/* * tclUtil.c -- * * This file contains utility procedures that are used by many Tcl * commands. * * Copyright (c) 1987-1993 The Regents of the University of California. * Copyright (c) 1994-1998 Sun Microsystems, Inc. * Copyright (c) 2001 by Kevin B. Kenny. All rights reserved. * * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tclUtil.c,v 1.36.2.1 2003/04/16 23:31:46 dgp Exp $ */ #include "tclInt.h" #include "tclPort.h" /* * The following variable holds the full path name of the binary * from which this application was executed, or NULL if it isn't * know. The value of the variable is set by the procedure * Tcl_FindExecutable. The storage space is dynamically allocated. */ char *tclExecutableName = NULL; char *tclNativeExecutableName = NULL; /* * The following values are used in the flags returned by Tcl_ScanElement * and used by Tcl_ConvertElement. The value TCL_DONT_USE_BRACES is also * defined in tcl.h; make sure its value doesn't overlap with any of the * values below. * * TCL_DONT_USE_BRACES - 1 means the string mustn't be enclosed in * braces (e.g. it contains unmatched braces, * or ends in a backslash character, or user * just doesn't want braces); handle all * special characters by adding backslashes. * USE_BRACES - 1 means the string contains a special * character that can be handled simply by * enclosing the entire argument in braces. * BRACES_UNMATCHED - 1 means that braces aren't properly matched * in the argument. */ #define USE_BRACES 2 #define BRACES_UNMATCHED 4 /* * The following values determine the precision used when converting * floating-point values to strings. This information is linked to all * of the tcl_precision variables in all interpreters via the procedure * TclPrecTraceProc. */ static char precisionString[10] = "12"; /* The string value of all the tcl_precision * variables. */ static char precisionFormat[10] = "%.12g"; /* The format string actually used in calls * to sprintf. */ TCL_DECLARE_MUTEX(precisionMutex) /* * Prototypes for procedures defined later in this file. */ static void UpdateStringOfEndOffset _ANSI_ARGS_((Tcl_Obj* objPtr)); static int SetEndOffsetFromAny _ANSI_ARGS_((Tcl_Interp* interp, Tcl_Obj* objPtr)); /* * The following is the Tcl object type definition for an object * that represents a list index in the form, "end-offset". It is * used as a performance optimization in TclGetIntForIndex. The * internal rep is an integer, so no memory management is required * for it. */ Tcl_ObjType tclEndOffsetType = { "end-offset", /* name */ (Tcl_FreeInternalRepProc*) NULL, /* freeIntRepProc */ (Tcl_DupInternalRepProc*) NULL, /* dupIntRepProc */ UpdateStringOfEndOffset, /* updateStringProc */ SetEndOffsetFromAny }; /* *---------------------------------------------------------------------- * * TclFindElement -- * * Given a pointer into a Tcl list, locate the first (or next) * element in the list. * * Results: * The return value is normally TCL_OK, which means that the * element was successfully located. If TCL_ERROR is returned * it means that list didn't have proper list structure; * the interp's result contains a more detailed error message. * * If TCL_OK is returned, then *elementPtr will be set to point to the * first element of list, and *nextPtr will be set to point to the * character just after any white space following the last character * that's part of the element. If this is the last argument in the * list, then *nextPtr will point just after the last character in the * list (i.e., at the character at list+listLength). If sizePtr is * non-NULL, *sizePtr is filled in with the number of characters in the * element. If the element is in braces, then *elementPtr will point * to the character after the opening brace and *sizePtr will not * include either of the braces. If there isn't an element in the list, * *sizePtr will be zero, and both *elementPtr and *termPtr will point * just after the last character in the list. Note: this procedure does * NOT collapse backslash sequences. * * Side effects: * None. * *---------------------------------------------------------------------- */ int TclFindElement(interp, list, listLength, elementPtr, nextPtr, sizePtr, bracePtr) Tcl_Interp *interp; /* Interpreter to use for error reporting. * If NULL, then no error message is left * after errors. */ CONST char *list; /* Points to the first byte of a string * containing a Tcl list with zero or more * elements (possibly in braces). */ int listLength; /* Number of bytes in the list's string. */ CONST char **elementPtr; /* Where to put address of first significant * character in first element of list. */ CONST char **nextPtr; /* Fill in with location of character just * after all white space following end of * argument (next arg or end of list). */ int *sizePtr; /* If non-zero, fill in with size of * element. */ int *bracePtr; /* If non-zero, fill in with non-zero/zero * to indicate that arg was/wasn't * in braces. */ { CONST char *p = list; CONST char *elemStart; /* Points to first byte of first element. */ CONST char *limit; /* Points just after list's last byte. */ int openBraces = 0; /* Brace nesting level during parse. */ int inQuotes = 0; int size = 0; /* lint. */ int numChars; CONST char *p2; /* * Skim off leading white space and check for an opening brace or * quote. We treat embedded NULLs in the list as bytes belonging to * a list element. */ limit = (list + listLength); while ((p < limit) && (isspace(UCHAR(*p)))) { /* INTL: ISO space. */ p++; } if (p == limit) { /* no element found */ elemStart = limit; goto done; } if (*p == '{') { openBraces = 1; p++; } else if (*p == '"') { inQuotes = 1; p++; } elemStart = p; if (bracePtr != 0) { *bracePtr = openBraces; } /* * Find element's end (a space, close brace, or the end of the string). */ while (p < limit) { switch (*p) { /* * Open brace: don't treat specially unless the element is in * braces. In this case, keep a nesting count. */ case '{': if (openBraces != 0) { openBraces++; } break; /* * Close brace: if element is in braces, keep nesting count and * quit when the last close brace is seen. */ case '}': if (openBraces > 1) { openBraces--; } else if (openBraces == 1) { size = (p - elemStart); p++; if ((p >= limit) || isspace(UCHAR(*p))) { /* INTL: ISO space. */ goto done; } /* * Garbage after the closing brace; return an error. */ if (interp != NULL) { char buf[100]; p2 = p; while ((p2 < limit) && (!isspace(UCHAR(*p2))) /* INTL: ISO space. */ && (p2 < p+20)) { p2++; } sprintf(buf, "list element in braces followed by \"%.*s\" instead of space", (int) (p2-p), p); Tcl_SetResult(interp, buf, TCL_VOLATILE); } return TCL_ERROR; } break; /* * Backslash: skip over everything up to the end of the * backslash sequence. */ case '\\': { Tcl_UtfBackslash(p, &numChars, NULL); p += (numChars - 1); break; } /* * Space: ignore if element is in braces or quotes; otherwise * terminate element. */ case ' ': case '\f': case '\n': case '\r': case '\t': case '\v': if ((openBraces == 0) && !inQuotes) { size = (p - elemStart); goto done; } break; /* * Double-quote: if element is in quotes then terminate it. */ case '"': if (inQuotes) { size = (p - elemStart); p++; if ((p >= limit) || isspace(UCHAR(*p))) { /* INTL: ISO space */ goto done; } /* * Garbage after the closing quote; return an error. */ if (interp != NULL) { char buf[100]; p2 = p; while ((p2 < limit) && (!isspace(UCHAR(*p2))) /* INTL: ISO space */ && (p2 < p+20)) { p2++; } sprintf(buf, "list element in quotes followed by \"%.