/* * tclGetDate.y -- * * Contains yacc grammar for parsing date and time strings. * The output of this file should be the file tclDate.c which * is used directly in the Tcl sources. * * Copyright (c) 1992-1995 Karl Lehenbauer and Mark Diekhans. * Copyright (c) 1995-1997 Sun Microsystems, Inc. * * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclGetDate.y,v 1.18.4.1 2005/03/15 16:29:53 kennykb Exp $ */ %{ /* * tclDate.c -- * * This file is generated from a yacc grammar defined in * the file tclGetDate.y. It should not be edited directly. * * Copyright (c) 1992-1995 Karl Lehenbauer and Mark Diekhans. * Copyright (c) 1995-1997 Sun Microsystems, Inc. * * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. * * SCCSID */ #include "tclInt.h" #include "tclPort.h" #if defined(MAC_TCL) && !defined(TCL_MAC_USE_MSL_EPOCH) # define EPOCH 1904 # define START_OF_TIME 1904 # define END_OF_TIME 2039 #else # define EPOCH 1970 # define START_OF_TIME 1902 # define END_OF_TIME 2037 #endif /* * The offset of tm_year of struct tm returned by localtime, gmtime, etc. * I don't know how universal this is; K&R II, the NetBSD manpages, and * ../compat/strftime.c all agree that tm_year is the year-1900. However, * some systems may have a different value. This #define should be the * same as in ../compat/strftime.c. */ #define TM_YEAR_BASE 1900 #define HOUR(x) ((int) (60 * x)) #define SECSPERDAY (24L * 60L * 60L) #define IsLeapYear(x) ((x % 4 == 0) && (x % 100 != 0 || x % 400 == 0)) /* * An entry in the lexical lookup table. */ typedef struct _TABLE { char *name; int type; time_t value; } TABLE; /* * Daylight-savings mode: on, off, or not yet known. */ typedef enum _DSTMODE { DSTon, DSToff, DSTmaybe } DSTMODE; /* * Meridian: am, pm, or 24-hour style. */ typedef enum _MERIDIAN { MERam, MERpm, MER24 } MERIDIAN; /* * Global variables. We could get rid of most of these by using a good * union as the yacc stack. (This routine was originally written before * yacc had the %union construct.) Maybe someday; right now we only use * the %union very rarely. */ static char *yyInput; static DSTMODE yyDSTmode; static time_t yyDayOrdinal; static time_t yyDayNumber; static time_t yyMonthOrdinal; static int yyHaveDate; static int yyHaveDay; static int yyHaveOrdinalMonth; static int yyHaveRel; static int yyHaveTime; static int yyHaveZone; static time_t yyTimezone; static time_t yyDay; static time_t yyHour; static time_t yyMinutes; static time_t yyMonth; static time_t yySeconds; static time_t yyYear; static MERIDIAN yyMeridian; static time_t yyRelMonth; static time_t yyRelDay; static time_t yyRelSeconds; static time_t *yyRelPointer; /* * Prototypes of internal functions. */ static void yyerror _ANSI_ARGS_((char *s)); static time_t ToSeconds _ANSI_ARGS_((time_t Hours, time_t Minutes, time_t Seconds, MERIDIAN Meridian)); static int Convert _ANSI_ARGS_((time_t Month, time_t Day, time_t Year, time_t Hours, time_t Minutes, time_t Seconds, MERIDIAN Meridia, DSTMODE DSTmode, time_t *TimePtr)); static time_t DSTcorrect _ANSI_ARGS_((time_t Start, time_t Future)); static time_t NamedDay _ANSI_ARGS_((time_t Start, time_t DayOrdinal, time_t DayNumber)); static time_t NamedMonth _ANSI_ARGS_((time_t Start, time_t MonthOrdinal, time_t