Multi—Precision Math

Tom St Denis
Algonquin College

Mads Rasmussen
Open Communications Security

Greg Rose
QUALCOMM Australia

August 1, 2005

This text has been placed in the public domain. This text corresponds to
the v0.36 release of the LibTomMath project.

Tom St Denis
111 Banning Rd
Ottawa, Ontario
K2L 1C3

Canada

Phone: 1-613-836-3160
Email: tomstdenis@iahu.ca

This text is formatted to the international B5 paper size of 176mm wide by
250mm tall using the BTEX book macro package and the Perl booker package.

Contents

1

Introduction
1.1 Multiple Precision Arithmetic
1.1.1 What is Multiple Precision Arithmetic?
1.1.2 The Need for Multiple Precision Arithmetic
1.1.3 Benefits of Multiple Precision Arithmetic
1.2 Purposeof This Text
1.3 Discussion and Notation
1.3.1 Notation.
1.3.2 Precision Notation
1.3.3 Algorithm Inputs and Outputs
1.3.4 Mathematical Expressions
1.3.5 Work Effort
1.4 Exercises e e
1.5 Introduction to LibTomMath
1.5.1 What is LibTomMath?
1.5.2 Goals of LibTomMath
1.6 Choice of LibTomMath
1.6.1 CodeBase.
1.6.2 API Simplicity oo
1.6.3 Optimizations oL
1.6.4 Portability and Stability
1.6.5 Choice
Getting Started
2.1 Library Basics o
2.2 What is a Multiple Precision Integer?
2.2.1 The mp-int Structure

iii

2.3 Argument Passing L. 17

24 Return Values L e 18
2.5 Initialization and Clearing 19
2.5.1 Imitializing an mp_int oL 19
2.5.2 Clearinganmp.nt 22
2.6 Maintenance Algorithms L. 23
2.6.1 Augmenting an mp_int’s Precision 24
2.6.2 Initializing Variable Precision mp_ints 27
2.6.3 Multiple Integer Initializations and Clearings 29
2.6.4 Clamping Excess Digits 31
Basic Operations 35
3.1 Imtroduction 35
3.2 Assigning Values to mp_int Structures 35
3.2.1 Copyinganmpint L. 35
3.22 CreatingaClone 39
3.3 Zeroing an Integer 41
3.4 Sign Manipulation o000 42
3.4.1 Absolute Value oL 42
3.4.2 Integer Negation 43
3.5 Small Constants 44
3.5.1 Setting Small Constants 44
3.5.2 Setting Large Constants 46
3.6 Comparisons 47
3.6.1 Unsigned Comparisions 47
3.6.2 Signed Comparisons 50
Basic Arithmetic 53
4.1 Introduction. 53
4.2 Addition and Subtraction oL 54
4.2.1 Low Level Addition 54
4.2.2 Low Level Subtraction 59
4.2.3 High Level Addition 63
4.2.4 High Level Subtraction 66
4.3 Bit and Digit Shifting 69
4.3.1 Multiplication by Two 69
4.3.2 Divisionby Two 72
4.4 Polynomial Basis Operations 75

4.4.1 Multiplication by @ 0oL 75

442 Divisionbyx o 78

4.5 Powersof Two 81
4.5.1 Multiplication by Power of Two 81
4.5.2 Division by Powerof Two 84
4.5.3 Remainder of Division by Power of Two 88

Multiplication and Squaring 91

5.1 The Multipliers o 91

5.2 Multiplication o 92
5.2.1 The Baseline Multiplication 92
5.2.2 Faster Multiplication by the “Comba” Method 97
5.2.3 Polynomial Basis Multiplication 104
5.2.4 Karatsuba Multiplication 107
5.2.5 Toom-Cook 3-Way Multiplication. 113
5.2.6 Signed Multiplication 122

5.3 Squaring 125
5.3.1 The Baseline Squaring Algorithm 126
5.3.2 Faster Squaring by the “Comba” Method 129
5.3.3 Polynomial Basis Squaring 133
5.3.4 Karatsuba Squaringo 133
5.3.5 Toom-Cook Squaring 139
5.3.6 High Level Squaring 139

Modular Reduction 143

6.1 Basics of Modular Reduction 143

6.2 The Barrett Reduction 144
6.2.1 Fixed Point Arithmetic 144
6.2.2 Choosing a Radix Point 146
6.2.3 Trimming the Quotient 147
6.2.4 Trimming the Residue 148
6.2.5 The Barrett Algorithm 148
6.2.6 The Barrett Setup Algorithm 152

6.3 The Montgomery Reduction 154
6.3.1 Digit Based Montgomery Reduction 157
6.3.2 Baseline Montgomery Reduction 158
6.3.3 Faster “Comba” Montgomery Reduction 163
6.3.4 Montgomery Setup 169

6.4 The Diminished Radix Algorithm 171

6.4.1 Choiceof Moduli 173

6.4.2 Choiceof k
6.4.3 Restricted Diminished Radix Reduction
6.4.4 Unrestricted Diminished Radix Reduction
6.5 Algorithm Comparison

Exponentiation

7.1 Exponentiation Basics L.
7.1.1 Single Digit Exponentiation

7.2 k-ary Exponentiation 0oL
7.2.1 Optimal Valuesof &
7.2.2 Sliding-Window Exponentiation.

7.3 Modular Exponentiation L0
7.3.1 Barrett Modular Exponentiation

7.4 Quick Power of Two

Higher Level Algorithms

8.1 Integer Division with Remainder
8.1.1 Quotient Estimation
8.1.2 Normalized Integers
8.1.3 Radix-g Division with Remainder

8.2 Single Digit Helpers
8.2.1 Single Digit Addition and Subtraction
8.2.2 Single Digit Multiplication
8.2.3 Single Digit Division
8.2.4 Single Digit Root Extraction

8.3 Random Number Generation

8.4 Formatted Representations
8.4.1 Reading Radix-n Input
8.4.2 Generating Radix-n Output

Number Theoretic Algorithms

9.1 Greatest Common Divisor
9.1.1 Complete Greatest Common Divisor

9.2 Least Common Multiple

9.3 Jacobi Symbol Computation
9.3.1 Jacobi Symbol oL

9.4 Modular Inverse
9.4.1 General Case

9.5 Primality Tests

9.5.1 Trial Division
9.5.2 The Fermat Test . . .

9.5.3 The Miller-Rabin Test

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
44

Typical Data Types for the C Programming Language
Exercise Scoring System oL

Design Flow of the First Few Original LibTomMath Functions. .
The mp_int Structure L.
LibTomMath Error Codes
Algorithm mpinit,
Algorithm mp-clear. oL
Algorithm mp_grow
Algorithm mpinitsize
Algorithm mpinit_multi
Algorithm mpclamp

Algorithm mp_copy
Algorithm mp_init_copy L.
Algorithm mp_zeroo
Algorithm mp_abs Lo o
Algorithm mpmeg
Algorithm mpsset,
Algorithm mpset_int oL
Comparison Return Codes
Algorithm mp_.cmp_mag
Algorithm mpcmp

Algorithm scmp_add,
Algorithm scmpsub
Algorithm mpadd,
Addition Guide Chart

ix

4.5 Algorithm mpsub 67
4.6 Subtraction Guide Chart 67
4.7 Algorithm mpmul 2 70
4.8 Algorithm mp_div

gl Aleorithmmo =~ = 20 020 20000000 0 67<s11Ti R3067964 0 Td (VT3 7799630 Td (VT35 7670640 Td (VYT3 7790630 Td (T3