*s\" %s", (int) (p2-p), p, "instead of space"); Tcl_SetResult(interp, buf, TCL_VOLATILE); } return TCL_ERROR; } break; } p++; } /* * End of list: terminate element. */ if (p == limit) { if (openBraces != 0) { if (interp != NULL) { Tcl_SetResult(interp, "unmatched open brace in list", TCL_STATIC); } return TCL_ERROR; } else if (inQuotes) { if (interp != NULL) { Tcl_SetResult(interp, "unmatched open quote in list", TCL_STATIC); } return TCL_ERROR; } size = (p - elemStart); } done: while ((p < limit) && (isspace(UCHAR(*p)))) { /* INTL: ISO space. */ p++; } *elementPtr = elemStart; *nextPtr = p; if (sizePtr != 0) { *sizePtr = size; } return TCL_OK; } /* *---------------------------------------------------------------------- * * TclCopyAndCollapse -- * * Copy a string and eliminate any backslashes that aren't in braces. * * Results: * Count characters get copied from src to dst. Along the way, if * backslash sequences are found outside braces, the backslashes are * eliminated in the copy. After scanning count chars from source, a * null character is placed at the end of dst. Returns the number * of characters that got copied. * * Side effects: * None. * *---------------------------------------------------------------------- */ int TclCopyAndCollapse(count, src, dst) int count; /* Number of characters to copy from src. */ CONST char *src; /* Copy from here... */ char *dst; /* ... to here. */ { register char c; int numRead; int newCount = 0; int backslashCount; for (c = *src; count > 0; src++, c = *src, count--) { if (c == '\\') { backslashCount = Tcl_UtfBackslash(src, &numRead, dst); dst += backslashCount; newCount += backslashCount; src += numRead-1; count -= numRead-1; } else { *dst = c; dst++; newCount++; } } *dst = 0; return newCount; } /* *---------------------------------------------------------------------- * * Tcl_SplitList -- * * Splits a list up into its constituent fields. * * Results * The return value is normally TCL_OK, which means that * the list was successfully split up. If TCL_ERROR is * returned, it means that "list" didn't have proper list * structure; the interp's result will contain a more detailed * error message. * * *argvPtr will be filled in with the address of an array * whose elements point to the elements of list, in order. * *argcPtr will get filled in with the number of valid elements * in the array. A single block of memory is dynamically allocated * to hold both the argv array and a copy of the list (with * backslashes and braces removed in the standard way). * The caller must eventually free this memory by calling free() * on *argvPtr. Note: *argvPtr and *argcPtr are only modified * if the procedure returns normally. * * Side effects: * Memory is allocated. * *---------------------------------------------------------------------- */ int Tcl_SplitList(interp, list, argcPtr, argvPtr) Tcl_Interp *interp; /* Interpreter to use for error reporting. * If NULL, no error message is left. */ CONST char *list; /* Pointer to string with list structure. */ int *argcPtr; /* Pointer to location to fill in with * the number of elements in the list. */ CONST char ***argvPtr; /* Pointer to place to store pointer to * array of pointers to list elements. */ { CONST char **argv; CONST char *l; char *p; int length, size, i, result, elSize, brace; CONST char *element; /* * Figure out how much space to allocate. There must be enough * space for both the array of pointers and also for a copy of * the list. To estimate the number of pointers needed, count * the number of space characters in the list. */ for (size = 1, l = list; *l != 0; l++) { if (isspace(UCHAR(*l))) { /* INTL: ISO space. */ size++; } } size++; /* Leave space for final NULL pointer. */ argv = (CONST char **) ckalloc((unsigned) ((size * sizeof(char *)) + (l - list) + 1)); length = strlen(list); for (i = 0, p = ((char *) argv) + size*sizeof(char *); *list != 0; i++) { CONST char *prevList = list; result = TclFindElement(interp, list, length, &element, &list, &elSize, &brace); length -= (list - prevList); if (result != TCL_OK) { ckfree((char *) argv); return result; } if (*element == 0) { break; } if (i >= size) { ckfree((char *) argv); if (interp != NULL) { Tcl_SetResult(interp, "internal error in Tcl_SplitList", TCL_STATIC); } return TCL_ERROR; } argv[i] = p; if (brace) { memcpy((VOID *) p, (VOID *) element, (size_t) elSize); p += elSize; *p = 0; p++; } else { TclCopyAndCollapse(elSize, element, p); p += elSize+1; } } argv[i] = NULL; *argvPtr = argv; *argcPtr = i; return TCL_OK; } /* *---------------------------------------------------------------------- * * Tcl_ScanElement -- * * This procedure is a companion procedure to Tcl_ConvertElement. * It scans a string to see what needs to be done to it (e.g. add * backslashes or enclosing braces) to make the string into a * valid Tcl list element. * * Results: * The return value is an overestimate of the number of characters * that will be needed by Tcl_ConvertElement to produce a valid * list element from string. The word at *flagPtr is filled in * with a value needed by Tcl_ConvertElement when doing the actual * conversion. * * Side effects: * None. * *---------------------------------------------------------------------- */ int Tcl_ScanElement(string, flagPtr) register CONST char *string; /* String to convert to list element. */ register int *flagPtr; /* Where to store information to guide * Tcl_ConvertCountedElement. */ { return Tcl_ScanCountedElement(string, -1, flagPtr); } /* *---------------------------------------------------------------------- * * Tcl_ScanCountedElement -- * * This procedure is a companion procedure to * Tcl_ConvertCountedElement. It scans a string to see what * needs to be done to it (e.g. add backslashes or enclosing * braces) to make the string into a valid Tcl list element. * If length is -1, then the string is scanned up to the first * null byte. * * Results: * The return value is an overestimate of the number of characters * that will be needed by Tcl_ConvertCountedElement to produce a * valid list element from string. The word at *flagPtr is * filled in with a value needed by Tcl_ConvertCountedElement * when doing the actual conversion. * * Side effects: * None. * *---------------------------------------------------------------------- */ int Tcl_ScanCountedElement(string, length, flagPtr) CONST char *string; /* String to convert to Tcl list element. */ int length; /* Number of bytes in string, or -1. */ int *flagPtr; /* Where to store information to guide * Tcl_ConvertElement. */ { int flags, nestingLevel; register CONST char *p, *lastChar; /* * This procedure and Tcl_ConvertElement together do two things: * * 1. They produce a proper list, one that will yield back the * argument strings when evaluated or when disassembled with * Tcl_SplitList. This is the most important thing. * * 2. They try to produce legible output, which means minimizing the * use of backslashes (using braces instead). However, there are * some situations where backslashes must be used (e.g. an element * like "{abc": the leading brace will have to be backslashed. * For each element, one of three things must be done: * * (a) Use the element as-is (it doesn't contain any special * characters). This is the most desirable option. * * (b) Enclose the element in braces, but leave the contents alone. * This happens if the element contains embedded space, or if it * contains characters with special interpretation ($, [, ;, or \), * or if it starts with a brace or double-quote, or if there are * no characters in the element. * * (c) Don't enclose the element in braces, but add backslashes to * prevent special interpretation of special characters. This is a * last resort used when the argument would normally fall under case * (b) but contains unmatched braces. It also occurs if the last * character of the argument is