubleType) && (valuePtr->bytes == NULL)) { /* * We can only use the internal rep directly if there is * no string rep. Otherwise the string rep might actually * look like an integer, which is preferred. */ d1 = valuePtr->internalRep.doubleValue; } else { char *s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i); } else { result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d1); } if (result != TCL_OK) { TRACE(("%.20s %.20s => ILLEGAL 1st TYPE %s\n", s, O2S(valuePtr), (valuePtr->typePtr? valuePtr->typePtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto checkForCatch; } t1Ptr = valuePtr->typePtr; } if (t2Ptr == &tclIntType) { i2 = value2Ptr->internalRep.longValue; } else if ((t2Ptr == &tclDoubleType) && (value2Ptr->bytes == NULL)) { /* * We can only use the internal rep directly if there is * no string rep. Otherwise the string rep might actually * look like an integer, which is preferred. */ d2 = value2Ptr->internalRep.doubleValue; } else { char *s = Tcl_GetStringFromObj(value2Ptr, &length); if (TclLooksLikeInt(s, length)) { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, value2Ptr, &i2); } else { result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, value2Ptr, &d2); } if (result != TCL_OK) { TRACE(("%.20s %.20s => ILLEGAL 2nd TYPE %s\n", O2S(value2Ptr), s, (value2Ptr->typePtr? value2Ptr->typePtr->name : "null"))); IllegalExprOperandType(interp, pc, value2Ptr); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto checkForCatch; } t2Ptr = value2Ptr->typePtr; } if ((t1Ptr == &tclDoubleType) || (t2Ptr == &tclDoubleType)) { /* * Do double arithmetic. */ doDouble = 1; if (t1Ptr == &tclIntType) { d1 = i; /* promote value 1 to double */ } else if (t2Ptr == &tclIntType) { d2 = i2; /* promote value 2 to double */ } switch (*pc) { case INST_ADD: dResult = d1 + d2; break; case INST_SUB: dResult = d1 - d2; break; case INST_MULT: dResult = d1 * d2; break; case INST_DIV: if (d2 == 0.0) { TRACE(("%.6g %.6g => DIVIDE BY ZERO\n", d1, d2)); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto divideByZero; } dResult = d1 / d2; break; } /* * Check now for IEEE floating-point error. */ if (IS_NAN(dResult) || IS_INF(dResult)) { TRACE(("%.20s %.20s => IEEE FLOATING PT ERROR\n", O2S(valuePtr), O2S(value2Ptr))); TclExprFloatError(interp, dResult); result = TCL_ERROR; Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto checkForCatch; } } else { /* * Do integer arithmetic. */ switch (*pc) { case INST_ADD: iResult = i + i2; break; case INST_SUB: iResult = i - i2; break; case INST_MULT: iResult = i * i2; break; case INST_DIV: /* * This code is tricky: C doesn't guarantee much * about the quotient or remainder, but Tcl does. * The remainder always has the same sign as the * divisor and a smaller absolute value. */ if (i2 == 0) { TRACE(("%ld %ld => DIVIDE BY ZERO\n", i, i2)); Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); goto divideByZero; } if (i2 < 0) { i2 = -i2; i = -i; } quot = i / i2; rem = i % i2; if (rem < 0) { quot -= 1; } iResult = quot; break; } } /* * Reuse the valuePtr object already on stack if possible. */ if (Tcl_IsShared(valuePtr)) { if (doDouble) { PUSH_OBJECT(Tcl_NewDoubleObj(dResult)); TRACE(("%.6g %.6g => %.6g\n", d1, d2, dResult)); } else { PUSH_OBJECT(Tcl_NewLongObj(iResult)); TRACE(("%ld %ld => %ld\n", i, i2, iResult)); } TclDecrRefCount(valuePtr); } else { /* reuse the valuePtr object */ if (doDouble) { /* NB: stack top is off by 1 */ TRACE(("%.6g %.6g => %.6g\n", d1, d2, dResult)); Tcl_SetDoubleObj(valuePtr, dResult); } else { TRACE(("%ld %ld => %ld\n", i, i2, iResult)); Tcl_SetLongObj(valuePtr, iResult); } ++stackTop; /* valuePtr now on stk top has right r.c. */ } TclDecrRefCount(value2Ptr); } ADJUST_PC(1); case INST_UPLUS: { /* * Operand must be numeric. */ double d; Tcl_ObjType *tPtr; valuePtr = stackPtr[stackTop]; tPtr = valuePtr->typePtr; if ((tPtr != &tclIntType) && ((tPtr != &tclDoubleType) || (valuePtr->bytes != NULL))) { char *s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i); } else { result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d); } if (result != TCL_OK) { TRACE(("\"%.20s\" => ILLEGAL TYPE %s \n", s, (tPtr? tPtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); goto checkForCatch; } tPtr = valuePtr->typePtr; } /* * Ensure that the operand's string rep is the same as the * formatted version of its internal rep. This makes sure * that "expr +000123" yields "83", not "000123". We * implement this by _discarding_ the string rep since we * know it will be regenerated, if needed later, by * formatting the internal rep's value. */ if (Tcl_IsShared(valuePtr)) { if (tPtr == &tclIntType) { i = valuePtr->internalRep.longValue; objPtr = Tcl_NewLongObj(i); } else { d = valuePtr->internalRep.doubleValue; objPtr = Tcl_NewDoubleObj(d); } Tcl_IncrRefCount(objPtr); Tcl_DecrRefCount(valuePtr); valuePtr = objPtr; stackPtr[stackTop] = valuePtr; } else { Tcl_InvalidateStringRep(valuePtr); } TRACE_WITH_OBJ(("%s => ", O2S(valuePtr)), valuePtr); } ADJUST_PC(1); case INST_UMINUS: case INST_LNOT: { /* * The operand must be numeric or a boolean string as * accepted by Tcl_GetBooleanFromObj(). If the operand * object is unshared modify it directly, otherwise * create a copy to modify: this is "copy on write". * Free any old string representation since it is now * invalid. */ double d; int boolvar; Tcl_ObjType *tPtr; valuePtr = POP_OBJECT(); tPtr = valuePtr->typePtr; if ((tPtr != &tclIntType) && ((tPtr != &tclDoubleType) || (valuePtr->bytes != NULL))) { if ((tPtr == &tclBooleanType) && (valuePtr->bytes == NULL)) { valuePtr->typePtr = &tclIntType; } else { char *s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i); } else { result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d); } if (result == TCL_ERROR && *pc == INST_LNOT) { result = Tcl_GetBooleanFromObj((Tcl_Interp *)NULL, valuePtr, &boolvar); i = (long)boolvar; /* i is long, not int! */ } if (result != TCL_OK) { TRACE(("\"%.20s\" => ILLEGAL TYPE %s\n", s, (tPtr? tPtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } } tPtr = valuePtr->typePtr; } if (Tcl_IsShared(valuePtr)) { /* * Create a new object. */ if ((tPtr == &tclIntType) || (tPtr == &tclBooleanType)) { i = valuePtr->internalRep.longValue; objPtr = Tcl_NewLongObj( (*pc == INST_UMINUS)? -i : !i); TRACE_WITH_OBJ(("%ld => ", i), objPtr); } else { d = valuePtr->internalRep.doubleValue; if (*pc == INST_UMINUS) { objPtr = Tcl_NewDoubleObj(-d); } else { /* * Should be able to use "!d", but apparently * some compilers can't handle it. */ objPtr = Tcl_NewLongObj((d==0.0)? 1 : 0); } TRACE_WITH_OBJ(("%.6g => ", d), objPtr); } PUSH_OBJECT(objPtr); TclDecrRefCount(valuePtr); } else { /* * valuePtr is unshared. Modify it directly. */ if ((tPtr == &tclIntType) || (tPtr == &tclBooleanType)) { i = valuePtr->internalRep.longValue; Tcl_SetLongObj(valuePtr, (*pc == INST_UMINUS)? -i : !i); TRACE_WITH_OBJ(("%ld => ", i), valuePtr); } else { d = valuePtr->internalRep.doubleValue; if (*pc == INST_UMINUS) { Tcl_SetDoubleObj(valuePtr, -d); } else { /* * Should be able to use "!d", but apparently * some compilers can't handle it. */ Tcl_SetLongObj(valuePtr, (d==0.0)? 1 : 0); } TRACE_WITH_OBJ(("%.6g => ", d), valuePtr); } ++stackTop; /* valuePtr now on stk top has right r.c. */ } } ADJUST_PC(1); case INST_BITNOT: { /* * The operand must be an integer. If the operand object is * unshared modify it directly, otherwise modify a copy. * Free any old string representation since it is now * invalid. */ Tcl_ObjType *tPtr; valuePtr = POP_OBJECT(); tPtr = valuePtr->typePtr; if (tPtr != &tclIntType) { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i); if (result != TCL_OK) { /* try to convert to double */ TRACE(("\"%.20s\" => ILLEGAL TYPE %s\n", O2S(valuePtr), (tPtr? tPtr->name : "null"))); IllegalExprOperandType(interp, pc, valuePtr); Tcl_DecrRefCount(valuePtr); goto checkForCatch; } } i = valuePtr->internalRep.longValue; if (Tcl_IsShared(valuePtr)) { PUSH_OBJECT(Tcl_NewLongObj(~i)); TRACE(("0x%lx => (%lu)\n", i, ~i)); TclDecrRefCount(valuePtr); } else { /* * valuePtr is unshared. Modify it directly. */ Tcl_SetLongObj(valuePtr, ~i); ++stackTop; /* valuePtr now on stk top has right r.c. */ TRACE(("0x%lx => (%lu)\n", i, ~i)); } } ADJUST_PC(1); case INST_CALL_BUILTIN_FUNC1: opnd = TclGetUInt1AtPtr(pc+1); { /* * Call one of the built-in Tcl math functions. */ BuiltinFunc *mathFuncPtr; ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey); if ((opnd < 0) || (opnd > LAST_BUILTIN_FUNC)) { TRACE(("UNRECOGNIZED BUILTIN FUNC CODE %d\n", opnd)); panic("TclExecuteByteCode: unrecognized builtin function code %d", opnd); } mathFuncPtr = &(builtinFuncTable[opnd]); DECACHE_STACK_INFO(); tsdPtr->mathInProgress++; result = (*mathFuncPtr->proc)(interp, eePtr, mathFuncPtr->clientData); tsdPtr->mathInProgress--; CACHE_STACK_INFO(); if (result != TCL_OK) { goto checkForCatch; } TRACE_WITH_OBJ(("%d => ", opnd), stackPtr[stackTop]); } ADJUST_PC(2); case INST_CALL_FUNC1: opnd = TclGetUInt1AtPtr(pc+1); { /* * Call a non-builtin Tcl math function previously * registered by a call to Tcl_CreateMathFunc. */ int objc = opnd; /* Number of arguments. The function name * is the 0-th argument. */ Tcl_Obj **objv; /* The array of arguments. The function * name is objv[0]. */ ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey); objv = &(stackPtr[stackTop - (objc-1)]); /* "objv[0]" */ DECACHE_STACK_INFO(); tsdPtr->mathInProgress++; result = ExprCallMathFunc(interp, eePtr, objc, objv); tsdPtr->mathInProgress--; CACHE_STACK_INFO(); if (result != TCL_OK) { goto checkForCatch; } TRACE_WITH_OBJ(("%d => ", objc), stackPtr[stackTop]); ADJUST_PC(2); } case INST_TRY_CVT_TO_NUMERIC: { /* * Try to convert the topmost stack object to an int or * double object. This is done in order to support Tcl's * policy of interpreting operands if at all possible as * first integers, else floating-point numbers. */ double d; char *s; Tcl_ObjType *tPtr; int converted, shared; valuePtr = stackPtr[stackTop]; tPtr = valuePtr->typePtr; converted = 0; if ((tPtr != &tclIntType) && ((tPtr != &tclDoubleType) || (valuePtr->bytes != NULL))) { if ((tPtr == &tclBooleanType) && (valuePtr->bytes == NULL)) { valuePtr->typePtr = &tclIntType; converted = 1; } else { s = Tcl_GetStringFromObj(valuePtr, &length); if (TclLooksLikeInt(s, length)) { result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, valuePtr, &i); } else { result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, valuePtr, &d); } if (result == TCL_OK) { converted = 1; } result = TCL_OK; /* reset the result variable */ } tPtr = valuePtr->typePtr; } /* * Ensure that the topmost stack object, if numeric, has a * string rep the same as the formatted version of its * internal rep. This is used, e.g., to make sure that "expr * {0001}" yields "1", not "0001". We implement this by * _discarding_ the string rep since we know it will be * regenerated, if needed later, by formatting the internal * rep's value. Also check if there has been an IEEE * floating point error. */ if ((tPtr == &tclIntType) || (tPtr == &tclDoubleType)) { shared = 0; if (Tcl_IsShared(valuePtr)) { shared = 1; if (valuePtr->bytes != NULL) { /* * We only need to make a copy of the object * when it already had a string rep */ if (tPtr == &tclIntType) { i = valuePtr->internalRep.longValue; objPtr = Tcl_NewLongObj(i); } else { d = valuePtr->internalRep.doubleValue; objPtr = Tcl_NewDoubleObj(d); } Tcl_IncrRefCount(objPtr); TclDecrRefCount(valuePtr); valuePtr = objPtr; stackPtr[stackTop] = valuePtr; tPtr = valuePtr->typePtr; } } else { Tcl_InvalidateStringRep(valuePtr); } if (tPtr == &tclDoubleType) { d = valuePtr->internalRep.doubleValue; if (IS_NAN(d) || IS_INF(d)) { TRACE(("\"%.20s\" => IEEE FLOATING PT ERROR\n", O2S(valuePtr))); TclExprFloatError(interp, d); result = TCL_ERROR; goto checkForCatch; } } shared = shared; /* lint, shared not used. */ converted = converted; /* lint, converted not used. */ TRACE(("\"%.20s\" => numeric, %s, %s\n", O2S(valuePtr), (converted? "converted" : "not converted"), (shared? "shared" : "not shared"))); } else { TRACE(("\"%.20s\" => not numeric\n", O2S(valuePtr))); } } ADJUST_PC(1); case INST_BREAK: /* * First reset the interpreter's result. Then find the closest * enclosing loop or catch exception range, if any. If a loop is * found, terminate its execution. If the closest is a catch * exception range, jump to its catchOffset. If no enclosing * range is found, stop execution and return TCL_BREAK. */ Tcl_ResetResult(interp); rangePtr = GetExceptRangeForPc(pc, /*catchOnly*/ 0, codePtr); if (rangePtr == NULL) { TRACE(("=> no encl. loop or catch, returning TCL_BREAK\n")); result = TCL_BREAK; goto abnormalReturn; /* no catch exists to check */ } switch (rangePtr->type) { case LOOP_EXCEPTION_RANGE: result = TCL_OK; TRACE(("=> range at %d, new pc %d\n", rangePtr->codeOffset, rangePtr->breakOffset)); break; case CATCH_EXCEPTION_RANGE: result = TCL_BREAK; TRACE(("=> ...\n")); goto processCatch; /* it will use rangePtr */ default: panic("TclExecuteByteCode: unrecognized ExceptionRange type %d\n", rangePtr->type); } pc = (codePtr->codeStart + rangePtr->breakOffset); continue; /* restart outer instruction loop at pc */ case INST_CONTINUE: /* * Find the closest enclosing loop or catch exception range, * if any. If a loop is found, skip to its next iteration. * If the closest is a catch exception range, jump to its * catchOffset. If no enclosing range is found, stop * execution and return TCL_CONTINUE. */ Tcl_ResetResult(interp); rangePtr = GetExceptRangeForPc(pc, /*catchOnly*/ 0, codePtr); if (rangePtr == NULL) { TRACE(("=> no encl. loop or catch, returning TCL_CONTINUE\n")); result = TCL_CONTINUE; goto abnormalReturn; } switch (rangePtr->type) { case LOOP_EXCEPTION_RANGE: if (rangePtr->continueOffset == -1) { TRACE(("=> loop w/o continue, checking for catch\n")); goto checkForCatch; } else { result = TCL_OK; TRACE(("=> range at %d, new pc %d\n", rangePtr->codeOffset, rangePtr->continueOffset)); } break; case CATCH_EXCEPTION_RANGE: result = TCL_CONTINUE; TRACE(("=> ...\n")); goto processCatch; /* it will use rangePtr */ default: panic("TclExecuteByteCode: unrecognized ExceptionRange type %d\n", rangePtr->type); } pc = (codePtr->codeStart + rangePtr->continueOffset); continue; /* restart outer instruction loop at pc */ case INST_FOREACH_START4: opnd = TclGetUInt4AtPtr(pc+1); { /* * Initialize the temporary local var that holds the count * of the number of iterations of the loop body to -1. */ ForeachInfo *infoPtr = (ForeachInfo *) codePtr->auxDataArrayPtr[opnd].clientData; int iterTmpIndex = infoPtr->loopCtTemp; Var *compiledLocals = iPtr->varFramePtr->compiledLocals; Var *iterVarPtr = &(compiledLocals[iterTmpIndex]); Tcl_Obj *oldValuePtr = iterVarPtr->value.objPtr; if (oldValuePtr == NULL) { iterVarPtr->value.objPtr = Tcl_NewLongObj(-1); Tcl_IncrRefCount(iterVarPtr->value.objPtr); } else { Tcl_SetLongObj(oldValuePtr, -1); } TclSetVarScalar(iterVarPtr); TclClearVarUndefined(iterVarPtr); TRACE(("%u => loop iter count temp %d\n", opnd, iterTmpIndex)); } ADJUST_PC(5); case INST_FOREACH_STEP4: opnd = TclGetUInt4AtPtr(pc+1); { /* * "Step" a foreach loop (i.e., begin its next iteration) by * assigning the next value list element to each loop var. */ ForeachInfo *infoPtr = (ForeachInfo *) codePtr->auxDataArrayPtr[opnd].clientData; ForeachVarList *varListPtr; int numLists = infoPtr->numLists; Var *compiledLocals = iPtr->varFramePtr->compiledLocals; Tcl_Obj *listPtr; List *listRepPtr; Var *iterVarPtr, *listVarPtr; int iterNum, listTmpIndex, listLen, numVars; int varIndex, valIndex, continueLoop, j; /* * Increment the temp holding the loop iteration number. */ iterVarPtr = &(compiledLocals[infoPtr->loopCtTemp]); valuePtr = iterVarPtr->value.objPtr; iterNum = (valuePtr->internalRep.longValue + 1); Tcl_SetLongObj(valuePtr, iterNum); /* * Check whether all value lists are exhausted and we should * stop the loop. */ continueLoop = 0; listTmpIndex = infoPtr->firstValueTemp; for (i = 0; i < numLists; i++) { varListPtr = infoPtr->varLists[i]; numVars = varListPtr->numVars; listVarPtr = &(compiledLocals[listTmpIndex]); listPtr = listVarPtr->value.objPtr; result = Tcl_ListObjLength(interp, listPtr, &listLen); if (result != TCL_OK) { TRACE_WITH_OBJ(("%u => ERROR converting list %ld, \"%s\": ", opnd, i, O2S(listPtr)), Tcl_GetObjResult(interp)); goto checkForCatch; } if (listLen > (iterNum * numVars)) { continueLoop = 1; } listTmpIndex++; } /* * If some var in some var list still has a remaining list * element iterate one more time. Assign to var the next * element from its value list. We already checked above * that each list temp holds a valid list object. */ if (continueLoop) { listTmpIndex = infoPtr->firstValueTemp; for (i = 0; i < numLists; i++) { varListPtr = infoPtr->varLists[i]; numVars = varListPtr->numVars; listVarPtr = &(compiledLocals[listTmpIndex]); listPtr = listVarPtr->value.objPtr; listRepPtr = (List *) listPtr->internalRep.twoPtrValue.ptr1; listLen = listRepPtr->elemCount; valIndex = (iterNum * numVars); for (j = 0; j < numVars; j++) { int setEmptyStr = 0; if (valIndex >= listLen) { setEmptyStr = 1; valuePtr = Tcl_NewObj(); } else { valuePtr = listRepPtr->elements[valIndex]; } varIndex = varListPtr->varIndexes[j]; DECACHE_STACK_INFO(); value2Ptr = TclSetIndexedScalar(interp, varIndex, valuePtr, TCL_LEAVE_ERR_MSG); CACHE_STACK_INFO(); if (value2Ptr == NULL) { TRACE_WITH_OBJ(("%u => ERROR init. index temp %d: ", opnd, varIndex), Tcl_GetObjResult(interp)); if (setEmptyStr) { Tcl_DecrRefCount(valuePtr); } result = TCL_ERROR; goto checkForCatch; } valIndex++; } listTmpIndex++; } } /* * Push 1 if at least one value list had a remaining element * and the loop should continue. Otherwise push 0. */ PUSH_OBJECT(Tcl_NewLongObj(continueLoop)); TRACE(("%u => %d lists, iter %d, %s loop\n", opnd, numLists, iterNum, (continueLoop? "continue" : "exit"))); } ADJUST_PC(5); case INST_BEGIN_CATCH4: /* * Record start of the catch command with exception range index * equal to the operand. Push the current stack depth onto the * special catch stack. */ catchStackPtr[++catchTop] = stackTop; TRACE(("%u => catchTop=%d, stackTop=%d\n", TclGetUInt4AtPtr(pc+1), catchTop, stackTop)); ADJUST_PC(5); case INST_END_CATCH: catchTop--; result = TCL_OK; TRACE(("=> catchTop=%d\n", catchTop)); ADJUST_PC(1); case INST_PUSH_RESULT: PUSH_OBJECT(Tcl_GetObjResult(interp)); TRACE_WITH_OBJ(("=> "), Tcl_GetObjResult(interp)); ADJUST_PC(1); case INST_PUSH_RETURN_CODE: PUSH_OBJECT(Tcl_NewLongObj(result)); TRACE(("=> %u\n", result)); ADJUST_PC(1); default: panic("TclExecuteByteCode: unrecognized opCode %u", *pc); } /* end of switch on opCode */ /* * Division by zero in an expression. Control only reaches this * point by "goto divideByZero". */ divideByZero: Tcl_ResetResult(interp); Tcl_AppendToObj(Tcl_GetObjResult(interp), "divide by zero", -1); Tcl_SetErrorCode(interp, "ARITH", "DIVZERO", "divide by zero", (char *) NULL); result = TCL_ERROR; /* * Execution has generated an "exception" such as TCL_ERROR. If the * exception is an error, record information about what was being * executed when the error occurred. Find the closest enclosing * catch range, if any. If no enclosing catch range is found, stop * execution and return the "exception" code. */ checkForCatch: if ((result == TCL_ERROR) && !(iPtr->flags & ERR_ALREADY_LOGGED)) { bytes = GetSrcInfoForPc(pc, codePtr, &length); if (bytes != NULL) { Tcl_LogCommandInfo(interp, codePtr->source, bytes, length); iPtr->flags |= ERR_ALREADY_LOGGED; } } rangePtr = GetExceptRangeForPc(pc, /*catchOnly*/ 1, codePtr); if (rangePtr == NULL) { #ifdef TCL_COMPILE_DEBUG if (traceInstructions) { fprintf(stdout, " ... no enclosing catch, returning %s\n", StringForResultCode(result)); } #endif goto abnormalReturn; } /* * A catch exception range (rangePtr) was found to handle an * "exception". It was found either by checkForCatch just above or * by an instruction during break, continue, or error processing. * Jump to its catchOffset after unwinding the operand stack to * the depth it had when starting to execute the range's catch * command. */ processCatch: while (stackTop > catchStackPtr[catchTop]) { valuePtr = POP_OBJECT(); TclDecrRefCount(valuePtr); } #ifdef TCL_COMPILE_DEBUG if (traceInstructions) { fprintf(stdout, " ... found catch at %d, catchTop=%d, unwound to %d, new pc %u\n", rangePtr->codeOffset, catchTop, catchStackPtr[catchTop], (unsigned int)(rangePtr->catchOffset)); } #endif pc = (codePtr->codeStart + rangePtr->catchOffset); continue; /* restart the execution loop at pc */ } /* end of infinite loop dispatching on instructions */ /* * Abnormal return code. Restore the stack to state it had when starting * to execute the ByteCode. Panic if the stack is below the initial level. */ abnormalReturn: while (stackTop > initStackTop) { valuePtr = POP_OBJECT(); Tcl_DecrRefCount(valuePtr); } if (stackTop < initStackTop) { fprintf(stderr, "\nTclExecuteByteCode: abnormal return at pc %u: stack top %d < entry stack top %d\n", (unsigned int)(pc - codePtr->codeStart), (unsigned int) stackTop, (unsigned int) initStackTop); panic("TclExecuteByteCode execution failure: end stack top < start stack top"); } /* * Free the catch stack array if malloc'ed storage was used. */ done: if (catchStackPtr != catchStackStorage) { ckfree((char *) catchStackPtr); } eePtr->stackTop = initStackTop; return result; #undef STATIC_CATCH_STACK_SIZE } #ifdef TCL_COMPILE_DEBUG /* *---------------------------------------------------------------------- * * PrintByteCodeInfo -- * * This procedure prints a summary about a bytecode object to stdout. * It is called by TclExecuteByteCode when starting to execute the * bytecode object if tclTraceExec has the value 2 or more. * * Results: * None. * * Side effects: * None. * *---------------------------------------------------------------------- */ static void PrintByteCodeInfo(codePtr) register ByteCode *codePtr; /* The bytecode whose summary is printed * to stdout. */ { Proc *procPtr = codePtr->procPtr; Interp *iPtr = (Interp *) *codePtr->interpHandle; fprintf(stdout, "\nExecuting ByteCode 0x%x, refCt %u, epoch %u, interp 0x%x (epoch %u)\n", (unsigned int) codePtr, codePtr->refCount, codePtr->compileEpoch, (unsigned int) iPtr, iPtr->compileEpoch); fprintf(stdout, " Source: "); TclPrintSource(stdout, codePtr->source, 60); fprintf(stdout, "\n Cmds %d, src %d, inst %u, litObjs %u, aux %d, stkDepth %u, code/src %.2f\n", codePtr->numCommands, codePtr->numSrcBytes, codePtr->numCodeBytes, codePtr->numLitObjects, codePtr->numAuxDataItems, codePtr->maxStackDepth, #ifdef TCL_COMPILE_STATS (codePtr->numSrcBytes? ((float)codePtr->structureSize)/((float)codePtr->numSrcBytes) : 0.0)); #else 0.0); #endif #ifdef TCL_COMPILE_STATS fprintf(stdout, " Code %d = header %d+inst %d+litObj %d+exc %d+aux %d+cmdMap %d\n", codePtr->structureSize, (sizeof(ByteCode) - (sizeof(size_t) + sizeof(Tcl_Time))), codePtr->numCodeBytes, (codePtr->numLitObjects * sizeof(Tcl_Obj *)), (codePtr->numExceptRanges * sizeof(ExceptionRange)), (codePtr->numAuxDataItems * sizeof(AuxData)), codePtr->numCmdLocBytes); #endif /* TCL_COMPILE_STATS */ if (procPtr != NULL) { fprintf(stdout, " Proc 0x%x, refCt %d, args %d, compiled locals %d\n", (unsigned int) procPtr, procPtr->refCount, procPtr->numArgs, procPtr->numCompiledLocals); } } #endif /* TCL_COMPILE_DEBUG */ /* *---------------------------------------------------------------------- * * ValidatePcAndStackTop -- * * This procedure is called by TclExecuteByteCode when debugging to * verify that the program counter and stack top are valid during * execution. * * Results: * None. * * Side effects: * Prints a message to stderr and panics if either the pc or stack * top are invalid. * *---------------------------------------------------------------------- */ #ifdef TCL_COMPILE_DEBUG static void ValidatePcAndStackTop(codePtr, pc, stackTop, stackLowerBound) register ByteCode *codePtr; /* The bytecode whose summary is printed * to stdout. */ unsigned char *pc; /* Points to first byte of a bytecode * instruction. The program counter. */ int stackTop; /* Current stack top. Must be between * stackLowerBound and stackUpperBound * (inclusive). */ int stackLowerBound; /* Smallest legal value for stackTop. */ { int stackUpperBound = stackLowerBound + codePtr->maxStackDepth; /* Greatest legal value for stackTop. */ unsigned int relativePc = (unsigned int) (pc - codePtr->codeStart); unsigned int codeStart = (unsigned int) codePtr->codeStart; unsigned int codeEnd = (unsigned int) (codePtr->codeStart + codePtr->numCodeBytes); unsigned char opCode = *pc; if (((unsigned int) pc < codeStart) || ((unsigned int) pc > codeEnd)) { fprintf(stderr, "\nBad instruction pc 0x%x in TclExecuteByteCode\n", (unsigned int) pc); panic("TclExecuteByteCode execution failure: bad pc"); } if ((unsigned int) opCode > LAST_INST_OPCODE) { fprintf(stderr, "\nBad opcode %d at pc %u in TclExecuteByteCode\n", (unsigned int) opCode, relativePc); panic("TclExecuteByteCode execution failure: bad opcode"); } if ((stackTop < stackLowerBound) || (stackTop > stackUpperBound)) { int numChars; char *cmd = GetSrcInfoForPc(pc, codePtr, &numChars); char *ellipsis = ""; fprintf(stderr, "\nBad stack top %d at pc %u in TclExecuteByteCode (min %i, max %i)", stackTop, relativePc, stackLowerBound, stackUpperBound); if (cmd != NULL) { if (numChars > 100) { numChars = 100; ellipsis = "..."; } fprintf(stderr, "\n executing %.