6.13
6.14
6.15
6.16
6.17
6.18
6.19

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

9.1
9.2
9.3
9.4
9.5

Example Diminished Radix Reduction 173
Algorithm mp_drreduce 175
Algorithm mp.drsetup 178
Algorithm mp_dr_ismodulus 179
Algorithm mp.reduce 2k 180
Algorithm mp_reduce 2k setup 182
Algorithm mp_reduce_is 2k 184
Left to Right Exponentiation 188
Example of Left to Right Exponentiation 189
Algorithm mp_exptd. oL 190
k-ary Exponentiation 192
Optimal Values of k for k-ary Exponentiation 193
Optimal Values of k for Sliding Window Exponentiation 194
Sliding Window k-ary Exponentiation 194
Algorithm mp_exptmod L. 195
Algorithm s_mp_exptmod 0L 199
Algorithm s_mp_exptmod (continued) 200
Sliding Window State Diagram 202
Algorithm mp2expt L. 209
Algorithm Radix-g Integer Division 212
Algorithm mp_div o 215
Algorithm mp.div (continued) 216
Algorithm mp_.add.do oL 226
Algorithm mp-muld 0oL 229
Algorithm mp-div.do o 232
Algorithm mpn.root Lo 236
Algorithm mprand Lo 240
Lower ASCII Map 242
Algorithm mp.readradix 243
Algorithm mp_toradix 246
Example of Algorithm mp_toradix. 247
Algorithm Greatest Common Divisor (I) 250
Algorithm Greatest Common Divisor (II) 250
Algorithm Greatest Common Divisor (IIT) 251
Algorithm mp_gedo o 253
Algorithm mplem o o 257

9.6
9.7
9.8
9.9

Algorithm mp_jacobi 262
Algorithm mp_prime_is_ divisible 270
Algorithm mp_prime fermat 273
Algorithm mp_prime_miller rabin 275

Prefaces

When I tell people about my LibTom projects and that I release them as public
domain they are often puzzled. They ask why I did it and especially why I
continue to work on them for free. The best I can explain it is “Because I can.”
Which seems odd and perhaps too terse for adult conversation. I often qualify
it with “I am able, I am willing.” which perhaps explains it better. I am the
first to admit there is not anything that special with what I have done. Perhaps
others can see that too and then we would have a society to be proud of. My
LibTom projects are what I am doing to give back to society in the form of tools
and knowledge that can help others in their endeavours.

I started writing this book because it was the most logical task to further my
goal of open academia. The LibTomMath source code itself was written to be
easy to follow and learn from. There are times, however, where pure C source
code does not explain the algorithms properly. Hence this book. The book
literally starts with the foundation of the library and works itself outwards to
the more complicated algorithms. The use of both pseudo—code and verbatim
source code provides a duality of “theory” and “practice” that the computer
science students of the world shall appreciate. I never deviate too far from
relatively straightforward algebra and I hope that this book can be a valuable
learning asset.

This book and indeed much of the LibTom projects would not exist in their
current form if it was not for a plethora of kind people donating their time,
resources and kind words to help support my work. Writing a text of significant
length (along with the source code) is a tiresome and lengthy process. Currently
the LibTom project is four years old, comprises of literally thousands of users
and over 100,000 lines of source code, TeX and other material. People like
Mads and Greg were there at the beginning to encourage me to work well. It
is amazing how timely validation from others can boost morale to continue the
project. Definitely my parents were there for me by providing room and board

xiii

during the many months of work in 2003.

To my many friends whom I have met through the years I thank you for the
good times and the words of encouragement. I hope I honour your kind gestures
with this project.

Open Source. Open Academia. Open Minds.

Tom St Denis

I found the opportunity to work with Tom appealing for several reasons, not
only could I broaden my own horizons, but also contribute to educate others
facing the problem of having to handle big number mathematical calculations.

This book is Tom’s child and he has been caring and fostering the project
ever since the beginning with a clear mind of how he wanted the project to turn
out. I have helped by proofreading the text and we have had several discussions
about the layout and language used.

I hold a masters degree in cryptography from the University of Southern
Denmark and have always been interested in the practical aspects of cryptog-
raphy.

Having worked in the security consultancy business for several years in Sao
Paulo, Brazil, I have been in touch with a great deal of work in which multiple
precision mathematics was needed. Understanding the possibilities for speeding
up multiple precision calculations is often very important since we deal with
outdated machine architecture where modular reductions, for example, become
painfully slow.

This text is for people who stop and wonder when first examining algorithms
such as RSA for the first time and asks themselves, “You tell me this is only
secure for large numbers, fine; but how do you implement these numbers?”

Mads Rasmussen
Sao Paulo - SP
Brazil

It’s all because I broke my leg. That just happened to be at about the
same time that Tom asked for someone to review the section of the book about
Karatsuba multiplication. I was laid up, alone and immobile, and thought “Why
not?” I vaguely knew what Karatsuba multiplication was, but not really, so I
thought I could help, learn, and stop myself from watching daytime cable TV,
all at once.

At the time of writing this, I've still not met Tom or Mads in meatspace. I've
been following Tom’s progress since his first splash on the sci.crypt Usenet news
group. I watched him go from a clueless newbie, to the cryptographic equivalent
of a reformed smoker, to a real contributor to the field, over a period of about
two years. I've been impressed with his obvious intelligence, and astounded by
his productivity. Of course, he’s young enough to be my own child, so he doesn’t
have my problems with staying awake.

When I reviewed that single section of the book, in its very earliest form,
I was very pleasantly surprised. So I decided to collaborate more fully, and at
least review all of it, and perhaps write some bits too. There’s still a long way
to go with it, and I have watched a number of close friends go through the mill
of publication, so I think that the way to go is longer than Tom thinks it is.
Nevertheless, it’s a good effort, and I'm pleased to be involved with it.

Greg Rose, Sydney, Australia, June 2003.

Chapter 1

Introduction

1.1 Multiple Precision Arithmetic

1.1.1 What is Multiple Precision Arithmetic?

When we think of long-hand arithmetic such as addition or multiplication we
rarely consider the fact that we instinctively raise or lower the precision of the
numbers we are dealing with. For example, in decimal we almost immediate can
reason that 7 times 6 is 42. However, 42 has two digits of precision as opposed
to one digit we started with. Further multiplications of say 3 result in a larger
precision result 126. In these few examples we have multiple precisions for the
numbers we are working with. Despite the various levels of precision a single
subset! of algorithms can be designed to accomodate them.

By way of comparison a fixed or single precision operation would lose pre-
cision on various operations. For example, in the decimal system with fixed
precision 6 - 7 = 2.

Essentially at the heart of computer based multiple precision arithmetic are
the same long-hand algorithms taught in schools to manually add, subtract,
multiply and divide.

1.1.2 The Need for Multiple Precision Arithmetic

The most prevalent need for multiple precision arithmetic, often referred to
as “bignum” math, is within the implementation of public-key cryptography

Iwith the occasional optimization.

2 CHAPTER 1. INTRODUCTION

algorithms. Algorithms such as RSA [11] and Diffie-Hellman [12] require integers
of significant magnitude to resist known cryptanalytic attacks. For example, at
the time of this writing a typical RSA modulus would be at least greater than
103%9. However, modern programming languages such as ISO C [18] and Java
[19] only provide instrinsic support for integers which are relatively small and
single precision.

Data Type Range
char —128...127
short —32768...32767
long —2147483648 . ..2147483647
long long | —9223372036854775808 . ..9223372036854775807

Figure 1.1: Typical Data Types for the C Programming Language

The largest data type guaranteed to be provided by the ISO C programming
language? can only represent values up to 10'° as shown in figure 1.1. On its
own the C language is insufficient to accomodate the magnitude required for
the problem at hand. An RSA modulus of magnitude 10*° could be trivially
factored® on the average desktop computer, rendering any protocol based on
the algorithm insecure. Multiple precision algorithms solve this very problem
by extending the range of representable integers while using single precision
data types.

