
LibTomMath User Manual

v0.42.0

Tom St Denis
tomstdenis@gmail.com

July 23, 2010

This text, the library and the accompanying textbook are all hereby placed
in the public domain. This book has been formatted for B5 [176x250] paper
using the LATEX book macro package.

Open Source. Open Academia. Open Minds.

Tom St Denis,
Ontario, Canada

Contents

1 Introduction 1
1.1 What is LibTomMath? . 1
1.2 License . 1
1.3 Building LibTomMath . 1

1.3.1 Static Libraries . 2
1.3.2 Shared Libraries . 2
1.3.3 Testing . 2

1.4 Build Configuration . 3
1.4.1 Build Depends . 3
1.4.2 Build Tweaks . 3
1.4.3 Build Trims . 4

1.5 Purpose of LibTomMath . 4

2 Getting Started with LibTomMath 7
2.1 Building Programs . 7
2.2 Return Codes . 7
2.3 Data Types . 8
2.4 Function Organization . 8
2.5 Initialization . 8

2.5.1 Single Initialization . 8
2.5.2 Single Free . 9
2.5.3 Multiple Initializations . 10
2.5.4 Other Initializers . 10

2.6 Maintenance Functions . 12
2.6.1 Reducing Memory Usage 12
2.6.2 Adding additional digits 12

3 Basic Operations 15
3.1 Small Constants . 15

3.1.1 Single Digit . 15
3.1.2 Long Constants . 16
3.1.3 Initialize and Setting Constants 17

3.2 Comparisons . 18
3.2.1 Unsigned comparison . 18

iii

3.2.2 Signed comparison . 19
3.2.3 Single Digit . 20

3.3 Logical Operations . 21
3.3.1 Multiplication by two . 21
3.3.2 Polynomial Basis Operations 23
3.3.3 AND, OR and XOR Operations 23

3.4 Addition and Subtraction . 23
3.5 Sign Manipulation . 24

3.5.1 Negation . 24
3.5.2 Absolute . 24

3.6 Integer Division and Remainder 24

4 Multiplication and Squaring 25
4.1 Multiplication . 25
4.2 Squaring . 26
4.3 Tuning Polynomial Basis Routines 27

5 Modular Reduction 29
5.1 Straight Division . 29
5.2 Barrett Reduction . 29
5.3 Montgomery Reduction . 31
5.4 Restricted Dimminished Radix 33
5.5 Unrestricted Dimminshed Radix 34

6 Exponentiation 35
6.1 Single Digit Exponentiation . 35
6.2 Modular Exponentiation . 35
6.3 Root Finding . 35

7 Prime Numbers 37
7.1 Trial Division . 37
7.2 Fermat Test . 37
7.3 Miller-Rabin Test . 37

7.3.1 Required Number of Tests 38
7.4 Primality Testing . 38
7.5 Next Prime . 38
7.6 Random Primes . 38

7.6.1 Extended Generation . 39

8 Input and Output 41
8.1 ASCII Conversions . 41

8.1.1 To ASCII . 41
8.1.2 From ASCII . 41

8.2 Binary Conversions . 41

9 Algebraic Functions 43
9.1 Extended Euclidean Algorithm 43
9.2 Greatest Common Divisor . 43
9.3 Least Common Multiple . 43
9.4 Jacobi Symbol . 43
9.5 Modular Inverse . 44
9.6 Single Digit Functions . 44

List of Figures

1.1 LibTomMath Valuation . 6

2.1 Return Codes . 7

3.1 Comparison Codes for a, b . 18

4.1 Build Names for Tuning Programs 27

7.1 Primality Generation Options . 39

vii

Chapter 1

Introduction

1.1 What is LibTomMath?

LibTomMath is a library of source code which provides a series of efficient
and carefully written functions for manipulating large integer numbers. It was
written in portable ISO C source code so that it will build on any platform with
a conforming C compiler.

In a nutshell the library was written from scratch with verbose comments
to help instruct computer science students how to implement “bignum” math.
However, the resulting code has proven to be very useful. It has been used by
numerous universities, commercial and open source software developers. It has
been used on a variety of platforms ranging from Linux and Windows based x86
to ARM based Gameboys and PPC based MacOS machines.

1.2 License

As of the v0.25 the library source code has been placed in the public domain with
every new release. As of the v0.28 release the textbook “Implementing Multiple
Precision Arithmetic” has been placed in the public domain with every new
release as well. This textbook is meant to compliment the project by providing
a more solid walkthrough of the development algorithms used in the library.

Since both1 are in the public domain everyone is entitled to do with them
as they see fit.

1.3 Building LibTomMath

LibTomMath is meant to be very “GCC friendly” as it comes with a makefile
well suited for GCC. However, the library will also build in MSVC, Borland C

1Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are
not required to use LibTomMath.

1

2 CHAPTER 1. INTRODUCTION

out of the box. For any other ISO C compiler a makefile will have to be made
by the end developer.

1.3.1 Static Libraries

To build as a static library for GCC issue the following

make

command. This will build the library and archive the object files in “libtom-
math.a”. Now you link against that and include “tommath.h” within your
programs. Alternatively to build with MSVC issue the following

nmake -f makefile.msvc

This will build the library and archive the object files in “tommath.lib”.
This has been tested with MSVC version 6.00 with service pack 5.

1.3.2 Shared Libraries

To build as a shared library for GCC issue the following

make -f makefile.shared

This requires the “libtool” package (common on most Linux/BSD systems).
It will build LibTomMath as both shared and static then install (by default)
into /usr/lib as well as install the header files in /usr/include. The shared
library (resource) will be called “libtommath.la” while the static library called
“libtommath.a”. Generally you use libtool to link your application against the
shared object.

There is limited support for making a “DLL” in windows via the “make-
file.cygwin dll” makefile. It requires Cygwin to work with since it requires
the auto-export/import functionality. The resulting DLL and import library
“libtommath.dll.a” can be used to link LibTomMath dynamically to any Win-
dows program using Cygwin.

1.3.3 Testing

To build the library and the test harness type

make test

This will build the library, “test” and “mtest/mtest”. The “test” program
will accept test vectors and verify the results. “mtest/mtest” will generate test
vectors using the MPI library by Michael Fromberger2. Simply pipe mtest into
test using

mtest/mtest | test

2A copy of MPI is included in the package

1.4. BUILD CONFIGURATION 3

If you do not have a “/dev/urandom” style RNG source you will have to
write your own PRNG and simply pipe that into mtest. For example, if your
PRNG program is called “myprng” simply invoke

myprng | mtest/mtest | test

This will output a row of numbers that are increasing. Each column is a
different test (such as addition, multiplication, etc) that is being performed. The
numbers represent how many times the test was invoked. If an error is detected
the program will exit with a dump of the relevent numbers it was working with.