a backslash or if the element contains * a backslash followed by newline. * * The procedure figures out how many bytes will be needed to store * the result (actually, it overestimates). It also collects information * about the element in the form of a flags word. * * Note: list elements produced by this procedure and * Tcl_ConvertCountedElement must have the property that they can be * enclosing in curly braces to make sub-lists. This means, for * example, that we must not leave unmatched curly braces in the * resulting list element. This property is necessary in order for * procedures like Tcl_DStringStartSublist to work. */ nestingLevel = 0; flags = 0; if (string == NULL) { string = ""; } if (length == -1) { length = strlen(string); } lastChar = string + length; p = string; if ((p == lastChar) || (*p == '{') || (*p == '"')) { flags |= USE_BRACES; } for ( ; p < lastChar; p++) { switch (*p) { case '{': nestingLevel++; break; case '}': nestingLevel--; if (nestingLevel < 0) { flags |= TCL_DONT_USE_BRACES|BRACES_UNMATCHED; } break; case '[': case '$': case ';': case ' ': case '\f': case '\n': case '\r': case '\t': case '\v': flags |= USE_BRACES; break; case '\\': if ((p+1 == lastChar) || (p[1] == '\n')) { flags = TCL_DONT_USE_BRACES | BRACES_UNMATCHED; } else { int size; Tcl_UtfBackslash(p, &size, NULL); p += size-1; flags |= USE_BRACES; } break; } } if (nestingLevel != 0) { flags = TCL_DONT_USE_BRACES | BRACES_UNMATCHED; } *flagPtr = flags; /* * Allow enough space to backslash every character plus leave * two spaces for braces. */ return 2*(p-string) + 2; } /* *---------------------------------------------------------------------- * * Tcl_ConvertElement -- * * This is a companion procedure to Tcl_ScanElement. Given * the information produced by Tcl_ScanElement, this procedure * converts a string to a list element equal to that string. * * Results: * Information is copied to *dst in the form of a list element * identical to src (i.e. if Tcl_SplitList is applied to dst it * will produce a string identical to src). The return value is * a count of the number of characters copied (not including the * terminating NULL character). * * Side effects: * None. * *---------------------------------------------------------------------- */ int Tcl_ConvertElement(src, dst, flags) register CONST char *src; /* Source information for list element. */ register char *dst; /* Place to put list-ified element. */ register int flags; /* Flags produced by Tcl_ScanElement. */ { return Tcl_ConvertCountedElement(src, -1, dst, flags); } /* *---------------------------------------------------------------------- * * Tcl_ConvertCountedElement -- * * This is a companion procedure to Tcl_ScanCountedElement. Given * the information produced by Tcl_ScanCountedElement, this * procedure converts a string to a list element equal to that * string. * * Results: * Information is copied to *dst in the form of a list element * identical to src (i.e. if Tcl_SplitList is applied to dst it * will produce a string identical to src). The return value is * a count of the number of characters copied (not including the * terminating NULL character). * * Side effects: * None. * *---------------------------------------------------------------------- */ int Tcl_ConvertCountedElement(src, length, dst, flags) register CONST char *src; /* Source information for list element. */ int length; /* Number of bytes in src, or -1. */ char *dst; /* Place to put list-ified element. */ int flags; /* Flags produced by Tcl_ScanElement. */ { register char *p = dst; register CONST char *lastChar; /* * See the comment block at the beginning of the Tcl_ScanElement * code for details of how this works. */ if (src && length == -1) { length = strlen(src); } if ((src == NULL) || (length == 0)) { p[0] = '{'; p[1] = '}'; p[2] = 0; return 2; } lastChar = src + length; if ((flags & USE_BRACES) && !(flags & TCL_DONT_USE_BRACES)) { *p = '{'; p++; for ( ; src != lastChar; src++, p++) { *p = *src; } *p = '}'; p++; } else { if (*src == '{') { /* * Can't have a leading brace unless the whole element is * enclosed in braces. Add a backslash before the brace. * Furthermore, this may destroy the balance between open * and close braces, so set BRACES_UNMATCHED. */ p[0] = '\\'; p[1] = '{'; p += 2; src++; flags |= BRACES_UNMATCHED; } for (; src != lastChar; src++) { switch (*src) { case ']': case '[': case '$': case ';': case ' ': case '\\': case '"': *p = '\\'; p++; break; case '{': case '}': /* * It may not seem necessary to backslash braces, but * it is. The reason for this is that the resulting * list element may actually be an element of a sub-list * enclosed in braces (e.g. if Tcl_DStringStartSublist * has been invoked), so there may be a brace mismatch * if the braces aren't backslashed. */ if (flags & BRACES_UNMATCHED) { *p = '\\'; p++; } break; case '\f': *p = '\\'; p++; *p = 'f'; p++; continue; case '\n': *p = '\\'; p++; *p = 'n'; p++; continue; case '\r': *p = '\\'; p++; *p = 'r'; p++; continue; case '\t': *p = '\\'; p++; *p = 't'; p++; continue; case '\v': *p = '\\'; p++; *p = 'v'; p++; continue; } *p = *src; p++; } } *p = '\0'; return p-dst; } /* *---------------------------------------------------------------------- * * Tcl_Merge -- * * Given a collection of strings, merge them together into a * single string that has proper Tcl list structured (i.e. * Tcl_SplitList may be used to retrieve strings equal to the * original elements, and Tcl_Eval will parse the string back * into its original elements). * * Results: * The return value is the address of a dynamically-allocated * string containing the merged list. * * Side effects: * None. * *---------------------------------------------------------------------- */ char * Tcl_Merge(argc, argv) int argc; /* How many strings to merge. */ CONST char * CONST *argv; /* Array of string values. */ { # define LOCAL_SIZE 20 int localFlags[LOCAL_SIZE], *flagPtr; int numChars; char *result; char *dst; int i; /* * Pass 1: estimate space, gather flags. */ if (argc <= LOCAL_SIZE) { flagPtr = localFlags; } else { flagPtr = (int *) ckalloc((unsigned) argc*sizeof(int)); } numChars = 1; for (i = 0; i < argc; i++) { numChars += Tcl_ScanElement(argv[i], &flagPtr[i]) + 1; } /* * Pass two: copy into the result area. */ result = (char *) ckalloc((unsigned) numChars); dst = result; for (i = 0; i < argc; i++) { numChars = Tcl_ConvertElement(argv[i], dst, flagPtr[i]); dst += numChars; *dst = ' '; dst++; } if (dst == result) { *dst = 0; } else { dst[-1] = 0; } if (flagPtr != localFlags) { ckfree((char *) flagPtr); } return result; } /* *---------------------------------------------------------------------- * * Tcl_Backslash -- * * Figure out how to handle a backslash sequence. * * Results: * The return value is the character that should be substituted * in place of the backslash sequence that starts at src. If * readPtr isn't NULL then it is filled in with a count of the * number of characters in the backslash sequence. * * Side effects: * None. * *---------------------------------------------------------------------- */ char Tcl_Backslash(src, readPtr) CONST char *src; /* Points to the backslash character of * a backslash sequence. */ int *readPtr; /* Fill in with number of characters read * from src, unless NULL. */ { char buf[TCL_UTF_MAX]; Tcl_UniChar ch; Tcl_UtfBackslash(src, readPtr, buf); TclUtfToUniChar(buf, &ch); return (char) ch; } /* *---------------------------------------------------------------------- * * Tcl_Concat -- * * Concatenate a set of strings into a single large string. * * Results: * The return value is dynamically-allocated string containing * a concatenation of all the strings