*s%s\n", numChars, cmd, ellipsis); } else { fprintf(stderr, "\n"); } panic("TclExecuteByteCode execution failure: bad stack top"); } } #endif /* TCL_COMPILE_DEBUG */ /* *---------------------------------------------------------------------- * * IllegalExprOperandType -- * * Used by TclExecuteByteCode to add an error message to errorInfo * when an illegal operand type is detected by an expression * instruction. The argument opndPtr holds the operand object in error. * * Results: * None. * * Side effects: * An error message is appended to errorInfo. * *---------------------------------------------------------------------- */ static void IllegalExprOperandType(interp, pc, opndPtr) Tcl_Interp *interp; /* Interpreter to which error information * pertains. */ unsigned char *pc; /* Points to the instruction being executed * when the illegal type was found. */ Tcl_Obj *opndPtr; /* Points to the operand holding the value * with the illegal type. */ { unsigned char opCode = *pc; Tcl_ResetResult(interp); if ((opndPtr->bytes == NULL) || (opndPtr->length == 0)) { Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "can't use empty string as operand of \"", operatorStrings[opCode - INST_LOR], "\"", (char *) NULL); } else { char *msg = "non-numeric string"; if (opndPtr->typePtr != &tclDoubleType) { /* * See if the operand can be interpreted as a double in order to * improve the error message. */ char *s = Tcl_GetString(opndPtr); double d; if (Tcl_GetDouble((Tcl_Interp *) NULL, s, &d) == TCL_OK) { /* * Make sure that what appears to be a double * (ie 08) isn't really a bad octal */ if (TclCheckBadOctal(NULL, Tcl_GetString(opndPtr))) { msg = "invalid octal number"; } else { msg = "floating-point value"; } } } Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "can't use ", msg, " as operand of \"", operatorStrings[opCode - INST_LOR], "\"", (char *) NULL); } } /* *---------------------------------------------------------------------- * * GetSrcInfoForPc -- * * Given a program counter value, finds the closest command in the * bytecode code unit's CmdLocation array and returns information about * that command's source: a pointer to its first byte and the number of * characters. * * Results: * If a command is found that encloses the program counter value, a * pointer to the command's source is returned and the length of the * source is stored at *lengthPtr. If multiple commands resulted in * code at pc, information about the closest enclosing command is * returned. If no matching command is found, NULL is returned and * *lengthPtr is unchanged. * * Side effects: * None. * *---------------------------------------------------------------------- */ static char * GetSrcInfoForPc(pc, codePtr, lengthPtr) unsigned char *pc; /* The program counter value for which to * return the closest command's source info. * This points to a bytecode instruction * in codePtr's code. */ ByteCode *codePtr; /* The bytecode sequence in which to look * up the command source for the pc. */ int *lengthPtr; /* If non-NULL, the location where the * length of the command's source should be * stored. If NULL, no length is stored. */ { register int pcOffset = (pc - codePtr->codeStart); int numCmds = codePtr->numCommands; unsigned char *codeDeltaNext, *codeLengthNext; unsigned char *srcDeltaNext, *srcLengthNext; int codeOffset, codeLen, codeEnd, srcOffset, srcLen, delta, i; int bestDist = INT_MAX; /* Distance of pc to best cmd's start pc. */ int bestSrcOffset = -1; /* Initialized to avoid compiler warning. */ int bestSrcLength = -1; /* Initialized to avoid compiler warning. */ if ((pcOffset < 0) || (pcOffset >= codePtr->numCodeBytes)) { return NULL; } /* * Decode the code and source offset and length for each command. The * closest enclosing command is the last one whose code started before * pcOffset. */ codeDeltaNext = codePtr->codeDeltaStart; codeLengthNext = codePtr->codeLengthStart; srcDeltaNext = codePtr->srcDeltaStart; srcLengthNext = codePtr->srcLengthStart; codeOffset = srcOffset = 0; for (i = 0; i < numCmds; i++) { if ((unsigned int) (*codeDeltaNext) == (unsigned int) 0xFF) { codeDeltaNext++; delta = TclGetInt4AtPtr(codeDeltaNext); codeDeltaNext += 4; } else { delta = TclGetInt1AtPtr(codeDeltaNext); codeDeltaNext++; } codeOffset += delta; if ((unsigned int) (*codeLengthNext) == (unsigned int) 0xFF) { codeLengthNext++; codeLen = TclGetInt4AtPtr(codeLengthNext); codeLengthNext += 4; } else { codeLen = TclGetInt1AtPtr(codeLengthNext); codeLengthNext++; } codeEnd = (codeOffset + codeLen - 1); if ((unsigned int) (*srcDeltaNext) == (unsigned int) 0xFF) { srcDeltaNext++; delta = TclGetInt4AtPtr(srcDeltaNext); srcDeltaNext += 4; } else { delta = TclGetInt1AtPtr(srcDeltaNext); srcDeltaNext++; } srcOffset += delta; if ((unsigned int) (*srcLengthNext) == (unsigned int) 0xFF) { srcLengthNext++; srcLen = TclGetInt4AtPtr(srcLengthNext); srcLengthNext += 4; } else { srcLen = TclGetInt1AtPtr(srcLengthNext); srcLengthNext++; } if (codeOffset > pcOffset) { /* best cmd already found */ break; } else if (pcOffset <= codeEnd) { /* this cmd's code encloses pc */ int dist = (pcOffset - codeOffset); if (dist <= bestDist) { bestDist = dist; bestSrcOffset = srcOffset; bestSrcLength = srcLen; } } } if (bestDist == INT_MAX) { return NULL; } if (lengthPtr != NULL) { *lengthPtr = bestSrcLength; } return (codePtr->source + bestSrcOffset); } /* *---------------------------------------------------------------------- * * GetExceptRangeForPc -- * * Given a program counter value, return the closest enclosing * ExceptionRange. * * Results: * In the normal case, catchOnly is 0 (false) and this procedure * returns a pointer to the most closely enclosing ExceptionRange * structure regardless of whether it is a loop or catch exception * range. This is appropriate when processing a TCL_BREAK or * TCL_CONTINUE, which will be "handled" either by a loop exception * range or a closer catch range. If catchOnly is nonzero, this * procedure ignores loop exception ranges and returns a pointer to the * closest catch range. If no matching ExceptionRange is found that * encloses pc, a NULL is returned. * * Side effects: * None. * *---------------------------------------------------------------------- */ static ExceptionRange * GetExceptRangeForPc(pc, catchOnly, codePtr) unsigned char *pc; /* The program counter value for which to * search for a closest enclosing exception * range. This points to a bytecode * instruction in codePtr's code. */ int catchOnly; /* If 0, consider either loop or catch * ExceptionRanges in search. If nonzero * consider only catch ranges (and ignore * any closer loop ranges). */ ByteCode* codePtr; /* Points to the ByteCode in which to search * for the enclosing ExceptionRange. */ { ExceptionRange *rangeArrayPtr; int numRanges = codePtr->numExceptRanges; register ExceptionRange *rangePtr; int pcOffset = (pc - codePtr->codeStart); register int i, level; if (numRanges == 0) { return NULL; } rangeArrayPtr = codePtr->exceptArrayPtr; for (level = codePtr->maxExceptDepth; level >= 0; level--) { for (i = 0; i < numRanges; i++) { rangePtr = &(rangeArrayPtr[i]); if (rangePtr->nestingLevel == level) { int start = rangePtr->codeOffset; int end = (start + rangePtr->numCodeBytes); if ((start <= pcOffset) && (pcOffset < end)) { if ((!catchOnly) || (rangePtr->type == CATCH_EXCEPTION_RANGE)) { return rangePtr; } } } } } return NULL; } /* *---------------------------------------------------------------------- * * GetOpcodeName -- * * This procedure is called by the TRACE and TRACE_WITH_OBJ macros * used in TclExecuteByteCode when debugging. It returns the name of * the bytecode instruction at a specified instruction pc. * * Results: * A character string for the instruction. * * Side effects: * None. * *---------------------------------------------------------------------- */ #ifdef TCL_COMPILE_DEBUG static char * GetOpcodeName(pc) unsigned char *pc; /* Points to the instruction whose name * should be returned. */ { unsigned char opCode = *pc; return instructionTable[opCode].name; } #endif /* TCL_COMPILE_DEBUG */ /* *---------------------------------------------------------------------- * * VerifyExprObjType -- * * This procedure is called by the math functions to verify that * the object is either an int or double, coercing it if necessary. * If an error occurs during conversion, an error message