Most advancements in fast multiple precision arithmetic stem from the need
for faster and more efficient cryptographic primitives. Faster modular reduction
and exponentiation algorithms such as Barrett’s algorithm, which have appeared
in various cryptographic journals, can render algorithms such as RSA and Diffie-
Hellman more efficient. In fact, several major companies such as RSA Security,
Certicom and Entrust have built entire product lines on the implementation
and deployment of efficient algorithms.

However, cryptography is not the only field of study that can benefit from
fast multiple precision integer routines. Another auxiliary use of multiple pre-
cision integers is high precision floating point data types. The basic IEEE [13]
standard floating point type is made up of an integer mantissa ¢, an exponent
e and a sign bit s. Numbers are given in the form n = ¢ - 0° - —1° where b = 2

2As per the 1ISO C standard. However, each compiler vendor is allowed to augment the
precision as they see t.
3A Pollard-Rho factoring would take only 216 time.

1.1. MULTIPLE PRECISION ARITHMETIC 3

is the most common base for IEEE. Since IEEE floating point is meant to be
implemented in hardware the precision of the mantissa is often fairly small (23,
48 and 64 bits). The mantissa is merely an integer and a multiple precision in-
teger could be used to create a mantissa of much larger precision than hardware
alone can efficiently support. This approach could be useful where scientific
applications must minimize the total output error over long calculations.

Yet another use for large integers is within arithmetic on polynomials of large
characteristic (i.e. GF(p)[z] for large p). In fact the library discussed within
this text has already been used to form a polynomial basis library?.

1.1.3 Benefits of Multiple Precision Arithmetic

The benefit of multiple precision representations over single or fixed precision
representations is that no precision is lost while representing the result of an
operation which requires excess precision. For example, the product of two n-
bit integers requires at least 2n bits of precision to be represented faithfully.
A multiple precision algorithm would augment the precision of the destination
to accomodate the result while a single precision system would truncate excess
bits to maintain a fixed level of precision.

It is possible to implement algorithms which require large integers with fixed
precision algorithms. For example, elliptic curve cryptography (ECC) is often
implemented on smartcards by fixing the precision of the integers to the maxi-
mum size the system will ever need. Such an approach can lead to vastly simpler
algorithms which can accomodate the integers required even if the host platform
cannot natively accomodate them®. However, as efficient as such an approach
may be, the resulting source code is not normally very flexible. It cannot, at
runtime, accomodate inputs of higher magnitude than the designer anticipated.

Multiple precision algorithms have the most overhead of any style of arith-
metic. For the the most part the overhead can be kept to a minimum with
careful planning, but overall, it is not well suited for most memory starved plat-
forms. However, multiple precision algorithms do offer the most flexibility in
terms of the magnitude of the inputs. That is, the same algorithms based on
multiple precision integers can accomodate any reasonable size input without
the designer’s explicit forethought. This leads to lower cost of ownership for the
code as it only has to be written and tested once.

4See http://poly.libtomcrypt.org for more details.
5For example, the average smartcard processor has an 8 bit accumulator.

4 CHAPTER 1. INTRODUCTION

1.2 Purpose of This Text

The purpose of this text is to instruct the reader regarding how to implement
efficient multiple precision algorithms. That is to not only explain a limited
subset of the core theory behind the algorithms but also the various “house
keeping” elements that are neglected by authors of other texts on the subject.
Several well reknowned texts [1, 2] give considerably detailed explanations of
the theoretical aspects of algorithms and often very little information regarding
the practical implementation aspects.

In most cases how an algorithm is explained and how it is actually imple-
mented are two very different concepts. For example, the Handbook of Applied
Cryptography (HAC), algorithm 14.7 on page 594, gives a relatively simple
algorithm for performing multiple precision integer addition. However, the de-
scription lacks any discussion concerning the fact that the two integer inputs
may be of differing magnitudes. As a result the implementation is not as simple
as the text would lead people to believe. Similarly the division routine (al-
gorithm 14.20, pp. 598) does not discuss how to handle sign or handle the
dividend’s decreasing magnitude in the main loop (step #3).

Both texts also do not discuss several key optimal algorithms required such
as “Comba” and Karatsuba multipliers and fast modular inversion, which we
consider practical oversights. These optimal algorithms are vital to achieve any
form of useful performance in non-trivial applications.

To solve this problem the focus of this text is on the practical aspects of im-
plementing a multiple precision integer package. As a case study the “LibTom-
Math”® package is used to demonstrate algorithms with real implementations”
that have been field tested and work very well. The LibTomMath library is
freely available on the Internet for all uses and this text discusses a very large
portion of the inner workings of the library.

The algorithms that are presented will always include at least one “pseudo-
code” description followed by the actual C source code that implements the
algorithm. The pseudo-code can be used to implement the same algorithm in
other programming languages as the reader sees fit.

This text shall also serve as a walkthrough of the creation of multiple preci-
sion algorithms from scratch. Showing the reader how the algorithms fit together
as well as where to start on various taskings.

6 Available at http://math.libtomcrypt.org
7In the I1SO C programming language.

1.3. DISCUSSION AND NOTATION 5

1.3 Discussion and Notation

1.3.1 Notation

A multiple precision integer of n-digits shall be denoted as z = (zp—_1,...,%1,%0)3
and represent the integer z = E?':_Ol x;4'. The elements of the array = are said
to be the radix 3 digits of the integer. For example, x = (1,2,3)10 would
represent the integer 1-10% +2- 10! +3-10° = 123.

The term “mp_int” shall refer to a composite structure which contains the
digits of the integer it represents, as well as auxilary data required to manipulate
the data. These additional members are discussed further in section 2.2.1. For
the purposes of this text a “multiple precision integer” and an “mp_int” are
assumed to be synonymous. When an algorithm is specified to accept an mp_int
variable it is assumed the various auxliary data members are present as well.
An expression of the type variablename.item implies that it should evaluate to
the member named “item” of the variable. For example, a string of characters
may have a member “length” which would evaluate to the number of characters
in the string. If the string a equals “hello” then it follows that a.length = 5.

For certain discussions more generic algorithms are presented to help the
reader understand the final algorithm used to solve a given problem. When an
algorithm is described as accepting an integer input it is assumed the input is a
plain integer with no additional multiple-precision members. That is, algorithms
that use integers as opposed to mp_ints as inputs do not concern themselves
with the housekeeping operations required such as memory management. These
algorithms will be used to establish the relevant theory which will subsequently
be used to describe a multiple precision algorithm to solve the same problem.

1.3.2 Precision Notation

The variable § represents the radix of a single digit of a multiple precision
integer and must be of the form ¢? for ¢,p € ZT. A single precision variable
must be able to represent integers in the range 0 < z < ¢f while a double
precision variable must be able to represent integers in the range 0 < x < ¢32.
The extra radix-q factor allows additions and subtractions to proceed without
truncation of the carry. Since all modern computers are binary, it is assumed
that ¢ is two.

Within the source code that will be presented for each algorithm, the data
type mp_digit will represent a single precision integer type, while, the data type
mp_word will represent a double precision integer type. In several algorithms

6 CHAPTER 1. INTRODUCTION

(notably the Comba routines) temporary results will be stored in arrays of
double precision mp_words. For the purposes of this text x; will refer to the
j’th digit of a single precision array and Z; will refer to the j’th digit of a
double precision array. Whenever an expression is to be assigned to a double
precision variable it is assumed that all single precision variables are promoted
to double precision during the evaluation. Expressions that are assigned to a
single precision variable are truncated to fit within the precision of a single
precision data type.

