/* *---------------------------------------------------------------------- * * tclDouble.c -- * * This file contains a collection of procedures for managing * conversions to/from floating-point in Tcl. They include * TclParseNumber, which parses numbers from strings; TclDoubleDigits, * which formats numbers into strings of digits, and procedures for * interconversion among 'double' and 'mp_int' types. * * Copyright (c) 2005 by Kevin B. Kenny. All rights reserved. * * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclStrToD.c,v 1.10 2005/10/09 20:05:24 msofer Exp $ * *---------------------------------------------------------------------- */ #include #include #include #include #include #include #include #include /* * Define TIP_114_FORMATS to accept 0b and 0o for binary and octal strings. * Define KILL_OCTAL as well as TIP_114_FORMATS to suppress interpretation * of numbers with leading zero as octal. (Ceterum censeo: numeros octonarios * delendos esse.) */ #define TIP_114_FORMATS #undef KILL_OCTAL #ifndef TIP_114_FORMATS #undef KILL_OCTAL #endif /* * This code supports (at least hypothetically), IBM, Cray, VAX and * IEEE-754 floating point; of these, only IEEE-754 can represent NaN. * IEEE-754 can be uniquely determined by radix and by the widths of * significand and exponent. */ #if (FLT_RADIX == 2) && (DBL_MANT_DIG == 53) && (DBL_MAX_EXP == 1024) # define IEEE_FLOATING_POINT #endif /* * gcc on x86 needs access to rounding controls, because of a questionable * feature where it retains intermediate results as IEEE 'long double' values * somewhat unpredictably. It is tempting to include fpu_control.h, but * that file exists only on Linux; it is missing on Cygwin and MinGW. Most * gcc-isms and ix86-isms are factored out here. */ #if defined(__GNUC__) && defined(__i386) typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); #define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw)) #define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw)) # define FPU_IEEE_ROUNDING 0x027f # define ADJUST_FPU_CONTROL_WORD #endif /* * HP's PA_RISC architecture uses 7ff4000000000000 to represent a quiet NaN. * Everyone else uses 7ff8000000000000. (Why, HP, why?) */ #ifdef __hppa # define NAN_START 0x7ff4 # define NAN_MASK (((Tcl_WideUInt) 1) << 50) #else # define NAN_START 0x7ff8 # define NAN_MASK (((Tcl_WideUInt) 1) << 51) #endif /* The powers of ten that can be represented exactly as wide integers */ static int maxpow10_wide; static Tcl_WideUInt *pow10_wide; /* The number of decimal digits that fit in an mp_digit */ static int log10_DIGIT_MAX; /* The powers of ten that can be represented exactly as IEEE754 doubles. */ #define MAXPOW 22 static double pow10 [MAXPOW+1]; static int mmaxpow; /* Largest power of ten that can be * represented exactly in a 'double'. */ /* Inexact higher powers of ten */ static CONST double pow_10_2_n [] = { 1.0, 100.0, 10000.0, 1.0e+8, 1.0e+16, 1.0e+32, 1.0e+64, 1.0e+128, 1.0e+256 }; /* Logarithm of the floating point radix. */ static int log2FLT_RADIX; /* Number of bits in a double's significand */ static int mantBits; /* Table of powers of 5**(2**n), up to 5**256 */ static mp_int pow5[9]; /* The smallest representable double */ static double tiny; /* The maximum number of digits to the left of the decimal point of a * double. */ static int maxDigits; /* The maximum number of digits to the right of the decimal point in a * double. */ static int minDigits; /* Number of mp_digit's needed to hold the significand of a double */ static int mantDIGIT; /* Static functions defined in this file */ static int AccumulateDecimalDigit _ANSI_ARGS_((unsigned, int, Tcl_WideUInt*, mp_int*, int)); static double MakeLowPrecisionDouble _ANSI_ARGS_((int signum, Tcl_WideUInt significand, int nSigDigs, int exponent)); static double MakeHighPrecisionDouble _ANSI_ARGS_((int signum, mp_int* significand, int nSigDigs, int exponent)); static double MakeNaN _ANSI_ARGS_(( int signum, Tcl_WideUInt tag )); static double RefineApproximation _ANSI_ARGS_((double approx, mp_int* exactSignificand, int exponent)); static double AbsoluteValue(double v, int* signum); static int GetIntegerTimesPower(double v, mp_int* r, int* e); static double BignumToBiasedFrExp _ANSI_ARGS_(( mp_int* big, int* machexp )); static double Pow10TimesFrExp _ANSI_ARGS_(( int exponent, double fraction, int* machexp )); static double SafeLdExp _ANSI_ARGS_(( double fraction, int exponent )); /* *---------------------------------------------------------------------- * * TclParseNumber -- * * Place a "numeric" internal representation on a Tcl object. * * Results: * Returns a standard Tcl result. * * Side effects: * Stores an internal representation appropriate to the string. * The internal representation may be an integer, a wide integer, * a bignum, or a double. * * TclMakeObjNumeric is called as a common scanner in routines * that expect numbers in Tcl_Obj's. It scans the string representation * of a given Tcl_Obj and stores an internal rep that represents * a "canonical" version of its numeric value. The value of the * canonicalization is that a routine can determine simply by * examining the type pointer whether an object LooksLikeInt, * what size of integer is needed to hold it, and similar questions, * and never needs to refer back to the string representation, even * for "impure" objects. * * The 'strPtr' and 'endPtrPtr' arguments allow for recognizing a number * that is in a substring of a Tcl_Obj, for example a screen metric or * "end-" index. If 'strPtr' is not NULL, it designates where the * number begins within the string. (The default is the start of * objPtr's string rep, which will be constructed if necessary.) * * If 'strPtr' is supplied, 'objPtr' may be NULL. In this case, * no internal representation will be generated; instead, the routine * will simply check for a syntactically correct number, returning * TCL_OK or TCL_ERROR as appropriate, and setting *endPtrPtr if * necessary. * * If 'endPtrPtr' is not NULL, it designates the first character * after the scanned number. In this case, successfully recognizing * any digits will yield a return code of TCL_OK. Only in the case * where no leading string of 'strPtr' (or of objPtr's internal rep) * represents a number will TCL_ERROR be returned. * * When only a partial string is being recognized, it is the caller's * responsibility to destroy the internal representation, or at * least change its type. Failure to do so will lead to subsequent * problems where a string that does not represent a number will * be recognized as one because it has a numeric internal representation. * * When the 'flags' word includes TCL_PARSE_DECIMAL_ONLY, only decimal * numbers are recognized; leading 0 has no special interpretation as * octal and leading '0x' is forbidden. * *---------------------------------------------------------------------- */ int TclParseNumber( Tcl_Interp* interp, /* Tcl interpreter for error reporting. * May be NULL */ Tcl_Obj* objPtr, /* Object to receive the internal rep */ CONST char* type, /* Type of