MonthNumber)); static int RelativeMonth _ANSI_ARGS_((time_t Start, time_t RelMonth, time_t *TimePtr)); static int RelativeDay _ANSI_ARGS_((time_t Start, time_t RelDay, time_t *TimePtr)); static int LookupWord _ANSI_ARGS_((char *buff)); static int yylex _ANSI_ARGS_((void)); int yyparse _ANSI_ARGS_((void)); %} %union { time_t Number; enum _MERIDIAN Meridian; } %token tAGO tDAY tDAYZONE tID tMERIDIAN tMINUTE_UNIT tMONTH tMONTH_UNIT %token tSTARDATE tSEC_UNIT tSNUMBER tUNUMBER tZONE tEPOCH tDST tISOBASE %token tDAY_UNIT tNEXT %type tDAY tDAYZONE tMINUTE_UNIT tMONTH tMONTH_UNIT tDST %type tSEC_UNIT tSNUMBER tUNUMBER tZONE tISOBASE tDAY_UNIT %type unit sign tNEXT tSTARDATE %type tMERIDIAN o_merid %% spec : /* NULL */ | spec item ; item : time { yyHaveTime++; } | zone { yyHaveZone++; } | date { yyHaveDate++; } | ordMonth { yyHaveOrdinalMonth++; } | day { yyHaveDay++; } | relspec { yyHaveRel++; } | iso { yyHaveTime++; yyHaveDate++; } | trek { yyHaveTime++; yyHaveDate++; yyHaveRel++; } | number ; time : tUNUMBER tMERIDIAN { yyHour = $1; yyMinutes = 0; yySeconds = 0; yyMeridian = $2; } | tUNUMBER ':' tUNUMBER o_merid { yyHour = $1; yyMinutes = $3; yySeconds = 0; yyMeridian = $4; } | tUNUMBER ':' tUNUMBER '-' tUNUMBER { yyHour = $1; yyMinutes = $3; yyMeridian = MER24; yyDSTmode = DSToff; yyTimezone = ($5 % 100 + ($5 / 100) * 60); } | tUNUMBER ':' tUNUMBER ':' tUNUMBER o_merid { yyHour = $1; yyMinutes = $3; yySeconds = $5; yyMeridian = $6; } | tUNUMBER ':' tUNUMBER ':' tUNUMBER '-' tUNUMBER { yyHour = $1; yyMinutes = $3; yySeconds = $5; yyMeridian = MER24; yyDSTmode = DSToff; yyTimezone = ($7 % 100 + ($7 / 100) * 60); } ; zone : tZONE tDST { yyTimezone = $1; yyDSTmode = DSTon; } | tZONE { yyTimezone = $1; yyDSTmode = DSToff; } | tDAYZONE { yyTimezone = $1; yyDSTmode = DSTon; } ; day : tDAY { yyDayOrdinal = 1; yyDayNumber = $1; } | tDAY ',' { yyDayOrdinal = 1; yyDayNumber = $1; } | tUNUMBER tDAY { yyDayOrdinal = $1; yyDayNumber = $2; } | sign tUNUMBER tDAY { yyDayOrdinal = $1 * $2; yyDayNumber = $3; } | tNEXT tDAY { yyDayOrdinal = 2; yyDayNumber = $2; } ; date : tUNUMBER '/' tUNUMBER { yyMonth = $1; yyDay = $3; } | tUNUMBER '/' tUNUMBER '/' tUNUMBER { yyMonth = $1; yyDay = $3; yyYear = $5; } | tISOBASE { yyYear = $1 / 10000; yyMonth = ($1 % 10000)/100; yyDay = $1 % 100; } | tUNUMBER '-' tMONTH '-' tUNUMBER { yyDay = $1; yyMonth = $3; yyYear = $5; } | tUNUMBER '-' tUNUMBER '-' tUNUMBER { yyMonth = $3; yyDay = $5; yyYear = $1; } | tMONTH tUNUMBER { yyMonth = $1; yyDay = $2; } | tMONTH tUNUMBER ',' tUNUMBER { yyMonth = $1; yyDay = $2; yyYear = $4; } | tUNUMBER tMONTH { yyMonth = $2; yyDay = $1; } | tEPOCH { yyMonth = 1; yyDay = 1; yyYear = EPOCH; } | tUNUMBER tMONTH tUNUMBER { yyMonth = $2; yyDay = $1; yyYear = $3; } ; ordMonth: tNEXT tMONTH { yyMonthOrdinal = 1; yyMonth = $2; } | tNEXT tUNUMBER tMONTH { yyMonthOrdinal = $2; yyMonth = $3; } ; iso : tISOBASE tZONE tISOBASE { if ($2 != HOUR(- 7)) YYABORT; yyYear = $1 / 10000; yyMonth = ($1 % 10000)/100; yyDay = $1 % 100; yyHour = $3 / 10000; yyMinutes = ($3 % 10000)/100; yySeconds = $3 % 100; } | tISOBASE tZONE tUNUMBER ':' tUNUMBER ':' tUNUMBER { if ($2 != HOUR(- 7)) YYABORT; yyYear = $1 / 10000; yyMonth = ($1 % 10000)/100; yyDay = $1 % 100; yyHour = $3; yyMinutes = $5; yySeconds = $7; } | tISOBASE tISOBASE { yyYear = $1 / 10000; yyMonth = ($1 % 10000)/100; yyDay = $1 % 100; yyHour = $2 / 10000; yyMinutes = ($2 % 10000)/100; yySeconds = $2 % 100; } ; trek : tSTARDATE tUNUMBER '.' tUNUMBER { /* * Offset computed year by -377 so that the returned years will * be in a range accessible with a 32 bit clock seconds value */ yyYear = $2/1000 + 2323 - 377; yyDay = 1; yyMonth = 1; yyRelDay += (($2%1000)*(365 + IsLeapYear(yyYear)))/1000; yyRelSeconds += $4 * 144 * 60; } ; relspec : relunits tAGO { yyRelSeconds *= -1; yyRelMonth *= -1; yyRelDay *= -1; } | relunits ; relunits : sign tUNUMBER unit { *yyRelPointer += $1 * $2 * $3; } | tUNUMBER unit { *yyRelPointer += $1 * $2; } | tNEXT unit { *yyRelPointer += $2; } | tNEXT tUNUMBER unit { *yyRelPointer += $2 * $3; } | unit { *yyRelPointer += $1; } ; sign : '-' { $$ = -1; } | '+' { $$ = 1; } ; unit : tSEC_UNIT { $$ = $1; yyRelPointer = &yyRelSeconds; } | tDAY_UNIT { $$ = $1; yyRelPointer = &yyRelDay; } | tMONTH_UNIT { $$ = $1; yyRelPointer = &yyRelMonth; } ; number : tUNUMBER { if (yyHaveTime && yyHaveDate && !yyHaveRel) { yyYear = $1; } else { yyHaveTime++; if ($1 < 100) { yyHour = $1; yyMinutes = 0; } else { yyHour = $1 / 100; yyMinutes = $1 % 100; } yySeconds = 0; yyMeridian = MER24; } } ; o_merid : /* NULL */ { $$ = MER24; } | tMERIDIAN { $$ = $1; } ; %% /* * Month and day table. */ static TABLE MonthDayTable[] = { { "january", tMONTH, 1 }, { "february", tMONTH, 2 }, { "march", tMONTH, 3 }, { "april", tMONTH, 4 }, { "may", tMONTH, 5 }, { "june", tMONTH, 6 }, { "july", tMONTH, 7 }, { "august", tMONTH, 8 }, { "september", tMONTH, 9 }, { "sept", tMONTH, 9 }, { "october", tMONTH, 10 }, { "november", tMONTH, 11 }, { "december", tMONTH, 12 }, { "sunday", tDAY, 0 }, { "monday", tDAY, 1 }, { "tuesday", tDAY, 2 }, { "tues", tDAY, 2 }, { "wednesday", tDAY, 3 }, { "wednes", tDAY, 3 }, { "thursday", tDAY, 4 }, { "thur", tDAY, 4 }, { "thurs", tDAY, 4 }, { "friday", tDAY, 5 }, { "saturday", tDAY, 6 }, { NULL } }; /* * Time units table. */ static TABLE UnitsTable[] = { { "year", tMONTH_UNIT, 12 }, { "month", tMONTH_UNIT, 1 }, { "fortnight", tDAY_UNIT, 14 }, { "week", tDAY_UNIT, 7 }, { "day", tDAY_UNIT, 1 }, { "hour", tSEC_UNIT, 60 * 60 }, { "minute", tSEC_UNIT, 60 }, { "min", tSEC_UNIT, 60 }, { "second", tSEC_UNIT, 1 }, { "sec", tSEC_UNIT, 1 }, { NULL } }; /* * Assorted relative-time words. */ static TABLE OtherTable[] = { { "tomorrow", tDAY_UNIT, 1 }, { "yesterday", tDAY_UNIT, -1 }, { "today", tDAY_UNIT, 0 }, { "now", tSEC_UNIT, 0 }, { "last", tUNUMBER, -1 }, { "this", tSEC_UNIT, 0 }, { "next", tNEXT, 1 }, #if 0 { "first", tUNUMBER, 1 }, { "second", tUNUMBER, 2 }, { "third", tUNUMBER, 3 }, { "fourth", tUNUMBER, 4 }, { "fifth", tUNUMBER, 5 }, { "sixth", tUNUMBER, 6 }, { "seventh", tUNUMBER, 7 }, { "eighth", tUNUMBER, 8 }, { "ninth", tUNUMBER, 9 }, { "tenth", tUNUMBER, 10 }, { "eleventh", tUNUMBER, 11 }, { "twelfth", tUNUMBER, 12 }, #endif { "ago", tAGO, 1 }, { "epoch", tEPOCH, 0 }, { "stardate", tSTARDATE, 0}, { NULL } }; /* * The timezone table. (Note: This table was modified to not use any floating * point constants to work around an SGI compiler bug). */ static TABLE