summaryrefslogtreecommitdiffstats
path: root/doc/ParseArgs.3
blob: f278ee9f651d7fbed9a888d8b3f38d9e218fe654 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
'\"
'\" Copyright (c) 2008 Donal K. Fellows
'\"
'\" See the file "license.terms" for information on usage and redistribution
'\" of this file, and for a DISCLAIMER OF ALL WARRANTIES.
'\"
.TH Tcl_ParseArgsObjv 3 8.6 Tcl "Tcl Library Procedures"
.so man.macros
.BS
.SH NAME
Tcl_ParseArgsObjv \- parse arguments according to a tabular description
.SH SYNOPSIS
.nf
\fB#include <tcl.h>\fR
.sp
int
\fBTcl_ParseArgsObjv\fR(\fIinterp, argTable, objcPtr, objv, remObjv\fR)
.SH ARGUMENTS
.AS "const Tcl_ArgvInfo" ***remObjv in/out
.AP Tcl_Interp *interp out
Where to store error messages.
.AP "const Tcl_ArgvInfo" *argTable in
Pointer to array of option descriptors.
.AP int *objcPtr in/out
A pointer to variable holding number of arguments in \fIobjv\fR. Will be
modified to hold number of arguments left in the unprocessed argument list
stored in \fIremObjv\fR.
.AP "Tcl_Obj *const" *objv in
The array of arguments to be parsed.
.AP Tcl_Obj ***remObjv out
Pointer to a variable that will hold the array of unprocessed arguments.
Should be NULL if no return of unprocessed arguments is required. If
\fIobjcPtr\fR is updated to a non-zero value, the array returned through this
must be deallocated using \fBckfree\fR.
.BE
.SH DESCRIPTION
.PP
The \fBTcl_ParseArgsObjv\fR function provides a system for parsing argument
lists of the form
.QW "\fB\-someName \fIsomeValue\fR ..." .
Such argument lists are commonly found both in the arguments to a program and
in the arguments to an individual Tcl command. This parser assumes that the
order of the arguments does not matter, other than in so far as later copies
of a duplicated option overriding earlier ones.
.PP
The argument array is described by the \fIobjcPtr\fR and \fIobjv\fR
parameters, and an array of unprocessed arguments is returned through the
\fIobjcPtr\fR and \fIremObjv\fR parameters; if no return of unprocessed
arguments is desired, the \fIremObjv\fR parameter should be NULL. If any
problems happen, including if the
.QW "generate help"
option is selected, an error message is left in the interpreter result and
TCL_ERROR is returned. Otherwise, the interpreter result is left unchanged and
TCL_OK is returned.
.PP
The collection of arguments to be parsed is described by the \fIargTable\fR
parameter. This points to a table of descriptor structures that is terminated
by an entry with the \fItype\fR field set to TCL_ARGV_END. As convenience, the
following prototypical entries are provided:
.TP
\fBTCL_ARGV_AUTO_HELP\fR
.
Enables the argument processor to provide help when passed the argument
.QW \fB\-help\fR .
.TP
\fBTCL_ARGV_AUTO_REST\fR
.
Instructs the argument processor that arguments after
.QW \fB\-\-\fR
are to be unprocessed.
.TP
\fBTCL_ARGV_TABLE_END\fR
.
Marks the end of the table of argument descriptors.
.SS "ARGUMENT DESCRIPTOR ENTRIES"
.PP
Each entry of the argument descriptor table must be a structure of type
\fBTcl_ArgvInfo\fR. The structure is defined as this:
.PP
.CS
typedef struct {
    int \fItype\fR;
    const char *\fIkeyStr\fR;
    void *\fIsrcPtr\fR;
    void *\fIdstPtr\fR;
    const char *\fIhelpStr\fR;
    ClientData \fIclientData\fR;
} \fBTcl_ArgvInfo\fR;
.CE
.PP
The \fIkeyStr\fR field contains the name of the option; by convention, this
will normally begin with a
.QW \fB\-\fR
character. The \fItype\fR, \fIsrcPtr\fR, \fIdstPtr\fR and \fIclientData\fR
fields describe the interpretation of the value of the argument, as described
below. The \fIhelpStr\fR field gives some text that is used to provide help to
users when they request it.
.PP
As noted above, the \fItype\fR field is used to describe the interpretation of
the argument's value. The following values are acceptable values for
\fItype\fR:
.TP
\fBTCL_ARGV_CONSTANT\fR
.
The argument does not take any following value argument. If this argument is
present, the int pointed to by the \fIsrcPtr\fR field is copied to the
\fIdstPtr\fR field. The \fIclientData\fR field is ignored.
.TP
\fBTCL_ARGV_END\fR
.
This value marks the end of all option descriptors in the table. All other
fields are ignored.
.TP
\fBTCL_ARGV_FLOAT\fR
.
This argument takes a following floating point value argument. The value (once
parsed by \fBTcl_GetDoubleFromObj\fR) will be stored as a double-precision
value in the variable pointed to by the \fIdstPtr\fR field. The \fIsrcPtr\fR
and \fIclientData\fR fields are ignored.
.TP
\fBTCL_ARGV_FUNC\fR
.
This argument optionally takes a following value argument; it is up to the
handler callback function passed in \fIsrcPtr\fR to decide. That function will
have the following signature:
.RS
.PP
.CS
typedef int (\fBTcl_ArgvFuncProc\fR)(
        ClientData \fIclientData\fR,
        Tcl_Obj *\fIobjPtr\fR,
        void *\fIdstPtr\fR);
.CE
.PP
The result is a boolean value indicating whether to consume the following
argument. The \fIclientData\fR is the value from the table entry, the
\fIobjPtr\fR is the value that represents the following argument or NULL if
there are no following arguments at all, and the \fIdstPtr\fR argument to the
\fBTcl_ArgvFuncProc\fR is the location to write the parsed value to.
.RE
.TP
\fBTCL_ARGV_GENFUNC\fR
.
This argument takes zero or more following arguments; the handler callback
function passed in \fIsrcPtr\fR returns how many (or a negative number to
signal an error, in which case it should also set the interpreter result). The
function will have the following signature:
.RS
.PP
.CS
typedef int (\fBTcl_ArgvGenFuncProc\fR)(
        ClientData \fIclientData\fR,
        Tcl_Interp *\fIinterp\fR,
        int \fIobjc\fR,
        Tcl_Obj *const *\fIobjv\fR,
        void *\fIdstPtr\fR);
.CE
.PP
The \fIclientData\fR is the value from the table entry, the \fIinterp\fR is
where to store any error messages, the \fIkeyStr\fR is the name of the
argument, \fIobjc\fR and \fIobjv\fR describe an array of all the remaining
arguments, and \fIdstPtr\fR argument to the \fBTcl_ArgvGenFuncProc\fR is the
location to write the parsed value (or values) to.
.RE
.TP
\fBTCL_ARGV_HELP\fR
.
This special argument does not take any following value argument, but instead
causes \fBTcl_ParseArgsObjv\fR to generate an error message describing the
arguments supported. All other fields except the \fIhelpStr\fR field are
ignored.
.TP
\fBTCL_ARGV_INT\fR
.
This argument takes a following integer value argument. The value (once parsed
by \fBTcl_GetIntFromObj\fR) will be stored as an int in the variable pointed
to by the \fIdstPtr\fR field. The \fIsrcPtr\fR field is ignored.
.TP
\fBTCL_ARGV_REST\fR
.
This special argument does not take any following value argument, but instead
marks all following arguments to be left unprocessed. The \fIsrcPtr\fR,
\fIdstPtr\fR and \fIclientData\fR fields are ignored.
.TP
\fBTCL_ARGV_STRING\fR
.
This argument takes a following string value argument. A pointer to the string
will be stored at \fIdstPtr\fR; the string inside will have a lifetime linked
to the lifetime of the string representation of the argument value that it
came from, and so should be copied if it needs to be retained. The
\fIsrcPtr\fR and \fIclientData\fR fields are ignored.
.SH "SEE ALSO"
Tcl_GetIndexFromObj(3), Tcl_Main(3), Tcl_CreateObjCommand(3)
.SH KEYWORDS
argument, parse
'\" Local Variables:
'\" fill-column: 78
'\" End:
n1325' href='#n1325'>1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the COPYING file, which can be found at the root of the source code       *
 * distribution tree, or in https://www.hdfgroup.org/licenses.               *
 * If you do not have access to either file, you may request a copy from     *
 * help@hdfgroup.org.                                                        *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/* Programmer:  John Mainzer
 *
 *              This file is a catchall for parallel VFD tests.
 */