1.4 Build Configuration

LibTomMath can configured at build time in three phases we shall call “de-
pends”, “tweaks” and “trims”. Each phase changes how the library is built and
they are applied one after another respectively.

To make the system more powerful you can tweak the build process. Classes
are defined in the file “tommath superclass.h”. By default, the symbol “LTM ALL”
shall be defined which simply instructs the system to build all of the functions.
This is how LibTomMath used to be packaged. This will give you access to
every function LibTomMath offers.

However, there are cases where such a build is not optional. For instance,
you want to perform RSA operations. You don’t need the vast majority of the
library to perform these operations. Aside from LTM ALL there is another
pre–defined class “SC RSA 1” which works in conjunction with the RSA from
LibTomCrypt. Additional classes can be defined base on the need of the user.

1.4.1 Build Depends

In the file tommath class.h you will see a large list of C “defines” followed by a
series of “ifdefs” which further define symbols. All of the symbols (technically
they’re macros . . .) represent a given C source file. For instance, BN MP ADD C
represents the file “bn mp add.c”. When a define has been enabled the function
in the respective file will be compiled and linked into the library. Accordingly
when the define is absent the file will not be compiled and not contribute any
size to the library.

You will also note that the header tommath class.h is actually recursively
included (it includes itself twice). This is to help resolve as many dependencies
as possible. In the last pass the symbol LTM LAST will be defined. This is
useful for “trims”.

1.4.2 Build Tweaks

A tweak is an algorithm “alternative”. For example, to provide tradeoffs (usu-
ally between size and space). They can be enabled at any pass of the configu-
ration phase.

4 CHAPTER 1. INTRODUCTION

Define Purpose

BN MP DIV SMALL Enables a slower, smaller and equally
functional mp div() function

1.4.3 Build Trims

A trim is a manner of removing functionality from a function that is not required.
For instance, to perform RSA cryptography you only require exponentiation
with odd moduli so even moduli support can be safely removed. Build trims
are meant to be defined on the last pass of the configuration which means they
are to be defined only if LTM LAST has been defined.

Moduli Related

Restriction Undefine

Exponentiation with odd moduli only BN S MP EXPTMOD C
BN MP REDUCE C
BN MP REDUCE SETUP C
BN S MP MUL HIGH DIGS C
BN FAST S MP MUL HIGH DIGS C

Exponentiation with random odd moduli (The above plus the following)
BN MP REDUCE 2K C
BN MP REDUCE 2K SETUP C
BN MP REDUCE IS 2K C
BN MP DR IS MODULUS C
BN MP DR REDUCE C
BN MP DR SETUP C

Modular inverse odd moduli only BN MP INVMOD SLOW C

Modular inverse (both, smaller/slower) BN FAST MP INVMOD C

Operand Size Related

Restriction Undefine

Moduli ≤ 2560 bits BN MP MONTGOMERY REDUCE C
BN S MP MUL DIGS C
BN S MP MUL HIGH DIGS C
BN S MP SQR C

Polynomial Schmolynomial BN MP KARATSUBA MUL C
BN MP KARATSUBA SQR C
BN MP TOOM MUL C
BN MP TOOM SQR C

1.5 Purpose of LibTomMath

Unlike GNU MP (GMP) Library, LIP, OpenSSL or various other commercial
kits (Miracl), LibTomMath was not written with bleeding edge performance in
mind. First and foremost LibTomMath was written to be entirely open. Not

1.5. PURPOSE OF LIBTOMMATH 5

only is the source code public domain (unlike various other GPL/etc licensed
code), not only is the code freely downloadable but the source code is also acces-
sible for computer science students attempting to learn “BigNum” or multiple
precision arithmetic techniques.

LibTomMath was written to be an instructive collection of source code. This
is why there are many comments, only one function per source file and often I
use a “middle-road” approach where I don’t cut corners for an extra 2% speed
increase.

Source code alone cannot really teach how the algorithms work which is why
I also wrote a textbook that accompanies the library (beat that!).

So you may be thinking “should I use LibTomMath?” and the answer is a
definite maybe. Let me tabulate what I think are the pros and cons of LibTom-
Math by comparing it to the math routines from GnuPG3.

3GnuPG v1.2.3 versus LibTomMath v0.28

6 CHAPTER 1. INTRODUCTION

Criteria Pro Con Notes

Few lines of code per file X GnuPG = 300.9, LibTomMath = 71.97

Commented function prototypes X GnuPG function names are cryptic.

Speed X LibTomMath is slower.

Totally free X GPL has unfavourable restrictions.

Large function base X GnuPG is barebones.

Five modular reduction algorithms X Faster modular exponentiation for a variety of moduli.

Portable X GnuPG requires configuration to build.

Figure 1.1: LibTomMath Valuation

It may seem odd to compare LibTomMath to GnuPG since the math in
GnuPG is only a small portion of the entire application. However, LibTom-
Math was written with cryptography in mind. It provides essentially all of the
functions a cryptosystem would require when working with large integers.

So it may feel tempting to just rip the math code out of GnuPG (or GnuMP
where it was taken from originally) in your own application but I think there are
reasons not to. While LibTomMath is slower than libraries such as GnuMP it
is not normally significantly slower. On x86 machines the difference is normally
a factor of two when performing modular exponentiations. It depends largely
on the processor, compiler and the moduli being used.

Essentially the only time you wouldn’t use LibTomMath is when blazing
speed is the primary concern. However, on the other side of the coin LibTom-
Math offers you a totally free (public domain) well structured math library that
is very flexible, complete and performs well in resource contrained environments.
Fast RSA for example can be performed with as little as 8KB of ram for data
(again depending on build options).

Chapter 2

Getting Started with
LibTomMath

2.1 Building Programs

In order to use LibTomMath you must include “tommath.h” and link against
the appropriate library file (typically libtommath.a). There is no library initial-
ization required and the entire library is thread safe.

2.2 Return Codes

There are three possible return codes a function may return.

Code Meaning

MP OKAY The function succeeded.

MP VAL The function input was invalid.

MP MEM Heap memory exhausted.

MP YES Response is yes.

MP NO Response is no.

Figure 2.1: Return Codes

The last two codes listed are not actually “return’ed” by a function. They
are placed in an integer (the caller must provide the address of an integer it can
store to) which the caller can access. To convert one of the three return codes
to a string use the following function.

char *mp_error_to_string(int code);

This will return a pointer to a string which describes the given error code.
It will not work for the return codes MP YES and MP NO.

7

8 CHAPTER 2. GETTING STARTED WITH LIBTOMMATH

2.3 Data Types

The basic “multiple precision integer” type is known as the “mp int” within
LibTomMath. This data type is used to organize all of the data required to ma-
nipulate the integer it represents. Within LibTomMath it has been prototyped
as the following.

typedef struct {
int used, alloc, sign;
mp_digit *dp;

} mp_int;

Where “mp digit” is a data type that represents individual digits of the
integer. By default, an mp digit is the ISO C “unsigned long” data type and
each digit is 28−bits long. The mp digit type can be configured to suit other
platforms by defining the appropriate macros.