in argv, with spaces between * the original argv elements. * * Side effects: * Memory is allocated for the result; the caller is responsible * for freeing the memory. * *---------------------------------------------------------------------- */ char * Tcl_Concat(argc, argv) int argc; /* Number of strings to concatenate. */ CONST char * CONST *argv; /* Array of strings to concatenate. */ { int totalSize, i; char *p; char *result; for (totalSize = 1, i = 0; i < argc; i++) { totalSize += strlen(argv[i]) + 1; } result = (char *) ckalloc((unsigned) totalSize); if (argc == 0) { *result = '\0'; return result; } for (p = result, i = 0; i < argc; i++) { CONST char *element; int length; /* * Clip white space off the front and back of the string * to generate a neater result, and ignore any empty * elements. */ element = argv[i]; while (isspace(UCHAR(*element))) { /* INTL: ISO space. */ element++; } for (length = strlen(element); (length > 0) && (isspace(UCHAR(element[length-1]))) /* INTL: ISO space. */ && ((length < 2) || (element[length-2] != '\\')); length--) { /* Null loop body. */ } if (length == 0) { continue; } memcpy((VOID *) p, (VOID *) element, (size_t) length); p += length; *p = ' '; p++; } if (p != result) { p[-1] = 0; } else { *p = 0; } return result; } /* *---------------------------------------------------------------------- * * Tcl_ConcatObj -- * * Concatenate the strings from a set of objects into a single string * object with spaces between the original strings. * * Results: * The return value is a new string object containing a concatenation * of the strings in objv. Its ref count is zero. * * Side effects: * A new object is created. * *---------------------------------------------------------------------- */ Tcl_Obj * Tcl_ConcatObj(objc, objv) int objc; /* Number of objects to concatenate. */ Tcl_Obj *CONST objv[]; /* Array of objects to concatenate. */ { int allocSize, finalSize, length, elemLength, i; char *p; char *element; char *concatStr; Tcl_Obj *objPtr; /* * Check first to see if all the items are of list type. If so, * we will concat them together as lists, and return a list object. * This is only valid when the lists have no current string * representation, since we don't know what the original type was. * An original string rep may have lost some whitespace info when * converted which could be important. */ for (i = 0; i < objc; i++) { objPtr = objv[i]; if ((objPtr->typePtr != &tclListType) || (objPtr->bytes != NULL)) { break; } } if (i == objc) { Tcl_Obj **listv; int listc; objPtr = Tcl_NewListObj(0, NULL); for (i = 0; i < objc; i++) { /* * Tcl_ListObjAppendList could be used here, but this saves * us a bit of type checking (since we've already done it) * Use of INT_MAX tells us to always put the new stuff on * the end. It will be set right in Tcl_ListObjReplace. */ Tcl_ListObjGetElements(NULL, objv[i], &listc, &listv); Tcl_ListObjReplace(NULL, objPtr, INT_MAX, 0, listc, listv); } return objPtr; } allocSize = 0; for (i = 0; i < objc; i++) { objPtr = objv[i]; element = Tcl_GetStringFromObj(objPtr, &length); if ((element != NULL) && (length > 0)) { allocSize += (length + 1); } } if (allocSize == 0) { allocSize = 1; /* enough for the NULL byte at end */ } /* * Allocate storage for the concatenated result. Note that allocSize * is one more than the total number of characters, and so includes * room for the terminating NULL byte. */ concatStr = (char *) ckalloc((unsigned) allocSize); /* * Now concatenate the elements. Clip white space off the front and back * to generate a neater result, and ignore any empty elements. Also put * a null byte at the end. */ finalSize = 0; if (objc == 0) { *concatStr = '\0'; } else { p = concatStr; for (i = 0; i < objc; i++) { objPtr = objv[i]; element = Tcl_GetStringFromObj(objPtr, &elemLength); while ((elemLength > 0) && (UCHAR(*element) < 127) && isspace(UCHAR(*element))) { /* INTL: ISO C space. */ element++; elemLength--; } /* * Trim trailing white space. But, be careful not to trim * a space character if it is preceded by a backslash: in * this case it could be significant. */ while ((elemLength > 0) && (UCHAR(element[elemLength-1]) < 127) && isspace(UCHAR(element[elemLength-1])) /* INTL: ISO C space. */ && ((elemLength < 2) || (element[elemLength-2] != '\\'))) { elemLength--; } if (elemLength == 0) { continue; /* nothing left of this element */ } memcpy((VOID *) p, (VOID *) element, (size_t) elemLength); p += elemLength; *p = ' '; p++; finalSize += (elemLength + 1); } if (p != concatStr) { p[-1] = 0; finalSize -= 1; /* we overwrote the final ' ' */ } else { *p = 0; } } TclNewObj(objPtr); objPtr->bytes = concatStr; objPtr->length = finalSize; return objPtr; } /* *---------------------------------------------------------------------- * * Tcl_StringMatch -- * * See if a particular string matches a particular pattern. * * Results: * The return value is 1 if string matches pattern, and * 0 otherwise. The matching operation permits the following * special characters in the pattern: *?\[] (see the manual * entry for details on what these mean). * * Side effects: * None. * *---------------------------------------------------------------------- */ int Tcl_StringMatch(string, pattern) CONST char *string; /* String. */ CONST char *pattern; /* Pattern, which may contain special * characters. */ { return Tcl_StringCaseMatch(string, pattern, 0); } /* *---------------------------------------------------------------------- * * Tcl_StringCaseMatch -- * * See if a particular string matches a particular pattern. * Allows case insensitivity. * * Results: * The return value is 1 if string matches pattern, and * 0 otherwise. The matching operation permits the following * special characters in the pattern: *?\[] (see the manual * entry for details on what these mean). * * Side effects: * None. * *---------------------------------------------------------------------- */ int Tcl_StringCaseMatch(string, pattern, nocase) CONST char *string; /* String. */ CONST char *pattern; /* Pattern, which may contain special * characters. */ int nocase; /* 0 for case sensitive, 1 for insensitive */ { int p, charLen; CONST char *pstart = pattern; Tcl_UniChar ch1, ch2; while (1) { p = *pattern; /* * See if we're at the end of both the pattern and the string. If * so, we succeeded. If we're at the end of the pattern but not at * the end of the string, we failed. */ if (p == '\0') { return (*string == '\0'); } if ((*string == '\0') && (p != '*')) { return 0; } /* * Check for a "*" as the next pattern character. It matches * any substring. We handle this by calling ourselves * recursively for each postfix of string, until either we * match or we reach the end of the string. */ if (p == '*') { /* * Skip all successive *'s in the pattern */ while (*(++pattern) == '*') {} p = *pattern; if (p == '\0') { return 1; } /* * This is a special case optimization for single-byte utf. */ if (UCHAR(*pattern) < 0x80) { ch2 = (Tcl_UniChar) (nocase ? tolower(UCHAR(*pattern)) : UCHAR(*pattern)); } else { Tcl_UtfToUniChar(pattern, &ch2); if (nocase) { ch2 = Tcl_UniCharToLower(ch2); } } while (1) { /* * Optimization for matching - cruise through the string * quickly if the next char in the pattern isn't a special * character */ if ((p != '[') && (p != '?') && (p != '\\')) { if (nocase) { while (*string) { charLen = TclUtfToUniChar(string, &ch1); if (ch2==ch1 || ch2==Tcl_UniCharToLower(ch1)) { break; } string += charLen; } } else { /* * There's no point in trying to make this code * shorter, as the number of bytes you want to * compare each time is non-constant. */ while (*string) { charLen = TclUtfToUniChar(string, &ch1); if (ch2 == ch1) { break; } string += charLen; } } } if (Tcl_StringCaseMatch(string, pattern, nocase)) { return 1; } if (*string == '\0') { return 0; } string += TclUtfToUniChar(string, &ch1); } } /* * Check for a "?" as the next pattern character. It matches * any single character. */ if (p == '?') { pattern++; string += TclUtfToUniChar(string, &ch1); continue; } /* * Check for a "[" as the next pattern character. It is followed * by a list of characters that are acceptable, or by a range * (two characters separated by "-"). */ if (p == '[') { Tcl_UniChar startChar, endChar; pattern++; if (UCHAR(*string) < 0x80) { ch1 = (Tcl_UniChar) (nocase ? tolower(UCHAR(*string)) : UCHAR(*string)); string++; } else { string += Tcl_UtfToUniChar(string, &ch1); if (nocase) { ch1 = Tcl_UniCharToLower(ch1); } } while (1) { if ((*pattern == ']') || (*pattern == '\0')) { return 0; } if (UCHAR(*pattern) < 0x80) { startChar = (Tcl_UniChar) (nocase ? tolower(UCHAR(*pattern)) : UCHAR(*pattern)); pattern++; } else { pattern += Tcl_UtfToUniChar(pattern, &startChar); if (nocase) { startChar = Tcl_UniCharToLower(startChar); } } if (*pattern == '-') { pattern++; if (*pattern == '\0') { return 0; } if (UCHAR(*pattern) < 0x80) { endChar = (Tcl_UniChar) (nocase ? tolower(UCHAR(*pattern)) : UCHAR(*pattern)); pattern++; } else { pattern += Tcl_UtfToUniChar(pattern, &endChar); if (nocase) { endChar = Tcl_UniCharToLower(endChar); } } if (((startChar <= ch1) && (ch1 <= endChar)) || ((endChar <= ch1) && (ch1 <= startChar))) { /* * Matches ranges of form [a-z] or [z-a]. */ break; } } else if (startChar == ch1) { break; } } while (*pattern != ']') { if (*pattern == '\0') { pattern = Tcl_UtfPrev(pattern, pstart); break; } pattern++; } pattern++; continue; } /* * If the next pattern character is '\', just strip off the '\' * so we do exact matching on the character that follows. */ if (p == '\\') { pattern++; if (*pattern == '\0') { return 0; } } /* * There's no special character. Just make sure that the next * bytes of each string match. */ string += TclUtfToUniChar(string, &ch1); pattern += TclUtfToUniChar(pattern, &ch2); if (nocase) { if (Tcl_UniCharToLower(ch1) != Tcl_UniCharToLower(ch2)) { return 0; } } else if (ch1 != ch2) { return 0; } } } /* *---------------------------------------------------------------------- * * Tcl_DStringInit -- * * Initializes a dynamic string, discarding any previous contents * of the string (Tcl_DStringFree should have been called already * if the dynamic string was previously in use). * * Results: * None. * * Side effects: * The dynamic string is initialized to be empty. * *---------------------------------------------------------------------- */ void Tcl_DStringInit(dsPtr) Tcl_DString *dsPtr; /* Pointer to structure for dynamic string. */ { dsPtr->string = dsPtr->staticSpace; dsPtr->length = 0; dsPtr->spaceAvl = TCL_DSTRING_STATIC_SIZE; dsPtr->staticSpace[0] = '\0'; } /* *---------------------------------------------------------------------- * * Tcl_DStringAppend -- * * Append more characters to the current value of a dynamic string. * * Results: * The return value is a pointer to the dynamic string's new value. * * Side effects: * Length bytes from string (or all of string if length is less * than zero) are added to the current value of the string. Memory * gets reallocated if needed to accomodate the string's new size. * *---------------------------------------------------------------------- */ char * Tcl_DStringAppend(dsPtr, string, length) Tcl_DString *dsPtr; /* Structure describing dynamic string. */ CONST char *string; /* String to append. If length is -1 then * this must be null-terminated. */ int length; /* Number of characters from string to * append. If < 0, then append all of string, * up to null at end. */ { int newSize; char *dst; CONST char *end; if (length < 0) { length = strlen(string); } newSize = length + dsPtr->length; /* * Allocate a larger buffer for the string if the current one isn't * large enough. Allocate extra space in the new buffer so that there * will be room to grow before we have to allocate again. */ if (newSize >= dsPtr->spaceAvl) { dsPtr->spaceAvl = newSize * 2; if (dsPtr->string == dsPtr->staticSpace) { char *newString; newString = (char *) ckalloc((unsigned) dsPtr->spaceAvl); memcpy((VOID *) newString, (VOID *) dsPtr->string, (size_t) dsPtr->length); dsPtr->string = newString; } else { dsPtr->string = (char *) ckrealloc((VOID *) dsPtr->string, (size_t) dsPtr->spaceAvl); } } /* * Copy the new string into the buffer at the end of the old * one. */ for (dst = dsPtr->string + dsPtr->length, end = string+length; string < end; string++, dst++) { *dst = *string; } *dst = '\0'; dsPtr->length += length; return dsPtr->string; } /* *---------------------------------------------------------------------- * * Tcl_DStringAppendElement -- * * Append a list element to the current value of a dynamic string. * * Results: * The return value is a pointer to the dynamic string's new value. * * Side effects: * String is reformatted as a list element and added to the current * value of the string. Memory gets reallocated if needed to * accomodate the string's new size. * *---------------------------------------------------------------------- */ char * Tcl_DStringAppendElement(dsPtr, string) Tcl_DString *dsPtr; /* Structure describing dynamic string. */ CONST char *string; /* String to append. Must be * null-terminated. */ { int newSize, flags, strSize; char *dst; strSize = ((string == NULL) ? 0 : strlen(string)); newSize = Tcl_ScanCountedElement(string, strSize, &flags) + dsPtr->length + 1; /* * Allocate a larger buffer for the string if the current one isn't * large enough. Allocate extra space in the new buffer so that there * will be room to grow before we have to allocate again. * SPECIAL NOTE: must use memcpy, not strcpy, to copy the string * to a larger buffer, since there may be embedded NULLs in the * string in some cases. */ if (newSize >= dsPtr->spaceAvl) { dsPtr->spaceAvl = newSize * 2; if (dsPtr->string == dsPtr->staticSpace) { char *newString; newString = (char *) ckalloc((unsigned) dsPtr->spaceAvl); memcpy((VOID *) newString, (VOID *) dsPtr->string, (size_t) dsPtr->length); dsPtr->string = newString; } else { dsPtr->string = (char *) ckrealloc((VOID *) dsPtr->string, (size_t) dsPtr->spaceAvl); } } /* * Convert the new string to a list element and copy it into the * buffer at the end, with a space, if needed. */ dst = dsPtr->string + dsPtr->length; if (TclNeedSpace(dsPtr->string, dst)) { *dst = ' '; dst++; dsPtr->length++; } dsPtr->length += Tcl_ConvertCountedElement(string, strSize, dst, flags); return dsPtr->string; } /* *---------------------------------------------------------------------- * * Tcl_DStringSetLength -- * * Change the length of a dynamic string. This can cause the * string to either grow or shrink, depending on the value of * length. * * Results: * None. * * Side effects: * The length of dsPtr is changed to length and a null byte is * stored at that position in the string. If length is larger * than the space allocated for dsPtr, then a panic occurs. * *---------------------------------------------------------------------- */ void Tcl_DStringSetLength(dsPtr, length) Tcl_DString *dsPtr; /* Structure describing dynamic string. */ int length; /* New length for dynamic string. */ { int newsize; if (length < 0) { length = 0; } if (length >= dsPtr->spaceAvl) { /* * There are two interesting cases here. In the first case, the user * may be trying to allocate a large buffer of a specific size. It * would be wasteful to overallocate that buffer, so we just allocate * enough for the requested size plus the trailing null byte. In the * second case, we are growing the buffer incrementally, so we need * behavior similar to Tcl_DStringAppend. The requested length will * usually be a small delta above the current spaceAvl, so we'll end up * doubling the old size. This won't grow the buffer quite as quickly, * but it should be close enough. */ newsize = dsPtr->spaceAvl * 2; if (length < newsize) { dsPtr->spaceAvl = newsize; } else { dsPtr->spaceAvl = length + 1; } if (dsPtr->string == dsPtr->staticSpace) { char *newString; newString = (char *) ckalloc((unsigned) dsPtr->spaceAvl); memcpy((VOID *) newString, (VOID *) dsPtr->string, (size_t) dsPtr->length); dsPtr->string = newString; } else { dsPtr->string = (char *) ckrealloc((VOID *) dsPtr->string, (size_t) dsPtr->spaceAvl); } } dsPtr->length = length; dsPtr->string[length] = 0; } /* *---------------------------------------------------------------------- * * Tcl_DStringFree -- * * Frees up any memory allocated for the dynamic string and * reinitializes the string to an empty state. * * Results: * None. * * Side effects: * The previous contents of the dynamic string are lost, and * the new value is an empty string. * *---------------------------------------------------------------------- */ void Tcl_DStringFree(dsPtr) Tcl_DString *dsPtr; /* Structure describing dynamic string. */ { if (dsPtr->string != dsPtr->staticSpace) { ckfree(dsPtr->string); } dsPtr->string = dsPtr->staticSpace; dsPtr->length = 0; dsPtr->spaceAvl = TCL_DSTRING_STATIC_SIZE; dsPtr->staticSpace[0] = '\0'; } /* *---------------------------------------------------------------------- * * Tcl_DStringResult -- * * This procedure moves the value of a dynamic string into an * interpreter as its string result. Afterwards, the dynamic string * is reset to an empty string. * * Results: * None. * * Side effects: * The string is "moved" to interp's result, and any existing * string result for interp is freed. dsPtr is reinitialized to * an empty string. * *---------------------------------------------------------------------- */ void Tcl_DStringResult(interp, dsPtr) Tcl_Interp *interp; /* Interpreter whose result is to be reset. */ Tcl_DString *dsPtr; /* Dynamic string that is to become the * result of interp. */ { Tcl_ResetResult(interp); if (dsPtr->string != dsPtr->staticSpace) { interp->result = dsPtr->string; interp->freeProc = TCL_DYNAMIC; } else if (dsPtr->length < TCL_RESULT_SIZE) { interp->result = ((Interp *) interp)->resultSpace; strcpy(interp->result, dsPtr->string); } else { Tcl_SetResult(interp, dsPtr->string, TCL_VOLATILE); } dsPtr->string = dsPtr->staticSpace; dsPtr->length = 0; dsPtr->spaceAvl = TCL_DSTRING_STATIC_SIZE; dsPtr->staticSpace[0] = '\0'; } /* *---------------------------------------------------------------------- * * Tcl_DStringGetResult -- * * This procedure moves an interpreter's result into a dynamic string. * * Results: * None. * * Side effects: * The interpreter's string result is cleared, and the previous * contents of dsPtr are freed. * * If the string result is empty, the object result is moved to the * string result, then the object result is reset. * *---------------------------------------------------------------------- */ void Tcl_DStringGetResult(interp, dsPtr) Tcl_Interp *interp; /* Interpreter whose result is to be reset. */ Tcl_DString *dsPtr; /* Dynamic string that is to become the * result of interp. */ { Interp *iPtr = (Interp *) interp; if (dsPtr->string != dsPtr->staticSpace) { ckfree(dsPtr->string); } /* * If the string result is empty, move the object result to the * string result, then reset the object result. */ if (*(iPtr->result) == 0) { Tcl_SetResult(interp, TclGetString(Tcl_GetObjResult(interp)), TCL_VOLATILE); } dsPtr->length = strlen(iPtr->result); if (iPtr->freeProc != NULL) { if ((iPtr->freeProc == TCL_DYNAMIC) || (iPtr->freeProc == (Tcl_FreeProc *) free)) { dsPtr->string = iPtr->result; dsPtr->spaceAvl = dsPtr->length+1; } else { dsPtr->string = (char *) ckalloc((unsigned) (dsPtr->length+1)); strcpy(dsPtr->string, iPtr->result); (*iPtr->freeProc)(iPtr->result); } dsPtr->spaceAvl = dsPtr->length+1; iPtr->freeProc = NULL; } else { if (dsPtr->length < TCL_DSTRING_STATIC_SIZE) { dsPtr->string = dsPtr->staticSpace; dsPtr->spaceAvl = TCL_DSTRING_STATIC_SIZE; } else { dsPtr->string = (char *) ckalloc((unsigned) (dsPtr->length + 1)); dsPtr->spaceAvl = dsPtr->length + 1; } strcpy(dsPtr->string, iPtr->result); } iPtr->result = iPtr->resultSpace; iPtr->resultSpace[0] = 0; } /* *---------------------------------------------------------------------- * * Tcl_DStringStartSublist -- * * This procedure adds the necessary information to a dynamic * string (e.g. " {" to start a sublist. Future element * appends will be in the sublist rather than the main list. * * Results: * None. * * Side effects: * Characters get added to the dynamic string. * *---------------------------------------------------------------------- */ void Tcl_DStringStartSublist(dsPtr) Tcl_DString *dsPtr; /* Dynamic string. */ { if (TclNeedSpace(dsPtr->string, dsPtr->string + dsPtr->length)) { Tcl_DStringAppend(dsPtr, " {", -1); } else { Tcl_DStringAppend(dsPtr, "{", -1); } } /* *---------------------------------------------------------------------- * * Tcl_DStringEndSublist -- * * This procedure adds the necessary characters to a dynamic * string to end a sublist (e.g. "}"). Future element appends * will be in the enclosing (sub)list rather than the current * sublist. * * Results: * None. * * Side effects: * None. * *---------------------------------------------------------------------- */ void Tcl_DStringEndSublist(dsPtr) Tcl_DString *dsPtr; /* Dynamic string. */ { Tcl_DStringAppend(dsPtr, "}", -1); } /* *---------------------------------------------------------------------- * * Tcl_PrintDouble -- * * Given a floating-point value, this procedure converts it to * an ASCII string using. * * Results: * The ASCII equivalent of "value" is written at "dst". It is * written using the current precision, and it is guaranteed to * contain a decimal point or exponent, so that it looks like * a floating-point value and not an integer. * * Side effects: * None. * *---------------------------------------------------------------------- */ void Tcl_PrintDouble(interp, value, dst) Tcl_Interp *interp; /* Interpreter whose tcl_precision * variable used to be used to control * printing. It's ignored now. */ double value; /* Value to print as string. */ char *dst; /* Where to store converted value; * must have at least TCL_DOUBLE_SPACE * characters. */ { char *p, c; Tcl_UniChar ch; Tcl_MutexLock(&precisionMutex); sprintf(dst, precisionFormat, value); Tcl_MutexUnlock(&precisionMutex); /* * If the ASCII result looks like an integer, add ".0" so that it * doesn't look like an integer anymore. This prevents floating-point * values from being converted to integers unintentionally. * Check for ASCII specifically to speed up the function. */ for (p = dst; *p != 0; ) { if (UCHAR(*p) < 0x80) { c = *p++; } else { p += Tcl_UtfToUniChar(p, &ch); c = UCHAR(ch); } if ((c == '.') || isalpha(UCHAR(c))) { /* INTL: ISO only. */ return; } } p[0] = '.'; p[1] = '0'; p[2] = 0; } /* *---------------------------------------------------------------------- * * TclPrecTraceProc -- * * This procedure is invoked whenever the variable "tcl_precision" * is written. * * Results: * Returns NULL if all went well, or an error message if the * new value for the variable doesn't make sense. * * Side effects: * If the new value doesn't make sense then this procedure * undoes the effect of the variable modification. Otherwise * it modifies the format string that's used by Tcl_PrintDouble. * *---------------------------------------------------------------------- */ /* ARGSUSED */ char * TclPrecTraceProc(clientData, interp, name1, name2, flags) ClientData clientData; /* Not used. */ Tcl_Interp *interp; /* Interpreter containing variable. */ CONST char *name1; /* Name of variable. */ CONST char *name2; /* Second part of variable name. */ int flags; /* Information about what happened. */ { CONST char *value; char *end; int prec; /* * If the variable is unset, then recreate the trace. */ if (flags & TCL_TRACE_UNSETS) { if ((flags & TCL_TRACE_DESTROYED) && !