For example, if 3 = 10? a single precision data type may represent a value in
the range 0 < < 103, while a double precision data type may represent a value
in the range 0 < z < 10°. Let a = 23 and b = 49 represent two single precision
variables. The single precision product shall be written as ¢ < a - b while the
double precision product shall be written as é « a - b. In this particular case,
¢ = 1127 and ¢ = 127. The most significant digit of the product would not fit
in a single precision data type and as a result ¢ # ¢.

1.3.3 Algorithm Inputs and Outputs

Within the algorithm descriptions all variables are assumed to be scalars of
either single or double precision as indicated. The only exception to this rule
is when variables have been indicated to be of type mp_inadescrip0 Td (e)Tdistincthis

1.4. EXERCISES 7

1.3.5 Work Effort

To measure the efficiency of the specified algorithms, a modified big-Oh notation
is used. In this system all single precision operations are considered to have the
same cost®. That is a single precision addition, multiplication and division are
assumed to take the same time to complete. While this is generally not true in
practice, it will simplify the discussions considerably.

Some algorithms have slight advantages over others which is why some con-
stants will not be removed in the notation. For example, a normal baseline
multiplication (section 5.2.1) requires O(n?) work while a baseline squaring
(section 5.3) requires O(”22+ %) work. In standard big-Oh notation these would
both be said to be equivalent to O(n?). However, in the context of the this text
this is not the case as the magnitude of the inputs will typically be rather small.
As a result small constant factors in the work effort will make an observable
difference in algorithm efficiency.

All of the algorithms presented in this text have a polynomial time work level.
That is, of the form O(n*) for n, k € Z*. This will help make useful comparisons
in terms of the speed of the algorithms and how various optimizations will help
pay off in the long run.

1.4 EXxercises

Within the more advanced chapters a section will be set aside to give the reader
some challenging exercises related to the discussion at hand. These exercises are
not designed to be prize winning problems, but instead to be thought provoking.
Wherever possible the problems are forward minded, stating problems that will
be answered in subsequent chapters. The reader is encouraged to finish the
exercises as they appear to get a better understanding of the subject material.

That being said, the problems are designed to affirm knowledge of a partic-
ular subject matter. Students in particular are encouraged to verify they can
answer the problems correctly before moving on.

Similar to the exercises of [1, pp. ix] these exercises are given a scoring
system based on the difficulty of the problem. However, unlike [1] the problems
do not get nearly as hard. The scoring of these exercises ranges from one (the
easiest) to five (the hardest). The following table sumarizes the scoring system
used.

8Except where explicitly noted.

8 CHAPTER 1. INTRODUCTION

[1] | An easy problem that should only take the reader a manner of
minutes to solve. Usually does not involve much computer time
to solve.

[2] | An easy problem that involves a marginal amount of computer
time usage. Usually requires a program to be written to

solve the problem.

[3] | A moderately hard problem that requires a non-trivial amount
of work. Usually involves trivial research and development of
new theory from the perspective of a student.

[4] | A moderately hard problem that involves a non-trivial amount
of work and research, the solution to which will demonstrate

a higher mastery of the subject matter.

[5] | A hard problem that involves concepts that are difficult for a
novice to solve. Solutions to these problems will demonstrate a
complete mastery of the given subject.

Figure 1.2: Exercise Scoring System

Problems at the first level are meant to be simple questions that the reader
can answer quickly without programming a solution or devising new theory.
These problems are quick tests to see if the material is understood. Problems
at the second level are also designed to be easy but will require a program
or algorithm to be implemented to arrive at the answer. These two levels are
essentially entry level questions.

Problems at the third level are meant to be a bit more difficult than the
first two levels. The answer is often fairly obvious but arriving at an exacting
solution requires some thought and skill. These problems will almost always
involve devising a new algorithm or implementing a variation of another algo-
rithm previously presented. Readers who can answer these questions will feel
comfortable with the concepts behind the topic at hand.

Problems at the fourth level are meant to be similar to those of the level
three questions except they will require additional research to be completed.
The reader will most likely not know the answer right away, nor will the text
provide the exact details of the answer until a subsequent chapter.

Problems at the fifth level are meant to be the hardest problems relative to
all the other problems in the chapter. People who can correctly answer fifth
level problems have a mastery of the subject matter at hand.

Often problems will be tied together. The purpose of this is to start a chain

1.5. INTRODUCTION TO LIBTOMMATH 9

of thought that will be discussed in future chapters. The reader is encouraged
to answer the follow-up problems and try to draw the relevance of problems.

1.5 Introduction to LibTomMath
1.5.1 What is LibTomMath?

LibTomMath is a free and open source multiple precision integer library written
entirely in portable ISO C. By portable it is meant that the library does not
contain any code that is computer platform dependent or otherwise problematic
to use on any given platform.

The library has been successfully tested under numerous operating systems
including Unix?, MacOS, Windows, Linux, PalmOS and on standalone hardware
such as the Gameboy Advance. The library is designed to contain enough
functionality to be able to develop applications such as public key cryptosystems
and still maintain a relatively small footprint.

1.5.2 Goals of LibTomMath

Libraries which obtain the most efficiency are rarely written in a high level
programming language such as C. However, even though this library is written
entirely in ISO C, considerable care has been taken to optimize the algorithm
implementations within the library. Specifically the code has been written to
work well with the GNU C Compiler (GCC) on both x86 and ARM processors.
Wherever possible, highly efficient algorithms, such as Karatsuba multiplication,
sliding window exponentiation and Montgomery reduction have been provided
to make the library more efficient.

Even with the nearly optimal and specialized algorithms that have been in-
cluded the Application Programing Interface (API) has been kept as simple
as possible. Often generic place holder routines will make use of specialized
algorithms automatically without the developer’s specific attention. One such
example is the generic multiplication algorithm mp_mul() which will automat-
ically use Toom—Cook, Karatsuba, Comba or baseline multiplication based on
the magnitude of the inputs and the configuration of the library.

Making LibTomMath as efficient as possible is not the only goal of the
LibTomMath project. Ideally the library should be source compatible with
another popular library which makes it more attractive for developers to use.

9All of these trademarks belong to their respective rightful owners.

10 CHAPTER 1. INTRODUCTION

In this case the MPI library was used as a API template for all the basic func-
tions. MPI was chosen because it is another library that fits in the same niche
as LibTomMath. Even though LibTomMath uses MPI as the template for the
function names and argument passing conventions, it has been written from
scratch by Tom St Denis.

The project is also meant to act as a learning tool for students, the logic
being that no easy-to-follow “bignum” library exists which can be used to teach
computer science students how to perform fast and reliable multiple precision
integer arithmetic. To this end the source code has been given quite a few
comments and algorithm discussion points.

1.6 Choice of LibTomMath

LibTomMath was chosen as the case study of this text not only because the
author of both projects is one and the same but for more worthy reasons. Other
libraries such as GMP [14], MPI [15], LIP [17] and OpenSSL [16] have multiple
precision integer arithmetic routines but would not be ideal for this text for
reasons that will be explained in the following sub-sections.

1.6.1 Code Base

The LibTomMath code base is all portable ISO C source code. This means that
there are no platform dependent conditional segments of code littered through-
out the source. This clean and uncluttered approach to the library means that
a developer can more readily discern the true intent of a given section of source
code without trying to keep track of what conditional code will be used.