number being parsed ("integer", * "wide integer", etc. */ CONST char* string, /* Pointer to the start of the string to * scan, see above */ size_t length, /* Maximum length of the string to scan, * see above. */ CONST char** endPtrPtr, /* (Output) pointer to the end of the * scanned number, see above */ int flags) /* Flags governing the parse */ { enum State { INITIAL, SIGNUM, ZERO, ZERO_X, #ifdef TIP_114_FORMATS ZERO_O, ZERO_B, BINARY, #endif HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL, LEADING_RADIX_POINT, FRACTION, EXPONENT_START, EXPONENT_SIGNUM, EXPONENT, sI, sIN, sINF, sINFI, sINFIN, sINFINI, sINFINIT, sINFINITY #ifdef IEEE_FLOATING_POINT , sN, sNA, sNAN, sNANPAREN, sNANHEX, sNANFINISH #endif } state = INITIAL; enum State acceptState = INITIAL; int signum = 0; /* Sign of the number being parsed */ Tcl_WideUInt significandWide = 0; /* Significand of the number being * parsed (if no overflow) */ mp_int significandBig; /* Significand of the number being * parsed (if it overflows significandWide) */ int significandOverflow = 0; /* Flag==1 iff significandBig is used */ Tcl_WideUInt octalSignificandWide = 0; /* Significand of an octal number; needed * because we don't know whether a number * with a leading zero is octal or decimal * until we've scanned forward to a '.' or * 'e' */ mp_int octalSignificandBig; /* Significand of octal number once * octalSignificandWide overflows */ int octalSignificandOverflow = 0; /* Flag==1 if octalSignificandBig is used */ int numSigDigs = 0; /* Number of significant digits in the * decimal significand */ int numTrailZeros = 0; /* Number of trailing zeroes at the * current point in the parse. */ int numDigitsAfterDp = 0; /* Number of digits scanned after the * decimal point */ int exponentSignum = 0; /* Signum of the exponent of a floating * point number */ long exponent = 0; /* Exponent of a floating point number */ CONST char* p; /* Pointer to next character to scan */ size_t len; /* Number of characters remaining after p */ CONST char* acceptPoint; /* Pointer to position after last character * in an acceptable number */ size_t acceptLen; /* Number of characters following that point */ int status = TCL_OK; /* Status to return to caller */ char d = 0; /* Last hexadecimal digit scanned; initialized * to avoid a compiler warning. */ int shift = 0; /* Amount to shift when accumulating binary */ #ifdef TIP_114_FORMATS int explicitOctal = 0; #endif /* * Initialize string to start of the object's string rep if * the caller didn't pass anything else. */ if ( string == NULL ) { string = Tcl_GetStringFromObj( objPtr, NULL ); } p = string; len = length; acceptPoint = p; acceptLen = len; while ( 1 ) { char c = len ? *p : '\0'; switch (state) { case INITIAL: /* * Initial state. Acceptable characters are +, -, digits, * period, I, N, and whitespace. */ if (isspace(UCHAR(c))) { break; } else if (c == '+') { state = SIGNUM; break; } else if (c == '-') { signum = 1; state = SIGNUM; break; } /* FALLTHROUGH */ case SIGNUM: /* * Scanned a leading + or -. Acceptable characters are * digits, period, I, and N. */ if (c == '0') { if (flags & TCL_PARSE_DECIMAL_ONLY) { state = DECIMAL; } else { state = ZERO; } break; } else if (flags & TCL_PARSE_HEXADECIMAL_ONLY) { goto zerox; } else if (flags & TCL_PARSE_OCTAL_ONLY) { goto zeroo; } else if (isdigit(UCHAR(c))) { significandWide = c - '0'; numSigDigs = 1; state = DECIMAL; break; } else if (flags & TCL_PARSE_INTEGER_ONLY) { goto endgame; } else if (c == '.') { state = LEADING_RADIX_POINT; break; } else if (c == 'I' || c == 'i') { state = sI; break; #ifdef IEEE_FLOATING_POINT } else if (c == 'N' || c == 'n') { state = sN; break; #endif } goto endgame; case ZERO: /* * Scanned a leading zero (perhaps with a + or -). * Acceptable inputs are digits, period, X, and E. * If 8 or 9 is encountered, the number can't be * octal. This state and the OCTAL state differ only * in whether they recognize 'X'. */ acceptState = state; acceptPoint = p; acceptLen = len; if (c == 'x' || c == 'X') { state = ZERO_X; break; } if (flags & TCL_PARSE_HEXADECIMAL_ONLY) { goto zerox; } #ifdef TIP_114_FORMATS if (flags & TCL_PARSE_SCAN_PREFIXES) { goto zeroo; } if (c == 'b' || c == 'B') { state = ZERO_B; break; } if (c == 'o' || c == 'O') { explicitOctal = 1; state = ZERO_O; break; } #ifdef KILL_OCTAL goto decimal; #endif #endif /* FALLTHROUGH */ case OCTAL: /* * Scanned an optional + or -, followed by a string of * octal digits. Acceptable inputs are more digits, * period, or E. If 8 or 9 is encountered, commit to * floating point. */ acceptState = state; acceptPoint = p; acceptLen = len; #ifdef TIP_114_FORMATS /* FALLTHROUGH */ case ZERO_O: #endif zeroo: if (c == '0') { ++numTrailZeros; state = OCTAL; break; } else if (c >= '1' && c <= '7') { if (objPtr != NULL) { shift = 3 * (numTrailZeros + 1); significandOverflow = AccumulateDecimalDigit((unsigned)(c-'0'), numTrailZeros, &significandWide, &significandBig, significandOverflow); if (!octalSignificandOverflow) { /* * Shifting by more bits than are in the value being * shifted is at least de facto nonportable. Check * for too large shifts first. */ if ((octalSignificandWide != 0) && ((shift >= CHAR_BIT*sizeof(Tcl_WideUInt)) || (octalSignificandWide > (~(Tcl_WideUInt)0 >> shift)))) { octalSignificandOverflow = 1; TclBNInitBignumFromWideUInt(&octalSignificandBig, octalSignificandWide); } } if (!octalSignificandOverflow) { octalSignificandWide = (octalSignificandWide << shift) + (c - '0'); } else { mp_mul_2d(&octalSignificandBig, shift, &octalSignificandBig); mp_add_d(&octalSignificandBig, (mp_digit)(c - '0'), &octalSignificandBig); } } if ( numSigDigs != 0 ) { numSigDigs += ( numTrailZeros + 1 ); } else { numSigDigs = 1; } numTrailZeros = 0; state = OCTAL; break; } /* FALLTHROUGH */ case BAD_OCTAL: #ifdef TIP_114_FORMATS if (explicitOctal) { /* No forgiveness for bad digits in explicitly octal numbers */ goto endgame; } #endif if (flags & TCL_PARSE_INTEGER_ONLY) { /* No seeking floating point when parsing only integer */ goto endgame; } #ifndef KILL_OCTAL /* * Scanned a number with a leading zero that contains an * 8, 9, radix point or E. This is an invalid octal number, * but might still be floating point. */ if (c == '0') { ++numTrailZeros; state = BAD_OCTAL; break; } else if (isdigit(UCHAR(c))) { if (objPtr != NULL) { significandOverflow = AccumulateDecimalDigit((unsigned)(c-'0'), numTrailZeros, &significandWide, &significandBig, significandOverflow); } if ( numSigDigs != 0 ) { numSigDigs += ( numTrailZeros + 1 ); } else { numSigDigs = 1; } numTrailZeros = 0; state = BAD_OCTAL; break; } else if (c == '.') { state = FRACTION; break; } else if (c == 'E' || c == 'e') { state = EXPONENT_START; break; } #endif goto endgame; /* * Scanned 0x. If state is HEXADECIMAL, scanned at least * one character following the 0x. The only acceptable * inputs are hexadecimal digits. */ case HEXADECIMAL: acceptState = state; acceptPoint = p; acceptLen = len; /* FALLTHROUGH */ case ZERO_X: zerox: if (c == '0') { ++numTrailZeros; state = HEXADECIMAL; break; } else