(flags & TCL_INTERP_DESTROYED)) { Tcl_TraceVar2(interp, name1, name2, TCL_GLOBAL_ONLY|TCL_TRACE_READS|TCL_TRACE_WRITES |TCL_TRACE_UNSETS, TclPrecTraceProc, clientData); } return (char *) NULL; } /* * When the variable is read, reset its value from our shared * value. This is needed in case the variable was modified in * some other interpreter so that this interpreter's value is * out of date. */ Tcl_MutexLock(&precisionMutex); if (flags & TCL_TRACE_READS) { Tcl_SetVar2(interp, name1, name2, precisionString, flags & TCL_GLOBAL_ONLY); Tcl_MutexUnlock(&precisionMutex); return (char *) NULL; } /* * The variable is being written. Check the new value and disallow * it if it isn't reasonable or if this is a safe interpreter (we * don't want safe interpreters messing up the precision of other * interpreters). */ if (Tcl_IsSafe(interp)) { Tcl_SetVar2(interp, name1, name2, precisionString, flags & TCL_GLOBAL_ONLY); Tcl_MutexUnlock(&precisionMutex); return "can't modify precision from a safe interpreter"; } value = Tcl_GetVar2(interp, name1, name2, flags & TCL_GLOBAL_ONLY); if (value == NULL) { value = ""; } prec = strtoul(value, &end, 10); if ((prec <= 0) || (prec > TCL_MAX_PREC) || (prec > 100) || (end == value) || (*end != 0)) { Tcl_SetVar2(interp, name1, name2, precisionString, flags & TCL_GLOBAL_ONLY); Tcl_MutexUnlock(&precisionMutex); return "improper value for precision"; } TclFormatInt(precisionString, prec); sprintf(precisionFormat, "%%.%dg", prec); Tcl_MutexUnlock(&precisionMutex); return (char *) NULL; } /* *---------------------------------------------------------------------- * * TclNeedSpace -- * * This procedure checks to see whether it is appropriate to * add a space before appending a new list element to an * existing string. * * Results: * The return value is 1 if a space is appropriate, 0 otherwise. * * Side effects: * None. * *---------------------------------------------------------------------- */ int TclNeedSpace(start, end) CONST char *start; /* First character in string. */ CONST char *end; /* End of string (place where space will * be added, if appropriate). */ { Tcl_UniChar ch; /* * A space is needed unless either * (a) we're at the start of the string, or * (b) the trailing characters of the string consist of one or more * open curly braces preceded by a space or extending back to * the beginning of the string. * (c) the trailing characters of the string consist of a space * preceded by a character other than backslash. */ if (end == start) { return 0; } end = Tcl_UtfPrev(end, start); if (*end != '{') { Tcl_UtfToUniChar(end, &ch); /* * Direct char comparison on next line is safe as it is with * a character in the ASCII subset, and so single-byte in UTF8. */ if (Tcl_UniCharIsSpace(ch) && ((end == start) || (end[-1] != '\\'))) { return 0; } return 1; } do { if (end == start) { return 0; } end = Tcl_UtfPrev(end, start); } while (*end == '{'); Tcl_UtfToUniChar(end, &ch); if (Tcl_UniCharIsSpace(ch)) { return 0; } return 1; } /* *---------------------------------------------------------------------- * * TclFormatInt -- * * This procedure formats an integer into a sequence of decimal digit * characters in a buffer. If the integer is negative, a minus sign is * inserted at the start of the buffer. A null character is inserted at * the end of the formatted characters. It is the caller's * responsibility to ensure that enough storage is available. This * procedure has the effect of sprintf(buffer, "%d", n) but is faster. * * Results: * An integer representing the number of characters formatted, not * including the terminating \0. * * Side effects: * The formatted characters are written into the storage pointer to * by the "buffer" argument. * *---------------------------------------------------------------------- */ int TclFormatInt(buffer, n) char *buffer; /* Points to the storage into which the * formatted characters are written. */ long n; /* The integer to format. */ { long intVal; int i; int numFormatted, j; char *digits = "0123456789"; /* * Check first whether "n" is zero. */ if (n == 0) { buffer[0] = '0'; buffer[1] = 0; return 1; } /* * Check whether "n" is the maximum negative value. This is * -2^(m-1) for an m-bit word, and has no positive equivalent; * negating it produces the same value. */ if (n == -n) { sprintf(buffer, "%ld", n); return strlen(buffer); } /* * Generate the characters of the result backwards in the buffer. */ intVal = (n < 0? -n : n); i = 0; buffer[0] = '\0'; do { i++; buffer[i] = digits[intVal % 10]; intVal = intVal/10; } while (intVal > 0); if (n < 0) { i++; buffer[i] = '-'; } numFormatted = i; /* * Now reverse the characters. */ for (j = 0; j < i; j++, i--) { char tmp = buffer[i]; buffer[i] = buffer[j]; buffer[j] = tmp; } return numFormatted; } /* *---------------------------------------------------------------------- * * TclLooksLikeInt -- * * This procedure decides whether the leading characters of a * string look like an integer or something else (such as a * floating-point number or string). * * Results: * The return value is 1 if the leading characters of p look * like a valid Tcl integer. If they look like a floating-point * number (e.g. "e01" or "2.4"), or if they don't look like a * number at all, then 0 is returned. * * Side effects: * None. * *---------------------------------------------------------------------- */ int TclLooksLikeInt(bytes, length) register CONST char *bytes; /* Points to first byte of the string. */ int length; /* Number of bytes in the string. If < 0 * bytes up to the first null byte are * considered (if they may appear in an * integer). */ { register CONST char *p; if ((bytes == NULL) && (length > 0)) { Tcl_Panic("TclLooksLikeInt: cannot scan %d bytes from NULL", length); } if (length < 0) { length = (bytes? strlen(bytes) : 0); } p = bytes; while (length && isspace(UCHAR(*p))) { /* INTL: ISO space. */ length--; p++; } if (length == 0) { return 0; } if ((*p == '+') || (*p == '-')) { p++; length--; } return (0 != TclParseInteger(p, length)); } /* *---------------------------------------------------------------------- * * TclGetIntForIndex -- * * This procedure returns an integer corresponding to the list index * held in a Tcl object. The Tcl object's value is expected to be * either an integer or a string of the form "end([+-]integer)?". * * Results: * The return value is normally TCL_OK, which means that the index was * successfully stored into the location referenced by "indexPtr". If * the Tcl object referenced by "objPtr" has the value "end", the * value stored is "endValue". If "objPtr"s values is not of the form * "end([+-]integer)?" and * can not be converted to an integer, TCL_ERROR is returned and, if * "interp" is non-NULL, an error message is left in the interpreter's * result object. * * Side effects: * The object referenced by "objPtr" might be converted to an * integer, wide integer, or end-based-index object. * *---------------------------------------------------------------------- */ int TclGetIntForIndex(interp, objPtr, endValue, indexPtr) Tcl_Interp *interp; /* Interpreter to use for error reporting. * If