All LTM functions that use the mp int type will expect a pointer to mp int
structure. You must allocate memory to hold the structure itself by yourself
(whether off stack or heap it doesn’t matter). The very first thing that must be
done to use an mp int is that it must be initialized.

2.4 Function Organization

The arithmetic functions of the library are all organized to have the same style
prototype. That is source operands are passed on the left and the destination
is on the right. For instance,

mp_add(&a, &b, &c); /* c = a + b */
mp_mul(&a, &a, &c); /* c = a * a */
mp_div(&a, &b, &c, &d); /* c = [a/b], d = a mod b */

Another feature of the way the functions have been implemented is that
source operands can be destination operands as well. For instance,

mp_add(&a, &b, &b); /* b = a + b */
mp_div(&a, &b, &a, &c); /* a = [a/b], c = a mod b */

This allows operands to be re-used which can make programming simpler.

2.5 Initialization

2.5.1 Single Initialization

A single mp int can be initialized with the “mp init” function.

int mp_init (mp_int * a);

2.5. INITIALIZATION 9

This function expects a pointer to an mp int structure and will initialize the
members of the structure so the mp int represents the default integer which is
zero. If the functions returns MP OKAY then the mp int is ready to be used
by the other LibTomMath functions.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

return EXIT_SUCCESS;

}

2.5.2 Single Free

When you are finished with an mp int it is ideal to return the heap it used back
to the system. The following function provides this functionality.

void mp_clear (mp_int * a);

The function expects a pointer to a previously initialized mp int structure
and frees the heap it uses. It sets the pointer1 within the mp int to NULL
which is used to prevent double free situations. Is is legal to call mp clear()
twice on the same mp int in a row.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

/* We’re done with it. */

mp_clear(&number);

1The “dp” member.

10 CHAPTER 2. GETTING STARTED WITH LIBTOMMATH

return EXIT_SUCCESS;

}

2.5.3 Multiple Initializations

Certain algorithms require more than one large integer. In these instances it is
ideal to initialize all of the mp int variables in an “all or nothing” fashion. That
is, they are either all initialized successfully or they are all not initialized.

The mp init multi() function provides this functionality.

int mp_init_multi(mp_int *mp, ...);

It accepts a NULL terminated list of pointers to mp int structures. It
will attempt to initialize them all at once. If the function returns MP OKAY
then all of the mp int variables are ready to use, otherwise none of them are
available for use. A complementary mp clear multi() function allows multiple
mp int variables to be free’d from the heap at the same time.

int main(void)

{
mp_int num1, num2, num3;

int result;

if ((result = mp_init_multi(&num1,

&num2,

&num3, NULL)) != MP OKAY) {
printf("Error initializing the numbers. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the numbers */

/* We’re done with them. */

mp_clear_multi(&num1, &num2, &num3, NULL);

return EXIT_SUCCESS;

}

2.5.4 Other Initializers

To initialized and make a copy of an mp int the mp init copy() function has
been provided.

int mp_init_copy (mp_int * a, mp_int * b);

This function will initialize a and make it a copy of b if all goes well.

2.5. INITIALIZATION 11

int main(void)

{
mp_int num1, num2;

int result;

/* initialize and do work on num1 ... */

/* We want a copy of num1 in num2 now */

if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) {
printf("Error initializing the copy. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* now num2 is ready and contains a copy of num1 */

/* We’re done with them. */

mp_clear_multi(&num1, &num2, NULL);

return EXIT_SUCCESS;

}

Another less common initializer is mp init size() which allows the user to ini-
tialize an mp int with a given default number of digits. By default, all initializers
allocate MP PREC digits. This function lets you override this behaviour.

int mp_init_size (mp_int * a, int size);

The size parameter must be greater than zero. If the function succeeds the
mp int a will be initialized to have size digits (which are all initially zero).

int main(void)

{
mp_int number;

int result;

/* we need a 60-digit number */

if ((result = mp_init_size(&number, 60)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

return EXIT_SUCCESS;

}

12 CHAPTER 2. GETTING STARTED WITH LIBTOMMATH

2.6 Maintenance Functions

2.6.1 Reducing Memory Usage

When an mp int is in a state where it won’t be changed again2 excess digits can
be removed to return memory to the heap with the mp shrink() function.

int mp_shrink (mp_int * a);

This will remove excess digits of the mp int a. If the operation fails the
mp int should be intact without the excess digits being removed. Note that
you can use a shrunk mp int in further computations, however, such operations
will require heap operations which can be slow. It is not ideal to shrink mp int
variables that you will further modify in the system (unless you are seriously
low on memory).

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number [e.g. pre-computation] */

/* We’re done with it for now. */

if ((result = mp_shrink(&number)) != MP_OKAY) {
printf("Error shrinking the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use it */

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

2.6.2 Adding additional digits

Within the mp int structure are two parameters which control the limitations
of the array of digits that represent the integer the mp int is meant to equal.

2A Diffie-Hellman modulus for instance.

2.6. MAINTENANCE FUNCTIONS 13

The used parameter dictates how many digits are significant, that is, contribute
to the value of the mp int. The alloc parameter dictates how many digits
are currently available in the array. If you need to perform an operation that
requires more digits you will have to mp grow() the mp int to your desired size.

int mp_grow (mp_int * a, int size);

This will grow the array of digits of a to size. If the alloc parameter is
already bigger than size the function will not do anything.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

/* We need to add 20 digits to the number */

if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) {
printf("Error growing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* use the number */

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

14 CHAPTER 2. GETTING STARTED WITH LIBTOMMATH

Chapter 3

Basic Operations

3.1 Small Constants

Setting mp ints to small constants is a relatively common operation. To acco-
modate these instances there are two small constant assignment functions. The
first function is used to set a single digit constant while the second sets an ISO
C style “unsigned long” constant. The reason for both functions is efficiency.
Setting a single digit is quick but the domain of a digit can change (it’s always
at least 0 . . . 127).

3.1.1 Single Digit

Setting a single digit can be accomplished with the following function.

void mp_set (mp_int * a, mp_digit b);

This will zero the contents of a and make it represent an integer equal to the
value of b. Note that this function has a return type of void. It cannot cause
an error so it is safe to assume the function succeeded.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number to 5 */

mp_set(&number, 5);

15

16 CHAPTER 3. BASIC OPERATIONS

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

3.1.2 Long Constants

To set a constant that is the size of an ISO C “unsigned long” and larger than
a single digit the following function can be used.

int mp_set_int (mp_int * a, unsigned long b);

This will assign the value of the 32-bit variable b to the mp int a. Unlike
mp set() this function will always accept a 32-bit input regardless of the size of
a single digit. However, since the value may span several digits this function
can fail if it runs out of heap memory.