#include "testphdf5.h"

/* Must be a power of 2.  Reducing it below 1024 may cause problems */
#define INTS_PER_RANK 1024

/* global variable declarations: */

hbool_t     pass         = TRUE; /* set to FALSE on error */
const char *failure_mssg = NULL;

const char *FILENAMES[] = {"mpio_vfd_test_file_0", /*0*/
                           "mpio_vfd_test_file_1", /*1*/
                           "mpio_vfd_test_file_2", /*2*/
                           "mpio_vfd_test_file_3", /*3*/
                           "mpio_vfd_test_file_4", /*4*/
                           "mpio_vfd_test_file_5", /*5*/
                           NULL};

/* File Test Images
 *
 * Pointers to dynamically allocated buffers of size
 * INTS_PER_RANK * sizeof(int32_t) * mpi_size().  These
 * buffers are used to put the test file in a known
 * state, and to test if the test file contains the
 * expected data.
 */

int32_t *increasing_fi_buf = NULL;
int32_t *decreasing_fi_buf = NULL;
int32_t *negative_fi_buf   = NULL;
int32_t *zero_fi_buf       = NULL;
int32_t *read_fi_buf       = NULL;

/* local utility function declarations */

static unsigned alloc_and_init_file_images(int mpi_size);
static void     free_file_images(void);
static void setup_vfd_test_file(int file_name_id, char *file_name, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name, haddr_t eoa,
                                H5FD_t **lf_ptr, hid_t *fapl_id_ptr, hid_t *dxpl_id_ptr);
static void takedown_vfd_test_file(int mpi_rank, char *filename, H5FD_t **lf_ptr, hid_t *fapl_id_ptr,
                                   hid_t *dxpl_id_ptr);

/* test functions */
static unsigned vector_read_test_1(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_read_test_2(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_read_test_3(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_read_test_4(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_read_test_5(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);

static unsigned vector_write_test_1(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_write_test_2(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_write_test_3(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_write_test_4(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_write_test_5(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);
static unsigned vector_write_test_6(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name);

/****************************************************************************/
/***************************** Utility Functions ****************************/
/****************************************************************************/

/*-------------------------------------------------------------------------
 * Function:    alloc_and_init_file_images
 *
 * Purpose:     Allocate and initialize the global buffers used to construct,
 *              load and verify test file contents.
 *
 * Return:      void
 *
 * Programmer:  John Mainzer
 *              3/25/26
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
alloc_and_init_file_images(int mpi_size)
{
    const char *fcn_name = "alloc_and_init_file_images()";
    int         cp       = 0;
    int         buf_len;
    size_t      buf_size;
    int         i;
    hbool_t     show_progress = FALSE;

    pass = TRUE;

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* allocate the file image buffers */
    if (pass) {

        buf_len  = INTS_PER_RANK * mpi_size;
        buf_size = sizeof(int32_t) * (size_t)INTS_PER_RANK * (size_t)mpi_size;

        increasing_fi_buf = (int32_t *)HDmalloc(buf_size);
        decreasing_fi_buf = (int32_t *)HDmalloc(buf_size);
        negative_fi_buf   = (int32_t *)HDmalloc(buf_size);
        zero_fi_buf       = (int32_t *)HDmalloc(buf_size);
        read_fi_buf       = (int32_t *)HDmalloc(buf_size);

        if ((!increasing_fi_buf) || (!decreasing_fi_buf) || (!negative_fi_buf) || (!zero_fi_buf) ||
            (!read_fi_buf)) {

            pass         = FALSE;
            failure_mssg = "Can't allocate one or more file image buffers.";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* initialize the file image buffers */
    if (pass) {

        for (i = 0; i < buf_len; i++) {

            increasing_fi_buf[i] = i;
            decreasing_fi_buf[i] = buf_len - i;
            negative_fi_buf[i]   = -i;
            zero_fi_buf[i]       = 0;
            read_fi_buf[i]       = 0;
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* discard file image buffers if there was an error */
    if (!pass) {

        free_file_images();
    }

    return !pass;

} /* alloc_and_init_file_images() */

/*-------------------------------------------------------------------------
 * Function:    free_file_images
 *
 * Purpose:     Deallocate any glogal file image buffers that exist, and
 *              set their associated pointers to NULL.
 *
 * Return:      void
 *
 * Programmer:  John Mainzer
 *              1/25/17
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static void
free_file_images(void)
{
    if (increasing_fi_buf) {

        HDfree(increasing_fi_buf);
        increasing_fi_buf = NULL;
    }

    if (decreasing_fi_buf) {

        HDfree(decreasing_fi_buf);
        decreasing_fi_buf = NULL;
    }

    if (negative_fi_buf) {

        HDfree(negative_fi_buf);
        negative_fi_buf = NULL;
    }

    if (zero_fi_buf) {

        HDfree(zero_fi_buf);
        zero_fi_buf = NULL;
    }

    if (read_fi_buf) {

        HDfree(read_fi_buf);
        read_fi_buf = NULL;
    }

    return;

} /* free_file_images() */

/*-------------------------------------------------------------------------
 * Function:    setup_vfd_test_file
 *
 * Purpose:     Create / open the specified test file with the specified
 *              VFD, and set the EOA to the specified value.
 *
 *              Setup the dxpl for subsequent I/O via the target VFD.
 *
 *              Return a pointer to the instance of H5FD_t created on
 *              file open in *lf_ptr, and the FAPL and DXPL ids in
 *              *fapl_id_ptr and *dxpl_id_ptr.  Similarly, copy the
 *              "fixed" file name into file_name on exit.
 *
 * Return:      void
 *
 * Programmer:  John Mainzer
 *              3/25/26
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static void
setup_vfd_test_file(int file_name_id, char *file_name, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name, haddr_t eoa,
                    H5FD_t **lf_ptr, hid_t *fapl_id_ptr, hid_t *dxpl_id_ptr)
{
    const char *fcn_name = "setup_vfd_test_file()";
    char        filename[512];
    int         cp            = 0;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    unsigned    flags         = 0;    /* file open flags              */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */

    HDassert(vfd_name);
    HDassert(lf_ptr);
    HDassert(fapl_id_ptr);
    HDassert(dxpl_id_ptr);

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* setupf fapl for target VFD */
    if (pass) {

        if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) {

            pass         = FALSE;
            failure_mssg = "Can't create fapl.";
        }
    }

    if (pass) {

        if (strcmp(vfd_name, "mpio") == 0) {

            if (H5Pset_fapl_mpio(fapl_id, MPI_COMM_WORLD, MPI_INFO_NULL) < 0) {

                pass         = FALSE;
                failure_mssg = "Can't set mpio fapl.";
            }
        }
        else {

            pass         = FALSE;
            failure_mssg = "un-supported VFD";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* setup the file name */
    if (pass) {

        if (h5_fixname(FILENAMES[file_name_id], H5P_DEFAULT, filename, sizeof(filename)) == NULL) {

            pass         = FALSE;
            failure_mssg = "h5_fixname() failed.\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* Open the VFD test file with the specified VFD.  */

    if (pass) {

        flags = H5F_ACC_RDWR | H5F_ACC_CREAT | H5F_ACC_TRUNC;

        if (NULL == (lf = H5FDopen(filename, flags, fapl_id, HADDR_UNDEF))) {

            pass         = FALSE;
            failure_mssg = "H5FDopen() failed.\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* set eoa as specified */