TimezoneTable[] = { { "gmt", tZONE, HOUR( 0) }, /* Greenwich Mean */ { "ut", tZONE, HOUR( 0) }, /* Universal (Coordinated) */ { "utc", tZONE, HOUR( 0) }, { "uct", tZONE, HOUR( 0) }, /* Universal Coordinated Time */ { "wet", tZONE, HOUR( 0) }, /* Western European */ { "bst", tDAYZONE, HOUR( 0) }, /* British Summer */ { "wat", tZONE, HOUR( 1) }, /* West Africa */ { "at", tZONE, HOUR( 2) }, /* Azores */ #if 0 /* For completeness. BST is also British Summer, and GST is * also Guam Standard. */ { "bst", tZONE, HOUR( 3) }, /* Brazil Standard */ { "gst", tZONE, HOUR( 3) }, /* Greenland Standard */ #endif { "nft", tZONE, HOUR( 7/2) }, /* Newfoundland */ { "nst", tZONE, HOUR( 7/2) }, /* Newfoundland Standard */ { "ndt", tDAYZONE, HOUR( 7/2) }, /* Newfoundland Daylight */ { "ast", tZONE, HOUR( 4) }, /* Atlantic Standard */ { "adt", tDAYZONE, HOUR( 4) }, /* Atlantic Daylight */ { "est", tZONE, HOUR( 5) }, /* Eastern Standard */ { "edt", tDAYZONE, HOUR( 5) }, /* Eastern Daylight */ { "cst", tZONE, HOUR( 6) }, /* Central Standard */ { "cdt", tDAYZONE, HOUR( 6) }, /* Central Daylight */ { "mst", tZONE, HOUR( 7) }, /* Mountain Standard */ { "mdt", tDAYZONE, HOUR( 7) }, /* Mountain Daylight */ { "pst", tZONE, HOUR( 8) }, /* Pacific Standard */ { "pdt", tDAYZONE, HOUR( 8) }, /* Pacific Daylight */ { "yst", tZONE, HOUR( 9) }, /* Yukon Standard */ { "ydt", tDAYZONE, HOUR( 9) }, /* Yukon Daylight */ { "hst", tZONE, HOUR(10) }, /* Hawaii Standard */ { "hdt", tDAYZONE, HOUR(10) }, /* Hawaii Daylight */ { "cat", tZONE, HOUR(10) }, /* Central Alaska */ { "ahst", tZONE, HOUR(10) }, /* Alaska-Hawaii Standard */ { "nt", tZONE, HOUR(11) }, /* Nome */ { "idlw", tZONE, HOUR(12) }, /* International Date Line West */ { "cet", tZONE, -HOUR( 1) }, /* Central European */ { "cest", tDAYZONE, -HOUR( 1) }, /* Central European Summer */ { "met", tZONE, -HOUR( 1) }, /* Middle European */ { "mewt", tZONE, -HOUR( 1) }, /* Middle European Winter */ { "mest", tDAYZONE, -HOUR( 1) }, /* Middle European Summer */ { "swt", tZONE, -HOUR( 1) }, /* Swedish Winter */ { "sst", tDAYZONE, -HOUR( 1) }, /* Swedish Summer */ { "fwt", tZONE, -HOUR( 1) }, /* French Winter */ { "fst", tDAYZONE, -HOUR( 1) }, /* French Summer */ { "eet", tZONE, -HOUR( 2) }, /* Eastern Europe, USSR Zone 1 */ { "bt", tZONE, -HOUR( 3) }, /* Baghdad, USSR Zone 2 */ { "it", tZONE, -HOUR( 7/2) }, /* Iran */ { "zp4", tZONE, -HOUR( 4) }, /* USSR Zone 3 */ { "zp5", tZONE, -HOUR( 5) }, /* USSR Zone 4 */ { "ist", tZONE, -HOUR(11/2) }, /* Indian Standard */ { "zp6", tZONE, -HOUR( 6) }, /* USSR Zone 5 */ #if 0 /* For completeness. NST is also Newfoundland Stanard, nad SST is * also Swedish Summer. */ { "nst", tZONE, -HOUR(13/2) }, /* North Sumatra */ { "sst", tZONE, -HOUR( 7) }, /* South Sumatra, USSR Zone 6 */ #endif /* 0 */ { "wast", tZONE, -HOUR( 7) }, /* West Australian Standard */ { "wadt", tDAYZONE, -HOUR( 7) }, /* West Australian Daylight */ { "jt", tZONE, -HOUR(15/2) }, /* Java (3pm in Cronusland!) */ { "cct", tZONE, -HOUR( 8) }, /* China Coast, USSR Zone 7 */ { "jst", tZONE, -HOUR( 9) }, /* Japan Standard, USSR Zone 8 */ { "cast", tZONE, -HOUR(19/2) }, /* Central Australian Standard */ { "cadt", tDAYZONE, -HOUR(19/2) }, /* Central Australian Daylight */ { "east", tZONE, -HOUR(10) }, /* Eastern Australian Standard */ { "eadt", tDAYZONE, -HOUR(10) }, /* Eastern Australian Daylight */ { "gst", tZONE, -HOUR(10) }, /* Guam Standard, USSR Zone 9 */ { "nzt", tZONE, -HOUR(12) }, /* New Zealand */ { "nzst", tZONE, -HOUR(12) }, /* New Zealand Standard */ { "nzdt", tDAYZONE, -HOUR(12) }, /* New Zealand Daylight */ { "idle", tZONE, -HOUR(12) }, /* International Date Line East */ /* ADDED BY Marco Nijdam */ { "dst", tDST, HOUR( 0) }, /* DST on (hour is ignored) */ /* End ADDED */ { NULL } }; /* * Military timezone table. */ static TABLE MilitaryTable[] = { { "a", tZONE, HOUR( 1) }, { "b", tZONE, HOUR( 2) }, { "c", tZONE, HOUR( 3) }, { "d", tZONE, HOUR( 4) }, { "e", tZONE, HOUR( 5) }, { "f", tZONE, HOUR( 6) }, { "g", tZONE, HOUR( 7) }, { "h", tZONE, HOUR( 8) }, { "i", tZONE, HOUR( 9) }, { "k", tZONE, HOUR( 10) }, { "l", tZONE, HOUR( 11) }, { "m", tZONE, HOUR( 12) }, { "n", tZONE, HOUR(- 1) }, { "o", tZONE, HOUR(- 2) }, { "p", tZONE, HOUR(- 3) }, { "q", tZONE, HOUR(- 4) }, { "r", tZONE, HOUR(- 5) }, { "s", tZONE, HOUR(- 6) }, { "t", tZONE, HOUR(- 7) }, { "u", tZONE, HOUR(- 8) }, { "v", tZONE, HOUR(- 9) }, { "w", tZONE, HOUR(-10) }, { "x", tZONE, HOUR(-11) }, { "y", tZONE, HOUR(-12) }, { "z", tZONE, HOUR( 0) }, { NULL } }; /* * Dump error messages in the bit bucket. */ static void yyerror(s) char *s; { } static time_t ToSeconds(Hours, Minutes, Seconds, Meridian) time_t Hours; time_t Minutes; time_t Seconds; MERIDIAN Meridian; { if (Minutes < 0 || Minutes > 59 || Seconds < 0 || Seconds > 59) return -1; switch (Meridian) { case MER24: if (Hours < 0 || Hours > 23) return -1; return (Hours * 60L + Minutes) * 60L + Seconds; case MERam: if (Hours < 1 || Hours > 12) return -1; return ((Hours % 12) * 60L + Minutes) * 60L + Seconds; case MERpm: if (Hours < 1 || Hours > 12) return -1; return (((Hours % 12) + 12) * 60L + Minutes) * 60L + Seconds; } return -1; /* Should never be reached */ } /* *----------------------------------------------------------------------------- * * Convert -- * * Convert a {month, day, year, hours, minutes, seconds, meridian, dst} * tuple into a clock seconds value. * * Results: * 0 or -1 indicating success or failure. * * Side effects: * Fills TimePtr with the computed value. * *----------------------------------------------------------------------------- */ static int Convert(Month, Day, Year, Hours, Minutes, Seconds, Meridian, DSTmode, TimePtr) time_t Month; time_t Day; time_t Year; time_t Hours; time_t Minutes; time_t Seconds; MERIDIAN Meridian; DSTMODE DSTmode; time_t *TimePtr; { static int DaysInMonth[12] = { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; time_t tod; time_t Julian; int i; /* Figure out how many days are in February for the given year. * Every year divisible by 4 is a leap year. * But, every year divisible by 100 is not a leap year. * But, every year divisible by 400 is a leap year after all. */ DaysInMonth[1] = IsLeapYear(Year) ? 