is left * in the interpreter's result unless "interp" is NULL. * * Results: * TCL_OK if it was int or double, TCL_ERROR otherwise * * Side effects: * objPtr is ensured to be either tclIntType of tclDoubleType. * *---------------------------------------------------------------------- */ static int VerifyExprObjType(interp, objPtr) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ Tcl_Obj *objPtr; /* Points to the object to type check. */ { if ((objPtr->typePtr == &tclIntType) || (objPtr->typePtr == &tclDoubleType)) { return TCL_OK; } else { int length, result = TCL_OK; char *s = Tcl_GetStringFromObj(objPtr, &length); if (TclLooksLikeInt(s, length)) { long i; result = Tcl_GetLongFromObj((Tcl_Interp *) NULL, objPtr, &i); } else { double d; result = Tcl_GetDoubleFromObj((Tcl_Interp *) NULL, objPtr, &d); } if ((result != TCL_OK) && (interp != NULL)) { Tcl_ResetResult(interp); if (TclCheckBadOctal((Tcl_Interp *) NULL, s)) { Tcl_AppendToObj(Tcl_GetObjResult(interp), "argument to math function was an invalid octal number", -1); } else { Tcl_AppendToObj(Tcl_GetObjResult(interp), "argument to math function didn't have numeric value", -1); } } return result; } } /* *---------------------------------------------------------------------- * * Math Functions -- * * This page contains the procedures that implement all of the * built-in math functions for expressions. * * Results: * Each procedure returns TCL_OK if it succeeds and pushes an * Tcl object holding the result. If it fails it returns TCL_ERROR * and leaves an error message in the interpreter's result. * * Side effects: * None. * *---------------------------------------------------------------------- */ static int ExprUnaryFunc(interp, eePtr, clientData) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ ClientData clientData; /* Contains the address of a procedure that * takes one double argument and returns a * double result. */ { Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ register Tcl_Obj *valuePtr; double d, dResult; int result; double (*func) _ANSI_ARGS_((double)) = (double (*)_ANSI_ARGS_((double))) clientData; /* * Set stackPtr and stackTop from eePtr. */ result = TCL_OK; CACHE_STACK_INFO(); /* * Pop the function's argument from the evaluation stack. Convert it * to a double if necessary. */ valuePtr = POP_OBJECT(); if (VerifyExprObjType(interp, valuePtr) != TCL_OK) { result = TCL_ERROR; goto done; } if (valuePtr->typePtr == &tclIntType) { d = (double) valuePtr->internalRep.longValue; } else { d = valuePtr->internalRep.doubleValue; } errno = 0; dResult = (*func)(d); if ((errno != 0) || IS_NAN(dResult) || IS_INF(dResult)) { TclExprFloatError(interp, dResult); result = TCL_ERROR; goto done; } /* * Push a Tcl object holding the result. */ PUSH_OBJECT(Tcl_NewDoubleObj(dResult)); /* * Reflect the change to stackTop back in eePtr. */ done: Tcl_DecrRefCount(valuePtr); DECACHE_STACK_INFO(); return result; } static int ExprBinaryFunc(interp, eePtr, clientData) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ ClientData clientData; /* Contains the address of a procedure that * takes two double arguments and * returns a double result. */ { Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ register Tcl_Obj *valuePtr, *value2Ptr; double d1, d2, dResult; int result; double (*func) _ANSI_ARGS_((double, double)) = (double (*)_ANSI_ARGS_((double, double))) clientData; /* * Set stackPtr and stackTop from eePtr. */ result = TCL_OK; CACHE_STACK_INFO(); /* * Pop the function's two arguments from the evaluation stack. Convert * them to doubles if necessary. */ value2Ptr = POP_OBJECT(); valuePtr = POP_OBJECT(); if ((VerifyExprObjType(interp, valuePtr) != TCL_OK) || (VerifyExprObjType(interp, value2Ptr) != TCL_OK)) { result = TCL_ERROR; goto done; } if (valuePtr->typePtr == &tclIntType) { d1 = (double) valuePtr->internalRep.longValue; } else { d1 = valuePtr->internalRep.doubleValue; } if (value2Ptr->typePtr == &tclIntType) { d2 = (double) value2Ptr->internalRep.longValue; } else { d2 = value2Ptr->internalRep.doubleValue; } errno = 0; dResult = (*func)(d1, d2); if ((errno != 0) || IS_NAN(dResult) || IS_INF(dResult)) { TclExprFloatError(interp, dResult); result = TCL_ERROR; goto done; } /* * Push a Tcl object holding the result. */ PUSH_OBJECT(Tcl_NewDoubleObj(dResult)); /* * Reflect the change to stackTop back in eePtr. */ done: Tcl_DecrRefCount(valuePtr); Tcl_DecrRefCount(value2Ptr); DECACHE_STACK_INFO(); return result; } static int ExprAbsFunc(interp, eePtr, clientData) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ ClientData clientData; /* Ignored. */ { Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ register Tcl_Obj *valuePtr; long i, iResult; double d, dResult; int result; /* * Set stackPtr and stackTop from eePtr. */ result = TCL_OK; CACHE_STACK_INFO(); /* * Pop the argument from the evaluation stack. */ valuePtr = POP_OBJECT(); if (VerifyExprObjType(interp, valuePtr) != TCL_OK) { result = TCL_ERROR; goto done; } /* * Push a Tcl object with the result. */ if (valuePtr->typePtr == &tclIntType) { i = valuePtr->internalRep.longValue; if (i < 0) { iResult = -i; if (iResult < 0) { Tcl_ResetResult(interp); Tcl_AppendToObj(Tcl_GetObjResult(interp), "integer value too large to represent", -1); Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", "integer value too large to represent", (char *) NULL); result = TCL_ERROR; goto done; } } else { iResult = i; } PUSH_OBJECT(Tcl_NewLongObj(iResult)); } else { d = valuePtr->internalRep.doubleValue; if (d < 0.0) { dResult = -d; } else { dResult = d; } if (IS_NAN(dResult) || IS_INF(dResult)) { TclExprFloatError(interp, dResult); result = TCL_ERROR; goto done; } PUSH_OBJECT(Tcl_NewDoubleObj(dResult)); } /* * Reflect the change to stackTop back in eePtr. */ done: Tcl_DecrRefCount(valuePtr); DECACHE_STACK_INFO(); return result; } static int ExprDoubleFunc(interp, eePtr, clientData) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ ClientData clientData; /* Ignored. */ { Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ register Tcl_Obj *valuePtr; double dResult; int result; /* * Set stackPtr and stackTop from eePtr. */ result = TCL_OK; CACHE_STACK_INFO(); /* * Pop the argument from the evaluation stack. */ valuePtr = POP_OBJECT(); if (VerifyExprObjType(interp, valuePtr) != TCL_OK) { result = TCL_ERROR; goto done; } if (valuePtr->typePtr == &tclIntType) { dResult = (double) valuePtr->internalRep.longValue; } else { dResult = valuePtr->internalRep.doubleValue; } /* * Push a Tcl object with the result. */ PUSH_OBJECT(Tcl_NewDoubleObj(dResult)); /* * Reflect the change to stackTop back in eePtr. */ done: Tcl_DecrRefCount(valuePtr); DECACHE_STACK_INFO(); return result; } static int ExprIntFunc(interp, eePtr, clientData) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ ClientData clientData; /* Ignored. */ { Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ register Tcl_Obj *valuePtr; long iResult; double d; int result; /* * Set stackPtr and stackTop from eePtr. */ result = TCL_OK; CACHE_STACK_INFO(); /* * Pop the argument from the evaluation stack. */ valuePtr = POP_OBJECT(); if (VerifyExprObjType(interp, valuePtr) != TCL_OK) { result = TCL_ERROR; goto done; } if (valuePtr->typePtr == &tclIntType) { iResult = valuePtr->internalRep.longValue; } else { d = valuePtr->internalRep.doubleValue; if (d < 0.0) { if (d < (double) (long) LONG_MIN) { tooLarge: Tcl_ResetResult(interp); Tcl_AppendToObj(Tcl_GetObjResult(interp), "integer value too large to represent", -1); Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", "integer value too large to represent", (char *) NULL); result = TCL_ERROR; goto done; } } else { if (d > (double) LONG_MAX) { goto tooLarge; } } if (IS_NAN(d) || IS_INF(d)) { TclExprFloatError(interp, d); result = TCL_ERROR; goto done; } iResult = (long) d; } /* * Push a Tcl object with the result. */ PUSH_OBJECT(Tcl_NewLongObj(iResult)); /* * Reflect the change to stackTop back in eePtr. */ done: Tcl_DecrRefCount(valuePtr); DECACHE_STACK_INFO(); return result; } static int ExprRandFunc(interp, eePtr, clientData) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ ClientData clientData; /* Ignored. */ { Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ Interp *iPtr = (Interp *) interp; double dResult; long tmp; /* Algorithm assumes at least 32 bits. * Only long guarantees that. See below. */ if (!