if (isdigit(UCHAR(c))) { d = (c-'0'); } else if (c >= 'A' && c <= 'F') { d = (c-'A'+10); } else if (c >= 'a' && c <= 'f') { d = (c-'a'+10); } else { goto endgame; } if (objPtr != NULL) { shift = 4 * (numTrailZeros + 1); if (!significandOverflow) { /* * Shifting by more bits than are in the value being * shifted is at least de facto nonportable. Check * for too large shifts first. */ if (significandWide != 0 && (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || significandWide > (~(Tcl_WideUInt)0 >> shift))) { significandOverflow = 1; TclBNInitBignumFromWideUInt(&significandBig, significandWide); } } if (!significandOverflow) { significandWide = (significandWide << shift) + d; } else { mp_mul_2d(&significandBig, shift, &significandBig); mp_add_d(&significandBig, (mp_digit) d, &significandBig); } } numTrailZeros = 0; state = HEXADECIMAL; break; #ifdef TIP_114_FORMATS case BINARY: acceptState = state; acceptPoint = p; acceptLen = len; case ZERO_B: if (c == '0') { ++numTrailZeros; state = BINARY; break; } else if (c != '1') { goto endgame; } if (objPtr != NULL) { shift = numTrailZeros + 1; if (!significandOverflow) { /* * Shifting by more bits than are in the value being * shifted is at least de facto nonportable. Check * for too large shifts first. */ if (significandWide != 0 && (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || significandWide > (~(Tcl_WideUInt)0 >> shift))) { significandOverflow = 1; TclBNInitBignumFromWideUInt(&significandBig, significandWide); } } if (!significandOverflow) { significandWide = (significandWide << shift) + 1; } else { mp_mul_2d(&significandBig, shift, &significandBig); mp_add_d(&significandBig, (mp_digit) 1, &significandBig); } } numTrailZeros = 0; state = BINARY; break; #endif case DECIMAL: /* * Scanned an optional + or - followed by a string of * decimal digits. */ #ifdef KILL_OCTAL decimal: #endif acceptState = state; acceptPoint = p; acceptLen = len; if (c == '0') { ++numTrailZeros; state = DECIMAL; break; } else if (isdigit(UCHAR(c))) { if (objPtr != NULL) { significandOverflow = AccumulateDecimalDigit((unsigned)(c - '0'), numTrailZeros, &significandWide, &significandBig, significandOverflow); } numSigDigs += ( numTrailZeros + 1 ); numTrailZeros = 0; state = DECIMAL; break; } else if (flags & TCL_PARSE_INTEGER_ONLY) { goto endgame; } else if (c == '.') { state = FRACTION; break; } else if (c == 'E' || c == 'e') { state = EXPONENT_START; break; } goto endgame; /* * Found a decimal point. If no digits have yet been scanned, * E is not allowed; otherwise, it introduces the exponent. * If at least one digit has been found, we have a possible * complete number. */ case FRACTION: acceptState = state; acceptPoint = p; acceptLen = len; if (c == 'E' || c=='e') { state = EXPONENT_START; break; } /* FALLTHROUGH */ case LEADING_RADIX_POINT: if (c == '0') { ++numDigitsAfterDp; ++numTrailZeros; state = FRACTION; break; } else if (isdigit(UCHAR(c))) { ++numDigitsAfterDp; if (objPtr != NULL) { significandOverflow = AccumulateDecimalDigit((unsigned)(c-'0'), numTrailZeros, &significandWide, &significandBig, significandOverflow); } if ( numSigDigs != 0 ) { numSigDigs += ( numTrailZeros + 1 ); } else { numSigDigs = 1; } numTrailZeros = 0; state = FRACTION; break; } goto endgame; case EXPONENT_START: /* * Scanned the E at the start of an exponent. Make sure * a legal character follows before using the C library * strtol routine, which allows whitespace. */ if (c == '+') { state = EXPONENT_SIGNUM; break; } else if (c == '-') { exponentSignum = 1; state = EXPONENT_SIGNUM; break; } /* FALLTHROUGH */ case EXPONENT_SIGNUM: /* * Found the E at the start of the exponent, followed by * a sign character. */ if (isdigit(UCHAR(c))) { exponent = c - '0'; state = EXPONENT; break; } goto endgame; case EXPONENT: /* * Found an exponent with at least one digit. * Accumulate it, making sure to hard-pin it to LONG_MAX * on overflow. */ acceptState = state; acceptPoint = p; acceptLen = len; if (isdigit(UCHAR(c))) { if (exponent < (LONG_MAX - 9) / 10) { exponent = 10 * exponent + (c - '0'); } else { exponent = LONG_MAX; } state = EXPONENT; break; } goto endgame; /* * Parse out INFINITY by simply spelling it out. * INF is accepted as an abbreviation; other prefices are * not. */ case sI: if ( c == 'n' || c == 'N' ) { state = sIN; break; } goto endgame; case sIN: if ( c == 'f' || c == 'F' ) { state = sINF; break; } goto endgame; case sINF: acceptState = state; acceptPoint = p; acceptLen = len; if ( c == 'i' || c == 'I' ) { state = sINFI; break; } goto endgame; case sINFI: if ( c == 'n' || c == 'N' ) { state = sINFIN; break; } goto endgame; case sINFIN: if ( c == 'i' || c == 'I' ) { state = sINFINI; break; } goto endgame; case sINFINI: if ( c == 't' || c == 'T' ) { state = sINFINIT; break; } goto endgame; case sINFINIT: if ( c == 'y' || c == 'Y' ) { state = sINFINITY; break; } goto endgame; /* * Parse NaN's. */ #ifdef IEEE_FLOATING_POINT case sN: if ( c == 'a' || c == 'A' ) { state = sNA; break; } goto endgame; case sNA: if ( c == 'n' || c == 'N' ) { state = sNAN; break; } case sNAN: acceptState = state; acceptPoint = p; acceptLen = len; if ( c == '(' ) { state = sNANPAREN; break; } goto endgame; /* * Parse NaN(hexdigits) */ case sNANHEX: if ( c == ')' ) { state = sNANFINISH; break; } /* FALLTHROUGH */ case sNANPAREN: if ( isspace(UCHAR(c)) ) { break; } if ( numSigDigs < 13 ) { if ( c >= '0' && c <= '9' ) { d = c - '0'; } else if ( c >= 'a' && c <= 'f' ) { d = 10 + c - 'a'; } else if ( c >= 'A' && c <= 'F' ) { d = 10 + c - 'A'; } significandWide = (significandWide << 4) + d; state = sNANHEX; break; } goto endgame; case sNANFINISH: #endif case sINFINITY: acceptState = state; acceptPoint = p; acceptLen = len; goto endgame; } ++p; --len; } endgame: /* Back up to the last accepting state in the lexer */ if (acceptState == INITIAL) { status = TCL_ERROR; } p = acceptPoint; len = acceptLen; /* Skip past trailing whitespace */ if (endPtrPtr != NULL) { *endPtrPtr = p; } while (len > 0 && isspace(UCHAR(*p))) { ++p; --len; } /* Determine whether a partial string is acceptable. */ if (endPtrPtr == NULL && len != 0 && *p != '\0') { status = TCL_ERROR; } /* Generate and store the appropriate internal rep */ if (status == TCL_OK && objPtr != NULL) { if ( acceptState != INITIAL ) { TclFreeIntRep( objPtr ); } switch (acceptState) { case INITIAL: status = TCL_ERROR; break; case SIGNUM: case BAD_OCTAL: case ZERO_X: #ifdef TIP_114_FORMATS case ZERO_O: case ZERO_B: #endif case LEADING_RADIX_POINT: case EXPONENT_START: case EXPONENT_SIGNUM: case sI: case sIN: case sINFI: case sINFIN: case sINFINI: case sINFINIT: case sN: case sNA: case sNANPAREN: case sNANHEX: panic("in TclParseNumber: bad acceptState, can't happen."); #ifdef TIP_114_FORMATS case BINARY: shift = numTrailZeros; if (!significandOverflow) { if (significandWide !