    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        if (H5FDset_eoa(lf, H5FD_MEM_DEFAULT, eoa) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDset_eoa() failed.\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    if (pass) { /* setup dxpl */

        dxpl_id = H5Pcreate(H5P_DATASET_XFER);

        if (dxpl_id < 0) {

            pass         = FALSE;
            failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    if (pass) {

        if (H5Pset_dxpl_mpio(dxpl_id, xfer_mode) < 0) {

            pass         = FALSE;
            failure_mssg = "H5Pset_dxpl_mpio() failed.";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    if (pass) {

        if (H5Pset_dxpl_mpio_collective_opt(dxpl_id, coll_opt_mode) < 0) {

            pass         = FALSE;
            failure_mssg = "H5Pset_dxpl_mpio() failed.";
        }
    }

    if (pass) { /* setup pointers with return values */

        strncpy(file_name, filename, 512);
        *lf_ptr      = lf;
        *fapl_id_ptr = fapl_id;
        *dxpl_id_ptr = dxpl_id;
    }
    else { /* tidy up from failure as possible  */

        if (lf)
            H5FDclose(lf);

        if (fapl_id != -1)
            H5Pclose(fapl_id);

        if (dxpl_id != -1)
            H5Pclose(dxpl_id);
    }

    return;

} /* setup_vfd_test_file() */

/*-------------------------------------------------------------------------
 * Function:    takedown_vfd_test_file
 *
 * Purpose:     Close and delete the specified test file.  Close the
 *              FAPL & DXPL.
 *
 * Return:      void
 *
 * Programmer:  John Mainzer
 *              3/25/26
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static void
takedown_vfd_test_file(int mpi_rank, char *filename, H5FD_t **lf_ptr, hid_t *fapl_id_ptr, hid_t *dxpl_id_ptr)
{
    const char *fcn_name      = "takedown_vfd_test_file()";
    int         cp            = 0;
    hbool_t     show_progress = FALSE;

    HDassert(lf_ptr);
    HDassert(fapl_id_ptr);
    HDassert(dxpl_id_ptr);

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* Close the test file if it is open, regardless of the value of pass.
     * This should let the test program shut down more cleanly.
     */

    if (*lf_ptr) {

        if (H5FDclose(*lf_ptr) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDclose() failed.\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 6) On rank 0, delete the test file.
     */

    if (pass) {

        /* wait for everyone to close the file */
        MPI_Barrier(MPI_COMM_WORLD);

        if ((mpi_rank == 0) && (HDremove(filename) < 0)) {

            pass         = FALSE;
            failure_mssg = "HDremove() failed.\n";
        }

        /* wait for the file delete to complete */
        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* Close the fapl */
    if (H5Pclose(*fapl_id_ptr) < 0) {

        pass         = FALSE;
        failure_mssg = "can't close fapl.\n";
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* Close the dxpl */
    if (H5Pclose(*dxpl_id_ptr) < 0) {

        pass         = FALSE;
        failure_mssg = "can't close dxpl.\n";
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    return;

} /* takedown_vfd_test_file() */

/****************************************************************************/
/******************************* Test Functions *****************************/
/****************************************************************************/

/*-------------------------------------------------------------------------
 * Function:    vector_read_test_1()
 *
 * Purpose:     Simple vector read test:
 *
 *              1) Open the test file with the specified VFD, set the eoa,
 *                 and setup the DXPL.
 *
 *              2) Using rank zero, write the entire increasing_fi_buf to
 *                 the file.
 *
 *              3) Barrier
 *
 *              4) On each rank, zero the read buffer, and then read
 *                 INTS_PER_RANK * sizeof(int32) bytes from the file
 *                 starting at offset mpi_rank * INTS_PER_RANK *
 *                 sizeof(int32_t) in both the file and read_fi_buf.
 *                 Do this with a vector read containing a single
 *                 element.
 *
 *                 Verify that read_fi_buf contains zeros for all
 *                 indices less than mpi_rank * INTS_PER_RANK, or
 *                 greater than or equal to (mpi_rank + 1) * INTS_PER_RANK.
 *                 For all other indices, read_fi_buf should equal
 *                 increasing_fi_buf.
 *
 *              5) Barrier
 *
 *              6) Close the test file.
 *
 *              7) On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/26/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_read_test_1(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_read_test_1()";
    char        test_title[120];
    char        filename[512];
    haddr_t     eoa;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    uint32_t    count;
    H5FD_mem_t  types[1];
    haddr_t     addrs[1];
    size_t      sizes[1];
    void *      bufs[1];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector read test 1 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector read test 1 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector read test 1 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) Using rank zero, write the entire increasing_fi_buf to
     *    the file.
     */
    if (pass) {

        size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t);

        if (mpi_rank == 0) {

            if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)increasing_fi_buf) <
                0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite() on rank 0 failed.\n";
            }
        }
    }

    /* 3) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 4) On each rank, zero the read buffer, and then read
     *    INTS_PER_RANK * sizeof(int32) bytes from the file
     *    starting at offset mpi_rank * INTS_PER_RANK *
     *    sizeof(int32_t) in both the file and read_fi_buf.
     *    Do this with a vector read containing a single
     *    element.
     *
     *    Verify that read_fi_buf contains zeros for all
     *    indices less than mpi_rank * INTS_PER_RANK, or
     *    greater than or equal to (mpi_rank + 1) * INTS_PER_RANK.
     *    For all other indices, read_fi_buf should equal
     *    increasing_fi_buf.
     */
    if (pass) {

        for (i = 0; i < mpi_size * INTS_PER_RANK; i++) {

            read_fi_buf[i] = 0;
        }

        count    = 1;
        types[0] = H5FD_MEM_DRAW;
        addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));
        sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t);
        bufs[0]  = (void *)(&(read_fi_buf[mpi_rank * INTS_PER_RANK]));

        if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread_vector() failed.\n";
        }

        for (i = 0; i < mpi_size * INTS_PER_RANK; i++) {

            if ((i < mpi_rank * INTS_PER_RANK) || (i >= (mpi_rank + 1) * INTS_PER_RANK)) {

                if (read_fi_buf[i] != 0) {

                    pass         = FALSE;
                    failure_mssg = "Unexpected value in read_fi_buf (1).\n";
                    break;
                }
            }
            else {

                if (read_fi_buf[i] != increasing_fi_buf[i]) {

                    pass         = FALSE;
                    failure_mssg = "Unexpected value in read_fi_buf (2).\n";
                    break;
                }
            }
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 5) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 6) Close the test file and delete it (on rank 0 only).
     *    Close FAPL and DXPL.
     */

    if (pass) {

        takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* report results */
    if (mpi_rank == 0) {

        if (pass) {

            PASSED();
        }
        else {

            H5_FAILED();

            if (show_progress) {
                HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
            }
        }
    }

    return (!pass);