(iPtr->flags & RAND_SEED_INITIALIZED)) { iPtr->flags |= RAND_SEED_INITIALIZED; /* * Take into consideration the thread this interp is running in order * to insure different seeds in different threads (bug #416643) */ iPtr->randSeed = TclpGetClicks() + ((long) Tcl_GetCurrentThread() << 12); /* * Make sure 1 <= randSeed <= (2^31) - 2. See below. */ iPtr->randSeed &= (unsigned long) 0x7fffffff; if ((iPtr->randSeed == 0) || (iPtr->randSeed == 0x7fffffff)) { iPtr->randSeed ^= 123459876; } } /* * Set stackPtr and stackTop from eePtr. */ CACHE_STACK_INFO(); /* * Generate the random number using the linear congruential * generator defined by the following recurrence: * seed = ( IA * seed ) mod IM * where IA is 16807 and IM is (2^31) - 1. The recurrence maps * a seed in the range [1, IM - 1] to a new seed in that same range. * The recurrence maps IM to 0, and maps 0 back to 0, so those two * values must not be allowed as initial values of seed. * * In order to avoid potential problems with integer overflow, the * recurrence is implemented in terms of additional constants * IQ and IR such that * IM = IA*IQ + IR * None of the operations in the implementation overflows a 32-bit * signed integer, and the C type long is guaranteed to be at least * 32 bits wide. * * For more details on how this algorithm works, refer to the following * papers: * * S.K. Park & K.W. Miller, "Random number generators: good ones * are hard to find," Comm ACM 31(10):1192-1201, Oct 1988 * * W.H. Press & S.A. Teukolsky, "Portable random number * generators," Computers in Physics 6(5):522-524, Sep/Oct 1992. */ #define RAND_IA 16807 #define RAND_IM 2147483647 #define RAND_IQ 127773 #define RAND_IR 2836 #define RAND_MASK 123459876 tmp = iPtr->randSeed/RAND_IQ; iPtr->randSeed = RAND_IA*(iPtr->randSeed - tmp*RAND_IQ) - RAND_IR*tmp; if (iPtr->randSeed < 0) { iPtr->randSeed += RAND_IM; } /* * Since the recurrence keeps seed values in the range [1, RAND_IM - 1], * dividing by RAND_IM yields a double in the range (0, 1). */ dResult = iPtr->randSeed * (1.0/RAND_IM); /* * Push a Tcl object with the result. */ PUSH_OBJECT(Tcl_NewDoubleObj(dResult)); /* * Reflect the change to stackTop back in eePtr. */ DECACHE_STACK_INFO(); return TCL_OK; } static int ExprRoundFunc(interp, eePtr, clientData) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ ClientData clientData; /* Ignored. */ { Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ Tcl_Obj *valuePtr; long iResult; double d, temp; int result; /* * Set stackPtr and stackTop from eePtr. */ result = TCL_OK; CACHE_STACK_INFO(); /* * Pop the argument from the evaluation stack. */ valuePtr = POP_OBJECT(); if (VerifyExprObjType(interp, valuePtr) != TCL_OK) { result = TCL_ERROR; goto done; } if (valuePtr->typePtr == &tclIntType) { iResult = valuePtr->internalRep.longValue; } else { d = valuePtr->internalRep.doubleValue; if (d < 0.0) { if (d <= (((double) (long) LONG_MIN) - 0.5)) { tooLarge: Tcl_ResetResult(interp); Tcl_AppendToObj(Tcl_GetObjResult(interp), "integer value too large to represent", -1); Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", "integer value too large to represent", (char *) NULL); result = TCL_ERROR; goto done; } temp = (long) (d - 0.5); } else { if (d >= (((double) LONG_MAX + 0.5))) { goto tooLarge; } temp = (long) (d + 0.5); } if (IS_NAN(temp) || IS_INF(temp)) { TclExprFloatError(interp, temp); result = TCL_ERROR; goto done; } iResult = (long) temp; } /* * Push a Tcl object with the result. */ PUSH_OBJECT(Tcl_NewLongObj(iResult)); /* * Reflect the change to stackTop back in eePtr. */ done: Tcl_DecrRefCount(valuePtr); DECACHE_STACK_INFO(); return result; } static int ExprSrandFunc(interp, eePtr, clientData) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ ClientData clientData; /* Ignored. */ { Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ Interp *iPtr = (Interp *) interp; Tcl_Obj *valuePtr; long i = 0; /* Initialized to avoid compiler warning. */ int result; /* * Set stackPtr and stackTop from eePtr. */ CACHE_STACK_INFO(); /* * Pop the argument from the evaluation stack. Use the value * to reset the random number seed. */ valuePtr = POP_OBJECT(); if (VerifyExprObjType(interp, valuePtr) != TCL_OK) { result = TCL_ERROR; goto badValue; } if (valuePtr->typePtr == &tclIntType) { i = valuePtr->internalRep.longValue; } else { /* * At this point, the only other possible type is double */ Tcl_ResetResult(interp); Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "can't use floating-point value as argument to srand", (char *) NULL); badValue: Tcl_DecrRefCount(valuePtr); DECACHE_STACK_INFO(); return TCL_ERROR; } /* * Reset the seed. Make sure 1 <= randSeed <= 2^31 - 2. * See comments in ExprRandFunc() for more details. */ iPtr->flags |= RAND_SEED_INITIALIZED; iPtr->randSeed = i; iPtr->randSeed &= (unsigned long) 0x7fffffff; if ((iPtr->randSeed == 0) || (iPtr->randSeed == 0x7fffffff)) { iPtr->randSeed ^= 123459876; } /* * To avoid duplicating the random number generation code we simply * clean up our state and call the real random number function. That * function will always succeed. */ Tcl_DecrRefCount(valuePtr); DECACHE_STACK_INFO(); ExprRandFunc(interp, eePtr, clientData); return TCL_OK; } /* *---------------------------------------------------------------------- * * ExprCallMathFunc -- * * This procedure is invoked to call a non-builtin math function * during the execution of an expression. * * Results: * TCL_OK is returned if all went well and the function's value * was computed successfully. If an error occurred, TCL_ERROR * is returned and an error message is left in the interpreter's * result. After a successful return this procedure pushes a Tcl object * holding the result. * * Side effects: * None, unless the called math function has side effects. * *---------------------------------------------------------------------- */ static int ExprCallMathFunc(interp, eePtr, objc, objv) Tcl_Interp *interp; /* The interpreter in which to execute the * function. */ ExecEnv *eePtr; /* Points to the environment for executing * the function. */ int objc; /* Number of arguments. The function name is * the 0-th argument. */ Tcl_Obj **objv; /* The array of arguments. The function name * is objv[0]. */ { Interp *iPtr = (Interp *) interp; Tcl_Obj **stackPtr; /* Cached evaluation stack base pointer. */ register int stackTop; /* Cached top index of evaluation stack. */ char *funcName; Tcl_HashEntry *hPtr; MathFunc *mathFuncPtr; /* Information about math function. */ Tcl_Value args[MAX_MATH_ARGS]; /* Arguments for function call. */ Tcl_Value funcResult; /* Result of function call as Tcl_Value. */ register Tcl_Obj *valuePtr; long i; double d; int j, k, result; ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey); Tcl_ResetResult(interp); /* * Set stackPtr and stackTop from eePtr. */ CACHE_STACK_INFO(); /* * Look up the MathFunc record for the function. */ funcName = Tcl_GetString(objv[0]); hPtr = Tcl_FindHashEntry(&iPtr->mathFuncTable, funcName); if (hPtr == NULL) { Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "unknown math function \"", funcName, "\"", (char *) NULL); result = TCL_ERROR; goto done; } mathFuncPtr = (MathFunc *) Tcl_GetHashValue(hPtr); if (mathFuncPtr->numArgs != (objc-1)) { panic("ExprCallMathFunc: expected number of args %d != actual number %d", mathFuncPtr->numArgs, objc); result = TCL_ERROR; goto done; } /* * Collect the arguments for the function, if there are any, into the * array "args". Note that args[0] will have the Tcl_Value that * corresponds to objv[1]. */ for (j = 1, k = 0; j < objc; j++, k++) { valuePtr = objv[j]; if (VerifyExprObjType(interp, valuePtr) != TCL_OK) { result = TCL_ERROR; goto done; } /* * Copy the object's numeric value to the argument record, * converting it if necessary. */ if (valuePtr->typePtr == &tclIntType) { i = valuePtr->internalRep.longValue; if (mathFuncPtr->argTypes[k] == TCL_DOUBLE) { args[k].type = TCL_DOUBLE; args[k].doubleValue = i; } else { args[k].type = TCL_INT; args[k].intValue = i; } } else { d = valuePtr->internalRep.doubleValue; if (mathFuncPtr->argTypes[k] == TCL_INT) { args[k].type = TCL_INT; args[k].intValue = (long) d; } else { args[k].type = TCL_DOUBLE; args[k].doubleValue = d; } } } /* * Invoke the function and copy its result back into valuePtr. */ tsdPtr->mathInProgress++; result = (*mathFuncPtr->proc)(mathFuncPtr->clientData, interp, args, &funcResult); tsdPtr->mathInProgress--; if (result != TCL_OK) { goto done; } /* * Pop the objc top stack elements and decrement their ref