=0 && (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || significandWide > (((~(Tcl_WideUInt)0) >> 1) + signum) >> shift )) { significandOverflow = 1; TclBNInitBignumFromWideUInt(&significandBig, significandWide); } } if (shift) { if ( !significandOverflow ) { significandWide <<= shift; } else { mp_mul_2d( &significandBig, shift, &significandBig ); } } goto returnInteger; #endif case HEXADECIMAL: /* Returning a hex integer. Final scaling step */ shift = 4 * numTrailZeros; if (!significandOverflow) { if (significandWide !=0 && (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || significandWide > (((~(Tcl_WideUInt)0) >> 1) + signum) >> shift )) { significandOverflow = 1; TclBNInitBignumFromWideUInt(&significandBig, significandWide); } } if (shift) { if ( !significandOverflow ) { significandWide <<= shift; } else { mp_mul_2d( &significandBig, shift, &significandBig ); } } goto returnInteger; case OCTAL: /* Returning an octal integer. Final scaling step */ shift = 3 * numTrailZeros; if (!octalSignificandOverflow) { if (octalSignificandWide != 0 && (shift >= CHAR_BIT*sizeof(Tcl_WideUInt) || octalSignificandWide > (((~(Tcl_WideUInt)0) >> 1) + signum) >> shift )) { octalSignificandOverflow = 1; TclBNInitBignumFromWideUInt(&octalSignificandBig, octalSignificandWide); } } if ( shift ) { if ( !octalSignificandOverflow ) { octalSignificandWide <<= shift; } else { mp_mul_2d( &octalSignificandBig, shift, &octalSignificandBig ); } } if (!octalSignificandOverflow) { if (octalSignificandWide > (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { #ifndef NO_WIDE_TYPE if (octalSignificandWide <= (((~(Tcl_WideUInt)0) >> 1) + signum)) { objPtr->typePtr = &tclWideIntType; if (signum) { objPtr->internalRep.wideValue = - (Tcl_WideInt) octalSignificandWide; } else { objPtr->internalRep.wideValue = (Tcl_WideInt) octalSignificandWide; } break; } #endif TclBNInitBignumFromWideUInt(&octalSignificandBig, octalSignificandWide); octalSignificandOverflow = 1; } else { objPtr->typePtr = &tclIntType; if (signum) { objPtr->internalRep.longValue = - (long) octalSignificandWide; } else { objPtr->internalRep.longValue = (long) octalSignificandWide; } } } if (octalSignificandOverflow) { if (signum) { mp_neg(&octalSignificandBig, &octalSignificandBig); } TclSetBignumIntRep(objPtr, &octalSignificandBig); } break; case ZERO: case DECIMAL: significandOverflow = AccumulateDecimalDigit( 0, numTrailZeros-1, &significandWide, &significandBig, significandOverflow ); if (!significandOverflow && (significandWide > (((~(Tcl_WideUInt)0) >> 1) + signum))) { significandOverflow = 1; TclBNInitBignumFromWideUInt(&significandBig, significandWide); } returnInteger: if (!significandOverflow) { if (significandWide > (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) { #ifndef NO_WIDE_TYPE if (significandWide <= (((~(Tcl_WideUInt)0) >> 1) + signum)) { objPtr->typePtr = &tclWideIntType; if (signum) { objPtr->internalRep.wideValue = - (Tcl_WideInt) significandWide; } else { objPtr->internalRep.wideValue = (Tcl_WideInt) significandWide; } break; } #endif TclBNInitBignumFromWideUInt(&significandBig, significandWide); significandOverflow = 1; } else { objPtr->typePtr = &tclIntType; if (signum) { objPtr->internalRep.longValue = - (long) significandWide; } else { objPtr->internalRep.longValue = (long) significandWide; } } } if (significandOverflow) { if (signum) { mp_neg(&significandBig, &significandBig); } TclSetBignumIntRep(objPtr, &significandBig); } break; case FRACTION: case EXPONENT: /* * Here, we're parsing a floating-point number. * 'significandWide' or 'significandBig' contains the * exact significand, according to whether * 'significandOverflow' is set. The desired floating * point value is significand * 10**k, where * k = numTrailZeros+exponent-numDigitsAfterDp. */ objPtr->typePtr = &tclDoubleType; if ( exponentSignum ) { exponent = - exponent; } if ( !significandOverflow ) { objPtr->internalRep.doubleValue = MakeLowPrecisionDouble( signum, significandWide, numSigDigs, ( numTrailZeros + exponent - numDigitsAfterDp ) ); } else { objPtr->internalRep.doubleValue = MakeHighPrecisionDouble( signum, &significandBig, numSigDigs, ( numTrailZeros + exponent - numDigitsAfterDp ) ); } break; case sINF: case sINFINITY: if ( signum ) { objPtr->internalRep.doubleValue = -HUGE_VAL; } else { objPtr->internalRep.doubleValue = HUGE_VAL; } objPtr->typePtr = &tclDoubleType; break; case sNAN: case sNANFINISH: objPtr->internalRep.doubleValue = MakeNaN( signum, significandWide ); objPtr->typePtr = &tclDoubleType; break; } } /* Format an error message when an invalid number is encountered. */ if ( status != TCL_OK ) { if ( interp != NULL ) { Tcl_Obj *msg = Tcl_NewStringObj( "expected ", -1 ); Tcl_AppendToObj( msg, type, -1 ); Tcl_AppendToObj( msg, " but got \"", -1 ); TclAppendLimitedToObj( msg, string, length, 50, "" ); Tcl_AppendToObj( msg, "\"", -1 ); if ( state == BAD_OCTAL ) { Tcl_AppendToObj( msg, " (looks like invalid octal number)", -1 ); } Tcl_SetObjResult( interp, msg ); } } /* Free memory */ if (octalSignificandOverflow) { mp_clear(&octalSignificandBig); } if (significandOverflow) { mp_clear(&significandBig); } return status; } /* *---------------------------------------------------------------------- * * AccumulateDecimalDigit -- * * Consume a decimal digit in a number being scanned. * * Results: * Returns 1 if the number has overflowed to a bignum, 0 if it * still fits in a wide integer. * * Side effects: * Updates either the wide or bignum representation. * *---------------------------------------------------------------------- */ static int AccumulateDecimalDigit( unsigned digit, /* Digit being scanned */ int numZeros, /* Count of zero digits preceding the * digit being scanned */ Tcl_WideUInt* wideRepPtr, /* Representation of the partial number * as a wide integer */ mp_int* bignumRepPtr, /* Representation of the partial number * as a bignum */ int bignumFlag ) /* Flag == 1 if the number overflowed * previous to this digit. */ { int i, n; /* Check if the number still fits in a wide */ if (!bignumFlag) { if (*wideRepPtr != 0) { if ((numZeros >= maxpow10_wide) || (*wideRepPtr > (((~(Tcl_WideUInt)0) - digit) / pow10_wide[numZeros+1]))) { /* Oops, it's overflowed, have to allocate a bignum */ TclBNInitBignumFromWideUInt (bignumRepPtr, *wideRepPtr); bignumFlag = 1; } } } /* Multiply the number by 10**numZeros+1 and add in the new digit. */ if (!bignumFlag) { /* Wide multiplication */ *wideRepPtr = *wideRepPtr * pow10_wide[numZeros+1] + digit; } else if (numZeros < log10_DIGIT_MAX ) { /* Up to about 8 zeros - single digit multiplication */ mp_mul_d (bignumRepPtr, (mp_digit) pow10_wide[numZeros+1], bignumRepPtr); mp_add_d (bignumRepPtr, (mp_digit) digit, bignumRepPtr); } else { /* * More than single digit multiplication. Multiply by the appropriate * small powers of 5, and then shift. Large strings of zeroes are * eaten 256 at a time; this is less efficient than it could be, * but seems implausible. We presume that DIGIT_BIT is at least 27. * The first multiplication, by up to 10**7, is done with a * one-DIGIT multiply (this presumes that DIGIT_BIT >= 24). */ n = numZeros + 1; mp_mul_d (bignumRepPtr, (mp_digit) pow10_wide[n&0x7], bignumRepPtr); for (i = 3; i <= 7; ++i) { if (n & (1 << i)) { mp_mul (bignumRepPtr, pow5+i, bignumRepPtr); } } while (n >= 256) { mp_mul (bignumRepPtr, pow5+8, bignumRepPtr); n -= 256; } mp_mul_2d (bignumRepPtr, (int)(numZeros+1)&~0x7, bignumRepPtr); } return bignumFlag; } /* *---------------------------------------------------------------------- * * MakeLowPrecisionDouble -- * * Makes the double precision number, signum*significand*10**exponent. * * Results: * Returns the constructed number. * * Common cases, where there are few enough digits that the number can * be represented with at most roundoff, are handled specially here. * If the number requires more than one rounded operation to compute, * the code promotes the significand to a bignum and calls * MakeHighPrecisionDouble to do it instead. * *---------------------------------------------------------------------- */ static double MakeLowPrecisionDouble( int signum, /* 1 if the number is negative, 0 otherwise */ Tcl_WideUInt significand, /* Significand of the number */ int numSigDigs, /* Number of digits in the significand */ int exponent ) /* Power of ten */ { double retval; /* Value of the number */ mp_int significandBig; /* Significand expressed as a bignum */ /* * With gcc on x86, the floating point rounding mode is double-extended. * This causes the result of double-precision calculations to be rounded * twice: once to the precision of double-extended and then again to the * precision of double. Double-rounding introduces gratuitous errors of * 1 ulp, so we need to change rounding mode to 53-bits. */ #if defined(__GNUC__) && defined(__i386) fpu_control_t roundTo53Bits = 0x027f; fpu_control_t oldRoundingMode; _FPU_GETCW( oldRoundingMode ); _FPU_SETCW( roundTo53Bits ); #endif /* Test for the easy cases */ if ( numSigDigs <= DBL_DIG ) { if ( exponent >= 0 ) { if ( exponent <= mmaxpow ) { /* * The significand is an exact integer, and so is * 10**exponent. The product will be correct to within * 1/2 ulp without special handling. */ retval = (double)(Tcl_WideInt)significand * pow10[ exponent ]; goto returnValue; } else { int diff = DBL_DIG - numSigDigs; if ( exponent-diff <= mmaxpow ) { /* * 10**exponent is not an exact integer, but * 10**(exponent-diff) is exact, and so is * significand*10**diff, so we can still compute * the value with only one roundoff. */ volatile double factor = (double)(Tcl_WideInt)significand * pow10[diff]; retval = factor * pow10[exponent-diff]; goto returnValue; } } } else { if ( exponent >= -mmaxpow ) { /* * 10**-exponent is an exact integer, and so is the * significand. Compute the result by one division, * again with only one rounding. */ retval = (double)(Tcl_WideInt)significand / pow10[-exponent]; goto returnValue; } } } /* * All the easy cases have failed. Promote ths significand * to bignum and call MakeHighPrecisionDouble to do it the hard way. */ TclBNInitBignumFromWideUInt (&significandBig, significand); retval = MakeHighPrecisionDouble( 0, &significandBig, numSigDigs, exponent ); /* Come here to return the computed value */ returnValue: if ( signum ) { retval = -retval; } /* On gcc on x86, restore the floating point mode word. */ #if defined(__GNUC__) && defined(__i386) _FPU_SETCW( oldRoundingMode ); #endif return retval; } /* *---------------------------------------------------------------------- * * MakeHighPrecisionDouble -- * * Makes the double precision number, signum*significand*10**exponent. * * Results: * Returns the constructed number. * * MakeHighPrecisionDouble is used when arbitrary-precision arithmetic * is needed to ensure correct rounding. It begins by calculating a * low-precision approximation to the desired number, and then refines * the answer in high precision. * *---------------------------------------------------------------------- */ static double MakeHighPrecisionDouble( int signum, /* 1=negative, 0=nonnegative */ mp_int* significand, /* Exact significand of the number */ int numSigDigs, /* Number of significant digits */ int exponent ) /* Power of 10 by which to multiply */ { double retval; int machexp; /* Machine exponent of a power of 10 */ /* * With gcc on x86, the floating point rounding mode is double-extended. * This causes the result of double-precision calculations to be rounded * twice: once to the precision of double-extended and then again to the * precision of double. Double-rounding introduces gratuitous errors of * 1 ulp, so we need to change rounding mode to 53-bits. */ #if defined(__GNUC__) && defined(__i386) fpu_control_t roundTo53Bits = 0x027f; fpu_control_t oldRoundingMode; _FPU_GETCW( oldRoundingMode ); _FPU_SETCW( roundTo53Bits ); #endif /* Quick checks for over/underflow */ if ( numSigDigs + exponent - 1 > maxDigits ) { retval = HUGE_VAL; goto returnValue; } if ( numSigDigs + exponent - 1 < minDigits ) { retval = 0; goto returnValue; } /* * Develop a first approximation to the significand. It is tempting * simply to force bignum to double, but that will overflow on input * numbers like 1.[string repeat 0 1000]1; while this is a not terribly * likely scenario, we still have to deal with it. Use fraction and * exponent instead. Once we have the significand, multiply by * 10**exponent. Test for overflow. Convert back to a double, and * test for underflow. */ retval = BignumToBiasedFrExp( significand, &machexp ); retval = Pow10TimesFrExp( exponent, retval, &machexp ); if ( machexp > DBL_MAX_EXP * log2FLT_RADIX ) { retval = HUGE_VAL; goto returnValue; } retval = SafeLdExp( retval, machexp ); if ( retval < tiny ) { retval = tiny; } /* * Refine the result twice. (The second refinement should be * necessary only if the best approximation is a power of 2 * minus 1/2 ulp). */ retval = RefineApproximation( retval, significand, exponent ); retval = RefineApproximation( retval, significand, exponent ); /* Come here to return the computed value */ returnValue: if ( signum ) { retval = -retval; } /* On gcc on x86, restore the floating point mode word. */ #if defined(__GNUC__) && defined(__i386) _FPU_SETCW( oldRoundingMode ); #endif return retval; } /* *---------------------------------------------------------------------- * * MakeNaN -- * * Makes a "Not a Number" given a set of bits to put in the * tag bits * * Note that a signalling NaN is never returned. * *---------------------------------------------------------------------- */ #ifdef IEEE_FLOATING_POINT static double MakeNaN( int signum, /* Sign bit (1=negative, 0=nonnegative */ Tcl_WideUInt tags ) /* Tag bits to put in the NaN */ { union { Tcl_WideUInt iv; double dv; } theNaN; theNaN.iv = tags; theNaN.iv &= ( ((Tcl_WideUInt) 1) << 51 ) - 1; if ( signum ) { theNaN.iv |= ((Tcl_WideUInt) (0x8000 | NAN_START)) << 48; } else { theNaN.iv |= ((Tcl_WideUInt) NAN_START) << 48; } return theNaN.dv; } #endif /* *---------------------------------------------------------------------- * * RefineApproximation -- * * Given a poor approximation to a floating point number, returns * a better one (The better approximation is correct to within * 1 ulp, and is entirely correct if the poor approximation is * correct to 1 ulp.) * * Results: * Returns