To get the “unsigned long” copy of an mp int the following function can be
used.

unsigned long mp_get_int (mp_int * a);

This will return the 32 least significant bits of the mp int a.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number to 654321 (note this is bigger than 127) */

if ((result = mp_set_int(&number, 654321)) != MP_OKAY) {
printf("Error setting the value of the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

printf("number == %lu", mp_get_int(&number));

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

3.1. SMALL CONSTANTS 17

This should output the following if the program succeeds.

number == 654321

3.1.3 Initialize and Setting Constants

To both initialize and set small constants the following two functions are avail-
able.

int mp_init_set (mp_int * a, mp_digit b);
int mp_init_set_int (mp_int * a, unsigned long b);

Both functions work like the previous counterparts except they first mp init
a before setting the values.

int main(void)
{

mp_int number1, number2;
int result;

/* initialize and set a single digit */
if ((result = mp_init_set(&number1, 100)) != MP_OKAY) {

printf("Error setting number1: %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* initialize and set a long */
if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) {

printf("Error setting number2: %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* display */
printf("Number1, Number2 == %lu, %lu",

mp_get_int(&number1), mp_get_int(&number2));

/* clear */
mp_clear_multi(&number1, &number2, NULL);

return EXIT_SUCCESS;
}

If this program succeeds it shall output.

Number1, Number2 == 100, 1023

18 CHAPTER 3. BASIC OPERATIONS

3.2 Comparisons

Comparisons in LibTomMath are always performed in a “left to right” fashion.
There are three possible return codes for any comparison.

Result Code Meaning
MP GT a > b
MP EQ a = b
MP LT a < b

Figure 3.1: Comparison Codes for a, b

In figure 3.1 two integers a and b are being compared. In this case a is said
to be “to the left” of b.

3.2.1 Unsigned comparison

An unsigned comparison considers only the digits themselves and not the as-
sociated sign flag of the mp int structures. This is analogous to an absolute
comparison. The function mp cmp mag() will compare two mp int variables
based on their digits only.

int mp_cmp_mag(mp_int * a, mp_int * b);

This will compare a to b placing a to the left of b. This function cannot fail and
will return one of the three compare codes listed in figure 3.1.

int main(void)

{
mp_int number1, number2;

int result;

if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) {
printf("Error initializing the numbers. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number1 to 5 */

mp_set(&number1, 5);

/* set the number2 to -6 */

mp_set(&number2, 6);

if ((result = mp_neg(&number2, &number2)) != MP_OKAY) {
printf("Error negating number2. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

3.2. COMPARISONS 19

switch(mp_cmp_mag(&number1, &number2)) {
case MP_GT: printf("|number1| > |number2|"); break;

case MP_EQ: printf("|number1| = |number2|"); break;

case MP_LT: printf("|number1| < |number2|"); break;

}

/* we’re done with it. */

mp_clear_multi(&number1, &number2, NULL);

return EXIT_SUCCESS;

}

If this program1 completes successfully it should print the following.

|number1| < |number2|

This is because | − 6| = 6 and obviously 5 < 6.

3.2.2 Signed comparison

To compare two mp int variables based on their signed value the mp cmp()
function is provided.

int mp_cmp(mp_int * a, mp_int * b);

This will compare a to the left of b. It will first compare the signs of the two
mp int variables. If they differ it will return immediately based on their signs.
If the signs are equal then it will compare the digits individually. This function
will return one of the compare conditions codes listed in figure 3.1.

int main(void)

{
mp_int number1, number2;

int result;

if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) {
printf("Error initializing the numbers. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number1 to 5 */

mp_set(&number1, 5);

/* set the number2 to -6 */

mp_set(&number2, 6);

if ((result = mp_neg(&number2, &number2)) != MP_OKAY) {
1This function uses the mp neg() function which is discussed in section 3.5.1.

20 CHAPTER 3. BASIC OPERATIONS

printf("Error negating number2. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

switch(mp_cmp(&number1, &number2)) {
case MP_GT: printf("number1 > number2"); break;

case MP_EQ: printf("number1 = number2"); break;

case MP_LT: printf("number1 < number2"); break;

}

/* we’re done with it. */

mp_clear_multi(&number1, &number2, NULL);

return EXIT_SUCCESS;

}

If this program2 completes successfully it should print the following.

number1 > number2

3.2.3 Single Digit

To compare a single digit against an mp int the following function has been
provided.

int mp_cmp_d(mp_int * a, mp_digit b);

This will compare a to the left of b using a signed comparison. Note that it
will always treat b as positive. This function is rather handy when you have to
compare against small values such as 1 (which often comes up in cryptography).
The function cannot fail and will return one of the tree compare condition codes
listed in figure 3.1.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number to 5 */

mp_set(&number, 5);

2This function uses the mp neg() function which is discussed in section 3.5.1.

3.3. LOGICAL OPERATIONS 21

switch(mp_cmp_d(&number, 7)) {
case MP_GT: printf("number > 7"); break;

case MP_EQ: printf("number = 7"); break;

case MP_LT: printf("number < 7"); break;

}

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

If this program functions properly it will print out the following.

number < 7

3.3 Logical Operations

Logical operations are operations that can be performed either with simple shifts
or boolean operators such as AND, XOR and OR directly. These operations
are very quick.

3.3.1 Multiplication by two

Multiplications and divisions by any power of two can be performed with quick
logical shifts either left or right depending on the operation.

When multiplying or dividing by two a special case routine can be used
which are as follows.

int mp_mul_2(mp_int * a, mp_int * b);
int mp_div_2(mp_int * a, mp_int * b);

The former will assign twice a to b while the latter will assign half a to b.
These functions are fast since the shift counts and maskes are hardcoded into
the routines.

int main(void)

{
mp_int number;

int result;

if ((result = mp_init(&number)) != MP_OKAY) {
printf("Error initializing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}

/* set the number to 5 */

mp_set(&number, 5);

22 CHAPTER 3. BASIC OPERATIONS

/* multiply by two */

if ((result = mp mul 2(&number, &number)) != MP_OKAY) {
printf("Error multiplying the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}
switch(mp_cmp_d(&number, 7)) {

case MP_GT: printf("2*number > 7"); break;

case MP_EQ: printf("2*number = 7"); break;

case MP_LT: printf("2*number < 7"); break;

}

/* now divide by two */

if ((result = mp div 2(&number, &number)) != MP_OKAY) {
printf("Error dividing the number. %s",

mp_error_to_string(result));

return EXIT_FAILURE;

}
switch(mp_cmp_d(&number, 7)) {

case MP_GT: printf("2*number/2 > 7"); break;

case MP_EQ: printf("2*number/2 = 7"); break;

case MP_LT: printf("2*number/2 < 7"); break;

}

/* we’re done with it. */

mp_clear(&number);

return EXIT_SUCCESS;

}

If this program is successful it will print out the following text.