The code base of LibTomMath is well organized. Each function is in its own
separate source code file which allows the reader to find a given function very
quickly. On average there are 76 lines of code per source file which makes the
source very easily to follow. By comparison MPI and LIP are single file projects
making code tracing very hard. GMP has many conditional code segments
which also hinder tracing.

When compiled with GCC for the x86 processor and optimized for speed
the entire library is approximately 100KiB!'® which is fairly small compared to
GMP (over 250KiB). LibTomMath is slightly larger than MPI (which compiles
to about 50KiB) but LibTomMath is also much faster and more complete than
MPI.

10The notation \KiB" means 219 octets, similarly \MiB" means 22° octets.

1.6. CHOICE OF LIBTOMMATH 11

1.6.2 API Simplicity

LibTomMath is designed after the MPI library and shares the API design. Quite
often programs that use MPI will build with LibTomMath without change. The
function names correlate directly to the action they perform. Almost all of the
functions share the same parameter passing convention. The learning curve is
fairly shallow with the API provided which is an extremely valuable benefit for
the student and developer alike.

The LIP library is an example of a library with an API that is awkward to
work with. LIP uses function names that are often “compressed” to illegible
short hand. LibTomMath does not share this characteristic.

The GMP library also does not return error codes. Instead it uses a POSIX.1
[?] signal system where errors are signaled to the host application. This happens
to be the fastest approach but definitely not the most versatile. In effect a math
error (i.e. invalid input, heap error, etc) can cause a program to stop functioning
which is definitely undersireable in many situations.

1.6.3 Optimizations

While LibTomMath is certainly not the fastest library (GMP often beats LibTom-
Math by a factor of two) it does feature a set of optimal algorithms for tasks
such as modular reduction, exponentiation, multiplication and squaring. GMP
and LIP also feature such optimizations while MPI only uses baseline algorithms
with no optimizations. GMP lacks a few of the additional modular reduction
optimizations that LibTomMath features!!.

LibTomMath is almost always an order of magnitude faster than the MPI
library at computationally expensive tasks such as modular exponentiation. In
the grand scheme of “bignum” libraries LibTomMath is faster than the average
library and usually slower than the best libraries such as GMP and OpenSSL
by only a small factor.

1.6.4 Portability and Stability

LibTomMath will build “out of the box” on any platform equipped with a mod-
ern version of the GNU C Compiler (GCC). This means that without changes
the library will build without configuration or setting up any variables. LIP and
MPI will build “out of the box” as well but have numerous known bugs. Most

LAt the time of this writing GMP only had Barrett and Montgomery modular reduction
algorithms.

12 CHAPTER 1. INTRODUCTION

notably the author of MPI has recently stopped working on his library and LIP
has long since been discontinued.

GMP requires a configuration script to run and will not build out of the
box. GMP and LibTomMath are still in active development and are very stable
across a variety of platforms.

1.6.5 Choice

LibTomMath is a relatively compact, well documented, highly optimized and
portable library which seems only natural for the case study of this text. Various
source files from the LibTomMath project will be included within the text.
However, the reader is encouraged to download their own copy of the library to
actually be able to work with the library.

Chapter 2

Getting Started

2.1 Library Basics

The trick to writing any useful library of source code is to build a solid founda-
tion and work outwards from it. First, a problem along with allowable solution
parameters should be identified and analyzed. In this particular case the in-
ability to accomodate multiple precision integers is the problem. Futhermore,
the solution must be written as portable source code that is reasonably efficient
across several different computer platforms.

After a foundation is formed the remainder of the library can be designed
and implemented in a hierarchical fashion. That is, to implement the lowest
level dependencies first and work towards the most abstract functions last. For
example, before implementing a modular exponentiation algorithm one would
implement a modular reduction algorithm. By building outwards from a base
foundation instead of using a parallel design methodology the resulting project
is highly modular. Being highly modular is a desirable property of any project
as it often means the resulting product has a small footprint and updates are
easy to perform.

Usually when I start a project I will begin with the header files. I define
the data types I think I will need and prototype the initial functions that are
not dependent on other functions (within the library). After I implement these
base functions I prototype more dependent functions and implement them. The
process repeats until I implement all of the functions I require. For example, in
the case of LibTomMath I implemented functions such as mp_init() well before

13

14 CHAPTER 2. GETTING STARTED

I implemented mp_mul() and even further before I implemented mp_exptmod|().
As an example as to why this design works note that the Karatsuba and Toom-
Cook multipliers were written after the dependent function mp_exptmod() was
written. Adding the new multiplication algorithms did not require changes to
the mp_exptmod() function itself and lowered the total cost of ownership (so to
speak) and of development for new algorithms. This methodology allows new
algorithms to be tested in a complete framework with relative ease.

mp int

|
I I l |

mp init | | mp clear | | mp grow | |\ mp clamp

[l I \—V

mp init size mp_copy mp set int

l
mp init copy

Figure 2.1: Design Flow of the First Few Original LibTomMath Functions.

Only after the majority of the functions were in place did I pursue a less
hierarchical approach to auditing and optimizing the source code. For example,
one day I may audit the multipliers and the next day the polynomial basis
functions.

It only makes sense to begin the text with the preliminary data types and
support algorithms required as well. This chapter discusses the core algorithms
of the library which are the dependents for every other algorithm.

2.2 What is a Multiple Precision Integer?

Recall that most programming languages, in particular ISO C [18], only have
fixed precision data types that on their own cannot be used to represent values

2.2. WHAT IS A MULTIPLE PRECISION INTEGER? 15

larger than their precision will allow. The purpose of multiple precision algo-
rithms is to use fixed precision data types to create and manipulate multiple
precision integers which may represent values that are very large.

As a well known analogy, school children are taught how to form numbers
larger than nine by prepending more radix ten digits. In the decimal system the
largest single digit value is 9. However, by concatenating digits together larger
numbers may be represented. Newly prepended digits (to the left) are said to
be in a different power of ten column. That is, the number 123 can be described
as having a 1 in the hundreds column, 2 in the tens column and 3 in the ones
column. Or more formally 123 = 1-102 +2- 10" + 3 - 10°. Computer based
multiple precision arithmetic is essentially the same concept. Larger integers
are represented by adjoining fixed precision computer words with the exception
that a different radix is used.

What most people probably do not think about explicitly are the various
other attributes that describe a multiple precision integer. For example, the
integer 1541 has two immediately obvious properties. First, the integer is
positive, that is the sign of this particular integer is positive as opposed to
negative. Second, the integer has three digits in its representation. There is
an additional property that the integer posesses that does not concern pencil-
and-paper arithmetic. The third property is how many digits placeholders are
available to hold the integer.

The human analogy of this third property is ensuring there is enough space
on the paper to write the integer. For example, if one starts writing a large
number too far to the right on a piece of paper they will have to erase it and
move left. Similarly, computer algorithms must maintain strict control over
memory usage to ensure that the digits of an integer will not exceed the al-
lowed boundaries. These three properties make up what is known as a multiple
precision integer or mp_int for short.

2.2.1 The mp_int Structure

The mp_int structure is the ISO C based manifestation of what represents a mul-
tiple precision integer. The ISO C standard does not provide for any such data
type but it does provide for making composite data types known as structures.
The following is the structure definition used within LibTomMath.

The mp-int structure (fig. 2.2) can be broken down as follows.

1. The used parameter denotes how many digits of the array dp contain the
digits used to represent a given integer. The used count must be positive

16 CHAPTER 2. GETTING STARTED

typedef struct {
int used, alloc, sign;
mp_digit *dp;

} mp_int;

Figure 2.2: The mp-_int Structure

(or zero) and may not exceed the alloc count.