the improved result. * *---------------------------------------------------------------------- */ static double RefineApproximation( double approxResult, /* Approximate result of conversion */ mp_int* exactSignificand, /* Integer significand */ int exponent ) /* Power of 10 to multiply by significand */ { int M2, M5; /* Powers of 2 and of 5 needed to put * the decimal and binary numbers over * a common denominator. */ double significand; /* Sigificand of the binary number */ int binExponent; /* Exponent of the binary number */ int msb; /* Most significant bit position of an * intermediate result */ int nDigits; /* Number of mp_digit's in an intermediate * result */ mp_int twoMv; /* Approx binary value expressed as an * exact integer scaled by the multiplier 2M */ mp_int twoMd; /* Exact decimal value expressed as an * exact integer scaled by the multiplier 2M */ int scale; /* Scale factor for M */ int multiplier; /* Power of two to scale M */ double num, den; /* Numerator and denominator of the * correction term */ double quot; /* Correction term */ double minincr; /* Lower bound on the absolute value * of the correction term. */ int i; /* * The first approximation is always low. If we find that * it's HUGE_VAL, we're done. */ if ( approxResult == HUGE_VAL ) { return approxResult; } /* * Find a common denominator for the decimal and binary fractions. * The common denominator will be 2**M2 + 5**M5. */ significand = frexp( approxResult, &binExponent ); i = mantBits - binExponent; if ( i < 0 ) { M2 = 0; } else { M2 = i; } if ( exponent > 0 ) { M5 = 0; } else { M5 = -exponent; if ( (M5-1) > M2 ) { M2 = M5-1; } } /* * The floating point number is significand*2**binExponent. * Compute the large integer significand*2**(binExponent+M2+1) * The 2**-1 bit of the significand (the most significant) * corresponds to the 2**(binExponent+M2 + 1) bit of 2*M2*v. * Allocate enough digits to hold that quantity, then * convert the significand to a large integer, scaled * appropriately. Then multiply by the appropriate power of 5. */ msb = binExponent + M2; /* 1008 */ nDigits = msb / DIGIT_BIT + 1; mp_init_size( &twoMv, nDigits ); i = ( msb % DIGIT_BIT + 1 ); twoMv.used = nDigits; significand *= SafeLdExp( 1.0, i ); while ( -- nDigits >= 0 ) { twoMv.dp[nDigits] = (mp_digit) significand; significand -= (mp_digit) significand; significand = SafeLdExp( significand, DIGIT_BIT ); } for ( i = 0; i <= 8; ++i ) { if ( M5 & ( 1 << i ) ) { mp_mul( &twoMv, pow5+i, &twoMv ); } } /* * Collect the decimal significand as a high precision integer. * The least significant bit corresponds to bit M2+exponent+1 * so it will need to be shifted left by that many bits after * being multiplied by 5**(M5+exponent). */ mp_init_copy( &twoMd, exactSignificand ); for ( i = 0; i <= 8; ++i ) { if ( (M5+exponent) & ( 1 << i ) ) { mp_mul( &twoMd, pow5+i, &twoMd ); } } mp_mul_2d( &twoMd, M2+exponent+1, &twoMd ); mp_sub( &twoMd, &twoMv, &twoMd ); /* * The result, 2Mv-2Md, needs to be divided by 2M to yield a correction * term. Because 2M may well overflow a double, we need to scale the * denominator by a factor of 2**binExponent-mantBits */ scale = binExponent - mantBits - 1; mp_set( &twoMv, 1 ); for ( i = 0; i <= 8; ++i ) { if ( M5 & ( 1 << i ) ) { mp_mul( &twoMv, pow5+i, &twoMv ); } } multiplier = M2 + scale + 1; if ( multiplier > 0 ) { mp_mul_2d( &twoMv, multiplier, &twoMv ); } else if ( multiplier < 0 ) { mp_div_2d( &twoMv, -multiplier, &twoMv, NULL ); } /* * If the result is less than unity, the error is less than 1/2 unit * in the last place, so there's no correction to make. */ if ( mp_cmp_mag( &twoMd, &twoMv ) == MP_LT ) { return approxResult; } /* * Convert the numerator and denominator of the corrector term * accurately to floating point numbers. */ num = TclBignumToDouble( &twoMd ); den = TclBignumToDouble( &twoMv ); quot = SafeLdExp( num/den, scale ); minincr = SafeLdExp( 1.0, binExponent - mantBits ); if ( quot < 0. && quot > -minincr ) { quot = -minincr; } else if ( quot > 0. && quot < minincr ) { quot = minincr; } mp_clear( &twoMd ); mp_clear( &twoMv ); return approxResult + quot; } /* *---------------------------------------------------------------------- * * TclDoubleDigits -- * * Converts a double to a string of digits. * * Results: * Returns the position of the character in the string after which the * decimal point should appear. Since the string contains only * significant digits, the position may be less than zero or greater than * the length of the string. * * Side effects: * Stores the digits in the given buffer and sets 'signum' according to * the sign of the number. * *---------------------------------------------------------------------- */ int TclDoubleDigits( char * string, /* Buffer in which to store the result, * must have at least 18 chars */ double v, /* Number to convert. Must be * finite, and not NaN */ int *signum ) /* Output: 1 if the number is negative. * Should handle -0 correctly on the * IEEE architecture. */ { int e; /* Power of FLT_RADIX that satisfies * v = f * FLT_RADIX**e */ int lowOK, highOK; mp_int r; /* Scaled significand. */ mp_int s; /* Divisor such that v = r / s */ int smallestSig; /* Flag == 1 iff v's significand is * the smallest that can be represented. */ mp_int mplus; /* Scaled epsilon: (r + 2* mplus) == v(+) * where v(+) is the floating point successor * of v. */ mp_int mminus; /* Scaled epsilon: (r - 2*mminus) == v(-) * where v(-) is the floating point * predecessor of v. */ mp_int temp; int rfac2 = 0; /* Powers of 2 and 5 by which large */ int rfac5 = 0; /* integers should be scaled. */ int sfac2 = 0; int sfac5 = 0; int mplusfac2 = 0; int mminusfac2 = 0; char c; int i, k, n; /* Split the number into absolute value and signum. */ v = AbsoluteValue(v, signum); /* * Handle zero specially. */ if ( v == 0.0 ) { *string++ = '0'; *string++ = '\0'; return 1; } /* * Find a large integer r, and integer e, such that * v = r * FLT_RADIX**e * and r is as small as possible. Also determine whether the * significand is the smallest possible. */ smallestSig = GetIntegerTimesPower(v, &r, &e); lowOK = highOK = (mp_iseven(&r)); /* * We are going to want to develop integers r, s, mplus, and mminus such * that v = r / s, v(+)-v / 2 = mplus / s; v-v(-) / 2 = mminus / s and * then scale either s or r, mplus, mminus by an appropriate power of ten. * * We actually do this by keeping track of the powers of 2 and 5 by which * f is multiplied to yield v and by which 1 is multiplied to yield s, * mplus, and mminus. */ if (e >= 0) { int bits = e * log2FLT_RADIX; if (!smallestSig) { /* * Normal case, m+ and m- are both FLT_RADIX**e */ rfac2 = bits + 1; sfac2 = 1; mplusfac2 = bits; mminusfac2 = bits; } else { /* * If f is equal to the smallest significand, then we need another * factor of FLT_RADIX in s to cope with stepping to the next * smaller exponent when going to e's predecessor. */ rfac2 = bits + log2FLT_RADIX + 1; sfac2 = 1 + log2FLT_RADIX; mplusfac2 = bits + log2FLT_RADIX; mminusfac2 = bits; } } else { /* * v has digits after the binary point */ if (e <= DBL_MIN_EXP-DBL_MANT_DIG || !smallestSig) { /* * Either f isn't the smallest significand or e is the smallest * exponent. mplus and mminus will both be 1. */ rfac2 = 1; sfac2 = 1 - e * log2FLT_RADIX; mplusfac2 = 0; mminusfac2 = 0; } else { /* * f is the smallest significand, but e is not the smallest * exponent. We need to scale by FLT_RADIX again to cope with the * fact that v's predecessor has a smaller exponent. */ rfac2 = 1 + log2FLT_RADIX; sfac2 = 1 + log2FLT_RADIX * (1 - e); mplusfac2 = FLT_RADIX; mminusfac2 = 0; } } /* * Estimate the highest power of ten that will be needed to hold the * result. */ k = (int) ceil(log(v) / log(10.)); if (k >= 0) { sfac2 += k; sfac5 = k; } else { rfac2 -= k; mplusfac2 -= k; mminusfac2 -= k; rfac5 = -k; } /* * Scale r, s, mplus, mminus by the appropriate powers of 2 and 5. */ mp_init_set(&mplus, 1); for (i=0 ; i<=8 ; ++i) { if (rfac5 & (1 << i)) { mp_mul(&mplus, pow5+i, &mplus); } } mp_mul(&r, &mplus, &r); mp_mul_2d(&r, rfac2, &r); mp_init_copy(&mminus, &mplus); mp_mul_2d(&mplus, mplusfac2, &mplus); mp_mul_2d(&mminus, mminusfac2, &mminus); mp_init_set(&s, 1); for (i=0 ; i<=8 ; ++i) { if (sfac5 & (1 << i)) { mp_mul(&s, pow5+i, &s); } } mp_mul_2d(&s, sfac2, &s); /* * It is possible for k to be off by one because we used an inexact * logarithm. */ mp_init(&temp); mp_add(&r, &mplus, &temp); i = mp_cmp_mag(&temp, &s); if (i>0 || (highOK && i==0)) { mp_mul_d(&s, 10, &s); ++k; } else { mp_mul_d(&temp, 10, &temp); i = mp_cmp_mag(&temp, &s); if (i<0 || (highOK && i==0)) { mp_mul_d(&r, 10, &r); mp_mul_d(&mplus, 10, &mplus); mp_mul_d(&mminus, 10, &mminus); --k; } } /* * At this point, k contains the power of ten by which we're scaling the * result. r/s is at least 1/10 and strictly less than ten, and v = r/s * * 10**k. mplus and mminus give the rounding limits. */ for (;;) { int tc1, tc2; mp_mul_d(&r, 10, &r); mp_div(&r, &s, &temp, &r); /* temp = 10r / s; r = 10r mod s */ i = temp.dp[0]; mp_mul_d(&mplus, 10, &mplus); mp_mul_d(&mminus, 10, &mminus); tc1 = mp_cmp_mag(&r, &mminus); if (lowOK) { tc1 = (tc1 <= 0); } else { tc1 = (tc1 < 0); } mp_add(&r, &mplus, &temp); tc2 = mp_cmp_mag(&temp, &s); if (highOK) { tc2 = (tc2 >= 0); } else { tc2= (tc2 > 0); } if ( ! tc1 ) { if ( !tc2 ) { *string++ = '0' + i; } else { c = (char) (i + '1'); break; } } else { if (!tc2) { c = (char) (i + '0'); } else { mp_mul_2d(&r, 1, &r); n = mp_cmp_mag(&r, &s); if (n < 0) { c = (char) (i + '0'); } else { c = (char) (i + '1'); } } break; } }; *string++ = c; *string++ = '\0'; /* * Free memory, and return. */ mp_clear_multi(&r, &s, &mplus, &mminus, &temp, NULL); return k; } /* *---------------------------------------------------------------------- * * AbsoluteValue -- * * Splits a 'double' into its absolute value and sign. * * Results: * Returns the absolute value. * * Side effects: * Stores the signum in '*signum'. * *---------------------------------------------------------------------- */ static double AbsoluteValue (double v, /* Number to split */ int* signum) /* (Output) Sign of the number 1=-, 0=+ */ { /* * Take the absolute value of the number, and report the number's sign. * Take special steps to preserve signed zeroes in IEEE floating point. * (We can't use fpclassify, because that's a C9x feature and we still * have to build on C89 compilers.) */ #ifndef IEEE_FLOATING_POINT if (v >= 0.0) { *signum = 0; } else { *signum = 1; v = -v; } #else union { Tcl_WideUInt iv; double dv; } bitwhack; bitwhack.dv = v; if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) { *signum = 1; bitwhack.iv &= ~((Tcl_WideUInt) 1 << 63); v = bitwhack.dv; } else { *signum = 0; } #endif return v; } /* *---------------------------------------------------------------------- * * GetIntegerTimesPower -- * * Converts a floating point number to an exact integer times a * power of the floating point radix. * * Results: * Returns 1 if it converted the smallest significand, 0 otherwise. * * Side effects: * Initializes the integer value (does not just assign it), * and stores the exponent. * *---------------------------------------------------------------------- */ static int GetIntegerTimesPower(double v, /* Value to convert */ mp_int* rPtr, /* (Output) Integer value */ int* ePtr) /* (Output) Power of FLT_RADIX by which * r must be multiplied to yield v*/ { double a; double f; int e; int i; int n; /* * Develop f and e such that v = f * FLT_RADIX**e, with * 1.0/FLT_RADIX <= f < 1. */ f = frexp(v, &e); #if FLT_RADIX > 2 n = e % log2FLT_RADIX; if (n > 0) { n -= log2FLT_RADIX; e += 1; f *= ldexp(1.0, n); } e = (e - n) / log2FLT_RADIX; #endif if (f == 1.0) { f = 1.0 / FLT_RADIX; e += 1; } /* * If the original number was denormalized, adjust e and f to be denormal * as well. */ if (e < DBL_MIN_EXP) { n = mantBits + (e - DBL_MIN_EXP)*log2FLT_RADIX; f = ldexp(f, (e - DBL_MIN_EXP)*log2FLT_RADIX); e = DBL_MIN_EXP; n = (n + DIGIT_BIT - 1) / DIGIT_BIT; } else { n = mantDIGIT; } /* * Now extract the base-2**DIGIT_BIT digits of f into a multi-precision * integer r. Preserve the invariant v = r * 2**rfac2 * FLT_RADIX**e by * adjusting e. */ a = f; n = mantDIGIT; mp_init_size(rPtr, n); rPtr->used = n; rPtr->sign = MP_ZPOS; i = (mantBits % DIGIT_BIT); if (i == 0) { i = DIGIT_BIT; } while (n > 0) { a *= ldexp(1.0, i); i = DIGIT_BIT; rPtr->dp[--n] = (mp_digit) a; a -= (mp_digit) a; } *ePtr = e - DBL_MANT_DIG; return (f == 1.0 / FLT_RADIX); } /* *---------------------------------------------------------------------- * * TclInitDoubleConversion -- * * Initializes constants that are needed for conversions to and from * 'double' * * Results: * None. * * Side effects: * The log base 2 of the floating point radix, the number of bits in a * double mantissa, and a table of the powers of five and ten are * computed and stored. * *---------------------------------------------------------------------- */ void TclInitDoubleConversion(void) { int i; int x; Tcl_WideUInt u; double d; /* * Initialize table of powers of 10 expressed as wide integers. */ maxpow10_wide = (int) floor(sizeof (Tcl_WideUInt) * CHAR_BIT * log (2.) / log (10.)); pow10_wide = (Tcl_WideUInt*) Tcl_Alloc ((maxpow10_wide + 1) * sizeof (Tcl_WideUInt)); u = 1; for (i = 0; i < maxpow10_wide; ++i) { pow10_wide[i] = u; u *= 10; } pow10_wide[i] = u; /* * Determine how many bits of precision a double has, and how many * decimal digits that represents. */ if ( frexp( (double) FLT_RADIX, &log2FLT_RADIX ) != 0.5 ) { Tcl_Panic( "This code doesn't work on a decimal machine!" ); } --log2FLT_RADIX; mantBits = DBL_MANT_DIG * log2FLT_RADIX; d = 1.0; /* * Initialize a table of powers of ten that can be exactly represented * in a double. */ x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log( 5.0 )); if ( x < MAXPOW ) { mmaxpow = x; } else { mmaxpow = MAXPOW; } for (i=0 ; i<=mmaxpow ; ++i) { pow10[i] = d; d *= 10.0; } /* Initialize a table of large powers of five. */ for ( i = 0; i < 9; ++i ) { mp_init( pow5 + i ); } mp_set( pow5, 5 ); for ( i = 0; i < 8; ++i ) { mp_sqr( pow5+i, pow5+i+1 ); } /* * Determine the number of decimal