} /* vector_read_test_1() */

/*-------------------------------------------------------------------------
 * Function:    vector_read_test_2()
 *
 * Purpose:     Simple vector read test with only half of ranks
 *              participating in each vector read.
 *
 *               1) Open the test file with the specified VFD, set the eoa,
 *                  and setup the DXPL.
 *
 *               2) Using rank zero, write the entire decreasing_fi_buf to
 *                  the file.
 *
 *               3) Barrier
 *
 *               4) On each rank, zero the read buffer.
 *
 *               5) On even ranks, read INTS_PER_RANK * sizeof(int32)
 *                  bytes from the file starting at offset mpi_rank *
 *                  INTS_PER_RANK * sizeof(int32_t) in both the file and
 *                  read_fi_buf.  Do this with a vector read containing
 *                  a single element.
 *
 *                  Odd ranks perform an empty read.
 *
 *               6) Barrier.
 *
 *               7) On odd ranks, read INTS_PER_RANK * sizeof(int32)
 *                  bytes from the file starting at offset mpi_rank *
 *                  INTS_PER_RANK * sizeof(int32_t) in both the file and
 *                  read_fi_buf.  Do this with a vector read containing
 *                  a single element.
 *
 *                  Even ranks perform an empty read.
 *
 *               8) Verify that read_fi_buf contains zeros for all
 *                  indices less than mpi_rank * INTS_PER_RANK, or
 *                  greater than or equal to (mpi_rank + 1) * INTS_PER_RANK.
 *                  For all other indices, read_fi_buf should equal
 *                  decreasing_fi_buf.
 *
 *               9) Barrier
 *
 *              10) Close the test file.
 *
 *              11) On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/26/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_read_test_2(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_read_test_2()";
    char        test_title[120];
    char        filename[512];
    haddr_t     eoa;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    uint32_t    count;
    H5FD_mem_t  types[1];
    haddr_t     addrs[1];
    size_t      sizes[1];
    void *      bufs[1];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector read test 2 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector read test 2 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector read test 2 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) Using rank zero, write the entire decreasing_fi_buf to
     *    the file.
     */
    if (pass) {

        size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t);

        if (mpi_rank == 0) {

            if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)decreasing_fi_buf) <
                0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite() on rank 0 failed.\n";
            }
        }
    }

    /* 3) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 4) On each rank, zero the read buffer. */
    if (pass) {

        for (i = 0; i < mpi_size * INTS_PER_RANK; i++) {

            read_fi_buf[i] = 0;
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 5) On even ranks, read INTS_PER_RANK * sizeof(int32)
     *    bytes from the file starting at offset mpi_rank *
     *    INTS_PER_RANK * sizeof(int32_t) in both the file and
     *    read_fi_buf.  Do this with a vector read containing
     *    a single element.
     *
     *    Odd ranks perform an empty read.
     */
    if (pass) {

        if (mpi_rank % 2 == 0) {

            count    = 1;
            types[0] = H5FD_MEM_DRAW;
            addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));
            sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t);
            bufs[0]  = (void *)(&(read_fi_buf[mpi_rank * INTS_PER_RANK]));
        }
        else {

            count = 0;
        }

        if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread_vector() failed.\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 6) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 7) On odd ranks, read INTS_PER_RANK * sizeof(int32)
     *    bytes from the file starting at offset mpi_rank *
     *    INTS_PER_RANK * sizeof(int32_t) in both the file and
     *    read_fi_buf.  Do this with a vector read containing
     *    a single element.
     *
     *    Even ranks perform an empty read.
     */
    if (pass) {

        if (mpi_rank % 2 == 1) {

            count    = 1;
            types[0] = H5FD_MEM_DRAW;
            addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));
            sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t);
            bufs[0]  = (void *)(&(read_fi_buf[mpi_rank * INTS_PER_RANK]));
        }
        else {

            count = 0;
        }

        if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread_vector() failed.\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 8) Verify that read_fi_buf contains zeros for all
     *    indices less than mpi_rank * INTS_PER_RANK, or
     *    greater than or equal to (mpi_rank + 1) * INTS_PER_RANK.
     *    For all other indices, read_fi_buf should equal
     *    decreasing_fi_buf.
     */

    if (pass) {

        for (i = 0; i < mpi_size * INTS_PER_RANK; i++) {

            if ((i < mpi_rank * INTS_PER_RANK) || (i >= (mpi_rank + 1) * INTS_PER_RANK)) {

                if (read_fi_buf[i] != 0) {

                    pass         = FALSE;
                    failure_mssg = "Unexpected value in read_fi_buf (1).\n";
                    break;
                }
            }
            else {

                if (read_fi_buf[i] != decreasing_fi_buf[i]) {

                    pass         = FALSE;
                    failure_mssg = "Unexpected value in read_fi_buf (2).\n";
                    break;
                }
            }
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 9) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 10) Close the test file and delete it (on rank 0 only).
     *     Close FAPL and DXPL.
     */

    if (pass) {

        takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* report results */
    if (mpi_rank == 0) {

        if (pass) {

            PASSED();
        }
        else {

            H5_FAILED();

            if (show_progress) {
                HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
            }
        }
    }

    return (!pass);

} /* vector_read_test_2() */

/*-------------------------------------------------------------------------
 * Function:    vector_read_test_3()
 *
 * Purpose:     Verify that vector read works with multiple entries in
 *              the vector in each read, and that read buffers need not
 *              be in increasing (memory) address order.
 *
 *               1) Open the test file with the specified VFD, set the eoa,
 *                  and setup the DXPL.
 *
 *               2) Using rank zero, write the entire negative_fi_buf to
 *                  the file.
 *
 *               3) Barrier
 *
 *               4) On each rank, zero the four read buffers.
 *
 *               5) On each rank, do a vector read from the file, with
 *                  each rank's vector having four elements, with each
 *                  element reading INTS_PER_RANK / 4 * sizeof(int32)
 *                  bytes, and the reads starting at address:
 *
 *                      (mpi_rank * INTS_PER_RANK) * sizeof(int32_t)
 *
 *                      (mpi_rank * INTS_PER_RANK + INTS_PER_RANK / 4) *
 *                          sizeof(int32_t)
 *
 *                      (mpi_rank * INTS_PER_RANK + INTS_PER_RANK / 2) *
 *                          sizeof(int32_t)
 *
 *                      (mpi_rank * INTS_PER_RANK + 3 * INTS_PER_RANK / 2) *
 *                          sizeof(int32_t)
 *
 *                  On even ranks, the targets of the reads should be
 *                  buf_0, buf_1, buf_2, and buf_3 respectively.
 *
 *                  On odd ranks, the targets of the reads should be
 *                  buf_3, buf_2, buf_1, and buf_0 respectively.
 *
 *                  This has the effect of ensuring that on at least
 *                  some ranks, the read buffers are not in increasing
 *                  address order.
 *
 *               6) Verify that buf_0, buf_1, buf_2, and buf_3 contain
 *                  the expected data.  Note that this will be different
 *                  on even vs. odd ranks.
 *
 *               7) Barrier.
 *
 *               8) Close the test file.
 *
 *               9) On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/26/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_read_test_3(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_read_test_3()";
    char        test_title[120];
    char        filename[512];
    int32_t     buf_0[(INTS_PER_RANK / 4) + 1];
    int32_t     buf_1[(INTS_PER_RANK / 4) + 1];
    int32_t     buf_2[(INTS_PER_RANK / 4) + 1];
    int32_t     buf_3[(INTS_PER_RANK / 4) + 1];
    haddr_t     eoa;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    uint32_t    count;
    H5FD_mem_t  types[4];
    haddr_t     addrs[4];
    size_t      sizes[4];
    void *      bufs[4];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector read test 3 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector read test 3 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector read test 3 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) Using rank zero, write the entire negative_fi_buf to
     *    the file.
     */
    if (pass) {

        size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t);

        if (mpi_rank == 0) {

            if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)negative_fi_buf) <
                0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite() on rank 0 failed.\n";
            }
        }
    }