2. The alloc parameter denotes how many digits are available in the array
to use by functions before it has to increase in size. When the used
count of a result would exceed the alloc count all of the algorithms will
automatically increase the size of the array to accommodate the precision
of the result.

3. The pointer dp points to a dynamically allocated array of digits that
represent the given multiple precision integer. It is padded with (alloc —
used) zero digits. The array is maintained in a least significant digit order.
As a pencil and paper analogy the array is organized such that the right
most digits are stored first starting at the location indexed by zero! in the
array. For example, if dp contains {a,b,c,...} where dpg = a, dp; = b,
dp2 = ¢, ... then it would represent the integer a + b3 + ¢332 + ...

4. The sign parameter denotes the sign as either zero/positive (MP_ZPOS)
or negative (MP_NEG).

Valid mp_int Structures

Several rules are placed on the state of an mp_int structure and are assumed to
be followed for reasons of efficiency. The only exceptions are when the structure
is passed to initialization functions such as mp_init() and mp_init_copy().

1. The value of alloc may not be less than one. That is dp always points to
a previously allocated array of digits.

2. The value of used may not exceed alloc and must be greater than or
equal to zero.

Hn C all arrays begin at zero.

2.3. ARGUMENT PASSING 17

3. The value of used implies the digit at index (used — 1) of the dp array
is non-zero. That is, leading zero digits in the most significant positions
must be trimmed.

(a) Digits in the dp array at and above the used location must be zero.

4. The value of sigh must be MP_ZPOS if used is zero; this represents the
mp-int value of zero.

2.3 Argument Passing

A convention of argument passing must be adopted early on in the development
of any library. Making the function prototypes consistent will help eliminate
many headaches in the future as the library grows to significant complexity. In
LibTomMath the multiple precision integer functions accept parameters from
left to right as pointers to mp_int structures. That means that the source
(input) operands are placed on the left and the destination (output) on the
right. Consider the following examples.

mp_mul (&a, &b, &c); /* ¢ =a *xb x/
mp_add(&a, &b, &a); /* a=a+b x/
mp_sqr (&a, &b); /* b =ax a %/

The left to right order is a fairly natural way to implement the functions
since it lets the developer read aloud the functions and make sense of them. For
example, the first function would read “multiply a and b and store in ¢”.

Certain libraries (LIP by Lenstra for instance) accept parameters the other
way around, to mimic the order of assignment expressions. That is, the desti-
nation (output) is on the left and arguments (inputs) are on the right. In truth,
it is entirely a matter of preference. In the case of LibTomMath the convention
from the MPI library has been adopted.

Another very useful design consideration, provided for in LibTomMath, is
whether to allow argument sources to also be a destination. For example, the
second example (mp_add) adds a to b and stores in a. This is an important
feature to implement since it allows the calling functions to cut down on the
number of variables it must maintain. However, to implement this feature spe-
cific care has to be given to ensure the destination is not modified before the
source is fully read.

18 CHAPTER 2. GETTING STARTED

2.4 Return Values

A well implemented application, no matter what its purpose, should trap as
many runtime errors as possible and return them to the caller. By catching
runtime errors a library can be guaranteed to prevent undefined behaviour.
However, the end developer can still manage to cause a library to crash. For
example, by passing an invalid pointer an application may fault by dereferencing
memory not owned by the application.

In the case of LibTomMath the only errors that are checked for are related
to inappropriate inputs (division by zero for instance) and memory allocation
errors. It will not check that the mp_int passed to any function is valid nor will
it check pointers for validity. Any function that can cause a runtime error will
return an error code as an int data type with one of the following values (fig
2.3).

Value Meaning

MP_OKAY | The function was successful
MP_VAL One of the input value(s) was invalid
MP_MEM | The function ran out of heap memory

Figure 2.3: LibTomMath Error Codes

When an error is detected within a function it should free any memory it
allocated, often during the initialization of temporary mp_ints, and return as
soon as possible. The goal is to leave the system in the same state it was when
the function was called. Error checking with this style of API is fairly simple.

int err;

if ((err = mp_add(&a, &b, &c)) !'= MP_OKAY) {
printf ("Error: %s\n", mp_error_to_string(err));
exit (EXIT_FAILURE);

The GMP [14] library uses C style signals to flag errors which is of ques-
tionable use. Not all errors are fatal and it was not deemed ideal by the author
of LibTomMath to force developers to have signal handlers for such cases.

2.5. INITIALIZATION AND CLEARING 19

2.5 Initialization and Clearing

The logical starting point when actually writing multiple precision integer func-
tions is the initialization and clearing of the mp_int structures. These two
algorithms will be used by the majority of the higher level algorithms.

Given the basic mp_int structure an initialization routine must first allocate
memory to hold the digits of the integer. Often it is optimal to allocate a
sufficiently large pre-set number of digits even though the initial integer will
represent zero. If only a single digit were allocated quite a few subsequent re-
allocations would occur when operations are performed on the integers. There
is a tradeoff between how many default digits to allocate and how many re-
allocations are tolerable. Obviously allocating an excessive amount of digits
initially will waste memory and become unmanageable.

If the memory for the digits has been successfully allocated then the rest of
the members of the structure must be initialized. Since the initial state of an
mp-int is to represent the zero integer, the allocated digits must be set to zero.
The used count set to zero and sign set to MP_ZPQOS.

2.5.1 Initializing an mp_int

An mp_int is said to be initialized if it is set to a valid, preferably default, state
such that all of the members of the structure are set to valid values. The mp_init
algorithm will perform such an action.

Algorithm mp_init.
Input. An mp_int a
Output. Allocate memory and initialize a to a known valid mp_int state.

1. Allocate memory for MP_PREC digits.

2. If the allocation failed return(MP_-MEM)

3. for n from 0 to MP_PREC — 1 do
31a, <0

4. a.sign «— MP_ZPOS

5. a.used «— 0

6. a.alloc — MP_PREC

7. Return(MP_OKAY)

Figure 2.4: Algorithm mp_init

20 CHAPTER 2. GETTING STARTED

Algorithm mp_init. The purpose of this function is to initialize an mp_int
structure so that the rest of the library can properly manipulte it. It is assumed
that the input may not have had any of its members previously initialized which
is certainly a valid assumption if the input resides on the stack.

Before any of the members such as sign, used or alloc are initialized the
memory for the digits is allocated. If this fails the function returns before setting
any of the other members. The MP_PREC name represents a constant? used
to dictate the minimum precision of newly initialized mp_int integers. Ideally,
it is at least equal to the smallest precision number you’ll be working with.

Allocating a block of digits at first instead of a single digit has the benefit
of lowering the number of usually slow heap operations later functions will have
to perform in the future. If MP_PREC is set correctly the slack memory and
the number of heap operations will be trivial.

Once the allocation has been made the digits have to be set to zero as well
as the used, sign and alloc members initialized. This ensures that the mp_int
will always represent the default state of zero regardless of the original condition
of the input.

Remark. This function introduces the idiosyncrasy that all iterative loops,
commonly initiated with the “for” keyword, iterate incrementally when the “to”
keyword is placed between two expressions. For example, “for a from b to ¢ do”
means that a subsequent expression (or body of expressions) are to be evaluated
upto ¢ — b times so long as b < c¢. In each iteration the variable a is substituted
for a new integer that lies inclusively between b and c. If b > ¢ occured the loop
would not iterate. By contrast if the “downto” keyword were used in place of
“to” the loop would iterate decrementally.

File: bn_mp.nit.c

016

017 /* init a new mp_int */
018 int mp_init (mp_int * a)

019 {

020 int i;

021

022 /* allocate memory required and clear it */

023 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
024 if (a->dp == NULL) {

025 return MP_MEM;

026 }

027

2De ned in the \tommath.h" header le within LibTomMath.