29 : 28; /* Check the inputs for validity */ if (Month < 1 || Month > 12 || Year < START_OF_TIME || Year > END_OF_TIME || Day < 1 || Day > DaysInMonth[(int)--Month]) return -1; /* Start computing the value. First determine the number of days * represented by the date, then multiply by the number of seconds/day. */ for (Julian = Day - 1, i = 0; i < Month; i++) Julian += DaysInMonth[i]; if (Year >= EPOCH) { for (i = EPOCH; i < Year; i++) Julian += 365 + IsLeapYear(i); } else { for (i = Year; i < EPOCH; i++) Julian -= 365 + IsLeapYear(i); } Julian *= SECSPERDAY; /* Add the timezone offset ?? */ Julian += yyTimezone * 60L; /* Add the number of seconds represented by the time component */ if ((tod = ToSeconds(Hours, Minutes, Seconds, Meridian)) < 0) return -1; Julian += tod; /* Perform a preliminary DST compensation ?? */ if (DSTmode == DSTon || (DSTmode == DSTmaybe && TclpGetDate((TclpTime_t)&Julian, 0)->tm_isdst)) Julian -= 60 * 60; *TimePtr = Julian; return 0; } static time_t DSTcorrect(Start, Future) time_t Start; time_t Future; { time_t StartDay; time_t FutureDay; StartDay = (TclpGetDate((TclpTime_t)&Start, 0)->tm_hour + 1) % 24; FutureDay = (TclpGetDate((TclpTime_t)&Future, 0)->tm_hour + 1) % 24; return (Future - Start) + (StartDay - FutureDay) * 60L * 60L; } static time_t NamedDay(Start, DayOrdinal, DayNumber) time_t Start; time_t DayOrdinal; time_t DayNumber; { struct tm *tm; time_t now; now = Start; tm = TclpGetDate((TclpTime_t)&now, 0); now += SECSPERDAY * ((DayNumber - tm->tm_wday + 7) % 7); now += 7 * SECSPERDAY * (DayOrdinal <= 0 ? DayOrdinal : DayOrdinal - 1); return DSTcorrect(Start, now); } static time_t NamedMonth(Start, MonthOrdinal, MonthNumber) time_t Start; time_t MonthOrdinal; time_t MonthNumber; { struct tm *tm; time_t now; int result; now = Start; tm = TclpGetDate((TclpTime_t)&now, 0); /* To compute the next n'th month, we use this alg: * add n to year value * if currentMonth < requestedMonth decrement year value by 1 (so that * doing next february from january gives us february of the current year) * set day to 1, time to 0 */ tm->tm_year += MonthOrdinal; if (tm->tm_mon < MonthNumber - 1) { tm->tm_year--; } result = Convert(MonthNumber, (time_t) 1, tm->tm_year + TM_YEAR_BASE, (time_t) 0, (time_t) 0, (time_t) 0, MER24, DSTmaybe, &now); if (result < 0) { return 0; } return DSTcorrect(Start, now); } static int RelativeMonth(Start, RelMonth, TimePtr) time_t Start; time_t RelMonth; time_t *TimePtr; { struct tm *tm; time_t Month; time_t Year; time_t Julian; int result; if (RelMonth == 0) { *TimePtr = 0; return 0; } tm = TclpGetDate((TclpTime_t)&Start, 0); Month = 12 * (tm->tm_year + TM_YEAR_BASE) + tm->tm_mon + RelMonth; Year = Month / 12; Month = Month % 12 + 1; result = Convert(Month, (time_t) tm->tm_mday, Year, (time_t) tm->tm_hour, (time_t) tm->tm_min, (time_t) tm->tm_sec, MER24, DSTmaybe, &Julian); /* * The Julian time returned above is behind by one day, if "month" * or "year" is used to specify relative time and the GMT flag is true. * This problem occurs only when the current time is closer to * midnight, the difference being not more than its time difference * with GMT. For example, in US/Pacific time zone, the problem occurs * whenever the current time is between midnight to 8:00am or 7:00amDST. * See Bug# 413397 for more details and sample script. * To resolve this bug, we simply add the number of seconds corresponding * to timezone difference with GMT to Julian time, if GMT flag is true. */ if (TclDateTimezone == 0) { Julian += TclpGetTimeZone((unsigned long) Start) * 60L; } /* * The following iteration takes into account the case were we jump * into a "short month". Far example, "one month from Jan 31" will * fail because there is no Feb 31. The code below will reduce the * day and try converting the date until we succed or the date equals * 28 (which always works unless the date is bad in another way). */ while ((result != 0) && (tm->tm_mday > 28)) { tm->tm_mday--; result = Convert(Month, (time_t) tm->tm_mday, Year, (time_t) tm->tm_hour, (time_t) tm->tm_min, (time_t) tm->tm_sec, MER24, DSTmaybe, &Julian); } if (result != 0) { return -1; } *TimePtr = DSTcorrect(Start, Julian); return 0; } /* *----------------------------------------------------------------------------- * * RelativeDay -- * * Given a starting time and a number of days before or after, compute the * DST corrected difference between those dates. * * Results: * 1 or -1 indicating success or failure. * * Side effects: * Fills TimePtr with the computed value. * *----------------------------------------------------------------------------- */ static int RelativeDay(Start, RelDay, TimePtr) time_t Start; time_t RelDay; time_t *TimePtr; { time_t new; new = Start + (RelDay * 60 * 60 * 24); *TimePtr = DSTcorrect(Start, new); return 1; } static int LookupWord(buff) char *buff; { register char *p; register char *q; register TABLE *tp; int i; int abbrev; /* * Make it lowercase. */ Tcl_UtfToLower(buff); if (strcmp(buff, "am") == 0 || strcmp(buff, "a.m.") == 0) { yylval.Meridian = MERam; return tMERIDIAN; } if (strcmp(buff, "pm") == 0 || strcmp(buff, "p.m.") == 0) { yylval.Meridian = MERpm; return tMERIDIAN; } /* * See if we have an abbreviation for a month. */ if (strlen(buff) == 3) { abbrev = 1; } else if (strlen(buff) == 4 && buff[3] == '.') { abbrev = 1; buff[3] = '\0'; } else { abbrev = 0; } for (tp = MonthDayTable; tp->name; tp++) { if (abbrev) { if (strncmp(buff, tp->name, 3) == 0) { yylval.Number = tp->value; return tp->type; } } else if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return tp->type; } } for (tp = TimezoneTable; tp->name; tp++) { if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return tp->type; } } for (tp = UnitsTable; tp->name; tp++) { if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return tp->type; } } /* * Strip off any plural and try the units table again. */ i = strlen(buff) - 1; if (buff[i] == 's') { buff[i] = '\0'; for (tp = UnitsTable; tp->name; tp++) { if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return tp->type; } } } for (tp = OtherTable; tp->name; tp++) { if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return tp->type; } } /* * Military timezones. */ if (buff[1] == '\0' && !(*buff & 0x80) && isalpha(UCHAR(*buff))) { /* INTL: ISO only */ for (tp = MilitaryTable; tp->name; tp++) { if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return tp->type; } } } /* * Drop out any periods and try the timezone table again. */ for (i = 0, p = q = buff; *q; q++) if (*q != '.') { *p++ = *q; } else { i++; } *p = '\0'; if (i) { for (tp = TimezoneTable; tp->name; tp++) { if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return tp->type; } } } return tID; } static