    /* 3) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 4) On each rank, zero the four read buffers. */
    if (pass) {

        for (i = 0; i <= INTS_PER_RANK / 4; i++) {

            buf_0[i] = 0;
            buf_1[i] = 0;
            buf_2[i] = 0;
            buf_3[i] = 0;
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 5) On each rank, do a vector read from the file, with
     *    each rank's vector having four elements, with each
     *    element reading INTS_PER_RANK / 4 * sizeof(int32)
     *    bytes, and the reads starting at address:
     *
     *        (mpi_rank * INTS_PER_RANK) * sizeof(int32_t)
     *
     *        (mpi_rank * INTS_PER_RANK + INTS_PER_RANK / 4) *
     *            sizeof(int32_t)
     *
     *        (mpi_rank * INTS_PER_RANK + INTS_PER_RANK / 2) *
     *            sizeof(int32_t)
     *
     *        (mpi_rank * INTS_PER_RANK + 3 * INTS_PER_RANK / 2) *
     *            sizeof(int32_t)
     *
     *    On even ranks, the targets of the reads should be
     *    buf_0, buf_1, buf_2, and buf_3 respectively.
     *
     *    On odd ranks, the targets of the reads should be
     *    buf_3, buf_2, buf_1, and buf_0 respectively.
     *
     *    This has the effect of ensuring that on at least
     *    some ranks, the read buffers are not in increasing
     *    address order.
     */
    if (pass) {

        haddr_t base_addr = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        count = 4;

        types[0] = H5FD_MEM_DRAW;
        addrs[0] = base_addr;
        sizes[0] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t);

        types[1] = H5FD_MEM_DRAW;
        addrs[1] = base_addr + ((haddr_t)(INTS_PER_RANK / 4) * (haddr_t)(sizeof(int32_t)));
        sizes[1] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t);

        types[2] = H5FD_MEM_DRAW;
        addrs[2] = base_addr + ((haddr_t)(INTS_PER_RANK / 2) * (haddr_t)(sizeof(int32_t)));
        sizes[2] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t);

        types[3] = H5FD_MEM_DRAW;
        addrs[3] = base_addr + ((haddr_t)(3 * INTS_PER_RANK / 4) * (haddr_t)(sizeof(int32_t)));
        sizes[3] = (size_t)INTS_PER_RANK / 4 * sizeof(int32_t);

        if (mpi_rank % 2 == 0) {

            bufs[0] = (void *)(&(buf_0[0]));
            bufs[1] = (void *)(buf_1);
            bufs[2] = (void *)(buf_2);
            bufs[3] = (void *)(buf_3);
        }
        else {

            bufs[0] = (void *)(&(buf_3[0]));
            bufs[1] = (void *)(buf_2);
            bufs[2] = (void *)(buf_1);
            bufs[3] = (void *)(buf_0);
        }

        if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread_vector() failed.\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 6) Verify that buf_0, buf_1, buf_2, and buf_3 contain
     *    the expected data.  Note that this will be different
     *    on even vs. odd ranks.
     */
    if (pass) {

        int base_index = mpi_rank * INTS_PER_RANK;

        for (i = 0; ((pass) && (i < INTS_PER_RANK / 4)); i++) {

            if (((mpi_rank % 2 == 0) && (buf_0[i] != negative_fi_buf[base_index + i])) ||
                ((mpi_rank % 2 == 1) && (buf_3[i] != negative_fi_buf[base_index + i]))) {

                pass         = FALSE;
                failure_mssg = "Unexpected value in buf (1).\n";
            }
        }

        base_index += INTS_PER_RANK / 4;

        for (i = 0; ((pass) && (i < INTS_PER_RANK / 4)); i++) {

            if (((mpi_rank % 2 == 0) && (buf_1[i] != negative_fi_buf[base_index + i])) ||
                ((mpi_rank % 2 == 1) && (buf_2[i] != negative_fi_buf[base_index + i]))) {

                pass         = FALSE;
                failure_mssg = "Unexpected value in buf (2).\n";
            }
        }

        base_index += INTS_PER_RANK / 4;

        for (i = 0; ((pass) && (i < INTS_PER_RANK / 4)); i++) {

            if (((mpi_rank % 2 == 0) && (buf_2[i] != negative_fi_buf[base_index + i])) ||
                ((mpi_rank % 2 == 1) && (buf_1[i] != negative_fi_buf[base_index + i]))) {

                pass         = FALSE;
                failure_mssg = "Unexpected value in buf (3).\n";
            }
        }

        base_index += INTS_PER_RANK / 4;

        for (i = 0; ((pass) && (i < INTS_PER_RANK / 4)); i++) {

            if (((mpi_rank % 2 == 0) && (buf_3[i] != negative_fi_buf[base_index + i])) ||
                ((mpi_rank % 2 == 1) && (buf_0[i] != negative_fi_buf[base_index + i]))) {

                pass         = FALSE;
                failure_mssg = "Unexpected value in buf (4).\n";
            }
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 7) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 8) Close the test file and delete it (on rank 0 only).
     *    Close FAPL and DXPL.
     */

    if (pass) {

        takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* report results */
    if (mpi_rank == 0) {

        if (pass) {

            PASSED();
        }
        else {

            H5_FAILED();

            if (show_progress) {
                HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
            }
        }
    }

    return (!pass);

} /* vector_read_test_3() */

/*-------------------------------------------------------------------------
 * Function:    vector_read_test_4()
 *
 * Purpose:     Test vector I/O reads with vectors of different lengths
 *              and entry sizes across the ranks.  Vectors are not, in
 *              general, sorted in increasing address order.  Further,
 *              reads are not, in general, contiguous.
 *
 *               1) Open the test file with the specified VFD, set the eoa.
 *                  and setup the DXPL.
 *
 *               2) Using rank zero, write the entire increasing_fi_buf to
 *                  the file.
 *
 *               3) Barrier
 *
 *               4) Set all cells of read_fi_buf to zero.
 *
 *               5) For each rank, define base_index equal to:
 *
 *                      mpi_rank * INTS_PER_RANK
 *
 *                  and define base_addr equal to
 *
 *                      base_index * sizeof(int32_t).
 *
 *                  Setup a vector read between base_addr and
 *                  base_addr + INTS_PER_RANK * sizeof(int32_t) - 1
 *                  as follows:
 *
 *                  if ( rank % 4 == 0 ) construct a vector that reads:
 *
 *                       INTS_PER_RANK / 4 * sizeof(int32_t) bytes
 *                       starting at base_addr + INTS_PER_RANK / 2 *
 *                       sizeof(int32_t),
 *
 *                       INTS_PER_RANK / 8 * sizeof(int32_t) bytes
 *                       starting at base_addr + INTS_PER_RANK / 4 *
 *                       sizeof(int32_t), and
 *
 *                       INTS_PER_RANK / 16 * sizeof(int32_t) butes
 *                       starting at base_addr + INTS_PER_RANK / 16 *
 *                       sizeof(int32_t)
 *
 *                   to the equivalent locations in read_fi_buf
 *
 *                  if ( rank % 4 == 1 ) construct a vector that reads:
 *
 *                       ((INTS_PER_RANK / 2) - 2) * sizeof(int32_t)
 *                       bytes starting at base_addr + sizeof(int32_t), and
 *
 *                       ((INTS_PER_RANK / 2) - 2) * sizeof(int32_t) bytes
 *                       starting at base_addr + (INTS_PER_RANK / 2 + 1) *
 *                       sizeof(int32_t).
 *
 *                   to the equivalent locations in read_fi_buf
 *
 *                  if ( rank % 4 == 2 ) construct a vector that reads:
 *
 *                       sizeof(int32_t) bytes starting at base_index +
 *                       (INTS_PER_RANK / 2) * sizeof int32_t.
 *
 *                   to the equivalent locations in read_fi_buf
 *
 *                 if ( rank % 4 == 3 ) construct and read the empty vector
 *
 *               6) On each rank, verify that read_fi_buf contains the
 *                  the expected values -- that is the matching values from
 *                  increasing_fi_buf where ever there was a read, and zero
 *                  otherwise.
 *
 *               7) Barrier.
 *
 *               8) Close the test file.
 *
 *               9) On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/26/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_read_test_4(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_read_test_4()";
    char        test_title[120];
    char        filename[512];
    haddr_t     eoa;
    haddr_t     base_addr;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    int         j;
    int         k;
    int         base_index;
    uint32_t    count = 0;
    H5FD_mem_t  types[4];
    haddr_t     addrs[4];
    size_t      sizes[4];
    void *      bufs[4];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector read test 4 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector read test 4 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector read test 4 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) Using rank zero, write the entire negative_fi_buf to
     *    the file.
     */
    if (pass) {

        size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t);

        if (mpi_rank == 0) {

            if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)increasing_fi_buf) <
                0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite() on rank 0 failed.\n";
            }
        }
    }