2*number > 7
2*number/2 < 7

Since 10 > 7 and 5 < 7. To multiply by a power of two the following function
can be used.

int mp_mul_2d(mp_int * a, int b, mp_int * c);

This will multiply a by 2b and store the result in “c”. If the value of b is less
than or equal to zero the function will copy a to “c” without performing any
further actions.

To divide by a power of two use the following.

int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);

Which will divide a by 2b, store the quotient in “c” and the remainder in “d’. If
b ≤ 0 then the function simply copies a over to “c” and zeroes d. The variable
d may be passed as a NULL value to signal that the remainder is not desired.

3.4. ADDITION AND SUBTRACTION 23

3.3.2 Polynomial Basis Operations

Strictly speaking the organization of the integers within the mp int structures
is what is known as a “polynomial basis”. This simply means a field element is
stored by divisions of a radix. For example, if f(x) =

∑k
i=0 yix

k for any vector
~y then the array of digits in ~y are said to be the polynomial basis representation
of z if f(β) = z for a given radix β.

To multiply by the polynomial g(x) = x all you have todo is shift the digits
of the basis left one place. The following function provides this operation.

int mp_lshd (mp_int * a, int b);

This will multiply a in place by xb which is equivalent to shifting the digits
left b places and inserting zeroes in the least significant digits. Similarly to
divide by a power of x the following function is provided.

void mp_rshd (mp_int * a, int b)

This will divide a in place by xb and discard the remainder. This function
cannot fail as it performs the operations in place and no new digits are required
to complete it.

3.3.3 AND, OR and XOR Operations

While AND, OR and XOR operations are not typical “bignum functions” they
can be useful in several instances. The three functions are prototyped as follows.

int mp_or (mp_int * a, mp_int * b, mp_int * c);
int mp_and (mp_int * a, mp_int * b, mp_int * c);
int mp_xor (mp_int * a, mp_int * b, mp_int * c);

Which compute c = a� b where � is one of OR, AND or XOR.

3.4 Addition and Subtraction

To compute an addition or subtraction the following two functions can be used.

int mp_add (mp_int * a, mp_int * b, mp_int * c);
int mp_sub (mp_int * a, mp_int * b, mp_int * c)

Which perform c = a � b where � is one of signed addition or subtraction.
The operations are fully sign aware.

24 CHAPTER 3. BASIC OPERATIONS

3.5 Sign Manipulation

3.5.1 Negation

Simple integer negation can be performed with the following.

int mp_neg (mp_int * a, mp_int * b);

Which assigns −a to b.

3.5.2 Absolute

Simple integer absolutes can be performed with the following.

int mp_abs (mp_int * a, mp_int * b);

Which assigns |a| to b.

3.6 Integer Division and Remainder

To perform a complete and general integer division with remainder use the
following function.

int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);

This divides a by b and stores the quotient in c and d. The signed quotient is
computed such that bc + d = a. Note that either of c or d can be set to NULL
if their value is not required. If b is zero the function returns MP VAL.

Chapter 4

Multiplication and Squaring

4.1 Multiplication

A full signed integer multiplication can be performed with the following.

int mp_mul (mp_int * a, mp_int * b, mp_int * c);

Which assigns the full signed product ab to c. This function actually breaks into
one of four cases which are specific multiplication routines optimized for given
parameters. First there are the Toom-Cook multiplications which should only
be used with very large inputs. This is followed by the Karatsuba multiplications
which are for moderate sized inputs. Then followed by the Comba and baseline
multipliers.

Fortunately for the developer you don’t really need to know this unless you
really want to fine tune the system. mp mul() will determine on its own1 what
routine to use automatically when it is called.

int main(void)
{

mp_int number1, number2;
int result;

/* Initialize the numbers */
if ((result = mp_init_multi(&number1,

&number2, NULL)) != MP_OKAY) {
printf("Error initializing the numbers. %s",

mp_error_to_string(result));
return EXIT_FAILURE;

}

/* set the terms */

1Some tweaking may be required.

25

26 CHAPTER 4. MULTIPLICATION AND SQUARING

if ((result = mp_set_int(&number, 257)) != MP_OKAY) {
printf("Error setting number1. %s",

mp_error_to_string(result));
return EXIT_FAILURE;

}

if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) {
printf("Error setting number2. %s",

mp_error_to_string(result));
return EXIT_FAILURE;

}

/* multiply them */
if ((result = mp_mul(&number1, &number2,

&number1)) != MP_OKAY) {
printf("Error multiplying terms. %s",

mp_error_to_string(result));
return EXIT_FAILURE;

}

/* display */
printf("number1 * number2 == %lu", mp_get_int(&number1));

/* free terms and return */
mp_clear_multi(&number1, &number2, NULL);

return EXIT_SUCCESS;
}

If this program succeeds it shall output the following.

number1 * number2 == 262911

4.2 Squaring

Since squaring can be performed faster than multiplication it is performed it’s
own function instead of just using mp mul().

int mp_sqr (mp_int * a, mp_int * b);

Will square a and store it in b. Like the case of multiplication there are four
different squaring algorithms all which can be called from mp sqr(). It is ideal
to use mp sqr over mp mul when squaring terms because of the speed difference.

4.3. TUNING POLYNOMIAL BASIS ROUTINES 27

4.3 Tuning Polynomial Basis Routines

Both of the Toom-Cook and Karatsuba multiplication algorithms are faster
than the traditional O(n2) approach that the Comba and baseline algorithms
use. At O(n1.464973) and O(n1.584962) running times respectively they require
considerably less work. For example, a 10000-digit multiplication would take
roughly 724,000 single precision multiplications with Toom-Cook or 100,000,000
single precision multiplications with the standard Comba (a factor of 138).

So why not always use Karatsuba or Toom-Cook? The simple answer is that
they have so much overhead that they’re not actually faster than Comba until
you hit distinct “cutoff” points. For Karatsuba with the default configuration,
GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits
(about 70 for the Intel P4). That is, at 110 digits Karatsuba and Comba
multiplications just about break even and for 110+ digits Karatsuba is faster.

Toom-Cook has incredible overhead and is probably only useful for very large
inputs. So far no known cutoff points exist and for the most part I just set the
cutoff points very high to make sure they’re not called.

A demo program in the “etc/” directory of the project called “tune.c” can
be used to find the cutoff points. This can be built with GCC as follows

make XXX

Where “XXX” is one of the following entries from the table 4.1.

Value of XXX Meaning

tune Builds portable tuning application

tune86 Builds x86 (pentium and up) program for COFF

tune86c Builds x86 program for Cygwin

tune86l Builds x86 program for Linux (ELF format)

Figure 4.1: Build Names for Tuning Programs

When the program is running it will output a series of measurements for
different cutoff points. It will first find good Karatsuba squaring and multi-
plication points. Then it proceeds to find Toom-Cook points. Note that the
Toom-Cook tuning takes a very long time as the cutoff points are likely to be
very high.