int yylex() { register char c; register char *p; char buff[20]; int Count; for ( ; ; ) { while (isspace(UCHAR(*yyInput))) { yyInput++; } if (isdigit(UCHAR(c = *yyInput))) { /* INTL: digit */ /* convert the string into a number; count the number of digits */ Count = 0; for (yylval.Number = 0; isdigit(UCHAR(c = *yyInput++)); ) { /* INTL: digit */ yylval.Number = 10 * yylval.Number + c - '0'; Count++; } yyInput--; /* A number with 6 or more digits is considered an ISO 8601 base */ if (Count >= 6) { return tISOBASE; } else { return tUNUMBER; } } if (!(c & 0x80) && isalpha(UCHAR(c))) { /* INTL: ISO only. */ for (p = buff; isalpha(UCHAR(c = *yyInput++)) /* INTL: ISO only. */ || c == '.'; ) { if (p < &buff[sizeof buff - 1]) { *p++ = c; } } *p = '\0'; yyInput--; return LookupWord(buff); } if (c != '(') { return *yyInput++; } Count = 0; do { c = *yyInput++; if (c == '\0') { return c; } else if (c == '(') { Count++; } else if (c == ')') { Count--; } } while (Count > 0); } } /* * Specify zone is of -50000 to force GMT. (This allows BST to work). */ int TclGetDate(p, now, zone, timePtr) char *p; Tcl_WideInt now; long zone; Tcl_WideInt *timePtr; { struct tm *tm; time_t Start; time_t Time; time_t tod; int thisyear; yyInput = p; /* now has to be cast to a time_t for 64bit compliance */ Start = (time_t) now; tm = TclpGetDate((TclpTime_t) &Start, (zone == -50000)); thisyear = tm->tm_year + TM_YEAR_BASE; yyYear = thisyear; yyMonth = tm->tm_mon + 1; yyDay = tm->tm_mday; yyTimezone = zone; if (zone == -50000) { yyDSTmode = DSToff; /* assume GMT */ yyTimezone = 0; } else { yyDSTmode = DSTmaybe; } yyHour = 0; yyMinutes = 0; yySeconds = 0; yyMeridian = MER24; yyRelSeconds = 0; yyRelMonth = 0; yyRelDay = 0; yyRelPointer = NULL; yyHaveDate = 0; yyHaveDay = 0; yyHaveOrdinalMonth = 0; yyHaveRel = 0; yyHaveTime = 0; yyHaveZone = 0; if (yyparse() || yyHaveTime > 1 || yyHaveZone > 1 || yyHaveDate > 1 || yyHaveDay > 1 || yyHaveOrdinalMonth > 1) { return -1; } if (yyHaveDate || yyHaveTime || yyHaveDay) { if (TclDateYear < 0) { TclDateYear = -TclDateYear; } /* * The following line handles years that are specified using * only two digits. The line of code below implements a policy * defined by the X/Open workgroup on the millinium rollover. * Note: some of those dates may not actually be valid on some * platforms. The POSIX standard startes that the dates 70-99 * shall refer to 1970-1999 and 00-38 shall refer to 2000-2038. * This later definition should work on all platforms. */ if (TclDateYear < 100) { if (TclDateYear >= 69) { TclDateYear += 1900; } else { TclDateYear += 2000; } } if (Convert(yyMonth, yyDay, yyYear, yyHour, yyMinutes, yySeconds, yyMeridian, yyDSTmode, &Start) < 0) { return -1; } } else { Start = (time_t) now; if (!yyHaveRel) { Start -= ((tm->tm_hour * 60L * 60L) + tm->tm_min * 60L) + tm->tm_sec; } } Start += yyRelSeconds; if (RelativeMonth(Start, yyRelMonth, &Time) < 0) { return -1; } Start += Time; if (RelativeDay(Start, yyRelDay, &Time) < 0) { return -1; } Start += Time; if (yyHaveDay && !yyHaveDate) { tod = NamedDay(Start, yyDayOrdinal, yyDayNumber); Start += tod; } if (yyHaveOrdinalMonth) { tod = NamedMonth(Start, yyMonthOrdinal, yyMonth); Start += tod; } *timePtr = Start; return 0; }