NULL, then no error message is left * after errors. */ Tcl_Obj *objPtr; /* Points to an object containing either * "end" or an integer. */ int endValue; /* The value to be stored at "indexPtr" if * "objPtr" holds "end". */ int *indexPtr; /* Location filled in with an integer * representing an index. */ { char *bytes; int offset; Tcl_WideInt wideOffset; /* * If the object is already an integer, use it. */ if (objPtr->typePtr == &tclIntType) { *indexPtr = (int)objPtr->internalRep.longValue; return TCL_OK; } /* * If the object is already a wide-int, and it is not out of range * for an integer, use it. [Bug #526717] */ if (objPtr->typePtr == &tclWideIntType) { TclGetWide(wideOffset,objPtr); if (wideOffset >= Tcl_LongAsWide(INT_MIN) && wideOffset <= Tcl_LongAsWide(INT_MAX)) { *indexPtr = (int) Tcl_WideAsLong(wideOffset); return TCL_OK; } } if (SetEndOffsetFromAny(NULL, objPtr) == TCL_OK) { /* * If the object is already an offset from the end of the * list, or can be converted to one, use it. */ *indexPtr = endValue + objPtr->internalRep.longValue; } else if (Tcl_GetWideIntFromObj(NULL, objPtr, &wideOffset) == TCL_OK) { /* * If the object can be converted to a wide integer, use * that. [Bug #526717] */ offset = (int) Tcl_WideAsLong(wideOffset); if (Tcl_LongAsWide(offset) == wideOffset) { /* * But it is representable as a narrow integer, so we * prefer that (so preserving old behaviour in the * majority of cases.) */ objPtr->typePtr = &tclIntType; objPtr->internalRep.longValue = offset; } *indexPtr = offset; } else { /* * Report a parse error. */ if (interp != NULL) { bytes = Tcl_GetString(objPtr); /* * The result might not be empty; this resets it which * should be both a cheap operation, and of little problem * because this is an error-generation path anyway. */ Tcl_ResetResult(interp); Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "bad index \"", bytes, "\": must be integer or end?-integer?", (char *) NULL); if (!strncmp(bytes, "end-", 3)) { bytes += 3; } TclCheckBadOctal(interp, bytes); } return TCL_ERROR; } return TCL_OK; } /* *---------------------------------------------------------------------- * * UpdateStringOfEndOffset -- * * Update the string rep of a Tcl object holding an "end-offset" * expression. * * Results: * None. * * Side effects: * Stores a valid string in the object's string rep. * * This procedure does NOT free any earlier string rep. If it is * called on an object that already has a valid string rep, it will * leak memory. * *---------------------------------------------------------------------- */ static void UpdateStringOfEndOffset(objPtr) register Tcl_Obj* objPtr; { char buffer[TCL_INTEGER_SPACE + sizeof("end") + 1]; register int len; strcpy(buffer, "end"); len = sizeof("end") - 1; if (objPtr->internalRep.longValue != 0) { buffer[len++] = '-'; len += TclFormatInt(buffer+len, -(objPtr->internalRep.longValue)); } objPtr->bytes = ckalloc((unsigned) (len+1)); strcpy(objPtr->bytes, buffer); objPtr->length = len; } /* *---------------------------------------------------------------------- * * SetEndOffsetFromAny -- * * Look for a string of the form "end-offset" and convert it * to an internal representation holding the offset. * * Results: * Returns TCL_OK if ok, TCL_ERROR if the string was badly formed. * * Side effects: * If interp is not NULL, stores an error message in the * interpreter result. * *---------------------------------------------------------------------- */ static int SetEndOffsetFromAny(interp, objPtr) Tcl_Interp* interp; /* Tcl interpreter or NULL */ Tcl_Obj* objPtr; /* Pointer to the object to parse */ { int offset; /* Offset in the "end-offset" expression */ Tcl_ObjType* oldTypePtr = objPtr->typePtr; /* Old internal rep type of the object */ register char* bytes; /* String rep of the object */ int length; /* Length of the object's string rep */ /* If it's already the right type, we're fine. */ if (objPtr->typePtr == &tclEndOffsetType) { return TCL_OK; } /* Check for a string rep of the right form. */ bytes = Tcl_GetStringFromObj(objPtr, &length); if ((*bytes != 'e') || (strncmp(bytes, "end", (size_t)((length > 3) ? 3 : length)) != 0)) { if (interp != NULL) { Tcl_ResetResult(interp); Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "bad index \"", bytes, "\": must be end?-integer?", (char*) NULL); } return TCL_ERROR; } /* Convert the string rep */ if (length <= 3) { offset = 0; } else if ((length > 4) && (bytes[3] == '-')) { /* * This is our limited string expression evaluator. Pass everything * after "end-" to Tcl_GetInt, then reverse for offset. */ if (Tcl_GetInt(interp, bytes+4, &offset) != TCL_OK) { return TCL_ERROR; } offset = -offset; } else { /* * Conversion failed. Report the error. */ if (interp != NULL) { Tcl_ResetResult(interp); Tcl_AppendStringsToObj(Tcl_GetObjResult(interp), "bad index \"", bytes, "\": must be integer or end?-integer?", (char *) NULL); } return TCL_ERROR; } /* * The conversion succeeded. Free the old internal rep and set * the new one. */ if ((oldTypePtr != NULL) && (oldTypePtr->freeIntRepProc != NULL)) { oldTypePtr->freeIntRepProc(objPtr); } objPtr->internalRep.longValue = offset; objPtr->typePtr = &tclEndOffsetType; return TCL_OK; } /* *---------------------------------------------------------------------- * * TclCheckBadOctal -- * * This procedure checks for a bad octal value and appends a * meaningful error to the interp's result. * * Results: * 1 if the argument was a bad octal, else 0. * * Side effects: * The interpreter's result is modified. * *---------------------------------------------------------------------- */ int TclCheckBadOctal(interp, value) Tcl_Interp *interp; /* Interpreter to use for error reporting. * If NULL, then no error message is left * after errors. */ CONST char *value; /* String to check. */ { register CONST char *p = value; /* * A frequent mistake is invalid octal values due to an unwanted * leading zero. Try to generate a meaningful error message. */ while (isspace(UCHAR(*p))) { /* INTL: ISO space. */ p++; } if (*p == '+' || *p == '-') { p++; } if (*p == '0') { while (isdigit(UCHAR(*p))) { /* INTL: digit. */ p++; } while (isspace(UCHAR(*p))) { /* INTL: ISO space. */ p++; } if (*p == '\0') { /* Reached end of string */ if (interp != NULL) { /* * Don't reset the result here because we want this result * to be added to an existing error message as extra info. */ Tcl_AppendResult(interp, " (looks like invalid octal number)", (char *) NULL); } return 1; } } return 0; } /* *---------------------------------------------------------------------- * * Tcl_GetNameOfExecutable -- * * This procedure simply returns a pointer to the internal full * path name of the executable file as computed by * Tcl_FindExecutable. This procedure call is the C API * equivalent to the "info nameofexecutable" command. * * Results: * A pointer to the internal string or NULL if the internal full * path name has not been computed or unknown. * * Side effects: * The object referenced by "objPtr" might be converted to an * integer object. * *---------------------------------------------------------------------- */ CONST char * Tcl_GetNameOfExecutable() { return tclExecutableName; } /* *---------------------------------------------------------------------- * * TclpGetTime -- * * Deprecated synonym for Tcl_GetTime. * * Results: * None. * * Side effects: * Stores current time in the buffer designated by "timePtr" * * This procedure is provided for the benefit of extensions written * before Tcl_GetTime was exported from the library. * *---------------------------------------------------------------------- */ void TclpGetTime(timePtr) Tcl_Time* timePtr; { Tcl_GetTime(timePtr); }