    /* 3) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 4) Set all cells of read_fi_buf to zero. */
    if (pass) {

        for (i = 0; i < mpi_size * INTS_PER_RANK; i++) {

            read_fi_buf[i] = 0;
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 5) For each rank, define base_index equal to:
     *
     *        mpi_rank * INTS_PER_RANK
     *
     *    and define base_addr equal to
     *
     *        base_index * sizeof(int32_t).
     *
     *    Setup a vector read between base_addr and
     *    base_addr + INTS_PER_RANK * sizeof(int32_t) - 1
     *    as follows:
     */
    if (pass) {

        base_index = mpi_rank * INTS_PER_RANK;
        base_addr  = (haddr_t)base_index * (haddr_t)sizeof(int32_t);

        if ((mpi_rank % 4) == 0) {

            /* if ( rank % 4 == 0 ) construct a vector that reads:
             *
             *      INTS_PER_RANK / 4 * sizeof(int32_t) bytes
             *      starting at base_addr + INTS_PER_RANK / 2 *
             *      sizeof(int32_t),
             *
             *      INTS_PER_RANK / 8 * sizeof(int32_t) bytes
             *      starting at base_addr + INTS_PER_RANK / 4 *
             *      sizeof(int32_t), and
             *
             *      INTS_PER_RANK / 16 * sizeof(int32_t) butes
             *      starting at base_addr + INTS_PER_RANK / 16 *
             *      sizeof(int32_t)
             *
             *  to the equivalent locations in read_fi_buf
             */

            count = 3;

            types[0] = H5FD_MEM_DRAW;
            addrs[0] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 2) * sizeof(int32_t));
            sizes[0] = (size_t)(INTS_PER_RANK / 4) * sizeof(int32_t);
            bufs[0]  = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 2)]));

            types[1] = H5FD_MEM_DRAW;
            addrs[1] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 4) * sizeof(int32_t));
            sizes[1] = (size_t)(INTS_PER_RANK / 8) * sizeof(int32_t);
            bufs[1]  = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 4)]));

            types[2] = H5FD_MEM_DRAW;
            addrs[2] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 16) * sizeof(int32_t));
            sizes[2] = (size_t)(INTS_PER_RANK / 16) * sizeof(int32_t);
            bufs[2]  = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 16)]));
        }
        else if ((mpi_rank % 4) == 1) {

            /* if ( rank % 4 == 1 ) construct a vector that reads:
             *
             *      ((INTS_PER_RANK / 2) - 2) * sizeof(int32_t)
             *      bytes starting at base_addr + sizeof(int32_t), and
             *
             *      ((INTS_PER_RANK / 2) - 2) * sizeof(int32_t) bytes
             *      starting at base_addr + (INTS_PER_RANK / 2 + 1) *
             *      sizeof(int32_t).
             *
             *  to the equivalent locations in read_fi_buf
             */
            count = 2;

            types[0] = H5FD_MEM_DRAW;
            addrs[0] = base_addr + (haddr_t)(sizeof(int32_t));
            sizes[0] = (size_t)((INTS_PER_RANK / 2) - 2) * sizeof(int32_t);
            bufs[0]  = (void *)(&(read_fi_buf[base_index + 1]));

            types[1] = H5FD_MEM_DRAW;
            addrs[1] = base_addr + (haddr_t)((size_t)((INTS_PER_RANK / 2) + 1) * sizeof(int32_t));
            sizes[1] = (size_t)((INTS_PER_RANK / 2) - 2) * sizeof(int32_t);
            bufs[1]  = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 2) + 1]));
        }
        else if ((mpi_rank % 4) == 2) {

            /* if ( rank % 4 == 2 ) construct a vector that reads:
             *
             *      sizeof(int32_t) bytes starting at base_index +
             *      (INTS_PER_RANK / 2) * sizeof int32_t.
             *
             *  to the equivalent locations in read_fi_buf
             */
            count = 1;

            types[0] = H5FD_MEM_DRAW;
            addrs[0] = base_addr + (haddr_t)((size_t)(INTS_PER_RANK / 2) * sizeof(int32_t));
            sizes[0] = sizeof(int32_t);
            bufs[0]  = (void *)(&(read_fi_buf[base_index + (INTS_PER_RANK / 2)]));
        }
        else if ((mpi_rank % 4) == 3) {

            /* if ( rank % 4 == 3 ) construct and read the empty vector */

            count = 0;
        }

        if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread_vector() failed (1).\n";
        }
    }

    /* 6) On each rank, verify that read_fi_buf contains the
     *    the expected values -- that is the matching values from
     *    increasing_fi_buf where ever there was a read, and zero
     *    otherwise.
     */
    if (pass) {

        for (i = 0; ((pass) && (i < mpi_size)); i++) {

            base_index = i * INTS_PER_RANK;
#if 1
            for (j = base_index; j < base_index + INTS_PER_RANK; j++) {

                k = j - base_index;
#else
            for (k = 0; k < INTS_PER_RANK; k++) {

                j = k + base_index;
#endif

                if (i == mpi_rank) {

                    switch (i % 4) {

                        case 0:
                            if (((INTS_PER_RANK / 2) <= k) && (k < (3 * (INTS_PER_RANK / 4)))) {

                                if (read_fi_buf[j] != increasing_fi_buf[j]) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (1.1)";
                                    HDfprintf(stdout, "\nread_fi_buf[%d] = %d, increasing_fi_buf[%d] = %d\n",
                                              j, read_fi_buf[j], j, increasing_fi_buf[j]);
                                }
                            }
                            else if (((INTS_PER_RANK / 4) <= k) && (k < (3 * (INTS_PER_RANK / 8)))) {

                                if (read_fi_buf[j] != increasing_fi_buf[j]) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (1.2)";
                                }
                            }
                            else if (((INTS_PER_RANK / 16) <= k) && (k < (INTS_PER_RANK / 8))) {

                                if (read_fi_buf[j] != increasing_fi_buf[j]) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (1.3)";
                                }
                            }
                            else {

                                if (read_fi_buf[j] != 0) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (1.4)";
                                }
                            }
                            break;

                        case 1:
                            if ((1 <= k) && (k <= ((INTS_PER_RANK / 2) - 2))) {

                                if (read_fi_buf[j] != increasing_fi_buf[j]) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (2.1)";
                                }
                            }
                            else if ((((INTS_PER_RANK / 2) + 1) <= k) && (k <= (INTS_PER_RANK - 2))) {

                                if (read_fi_buf[j] != increasing_fi_buf[j]) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (2.2)";
                                }
                            }
                            else {

                                if (read_fi_buf[j] != 0) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (2.3)";
                                }
                            }
                            break;

                        case 2:
                            if (k == INTS_PER_RANK / 2) {

                                if (read_fi_buf[j] != increasing_fi_buf[j]) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (3.1)";
                                }
                            }
                            else {

                                if (read_fi_buf[j] != 0) {

                                    pass         = FALSE;
                                    failure_mssg = "unexpected data read from file (3.2)";
                                }
                            }
                            break;