2.5. INITIALIZATION AND CLEARING 21

028 /* set the digits to zero */
029 for (i = 0; i < MP_PREC; i++) {
030 a->dp[i] = 0;

031 }

032

033 /* set the used to zero, allocated digits to the default precision
034 * and sign to positive */

035 a->used = 0;

036 a->alloc = MP_PREC;

037 a->sign = MP_ZPOS;

038

039 return MP_QOKAY;

040 }

041 #endif

042

One immediate observation of this initializtion function is that it does not
return a pointer to a mp_int structure. It is assumed that the caller has already
allocated memory for the mp_int structure, typically on the application stack.
The call to mp_init() is used only to initialize the members of the structure to
a known default state.

Here we see (line 23) the memory allocation is performed first. This allows us
to exit cleanly and quickly if there is an error. If the allocation fails the routine
will return MP_MEM to the caller to indicate there was a memory error.
The function XMALLOC is what actually allocates the memory. Technically
XMALLOC is not a function but a macro defined in “tommath.h“. By default,
XMALLOC will evaluate to malloc() which is the C library’s built—in memory
allocation routine.

In order to assure the mp_int is in a known state the digits must be set to
zero. On most platforms this could have been accomplished by using calloc()
instead of malloc(). However, to correctly initialize a integer type to a given
value in a portable fashion you have to actually assign the value. The for loop
(line 29) performs this required operation.

After the memory has been successfully initialized the remainder of the mem-
bers are initialized (lines 33 through 34) to their respective default states. At
this point the algorithm has succeeded and a success code is returned to the
calling function. If this function returns MP_OKAY it is safe to assume the
mp-int structure has been properly initialized and is safe to use with other
functions within the library.

22 CHAPTER 2. GETTING STARTED

2.5.2 Clearing an mp_int

When an mp_int is no longer required by the application, the memory that has
been allocated for its digits must be returned to the application’s memory pool
with the mp_clear algorithm.

Algorithm mp_clear.
Input. An mp_int a
Output. The memory for a shall be deallocated.

1. If a has been previously freed then return(MP_-OKAY).
2. for n from 0 to a.used — 1 do

21a, <0

Free the memory allocated for the digits of a.

a.used «— 0

a.alloc — 0

a.sign «— MP_ZPOS

Return(MP_OKAY).

N otk w

Figure 2.5: Algorithm mp_clear

Algorithm mp_clear. This algorithm accomplishes two goals. First, it
clears the digits and the other mp_int members. This ensures that if a developer
accidentally re-uses a cleared structure it is less likely to cause problems. The
second goal is to free the allocated memory.

The logic behind the algorithm is extended by marking cleared mp_int struc-
tures so that subsequent calls to this algorithm will not try to free the memory
multiple times. Cleared mp-ints are detectable by having a pre-defined invalid
digit pointer dp setting.

Once an mp-int has been cleared the mp_int structure is no longer in a
valid state for any other algorithm with the exception of algorithms mp_init,
mp_init_copy, mp_init_size and mp_clear.

File: bn_mp_clear.c

016

017 /* clear one (frees) */
018 void

019 mp_clear (mp_int * a)
020 {

021 int i;

2.6. MAINTENANCE ALGORITHMS 23

022

023 /* only do anything if a hasn’t been freed previously */
024 if (a->dp !'= NULL) {

025 /* first zero the digits */

026 for (i = 0; i < a->used; i++) {

027 a->dp[i] = 0;

028 }

029

030 /* free ram */

031 XFREE (a->dp) ;

032

033 /* reset members to make debugging easier */
034 a->dp = NULL;

035 a->alloc = a->used = 0;

036 a->sign = MP_ZPOS;

037 }

038 }

039 #endif

040

The algorithm only operates on the mp_int if it hasn’t been previously
cleared. The if statement (line 24) checks to see if the dp member is not
NULL. If the mp_int is a valid mp_int then dp cannot be NULL in which case
the if statement will evaluate to true.

The digits of the mp_int are cleared by the for loop (line 26) which assigns a
zero to every digit. Similar to mp_init() the digits are assigned zero instead of
using block memory operations (such as memset()) since this is more portable.

The digits are deallocated off the heap via the XFREE macro. Similar
to XMALLOC the XFREE macro actually evaluates to a standard C library
function. In this case the free() function. Since free() only deallocates the
memory the pointer still has to be reset to NULL manually (line 34).

Now that the digits have been cleared and deallocated the other members
are set to their final values (lines 35 and 36).

2.6 Maintenance Algorithms

The previous sections describes how to initialize and clear an mp_int structure.
To further support operations that are to be performed on mp_int structures
(such as addition and multiplication) the dependent algorithms must be able to

24 CHAPTER 2. GETTING STARTED

augment the precision of an mp_int and initialize mp_ints with differing initial
conditions.

These algorithms complete the set of low level algorithms required to work
with mp_int structures in the higher level algorithms such as addition, multipli-
cation and modular exponentiation.

2.6.1 Augmenting an mp_int’s Precision

When storing a value in an mp_int structure, a sufficient number of digits must
be available to accomodate the entire result of an operation without loss of
precision. Quite often the size of the array given by the alloc member is large
enough to simply increase the used digit count. However, when the size of the
array is too small it must be re-sized appropriately to accomodate the result.
The mp_grow algorithm will provide this functionality.

2.6. MAINTENANCE ALGORITHMS 25

Algorithm mp_grow.
Input. An mp_int a and an integer b.
Output. «a is expanded to accomodate b digits.

if a.alloc > b then return(MP-OKAY)

u b (mod MP_PREC)
v—b+2-MP_PREC —u

Re-allocate the array of digits a to size v

If the allocation failed then return(MP_-MEM).
for n from a.alloc to v — 1 do

6.1a, <0

7. a.alloc —v

8. Return(MP_OKAY)

S T W

Figure 2.6: Algorithm mp_grow

Algorithm mp_grow. It is ideal to prevent re-allocations from being per-

formed if they are not required (step one). This is useful to prevent mp_ints
from growing excessively in code that erroneously calls mp_grow.

The requested digit count is padded up to next multiple of MP_PREC

plus an additional MP_PREC (steps two and three). This helps prevent many
trivial reallocations that would grow an mp_int by trivially small values.

It is assumed that the reallocation (step four) leaves the lower a.alloc digits

of the mp_int intact. This is much akin to how the realloc function from the
standard C library works. Since the newly allocated digits are assumed to
contain undefined values they are initially set to zero.

File: bn_mp_grow.c

016
017
018
019
020
021
022
023
024
025
026
027

/* grow as required */
int mp_grow (mp_int * a, int size)

{

int i;
mp_digit *tmp;

/* if the alloc size is smaller alloc more ram */

if (a->alloc < size) {
/* ensure there are always at least MP_PREC digits extra on top */
size += (MP_PREC * 2) - (size % MP_PREC);

26 CHAPTER 2. GETTING STARTED

028 /* reallocate the array a->dp

029 *

030 * We store the return in a temporary variable
031 * in case the operation failed we don’t want
032 * to overwrite the dp member of a.

033 */

034 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
035 if (tmp == NULL) {

036 /* reallocation failed but "a" is still valid [can be freed] */
037 return MP_MEM;

038 }

039

040 /* reallocation succeeded so set a->dp */

041 a->dp = tmp;

042

043 /* zero excess digits */

044 i = a->alloc;

045 a->alloc = size;

046 for (; i < a->alloc; i++) {

047 a->dp[i] = 0;

048 }

049 }

050 return MP_O0OKAY;

051 }

052 #endif

053

A quick optimization is to first determine if a memory re-allocation is re-
quired at all. The if statement (line 24) checks if the alloc member of the mp_int
is smaller than the requested digit count. If the count is not larger than alloc
the function skips the re-allocation part thus saving time.