28 CHAPTER 4. MULTIPLICATION AND SQUARING

Chapter 5

Modular Reduction

Modular reduction is process of taking the remainder of one quantity divided by
another. Expressed as (5.1) the modular reduction is equivalent to the remainder
of b divided by c.

a ≡ b (mod c) (5.1)

Of particular interest to cryptography are reductions where b is limited to
the range 0 ≤ b < c2 since particularly fast reduction algorithms can be written
for the limited range.

Note that one of the four optimized reduction algorithms are automatically
chosen in the modular exponentiation algorithm mp exptmod when an appro-
priate modulus is detected.

5.1 Straight Division

In order to effect an arbitrary modular reduction the following algorithm is
provided.

int mp_mod(mp_int *a, mp_int *b, mp_int *c);

This reduces a modulo b and stores the result in c. The sign of c shall agree
with the sign of b. This algorithm accepts an input a of any range and is not
limited by 0 ≤ a < b2.

5.2 Barrett Reduction

Barrett reduction is a generic optimized reduction algorithm that requires pre–
computation to achieve a decent speedup over straight division. First a µ value
must be precomputed with the following function.

int mp_reduce_setup(mp_int *a, mp_int *b);

29

30 CHAPTER 5. MODULAR REDUCTION

Given a modulus in b this produces the required µ value in a. For any given
modulus this only has to be computed once. Modular reduction can now be
performed with the following.

int mp_reduce(mp_int *a, mp_int *b, mp_int *c);

This will reduce a in place modulo b with the precomputed µ value in c. a
must be in the range 0 ≤ a < b2.

int main(void)
{

mp_int a, b, c, mu;
int result;

/* initialize a,b to desired values, mp_init mu,
* c and set c to 1...we want to compute a^3 mod b
*/

/* get mu value */
if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) {

printf("Error getting mu. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* square a to get c = a^2 */
if ((result = mp_sqr(&a, &c)) != MP_OKAY) {

printf("Error squaring. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* now reduce ‘c’ modulo b */
if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) {

printf("Error reducing. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* multiply a to get c = a^3 */
if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) {

printf("Error reducing. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* now reduce ‘c’ modulo b */

5.3. MONTGOMERY REDUCTION 31

if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));
return EXIT_FAILURE;

}

/* c now equals a^3 mod b */

return EXIT_SUCCESS;
}

This program will calculate a3 mod b if all the functions succeed.

5.3 Montgomery Reduction

Montgomery is a specialized reduction algorithm for any odd moduli. Like
Barrett reduction a pre–computation step is required. This is accomplished
with the following.

int mp_montgomery_setup(mp_int *a, mp_digit *mp);

For the given odd moduli a the precomputation value is placed in mp. The
reduction is computed with the following.

int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);

This reduces a in place modulo m with the pre–computed value mp. a must be
in the range 0 ≤ a < b2.

Montgomery reduction is faster than Barrett reduction for moduli smaller
than the “comba” limit. With the default setup for instance, the limit is 127
digits (3556–bits). Note that this function is not limited to 127 digits just that
it falls back to a baseline algorithm after that point.

An important observation is that this reduction does not return a mod m
but aR−1 mod m where R = βn, n is the n number of digits in m and β is radix
used (default is 228).

To quickly calculate R the following function was provided.

int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);

Which calculates a = R for the odd moduli b without using multiplication or
division.

The normal modus operandi for Montgomery reductions is to normalize the
integers before entering the system. For example, to calculate a3 mod b using
Montgomery reduction the value of a can be normalized by multiplying it by R.
Consider the following code snippet.

32 CHAPTER 5. MODULAR REDUCTION

int main(void)
{

mp_int a, b, c, R;
mp_digit mp;
int result;

/* initialize a,b to desired values,
* mp_init R, c and set c to 1....
*/

/* get normalization */
if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) {

printf("Error getting norm. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* get mp value */
if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) {

printf("Error setting up montgomery. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* normalize ‘a’ so now a is equal to aR */
if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) {

printf("Error computing aR. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* square a to get c = a^2R^2 */
if ((result = mp_sqr(&a, &c)) != MP_OKAY) {

printf("Error squaring. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* now reduce ‘c’ back down to c = a^2R^2 * R^-1 == a^2R */
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) {

printf("Error reducing. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* multiply a to get c = a^3R^2 */

5.4. RESTRICTED DIMMINISHED RADIX 33

if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) {
printf("Error reducing. %s",

mp_error_to_string(result));
return EXIT_FAILURE;

}

/* now reduce ‘c’ back down to c = a^3R^2 * R^-1 == a^3R */
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) {

printf("Error reducing. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* now reduce (again) ‘c’ back down to c = a^3R * R^-1 == a^3 */
if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) {

printf("Error reducing. %s",
mp_error_to_string(result));

return EXIT_FAILURE;
}

/* c now equals a^3 mod b */

return EXIT_SUCCESS;
}

This particular example does not look too efficient but it demonstrates the
point of the algorithm. By normalizing the inputs the reduced results are always
of the form aR for some variable a. This allows a single final reduction to correct
for the normalization and the fast reduction used within the algorithm.

For more details consider examining the file bn mp exptmod fast.c.

5.4 Restricted Dimminished Radix

“Dimminished Radix” reduction refers to reduction with respect to moduli that
are ameniable to simple digit shifting and small multiplications. In this case
the “restricted” variant refers to moduli of the form βk − p for some k ≥ 0 and
0 < p < β where β is the radix (default to 228).

As in the case of Montgomery reduction there is a pre–computation phase
required for a given modulus.

void mp_dr_setup(mp_int *a, mp_digit *d);

This computes the value required for the modulus a and stores it in d.
This function cannot fail and does not return any error codes. After the pre–
computation a reduction can be performed with the following.

34 CHAPTER 5. MODULAR REDUCTION

int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);

This reduces a in place modulo b with the pre–computed value mp. b must
be of a restricted dimminished radix form and a must be in the range 0 ≤
a < b2. Dimminished radix reductions are much faster than both Barrett and
Montgomery reductions as they have a much lower asymtotic running time.

Since the moduli are restricted this algorithm is not particularly useful for
something like Rabin, RSA or BBS cryptographic purposes. This reduction al-
gorithm is useful for Diffie-Hellman and ECC where fixed primes are acceptable.

Note that unlike Montgomery reduction there is no normalization process.
The result of this function is equal to the correct residue.