                        case 3:
                            if (read_fi_buf[j] != 0) {

                                pass         = FALSE;
                                failure_mssg = "unexpected data read from file (4)";
                            }
                            break;

                        default:
                            HDassert(FALSE); /* should be un-reachable */
                            break;
                    }
                }
                else if (read_fi_buf[j] != 0) {

                    pass         = FALSE;
                    failure_mssg = "unexpected data read from file (5)";
                }
            } /* end for loop */
        }     /* end for loop */
    }         /* end if */

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 7) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 8) Close the test file and delete it (on rank 0 only).
     *    Close FAPL and DXPL.
     */

    if (pass) {

        takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* report results */
    if (mpi_rank == 0) {

        if (pass) {

            PASSED();
        }
        else {

            H5_FAILED();

            if (show_progress) {
                HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
            }
        }
    }

    return (!pass);

} /* vector_read_test_4() */

/*-------------------------------------------------------------------------
 * Function:    vector_read_test_5()
 *
 * Purpose:     Test correct management of the sizes[] array optimization,
 *              where, if sizes[i] == 0, we use sizes[i - 1] as the value
 *              of size[j], for j >= i.
 *
 *               1) Open the test file with the specified VFD, set the eoa.
 *                  and setup the DXPL.
 *
 *               2) Using rank zero, write the entire increasing_fi_buf to
 *                  the file.
 *
 *               3) Barrier
 *
 *               4) Set all cells of read_fi_buf to zero.
 *
 *               5) For each rank, define base_index equal to:
 *
 *                      mpi_rank * INTS_PER_RANK
 *
 *                  and define base_addr equal to
 *
 *                      base_index * sizeof(int32_t).
 *
 *                  Setup a vector read between base_addr and
 *                  base_addr + INTS_PER_RANK * sizeof(int32_t) - 1
 *                  that reads every 16th integer located in that
 *                  that range starting at base_addr.  Use a sizes[]
 *                  array of length 2, with sizes[0] set to sizeof(int32_t),
 *                  and sizes[1] = 0.
 *
 *                  Read the integers into the corresponding locations in
 *                  read_fi_buf.
 *
 *               6) On each rank, verify that read_fi_buf contains the
 *                  the expected values -- that is the matching values from
 *                  increasing_fi_buf where ever there was a read, and zero
 *                  otherwise.
 *
 *               7) Barrier.
 *
 *               8) Close the test file.
 *
 *               9) On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/26/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_read_test_5(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                   H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_read_test_5()";
    char        test_title[120];
    char        filename[512];
    haddr_t     eoa;
    haddr_t     base_addr;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    int         j;
    int         base_index;
    uint32_t    count = 0;
    H5FD_mem_t  types[(INTS_PER_RANK / 16) + 1];
    haddr_t     addrs[(INTS_PER_RANK / 16) + 1];
    size_t      sizes[2];
    void *      bufs[(INTS_PER_RANK / 16) + 1];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector read test 5 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector read test 5 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector read test 5 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) Using rank zero, write the entire negative_fi_buf to
     *    the file.
     */
    if (pass) {

        size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t);

        if (mpi_rank == 0) {

            if (H5FDwrite(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)increasing_fi_buf) <
                0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite() on rank 0 failed.\n";
            }
        }
    }

    /* 3) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 4) Set all cells of read_fi_buf to zero. */
    if (pass) {

        for (i = 0; i < mpi_size * INTS_PER_RANK; i++) {

            read_fi_buf[i] = 0;
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 5) For each rank, define base_index equal to:
     *
     *        mpi_rank * INTS_PER_RANK
     *
     *    and define base_addr equal to
     *
     *        base_index * sizeof(int32_t).
     *
     *    Setup a vector read between base_addr and
     *    base_addr + INTS_PER_RANK * sizeof(int32_t) - 1
     *    that reads every 16th integer located in that
     *    that range starting at base_addr.  Use a sizes[]
     *    array of length 2, with sizes[0] set to sizeof(int32_t),
     *    and sizes[1] = 0.
     *
     *    Read the integers into the corresponding locations in
     *    read_fi_buf.
     */
    if (pass) {

        base_index = (mpi_rank * INTS_PER_RANK);
        base_addr  = (haddr_t)base_index * (haddr_t)sizeof(int32_t);

        count    = INTS_PER_RANK / 16;
        sizes[0] = sizeof(int32_t);
        sizes[1] = 0;

        for (i = 0; i < INTS_PER_RANK / 16; i++) {

            types[i] = H5FD_MEM_DRAW;
            addrs[i] = base_addr + ((haddr_t)(16 * i) * (haddr_t)sizeof(int32_t));
            bufs[i]  = (void *)(&(read_fi_buf[base_index + (i * 16)]));
        }

        if (H5FDread_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread_vector() failed (1).\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 6) On each rank, verify that read_fi_buf contains the
     *    the expected values -- that is the matching values from
     *    increasing_fi_buf where ever there was a read, and zero
     *    otherwise.
     */
    if (pass) {

        for (i = 0; ((pass) && (i < mpi_size)); i++) {

            base_index = i * INTS_PER_RANK;

            for (j = base_index; j < base_index + INTS_PER_RANK; j++) {

                if ((i == mpi_rank) && (j % 16 == 0)) {

                    if (read_fi_buf[j] != increasing_fi_buf[j]) {

                        pass         = FALSE;
                        failure_mssg = "unexpected data read from file (1)";
                    }
                }
                else if (read_fi_buf[j] != 0) {

                    pass         = FALSE;
                    failure_mssg = "unexpected data read from file (2)";
                }
            } /* end for loop */
        }     /* end for loop */
    }         /* end if */

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 7) Barrier */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 8) Close the test file and delete it (on rank 0 only).
     *    Close FAPL and DXPL.
     */

    if (pass) {

        takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* report results */
    if (mpi_rank == 0) {

        if (pass) {

            PASSED();
        }
        else {

            H5_FAILED();

            if (show_progress) {
                HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
            }
        }
    }

    return (!pass);

} /* vector_read_test_5() */

/*-------------------------------------------------------------------------
 * Function:    vector_write_test_1()
 *
 * Purpose:     Simple vector write test:
 *
 *              1) Open the test file with the specified VFD, set the eoa,
 *                 and setup the DXPL.
 *
 *              2) Write the entire increasing_fi_buf to the file, with
 *                 exactly one buffer per vector per rank.  Use either
 *                 independent or collective I/O as specified.
 *
 *              3) Barrier
 *
 *              4) On each rank, read the entire file into the read_fi_buf,
 *                 and compare against increasing_fi_buf.  Report failure
 *                 if any differences are detected.
 *
 *              5) Close the test file.
 *
 *              6) On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/26/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_write_test_1(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_write_test_1()";
    char        test_title[120];
    char        filename[512];
    haddr_t     eoa;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    uint32_t    count;
    H5FD_mem_t  types[1];
    haddr_t     addrs[1];
    size_t      sizes[1];
    void *      bufs[1];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector write test 1 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector write test 1 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector write test 1 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) Write the entire increasing_fi_buf to the file, with
     *    exactly one buffer per vector per rank.  Use either
     *    independent or collective I/O as specified.
     */

    if (pass) {

        count    = 1;
        types[0] = H5FD_MEM_DRAW;
        addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));
        sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t);
        bufs[0]  = (void *)(&(increasing_fi_buf[mpi_rank * INTS_PER_RANK]));

        if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDwrite_vector() failed.\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 3) Barrier
     */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 4) On each rank, read the entire file into the read_fi_buf,
     *    and compare against increasing_fi_buf.  Report failure
     *    if any differences are detected.
     */

    if (pass) {

        size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t);

        if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread() failed.\n";
        }

        for (i = 0; i < mpi_size * INTS_PER_RANK; i++) {

            if (read_fi_buf[i] != increasing_fi_buf[i]) {

                pass         = FALSE;
                failure_mssg = "unexpected data read from file";
                break;
            }
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 5) Close the test file and delete it (on rank 0 only).
     *    Close FAPL and DXPL.
     */

    if (pass) {

        takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* report results */
    if (mpi_rank == 0) {

        if (pass) {

            PASSED();
        }
        else {

            H5_FAILED();

            if (show_progress) {
                HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
            }
        }
    }

    return (!pass);