digits to the left and right of the * decimal point in the largest and smallest double, the smallest double * that differs from zero, and the number of mp_digits needed to represent * the significand of a double. */ tiny = SafeLdExp( 1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits ); maxDigits = (int) ((DBL_MAX_EXP * log((double) FLT_RADIX) + 0.5 * log(10.)) / log( 10. )); minDigits = (int) floor ( ( DBL_MIN_EXP - DBL_MANT_DIG ) * log( (double) FLT_RADIX ) / log( 10. ) ); mantDIGIT = ( mantBits + DIGIT_BIT - 1 ) / DIGIT_BIT; log10_DIGIT_MAX = (int) floor (DIGIT_BIT * log(2.) / log (10.)); } /* *---------------------------------------------------------------------- * * TclFinalizeDoubleConversion -- * * Cleans up this file on exit. * * Results: * None * * Side effects: * Memory allocated by TclInitDoubleConversion is freed. * *---------------------------------------------------------------------- */ void TclFinalizeDoubleConversion() { int i; Tcl_Free ((char*)pow10_wide); for ( i = 0; i < 9; ++i ) { mp_clear( pow5 + i ); } } /* *---------------------------------------------------------------------- * * TclInitBignumFromDouble -- * * Extracts the integer part of a double and converts it to * an arbitrary precision integer. * * Results: * None. * * Side effects: * Initializes the bignum supplied, and stores the converted number * in it. * *---------------------------------------------------------------------- */ int TclInitBignumFromDouble(Tcl_Interp *interp, /* For error message */ double d, /* Number to convert */ mp_int* b) /* Place to store the result */ { double fract; int expt; /* Infinite values can't convert to bignum */ if (TclIsInfinite(d)) { if (interp != NULL) { char *s = "integer value too large to represent"; Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1)); Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", s, NULL); } return TCL_ERROR; } fract = frexp(d,&expt); if (expt <= 0) { mp_init(b); mp_zero(b); } else { Tcl_WideInt w = (Tcl_WideInt) ldexp(fract, mantBits); int shift = expt - mantBits; TclBNInitBignumFromWideInt(b, w); if (shift < 0) { mp_div_2d(b, -shift, b, NULL); } else if (shift > 0) { mp_mul_2d(b, shift, b); } } return TCL_OK; } /* *---------------------------------------------------------------------- * * TclBignumToDouble -- * * Convert an arbitrary-precision integer to a native floating point * number. * * Results: * Returns the converted number. Sets errno to ERANGE if the number is * too large to convert. * *---------------------------------------------------------------------- */ double TclBignumToDouble(mp_int *a) /* Integer to convert. */ { mp_int b; int bits; int shift; int i; double r; /* * Determine how many bits we need, and extract that many from the input. * Round to nearest unit in the last place. */ bits = mp_count_bits(a); if (bits > DBL_MAX_EXP*log2FLT_RADIX) { errno = ERANGE; if (a->sign == MP_ZPOS) { return HUGE_VAL; } else { return -HUGE_VAL; } } shift = mantBits + 1 - bits; mp_init(&b); if (shift > 0) { mp_mul_2d(a, shift, &b); } else if (shift < 0) { mp_div_2d(a, -shift, &b, NULL); } else { mp_copy(a, &b); } mp_add_d(&b, 1, &b); mp_div_2d(&b, 1, &b, NULL); /* * Accumulate the result, one mp_digit at a time. */ r = 0.0; for (i=b.used-1 ; i>=0 ; --i) { r = ldexp(r, DIGIT_BIT) + b.dp[i]; } mp_clear(&b); /* * Scale the result to the correct number of bits. */ r = ldexp(r, bits - mantBits); /* * Return the result with the appropriate sign. */ if (a->sign == MP_ZPOS) { return r; } else { return -r; } } double TclCeil(mp_int *a) /* Integer to convert. */ { double r = 0.0; mp_int b; mp_init(&b); if (mp_cmp_d(a, 0) == MP_LT) { mp_neg(a, &b); r = -TclFloor(&b); } else { int bits = mp_count_bits(a); if (bits > DBL_MAX_EXP*log2FLT_RADIX) { r = HUGE_VAL; } else { int i, exact = 1, shift = mantBits - bits; if (shift > 0) { mp_mul_2d(a, shift, &b); } else if (shift < 0) { mp_int d; mp_init(&d); mp_div_2d(a, -shift, &b, &d); exact = mp_iszero(&d); mp_clear(&d); } else { mp_copy(a, &b); } if (!exact) { mp_add_d(&b, 1, &b); } for (i=b.used-1 ; i>=0 ; --i) { r = ldexp(r, DIGIT_BIT) + b.dp[i]; } r = ldexp(r, bits - mantBits); } } mp_clear(&b); return r; } double TclFloor(mp_int *a) /* Integer to convert. */ { double r = 0.0; mp_int b; mp_init(&b); if (mp_cmp_d(a, 0) == MP_LT) { mp_neg(a, &b); r = -TclCeil(&b); } else { int bits = mp_count_bits(a); if (bits > DBL_MAX_EXP*log2FLT_RADIX) { r = DBL_MAX; } else { int i, shift = mantBits - bits; if (shift > 0) { mp_mul_2d(a, shift, &b); } else if (shift < 0) { mp_div_2d(a, -shift, &b, NULL); } else { mp_copy(a, &b); } for (i=b.used-1 ; i>=0 ; --i) { r = ldexp(r, DIGIT_BIT) + b.dp[i]; } r = ldexp(r, bits - mantBits); } } mp_clear(&b); return r; } /* *---------------------------------------------------------------------- * * BignumToBiasedFrExp -- * * Convert an arbitrary-precision integer to a native floating * point number in the range [0.5,1) times a power of two. * NOTE: Intentionally converts to a number that's a few * ulp too small, so that RefineApproximation will not overflow * near the high end of the machine's arithmetic range. * * Results: * Returns the converted number. * * Side effects: * Stores the exponent of two in 'machexp'. * *---------------------------------------------------------------------- */ static double BignumToBiasedFrExp( mp_int* a, /* Integer to convert */ int* machexp ) /* Power of two */ { mp_int b; int bits; int shift; int i; double r; /* Determine how many bits we need, and extract that many from * the input. Round to nearest unit in the last place. */ bits = mp_count_bits( a ); shift = mantBits - 2 - bits; mp_init( &b ); if ( shift > 0 ) { mp_mul_2d( a, shift, &b ); } else if ( shift < 0 ) { mp_div_2d( a, -shift, &b, NULL ); } else { mp_copy( a, &b ); } /* Accumulate the result, one mp_digit at a time */ r = 0.0; for ( i = b.used-1; i >= 0; --i ) { r = ldexp( r, DIGIT_BIT ) + b.dp[i]; } mp_clear( &b ); /* Return the result with the appropriate sign. */ *machexp = bits - mantBits + 2; if ( a->sign == MP_ZPOS ) { return r; } else { return -r; } } /* *---------------------------------------------------------------------- * * Pow10TimesFrExp -- * * Multiply a power of ten by a number expressed as fraction and * exponent. * * Results: * Returns the significand of the result. * * Side effects: * Overwrites the 'machexp' parameter with the exponent of the * result. * * Assumes that 'exponent' is such that 10**exponent would be a double, * even though 'fraction*10**(machexp+exponent)' might overflow. * *---------------------------------------------------------------------- */ static double Pow10TimesFrExp( int exponent, /* Power of 10 to multiply by */ double fraction, /* Significand of multiplicand */ int* machexp ) /* On input, exponent of multiplicand. * On output, exponent of result. */ { int i, j; int expt = *machexp; double retval = fraction; if ( exponent > 0 ) { /* Multiply by 10**exponent */ retval = frexp( retval * pow10[ exponent & 0xf ], &j ); expt += j; for ( i = 4; i < 9; ++i ) { if ( exponent & (1<