counts. */ i = (stackTop - (objc-1)); while (i <= stackTop) { valuePtr = stackPtr[i]; Tcl_DecrRefCount(valuePtr); i++; } stackTop -= objc; /* * Push the call's object result. */ if (funcResult.type == TCL_INT) { PUSH_OBJECT(Tcl_NewLongObj(funcResult.intValue)); } else { d = funcResult.doubleValue; if (IS_NAN(d) || IS_INF(d)) { TclExprFloatError(interp, d); result = TCL_ERROR; goto done; } PUSH_OBJECT(Tcl_NewDoubleObj(d)); } /* * Reflect the change to stackTop back in eePtr. */ done: DECACHE_STACK_INFO(); return result; } /* *---------------------------------------------------------------------- * * TclExprFloatError -- * * This procedure is called when an error occurs during a * floating-point operation. It reads errno and sets * interp->objResultPtr accordingly. * * Results: * interp->objResultPtr is set to hold an error message. * * Side effects: * None. * *---------------------------------------------------------------------- */ void TclExprFloatError(interp, value) Tcl_Interp *interp; /* Where to store error message. */ double value; /* Value returned after error; used to * distinguish underflows from overflows. */ { char *s; Tcl_ResetResult(interp); if ((errno == EDOM) || (value != value)) { s = "domain error: argument not in valid range"; Tcl_AppendToObj(Tcl_GetObjResult(interp), s, -1); Tcl_SetErrorCode(interp, "ARITH", "DOMAIN", s, (char *) NULL); } else if ((errno == ERANGE) || IS_INF(value)) { if (value == 0.0) { s = "floating-point value too small to represent"; Tcl_AppendToObj(Tcl_GetObjResult(interp), s, -1); Tcl_SetErrorCode(interp, "ARITH", "UNDERFLOW", s, (char *) NULL); } else { s = "floating-point value too large to represent"; Tcl_AppendToObj(Tcl_GetObjResult(interp), s, -1); Tcl_SetErrorCode(interp, "ARITH", "OVERFLOW", s, (char *) NULL); } } else { char msg[64 + TCL_INTEGER_SPACE]; sprintf(msg, "unknown floating-point error, errno = %d", errno); Tcl_AppendToObj(Tcl_GetObjResult(interp), msg, -1); Tcl_SetErrorCode(interp, "ARITH", "UNKNOWN", msg, (char *) NULL); } } /* *---------------------------------------------------------------------- * * TclMathInProgress -- * * This procedure is called to find out if Tcl is doing math * in this thread. * * Results: * 0 or 1. * * Side effects: * None. * *---------------------------------------------------------------------- */ int TclMathInProgress() { ThreadSpecificData *tsdPtr = TCL_TSD_INIT(&dataKey); return tsdPtr->mathInProgress; } #ifdef TCL_COMPILE_STATS /* *---------------------------------------------------------------------- * * TclLog2 -- * * Procedure used while collecting compilation statistics to determine * the log base 2 of an integer. * * Results: * Returns the log base 2 of the operand. If the argument is less * than or equal to zero, a zero is returned. * * Side effects: * None. * *---------------------------------------------------------------------- */ int TclLog2(value) register int value; /* The integer for which to compute the * log base 2. */ { register int n = value; register int result = 0; while (n > 1) { n = n >> 1; result++; } return result; } /* *---------------------------------------------------------------------- * * EvalStatsCmd -- * * Implements the "evalstats" command that prints instruction execution * counts to stdout. * * Results: * Standard Tcl results. * * Side effects: * None. * *---------------------------------------------------------------------- */ static int EvalStatsCmd(unused, interp, argc, argv) ClientData unused; /* Unused. */ Tcl_Interp *interp; /* The current interpreter. */ int argc; /* The number of arguments. */ char **argv; /* The argument strings. */ { Interp *iPtr = (Interp *) interp; LiteralTable *globalTablePtr = &(iPtr->literalTable); ByteCodeStats *statsPtr = &(iPtr->stats); double totalCodeBytes, currentCodeBytes; double totalLiteralBytes, currentLiteralBytes; double objBytesIfUnshared, strBytesIfUnshared, sharingBytesSaved; double strBytesSharedMultX, strBytesSharedOnce; double numInstructions, currentHeaderBytes; long numCurrentByteCodes, numByteCodeLits; long refCountSum, literalMgmtBytes, sum; int numSharedMultX, numSharedOnce; int decadeHigh, minSizeDecade, maxSizeDecade, length, i; char *litTableStats; LiteralEntry *entryPtr; numInstructions = 0.0; for (i = 0; i < 256; i++) { if (statsPtr->instructionCount[i] != 0) { numInstructions += statsPtr->instructionCount[i]; } } totalLiteralBytes = sizeof(LiteralTable) + iPtr->literalTable.numBuckets * sizeof(LiteralEntry *) + (statsPtr->numLiteralsCreated * sizeof(LiteralEntry)) + (statsPtr->numLiteralsCreated * sizeof(Tcl_Obj)) + statsPtr->totalLitStringBytes; totalCodeBytes = statsPtr->totalByteCodeBytes + totalLiteralBytes; numCurrentByteCodes = statsPtr->numCompilations - statsPtr->numByteCodesFreed; currentHeaderBytes = numCurrentByteCodes * (sizeof(ByteCode) - (sizeof(size_t) + sizeof(Tcl_Time))); literalMgmtBytes = sizeof(LiteralTable) + (iPtr->literalTable.numBuckets * sizeof(LiteralEntry *)) + (iPtr->literalTable.numEntries * sizeof(LiteralEntry)); currentLiteralBytes = literalMgmtBytes + iPtr->literalTable.numEntries * sizeof(Tcl_Obj) + statsPtr->currentLitStringBytes; currentCodeBytes = statsPtr->currentByteCodeBytes + currentLiteralBytes; /* * Summary statistics, total and current source and ByteCode sizes. */ fprintf(stdout, "\n----------------------------------------------------------------\n"); fprintf(stdout, "Compilation and execution statistics for interpreter 0x%x\n", (unsigned int) iPtr); fprintf(stdout, "\nNumber ByteCodes executed %ld\n", statsPtr->numExecutions); fprintf(stdout, "Number ByteCodes compiled %ld\n", statsPtr->numCompilations); fprintf(stdout, " Mean executions/compile %.1f\n", ((float)statsPtr->numExecutions) / ((float)statsPtr->numCompilations)); fprintf(stdout, "\nInstructions executed %.0f\n", numInstructions); fprintf(stdout, " Mean inst/compile %.0f\n", numInstructions / statsPtr->numCompilations); fprintf(stdout, " Mean inst/execution %.0f\n", numInstructions / statsPtr->numExecutions); fprintf(stdout, "\nTotal ByteCodes %ld\n", statsPtr->numCompilations); fprintf(stdout, " Source bytes %.6g\n", statsPtr->totalSrcBytes); fprintf(stdout, " Code bytes %.6g\n", totalCodeBytes); fprintf(stdout, " ByteCode bytes %.6g\n", statsPtr->totalByteCodeBytes); fprintf(stdout, " Literal bytes %.6g\n", totalLiteralBytes); fprintf(stdout, " table %d + bkts %d + entries %ld + objects %ld + strings %.6g\n", sizeof(LiteralTable), iPtr->literalTable.numBuckets * sizeof(LiteralEntry *), statsPtr->numLiteralsCreated * sizeof(LiteralEntry), statsPtr->numLiteralsCreated * sizeof(Tcl_Obj), statsPtr->totalLitStringBytes); fprintf(stdout, " Mean code/compile %.1f\n", totalCodeBytes / statsPtr->numCompilations); fprintf(stdout, " Mean code/source %.1f\n", totalCodeBytes / statsPtr->totalSrcBytes); fprintf(stdout, "\nCurrent (active) ByteCodes %ld\n", numCurrentByteCodes); fprintf(stdout, " Source bytes %.6g\n", statsPtr->currentSrcBytes); fprintf(stdout, " Code bytes %.6g\n", currentCodeBytes); fprintf(stdout, " ByteCode bytes %.6g\n", statsPtr->currentByteCodeBytes); fprintf(stdout, " Literal bytes %.6g\n", currentLiteralBytes); fprintf(stdout, " table %d + bkts %d + entries %d + objects %d + strings %.6g\n", sizeof(LiteralTable), iPtr->literalTable.numBuckets * sizeof(LiteralEntry *), iPtr->literalTable.numEntries * sizeof(LiteralEntry), iPtr->literalTable.numEntries * sizeof(Tcl_Obj), statsPtr->currentLitStringBytes); fprintf(stdout, " Mean code/source %.1f\n", currentCodeBytes / statsPtr->currentSrcBytes); fprintf(stdout, " Code + source bytes %.6g (%0.1f mean code/src)\n", (currentCodeBytes + statsPtr->currentSrcBytes), (currentCodeBytes / statsPtr->currentSrcBytes) + 1.0); /* * Tcl_IsShared statistics check * * This gives the refcount of each obj as Tcl_IsShared was called * for it. Shared objects must be duplicated before they can be * modified. */ numSharedMultX = 0; fprintf(stdout, "\nTcl_IsShared object check (all objects):\n"); fprintf(stdout, " Object had refcount <=1 (not shared) %ld\n", tclObjsShared[1]); for (i = 2; i < TCL_MAX_SHARED_OBJ_STATS; i++) { fprintf(stdout, " refcount ==%d %ld\n", i, tclObjsShared[i]); numSharedMultX += tclObjsShared[i]; } fprintf(stdout, " refcount >=%d %ld\n", i, tclObjsShared[0]); numSharedMultX += tclObjsShared[0]; fprintf(stdout, " Total shared objects %d\n", numSharedMultX); /* * Literal table statistics. */ numByteCodeLits = 0; refCountSum = 0; numSharedMultX = 