5.5 Unrestricted Dimminshed Radix

Unrestricted reductions work much like the restricted counterparts except in this
case the moduli is of the form 2k−p for 0 < p < β. In this sense the unrestricted
reductions are more flexible as they can be applied to a wider range of numbers.

int mp_reduce_2k_setup(mp_int *a, mp_digit *d);

This will compute the required d value for the given moduli a.

int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);

This will reduce a in place modulo n with the pre–computed value d. From
my experience this routine is slower than mp dr reduce but faster for most
moduli sizes than the Montgomery reduction.

Chapter 6

Exponentiation

6.1 Single Digit Exponentiation

int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)

This computes c = ab using a simple binary left-to-right algorithm. It is faster
than repeated multiplications by a for all values of b greater than three.

6.2 Modular Exponentiation

int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)

This computes Y ≡ GX (mod P) using a variable width sliding window algo-
rithm. This function will automatically detect the fastest modular reduction
technique to use during the operation. For negative values of X the operation
is performed as Y ≡ (G−1 mod P)|X| (mod P) provided that gcd(G, P) = 1.

This function is actually a shell around the two internal exponentiation
functions. This routine will automatically detect when Barrett, Montgomery,
Restricted and Unrestricted Dimminished Radix based exponentiation can be
used. Generally moduli of the a “restricted dimminished radix” form lead to
the fastest modular exponentiations. Followed by Montgomery and the other
two algorithms.

6.3 Root Finding

int mp_n_root (mp_int * a, mp_digit b, mp_int * c)

This computes c = a1/b such that cb ≤ a and (c + 1)b > a. The implementation
of this function is not ideal for values of b greater than three. It will work but
become very slow. So unless you are working with very small numbers (less than
1000 bits) I’d avoid b > 3 situations. Will return a positive root only for even

35

36 CHAPTER 6. EXPONENTIATION

roots and return a root with the sign of the input for odd roots. For example,
performing 41/2 will return 2 whereas (−8)1/3 will return −2.

This algorithm uses the “Newton Approximation” method and will converge
on the correct root fairly quickly. Since the algorithm requires raising a to
the power of b it is not ideal to attempt to find roots for large values of b. If
particularly large roots are required then a factor method could be used instead.

For example, a1/16 is equivalent to
(
a1/4

)1/4
or simply

(((
a1/2

)1/2
)1/2

)1/2

Chapter 7

Prime Numbers

7.1 Trial Division

int mp_prime_is_divisible (mp_int * a, int *result)

This will attempt to evenly divide a by a list of primes1 and store the outcome in
“result”. That is if result = 0 then a is not divisible by the primes, otherwise it
is. Note that if the function does not return MP OKAY the value in “result”
should be considered undefined2.

7.2 Fermat Test

int mp_prime_fermat (mp_int * a, mp_int * b, int *result)

Performs a Fermat primality test to the base b. That is it computes ba mod a
and tests whether the value is equal to b or not. If the values are equal then a
is probably prime and result is set to one. Otherwise result is set to zero.

7.3 Miller-Rabin Test

int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)

Performs a Miller-Rabin test to the base b of a. This test is much stronger than
the Fermat test and is very hard to fool (besides with Carmichael numbers). If
a passes the test (therefore is probably prime) result is set to one. Otherwise
result is set to zero.

Note that is suggested that you use the Miller-Rabin test instead of the
Fermat test since all of the failures of Miller-Rabin are a subset of the failures
of the Fermat test.

1Default is the first 256 primes.
2Currently the default is to set it to zero first.

37

38 CHAPTER 7. PRIME NUMBERS

7.3.1 Required Number of Tests

Generally to ensure a number is very likely to be prime you have to perform
the Miller-Rabin with at least a half-dozen or so unique bases. However, it has
been proven that the probability of failure goes down as the size of the input
goes up. This is why a simple function has been provided to help out.

int mp_prime_rabin_miller_trials(int size)

This returns the number of trials required for a 2−96 (or lower) probability of
failure for a given “size” expressed in bits. This comes in handy specially since
larger numbers are slower to test. For example, a 512-bit number would require
ten tests whereas a 1024-bit number would only require four tests.

You should always still perform a trial division before a Miller-Rabin test
though.

7.4 Primality Testing

int mp_prime_is_prime (mp_int * a, int t, int *result)

This will perform a trial division followed by t rounds of Miller-Rabin tests on
a and store the result in result. If a passes all of the tests result is set to one,
otherwise it is set to zero. Note that t is bounded by 1 ≤ t < PRIME SIZE
where PRIME SIZE is the number of primes in the prime number table (by
default this is 256).

7.5 Next Prime

int mp_prime_next_prime(mp_int *a, int t, int bbs_style)

This finds the next prime after a that passes mp prime is prime() with t tests.
Set bbs style to one if you want only the next prime congruent to 3 mod 4,
otherwise set it to zero to find any next prime.

7.6 Random Primes

int mp_prime_random(mp_int *a, int t, int size, int bbs,
ltm_prime_callback cb, void *dat)

This will find a prime greater than 256size which can be “bbs style” or not
depending on bbs and must pass t rounds of tests. The “ltm prime callback” is
a typedef for

typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);

7.6. RANDOM PRIMES 39

Which is a function that must read len bytes (and return the amount stored)
into dst. The dat variable is simply copied from the original input. It can be used
to pass RNG context data to the callback. The function mp prime random()
is more suitable for generating primes which must be secret (as in the case of
RSA) since there is no skew on the least significant bits.

Note: As of v0.30 of the LibTomMath library this function has been depre-
cated. It is still available but users are encouraged to use the new mp prime random ex()
function instead.

7.6.1 Extended Generation

int mp_prime_random_ex(mp_int *a, int t,
int size, int flags,
ltm_prime_callback cb, void *dat);

This will generate a prime in a using t tests of the primality testing algorithms.
The variable size specifies the bit length of the prime desired. The variable
flags specifies one of several options available (see fig. 7.1) which can be OR’ed
together. The callback parameters are used as in mp prime random().

Flag Meaning

LTM PRIME BBS Make the prime congruent to 3 modulo 4

LTM PRIME SAFE Make a prime p such that (p− 1)/2 is also prime.
This option implies LTM PRIME BBS as well.

LTM PRIME 2MSB OFF Makes sure that the bit adjacent to the most significant bit
Is forced to zero.

LTM PRIME 2MSB ON Makes sure that the bit adjacent to the most significant bit
Is forced to one.

Figure 7.1: Primality Generation Options

40 CHAPTER 7. PRIME NUMBERS

Chapter 8

Input and Output

8.1 ASCII Conversions

8.1.1 To ASCII

int mp_toradix (mp_int * a, char *str, int radix);

This still store a in “str” as a base-“radix” string of ASCII chars. This function
appends a NUL character to terminate the string. Valid values of “radix” line
in the range [2, 64]. To determine the size (exact) required by the conversion
before storing any data use the following function.

int mp_radix_size (mp_int * a, int radix, int *size)

This stores in “size” the number of characters (including space for the NUL
terminator) required. Upon error this function returns an error code and “size”
will be zero.