When a re-allocation is performed it is turned into an optimal request to
save time in the future. The requested digit count is padded upwards to 2nd
multiple of MP_PREC larger than alloc (line 26). The XREALLOC function
is used to re-allocate the memory. As per the other functions XREALLOC is
actually a macro which evaluates to realloc by default. The realloc function
leaves the base of the allocation intact which means the first alloc digits of the
mp_int are the same as before the re-allocation. All that is left is to clear the
newly allocated digits and return.

Note that the re-allocation result is actually stored in a temporary pointer
tmp. This is to allow this function to return an error with a valid pointer.

2.6. MAINTENANCE ALGORITHMS 27

Earlier releases of the library stored the result of XREALLOC into the mp_-int
a. That would result in a memory leak if XREALLOC ever failed.

2.6.2 Initializing Variable Precision mp_ints

Occasionally the number of digits required will be known in advance of an ini-
tialization, based on, for example, the size of input mp_ints to a given algorithm.
The purpose of algorithm mp_init_size is similar to mp_init except that it will
allocate at least a specified number of digits.

Algorithm mp_init_size.
Input. An mp_int a and the requested number of digits b.
QOutput. a is initialized to hold at least b digits.

1. u b (mod MP_PREC)
2. v«—b+2-MP_PREC —u
3. Allocate v digits.

4. for n from 0 to v — 1 do
4.1 an <0

a.sign «— MP_ZPOS
a.used <+ 0

a.alloc — v

Return(MP_OKAY')

i B

Figure 2.7: Algorithm mp_init_size

Algorithm mp_init_size. This algorithm will initialize an mp_int structure
a like algorithm mp_init with the exception that the number of digits allocated
can be controlled by the second input argument b. The input size is padded
upwards so it is a multiple of MP_PREC plus an additional MP_PREC digits.
This padding is used to prevent trivial allocations from becoming a bottleneck
in the rest of the algorithms.

Like algorithm mp_init, the mp_int structure is initialized to a default state
representing the integer zero. This particular algorithm is useful if it is known
ahead of time the approximate size of the input. If the approximation is correct
no further memory re-allocations are required to work with the mp_int.

File: bn_mp_init_size.c
016
017 /% init an mp_init for a given size */

28

018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044

CHAPTER 2. GETTING STARTED

int mp_init_size (mp_int * a, int size)

{

int

X

/* pad size so there are always extra digits */
size += (MP_PREC * 2) - (size % MP_PREC);

/* alloc mem */

a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);

if (a->dp == NULL) {

return MP_MEM;

}

/* set the members */

a->used = 0;
a->alloc = size;

a->s

/* zero the digits */
(x = 0; x < size; x++)

for

}

return MP_O0OKAY;

}

#endif

ign

a->dp [x]

MP_ZPOS;

0;

The number of digits b requested is padded (line 23) by first augmenting it

to the next multiple of MP_PREC and then adding MP_PREC to the result.
If the memory can be successfully allocated the mp_int is placed in a default
state representing the integer zero. Otherwise, the error code MP_MEM will
be returned (line 28).

The digits are allocated and set to zero at the same time with the calloc()

function (line @25, XCALLOC®@). The used count is set to zero, the alloc
count set to the padded digit count and the sign flag set to MP_ZPOS to
achieve a default valid mp_int state (lines 32, 33 and 34). If the function returns
succesfully then it is correct to assume that the mp_int structure is in a valid
state for the remainder of the functions to work with.

2.6. MAINTENANCE ALGORITHMS 29

2.6.3 Multiple Integer Initializations and Clearings

Occasionally a function will require a series of mp_int data types to be made
available simultaneously. The purpose of algorithm mp_init_multi is to initialize
a variable length array of mp_int structures in a single statement. It is essentially
a shortcut to multiple initializations.

30

CHAPTER 2. GETTING STARTED

Algorithm mp_init_multi.
Input. Variable length array Vi of mp_int variables of length £.
Output. The array is initialized such that each mp_int of V} is ready to use.

1. for n from 0 to £ — 1 do

1.1.
1.2.

Initialize the mp_int V,, (mp_init)
If initialization failed then do

1.2.1. for j from 0 to n do

1.2.1.1. Free the mp_int V; (mp_clear)

1.2.2. Return(MP_MEM)
2. Return(MP-OKAY)

Alg

Figure 2.8: Algorithm mp_init_multi

orithm mp_init_multi. The algorithm will initialize the array of mp_int

variables one at a time. If a runtime error has been detected (step 1.2) all of
the previously initialized variables are cleared. The goal is an “all or nothing”
initialization which allows for quick recovery from runtime errors.

File: bn_mp_init_multi.c
#include <stdarg.h>

016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035

i

{

nt mp_init_multi(mp_int *mp, ...)
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
int n = 0; /* Number of ok inits */

mp_int* cur_arg = mp;
va_list args;

va_start(args, mp); /* init args to next argument from caller */
while (cur_arg != NULL) {
if (mp_init(cur_arg) != MP_OKAY) {
/* QOops - error! Back-track and mp_clear what we already
succeeded in init-ing, then return error.
*/

va_list clean_args;

/* end the current list */
va_end(args) ;

2.6. MAINTENANCE ALGORITHMS 31

036 /* now start cleaning up */

037 cur_arg = mp;

038 va_start(clean_args, mp);

039 while (n--) {

040 mp_clear(cur_arg) ;

041 cur_arg = va_arg(clean_args, mp_intx);
042 }

043 va_end(clean_args);

044 res = MP_MEM;

045 break;

046 }

047 n++;

048 cur_arg = va_arg(args, mp_int*);

049 }

050 va_end(args);

051 return res; /* Assumed ok, if error flagged above.
052 }

053

054 #endif

055

This function intializes a variable length list of mp_int structure pointers.
However, instead of having the mp_int structures in an actual C array they are
simply passed as arguments to the function. This function makes use of the
“...” argument syntax of the C programming language. The list is terminated
with a final NULL argument appended on the right.

The function uses the “stdarg.h” va functions to step portably through the
arguments to the function. A count n of succesfully initialized mp_int structures
is maintained (line 47) such that if a failure does occur, the algorithm can
backtrack and free the previously initialized structures (lines 27 to 46).

2.6.4 Clamping Excess Digits

When a function anticipates a result will be n digits it is simpler to assume this is
true within the body of the function instead of checking during the computation.
For example, a multiplication of a 7 digit number by a j digit produces a result
of at most 7 + j digits. It is entirely possible that the result is i + 7 — 1 though,
with no final carry into the last position. However, suppose the destination had
to be first expanded (via mp_grow) to accomodate i + j — 1 digits than further
expanded to accomodate the final carry. That would be a considerable waste of
time since heap operations are relatively slow.

*/

32 CHAPTER 2. GETTING STARTED

The ideal solution is to always assume the result is ¢ + j and fix up the used
count after the function terminates. This way a single heap operation (at most)
is required. However, if the result was not checked there would be an excess
high order zero digit.

For example, suppose the product of two integers was z,, = (0Zy—1Zn—2...20)g-
The leading zero digit will not contribute to the precision of the result. In fact,
through subsequent operations more leading zero digits would accumulate to
the point the size of the integer would be prohibitive. As a result even though
the precision is very low the representation is excessively large.

The mp_clamp algorithm is designed to solve this very problem. It will
trim high-order zeros by decrementing the used count until a non-zero most
significant digit is found. Also in