0; numSharedOnce = 0; objBytesIfUnshared = 0.0; strBytesIfUnshared = 0.0; strBytesSharedMultX = 0.0; strBytesSharedOnce = 0.0; for (i = 0; i < globalTablePtr->numBuckets; i++) { for (entryPtr = globalTablePtr->buckets[i]; entryPtr != NULL; entryPtr = entryPtr->nextPtr) { if (entryPtr->objPtr->typePtr == &tclByteCodeType) { numByteCodeLits++; } (void) Tcl_GetStringFromObj(entryPtr->objPtr, &length); refCountSum += entryPtr->refCount; objBytesIfUnshared += (entryPtr->refCount * sizeof(Tcl_Obj)); strBytesIfUnshared += (entryPtr->refCount * (length+1)); if (entryPtr->refCount > 1) { numSharedMultX++; strBytesSharedMultX += (length+1); } else { numSharedOnce++; strBytesSharedOnce += (length+1); } } } sharingBytesSaved = (objBytesIfUnshared + strBytesIfUnshared) - currentLiteralBytes; fprintf(stdout, "\nTotal objects (all interps) %ld\n", tclObjsAlloced); fprintf(stdout, "Current objects %ld\n", (tclObjsAlloced - tclObjsFreed)); fprintf(stdout, "Total literal objects %ld\n", statsPtr->numLiteralsCreated); fprintf(stdout, "\nCurrent literal objects %d (%0.1f%% of current objects)\n", globalTablePtr->numEntries, (globalTablePtr->numEntries * 100.0) / (tclObjsAlloced-tclObjsFreed)); fprintf(stdout, " ByteCode literals %ld (%0.1f%% of current literals)\n", numByteCodeLits, (numByteCodeLits * 100.0) / globalTablePtr->numEntries); fprintf(stdout, " Literals reused > 1x %d\n", numSharedMultX); fprintf(stdout, " Mean reference count %.2f\n", ((double) refCountSum) / globalTablePtr->numEntries); fprintf(stdout, " Mean len, str reused >1x %.2f\n", (numSharedMultX? (strBytesSharedMultX/numSharedMultX) : 0.0)); fprintf(stdout, " Mean len, str used 1x %.2f\n", (numSharedOnce? (strBytesSharedOnce/numSharedOnce) : 0.0)); fprintf(stdout, " Total sharing savings %.6g (%0.1f%% of bytes if no sharing)\n", sharingBytesSaved, (sharingBytesSaved * 100.0) / (objBytesIfUnshared + strBytesIfUnshared)); fprintf(stdout, " Bytes with sharing %.6g\n", currentLiteralBytes); fprintf(stdout, " table %d + bkts %d + entries %d + objects %d + strings %.6g\n", sizeof(LiteralTable), iPtr->literalTable.numBuckets * sizeof(LiteralEntry *), iPtr->literalTable.numEntries * sizeof(LiteralEntry), iPtr->literalTable.numEntries * sizeof(Tcl_Obj), statsPtr->currentLitStringBytes); fprintf(stdout, " Bytes if no sharing %.6g = objects %.6g + strings %.6g\n", (objBytesIfUnshared + strBytesIfUnshared), objBytesIfUnshared, strBytesIfUnshared); fprintf(stdout, " String sharing savings %.6g = unshared %.6g - shared %.6g\n", (strBytesIfUnshared - statsPtr->currentLitStringBytes), strBytesIfUnshared, statsPtr->currentLitStringBytes); fprintf(stdout, " Literal mgmt overhead %ld (%0.1f%% of bytes with sharing)\n", literalMgmtBytes, (literalMgmtBytes * 100.0) / currentLiteralBytes); fprintf(stdout, " table %d + buckets %d + entries %d\n", sizeof(LiteralTable), iPtr->literalTable.numBuckets * sizeof(LiteralEntry *), iPtr->literalTable.numEntries * sizeof(LiteralEntry)); /* * Breakdown of current ByteCode space requirements. */ fprintf(stdout, "\nBreakdown of current ByteCode requirements:\n"); fprintf(stdout, " Bytes Pct of Avg per\n"); fprintf(stdout, " total ByteCode\n"); fprintf(stdout, "Total %12.6g 100.00%% %8.1f\n", statsPtr->currentByteCodeBytes, statsPtr->currentByteCodeBytes / numCurrentByteCodes); fprintf(stdout, "Header %12.6g %8.1f%% %8.1f\n", currentHeaderBytes, ((currentHeaderBytes * 100.0) / statsPtr->currentByteCodeBytes), currentHeaderBytes / numCurrentByteCodes); fprintf(stdout, "Instructions %12.6g %8.1f%% %8.1f\n", statsPtr->currentInstBytes, ((statsPtr->currentInstBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentInstBytes / numCurrentByteCodes); fprintf(stdout, "Literal ptr array %12.6g %8.1f%% %8.1f\n", statsPtr->currentLitBytes, ((statsPtr->currentLitBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentLitBytes / numCurrentByteCodes); fprintf(stdout, "Exception table %12.6g %8.1f%% %8.1f\n", statsPtr->currentExceptBytes, ((statsPtr->currentExceptBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentExceptBytes / numCurrentByteCodes); fprintf(stdout, "Auxiliary data %12.6g %8.1f%% %8.1f\n", statsPtr->currentAuxBytes, ((statsPtr->currentAuxBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentAuxBytes / numCurrentByteCodes); fprintf(stdout, "Command map %12.6g %8.1f%% %8.1f\n", statsPtr->currentCmdMapBytes, ((statsPtr->currentCmdMapBytes * 100.0) / statsPtr->currentByteCodeBytes), statsPtr->currentCmdMapBytes / numCurrentByteCodes); /* * Detailed literal statistics. */ fprintf(stdout, "\nLiteral string sizes:\n"); fprintf(stdout, " Up to length Percentage\n"); maxSizeDecade = 0; for (i = 31; i >= 0; i--) { if (statsPtr->literalCount[i] > 0) { maxSizeDecade = i; break; } } sum = 0; for (i = 0; i <= maxSizeDecade; i++) { decadeHigh = (1 << (i+1)) - 1; sum += statsPtr->literalCount[i]; fprintf(stdout, " %10d %8.0f%%\n", decadeHigh, (sum * 100.0) / statsPtr->numLiteralsCreated); } litTableStats = TclLiteralStats(globalTablePtr); fprintf(stdout, "\nCurrent literal table statistics:\n%s\n", litTableStats); ckfree((char *) litTableStats); /* * Source and ByteCode size distributions. */ fprintf(stdout, "\nSource sizes:\n"); fprintf(stdout, " Up to size Percentage\n"); minSizeDecade = maxSizeDecade = 0; for (i = 0; i < 31; i++) { if (statsPtr->srcCount[i] > 0) { minSizeDecade = i; break; } } for (i = 31; i >= 0; i--) { if (statsPtr->srcCount[i] > 0) { maxSizeDecade = i; break; } } sum = 0; for (i = minSizeDecade; i <= maxSizeDecade; i++) { decadeHigh = (1 << (i+1)) - 1; sum += statsPtr->srcCount[i]; fprintf(stdout, " %10d %8.0f%%\n", decadeHigh, (sum * 100.0) / statsPtr->numCompilations); } fprintf(stdout, "\nByteCode sizes:\n"); fprintf(stdout, " Up to size Percentage\n"); minSizeDecade = maxSizeDecade = 0; for (i = 0; i < 31; i++) { if (statsPtr->byteCodeCount[i] > 0) { minSizeDecade = i; break; } } for (i = 31; i >= 0; i--) { if (statsPtr->byteCodeCount[i] > 0) { maxSizeDecade = i; break; } } sum = 0; for (i = minSizeDecade; i <= maxSizeDecade; i++) { decadeHigh = (1 << (i+1)) - 1; sum += statsPtr->byteCodeCount[i]; fprintf(stdout, " %10d %8.0f%%\n", decadeHigh, (sum * 100.0) / statsPtr->numCompilations); } fprintf(stdout, "\nByteCode longevity (excludes Current ByteCodes):\n"); fprintf(stdout, " Up to ms Percentage\n"); minSizeDecade = maxSizeDecade = 0; for (i = 0; i < 31; i++) { if (statsPtr->lifetimeCount[i] > 0) { minSizeDecade = i; break; } } for (i = 31; i >= 0; i--) { if (statsPtr->lifetimeCount[i] > 0) { maxSizeDecade = i; break; } } sum = 0; for (i = minSizeDecade; i <= maxSizeDecade; i++) { decadeHigh = (1 << (i+1)) - 1; sum += statsPtr->lifetimeCount[i]; fprintf(stdout, " %12.3f %8.0f%%\n", decadeHigh / 1000.0, (sum * 100.0) / statsPtr->numByteCodesFreed); } /* * Instruction counts. */ fprintf(stdout, "\nInstruction counts:\n"); for (i = 0; i <= LAST_INST_OPCODE; i++) { if (statsPtr->instructionCount[i]) { fprintf(stdout, "%20s %8ld %6.1f%%\n", instructionTable[i].name, statsPtr->instructionCount[i], (statsPtr->instructionCount[i]*100.0) / numInstructions); } } fprintf(stdout, "\nInstructions NEVER executed:\n"); for (i = 0; i <= LAST_INST_OPCODE; i++) { if (statsPtr->instructionCount[i] == 0) { fprintf(stdout, "%20s\n", instructionTable[i].name); } } #ifdef TCL_MEM_DEBUG fprintf(stdout, "\nHeap Statistics:\n"); TclDumpMemoryInfo(stdout); #endif fprintf(stdout, "\n----------------------------------------------------------------\n"); return TCL_OK; } #endif /* TCL_COMPILE_STATS */ #ifdef TCL_COMPILE_DEBUG /* *---------------------------------------------------------------------- * * StringForResultCode -- * * Procedure that returns a human-readable string representing a * Tcl result code such as TCL_ERROR. * * Results: * If the result code is one of the standard Tcl return codes, the * result is a string representing that code such as "TCL_ERROR". * Otherwise, the result string is that code formatted as a * sequence of decimal digit characters. Note that the resulting * string must not be modified by the caller. * * Side effects: * None. * *---------------------------------------------------------------------- */ static char * StringForResultCode(result) int result; /* The Tcl result code for which to * generate a string. */ { static char buf[TCL_INTEGER_SPACE]; if ((result >= TCL_OK) && (result <= TCL_CONTINUE)) { return resultStrings[result]; } TclFormatInt(buf, result); return buf; } #endif /* TCL_COMPILE_DEBUG */