8.1.2 From ASCII

int mp_read_radix (mp_int * a, char *str, int radix);

This will read the base-“radix” NUL terminated string from “str” into a. It will
stop reading when it reads a character it does not recognize (which happens to
include th NUL char... imagine that...). A single leading − sign can be used to
denote a negative number.

8.2 Binary Conversions

Converting an mp int to and from binary is another keen idea.

int mp_unsigned_bin_size(mp_int *a);

41

42 CHAPTER 8. INPUT AND OUTPUT

This will return the number of bytes (octets) required to store the unsigned
copy of the integer a.

int mp_to_unsigned_bin(mp_int *a, unsigned char *b);

This will store a into the buffer b in big–endian format. Fortunately this is
exactly what DER (or is it ASN?) requires. It does not store the sign of the
integer.

int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);

This will read in an unsigned big–endian array of bytes (octets) from b of length
c into a. The resulting integer a will always be positive.

For those who acknowledge the existence of negative numbers (heretic!)
there are “signed” versions of the previous functions.

int mp_signed_bin_size(mp_int *a);
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);

They operate essentially the same as the unsigned copies except they prefix the
data with zero or non–zero byte depending on the sign. If the sign is zpos (e.g.
not negative) the prefix is zero, otherwise the prefix is non–zero.

Chapter 9

Algebraic Functions

9.1 Extended Euclidean Algorithm

int mp_exteuclid(mp_int *a, mp_int *b,
mp_int *U1, mp_int *U2, mp_int *U3);

This finds the triple U1/U2/U3 using the Extended Euclidean algorithm
such that the following equation holds.

a · U1 + b · U2 = U3 (9.1)

Any of the U1/U2/U3 paramters can be set to NULL if they are not desired.

9.2 Greatest Common Divisor

int mp_gcd (mp_int * a, mp_int * b, mp_int * c)

This will compute the greatest common divisor of a and b and store it in c.

9.3 Least Common Multiple

int mp_lcm (mp_int * a, mp_int * b, mp_int * c)

This will compute the least common multiple of a and b and store it in c.

9.4 Jacobi Symbol

int mp_jacobi (mp_int * a, mp_int * p, int *c)

This will compute the Jacobi symbol for a with respect to p. If p is prime this
essentially computes the Legendre symbol. The result is stored in c and can

43

44 CHAPTER 9. ALGEBRAIC FUNCTIONS

take on one of three values {−1, 0, 1}. If p is prime then the result will be −1
when a is not a quadratic residue modulo p. The result will be 0 if a divides p
and the result will be 1 if a is a quadratic residue modulo p.

9.5 Modular Inverse

int mp_invmod (mp_int * a, mp_int * b, mp_int * c)

Computes the multiplicative inverse of a modulo b and stores the result in c
such that ac ≡ 1 (mod b).

9.6 Single Digit Functions

For those using small numbers (snicker snicker) there are several “helper” func-
tions

int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);

These work like the full mp int capable variants except the second parameter
b is a mp digit. These functions fairly handy if you have to work with relatively
small numbers since you will not have to allocate an entire mp int to store a
number like 1 or 2.

Index

mp add, 23
mp add d, 44
mp and, 23
mp clear, 9
mp clear multi, 10
mp cmp, 19
mp cmp d, 20
mp cmp mag, 18
mp div, 24
mp div 2, 21
mp div 2d, 22
mp div d, 44
mp dr reduce, 33
mp dr setup, 33
MP EQ, 18
mp error to string, 7
mp expt d, 35
mp exptmod, 35
mp exteuclid, 43
mp gcd, 43
mp get int, 16
mp grow, 13
MP GT, 18
mp init, 8
mp init copy, 10
mp init multi, 10
mp init set, 17
mp init set int, 17
mp init size, 11
mp int, 8
mp invmod, 44
mp jacobi, 43
mp lcm, 43
mp lshd, 23
MP LT, 18
MP MEM, 7
mp mod, 29

mp mod d, 44
mp montgomery calc normalization, 31
mp montgomery reduce, 31
mp montgomery setup, 31
mp mul, 25
mp mul 2, 21
mp mul 2d, 22
mp mul d, 44
mp n root, 35
mp neg, 24
MP NO, 7
MP OKAY, 7
mp or, 23
mp prime fermat, 37
mp prime is divisible, 37
mp prime is prime, 38
mp prime miller rabin, 37
mp prime next prime, 38
mp prime rabin miller trials, 38
mp prime random, 38
mp prime random ex, 39
mp radix size, 41
mp read radix, 41
mp read unsigned bin, 42
mp reduce, 30
mp reduce 2k, 34
mp reduce 2k setup, 34
mp reduce setup, 29
mp rshd, 23
mp set, 15
mp set int, 16
mp shrink, 12
mp sqr, 26
mp sub, 23
mp sub d, 44
mp to unsigned bin, 42
mp toradix, 41

45

46 INDEX

mp unsigned bin size, 41
MP VAL, 7
mp xor, 23
MP YES, 7

	Introduction
	What is LibTomMath?
	License
	Building LibTomMath
	Static Libraries
	Shared Libraries
	Testing

	Build Configuration
	Build Depends
	Build Tweaks
	Build Trims

	Purpose of LibTomMath

	Getting Started with LibTomMath
	Building Programs
	Return Codes
	Data Types
	Function Organization
	Initialization
	Single Initialization
	Single Free
	Multiple Initializations
	Other Initializers

	Maintenance Functions
	Reducing Memory Usage
	Adding additional digits

	Basic Operations
	Small Constants
	Single Digit
	Long Constants
	Initialize and Setting Constants

	Comparisons
	Unsigned comparison
	Signed comparison
	Single Digit

	Logical Operations
	Multiplication by two
	Polynomial Basis Operations
	AND, OR and XOR Operations

	Addition and Subtraction
	Sign Manipulation
	Negation
	Absolute

	Integer Division and Remainder

	Multiplication and Squaring
	Multiplication
	Squaring
	Tuning Polynomial Basis Routines

	Modular Reduction
	Straight Division
	Barrett Reduction
	Montgomery Reduction
	Restricted Dimminished Radix
	Unrestricted Dimminshed Radix

	Exponentiation
	Single Digit Exponentiation
	Modular Exponentiation
	Root Finding

	Prime Numbers
	Trial Division
	Fermat Test
	Miller-Rabin Test
	Required Number of Tests

	Primality Testing
	Next Prime
	Random Primes
	Extended Generation

	Input and Output
	ASCII Conversions
	To ASCII
	From ASCII

	Binary Conversions

	Algebraic Functions
	Extended Euclidean Algorithm
	Greatest Common Divisor
	Least Common Multiple
	Jacobi Symbol
	Modular Inverse
	Single Digit Functions