} /* vector_write_test_1() */

/*-------------------------------------------------------------------------
 * Function:    vector_write_test_2()
 *
 * Purpose:     Test vector I/O writes in which only some ranks participate.
 *              Depending on the collective parameter, these writes will
 *              be either collective or independent.
 *
 *              1) Open the test file with the specified VFD, and set
 *                 the eoa.
 *
 *              2) Write the odd blocks of the increasing_fi_buf to the file,
 *                 with the odd ranks writing the odd blocks, and the even
 *                 ranks writing an empty vector.
 *
 *                 Here, a "block" of the increasing_fi_buf is a sequence
 *                 of integers in increasing_fi_buf of length INTS_PER_RANK,
 *                 and with start index a multiple of INTS_PER_RANK.
 *
 *              3) Write the even blocks of the negative_fi_buf to the file,
 *                 with the even ranks writing the even blocks, and the odd
 *                 ranks writing an empty vector.
 *
 *              4) Barrier
 *
 *              4) On each rank, read the entire file into the read_fi_buf,
 *                 and compare against increasing_fi_buf and negative_fi_buf
 *                 as appropriate.  Report failure if any differences are
 *                 detected.
 *
 *              5) Close the test file.  On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/28/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_write_test_2(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_write_test_2()";
    char        test_title[120];
    char        filename[512];
    haddr_t     eoa;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    int         j;
    uint32_t    count;
    H5FD_mem_t  types[1];
    haddr_t     addrs[1];
    size_t      sizes[1];
    void *      bufs[1];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector write test 2 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector write test 2 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector write test 2 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) Write the odd blocks of the increasing_fi_buf to the file,
     *    with the odd ranks writing the odd blocks, and the even
     *    ranks writing an empty vector.
     *
     *    Here, a "block" of the increasing_fi_buf is a sequence
     *    of integers in increasing_fi_buf of length INTS_PER_RANK,
     *    and with start index a multiple of INTS_PER_RANK.
     */
    if (pass) {

        if (mpi_rank % 2 == 1) { /* odd ranks */

            count    = 1;
            types[0] = H5FD_MEM_DRAW;
            addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));
            sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t);
            bufs[0]  = (void *)(&(increasing_fi_buf[mpi_rank * INTS_PER_RANK]));

            if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite_vector() failed (1).\n";
            }
        }
        else { /* even ranks */

            if (H5FDwrite_vector(lf, dxpl_id, 0, NULL, NULL, NULL, NULL) < 0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite_vector() failed (2).\n";
            }
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 3) Write the even blocks of the negative_fi_buf to the file,
     *    with the even ranks writing the even blocks, and the odd
     *    ranks writing an empty vector.
     */
    if (pass) {

        if (mpi_rank % 2 == 1) { /* odd ranks */

            if (H5FDwrite_vector(lf, dxpl_id, 0, NULL, NULL, NULL, NULL) < 0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite_vector() failed (3).\n";
            }
        }
        else { /* even ranks */

            count    = 1;
            types[0] = H5FD_MEM_DRAW;
            addrs[0] = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));
            sizes[0] = (size_t)INTS_PER_RANK * sizeof(int32_t);
            bufs[0]  = (void *)(&(negative_fi_buf[mpi_rank * INTS_PER_RANK]));

            if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

                pass         = FALSE;
                failure_mssg = "H5FDwrite_vector() failed (4).\n";
            }
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 4) Barrier
     */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 5) On each rank, read the entire file into the read_fi_buf,
     *    and compare against increasing_fi_buf.  Report failure
     *    if any differences are detected.
     */

    if (pass) {

        size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t);

        if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread() failed.\n";
        }

        for (i = 0; ((pass) && (i < mpi_size)); i++) {

            if (i % 2 == 1) { /* odd block */

                for (j = i * INTS_PER_RANK; ((pass) && (j < (i + 1) * INTS_PER_RANK)); j++) {

                    if (read_fi_buf[j] != increasing_fi_buf[j]) {

                        pass         = FALSE;
                        failure_mssg = "unexpected data read from file";
                        break;
                    }
                }
            }
            else { /* even block */

                for (j = i * INTS_PER_RANK; ((pass) && (j < (i + 1) * INTS_PER_RANK)); j++) {

                    if (read_fi_buf[j] != negative_fi_buf[j]) {

                        pass         = FALSE;
                        failure_mssg = "unexpected data read from file";
                        break;
                    }
                }
            }
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 6) Close the test file and delete it (on rank 0 only).
     *    Close FAPL and DXPL.
     */

    if (pass) {

        takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* report results */
    if (mpi_rank == 0) {

        if (pass) {

            PASSED();
        }
        else {

            H5_FAILED();

            if (show_progress) {
                HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
            }
        }
    }

    return (!pass);

} /* vector_write_test_2() */

/*-------------------------------------------------------------------------
 * Function:    vector_write_test_3()
 *
 * Purpose:     Test vector I/O writes with vectors of multiple entries.
 *              For now, keep the vectors sorted in increasing address
 *              order.
 *
 *              1) Open the test file with the specified VFD, and set
 *                 the eoa.
 *
 *              2) For each rank, construct a vector with base address
 *                 (mpi_rank * INTS_PER_RANK) and writing all bytes from
 *                 that address to ((mpi_rank + 1) * INTS_PER_RANK) - 1.
 *                 Draw equal parts from increasing_fi_buf,
 *                 decreasing_fi_buf, negative_fi_buf, and zero_fi_buf.
 *
 *                 Write to file.
 *
 *              3) Barrier
 *
 *              4) On each rank, read the entire file into the read_fi_buf,
 *                 and compare against increasing_fi_buf,
 *                 decreasing_fi_buf, negative_fi_buf, and zero_fi_buf as
 *                 appropriate.  Report failure if any differences are
 *                 detected.
 *
 *              5) Close the test file.  On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/31/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_write_test_3(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_write_test_3()";
    char        test_title[120];
    char        filename[512];
    haddr_t     base_addr;
    int         base_index;
    int         ints_per_write;
    size_t      bytes_per_write;
    haddr_t     eoa;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    int         j;
    uint32_t    count;
    H5FD_mem_t  types[4];
    haddr_t     addrs[4];
    size_t      sizes[4];
    void *      bufs[4];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector write test 3 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector write test 3 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector write test 3 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) For each rank, construct a vector with base address
     *    (mpi_rank * INTS_PER_RANK) and writing all bytes from
     *    that address to ((mpi_rank + 1) * INTS_PER_RANK) - 1.
     *    Draw equal parts from increasing_fi_buf,
     *    decreasing_fi_buf, negative_fi_buf, and zero_fi_buf.
     *
     *    Write to file.
     */
    if (pass) {

        count = 4;

        base_addr       = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));
        ints_per_write  = INTS_PER_RANK / 4;
        bytes_per_write = (size_t)(ints_per_write) * sizeof(int32_t);

        types[0] = H5FD_MEM_DRAW;
        addrs[0] = base_addr;
        sizes[0] = bytes_per_write;
        bufs[0]  = (void *)(&(increasing_fi_buf[mpi_rank * INTS_PER_RANK]));

        types[1] = H5FD_MEM_DRAW;
        addrs[1] = addrs[0] + (haddr_t)(bytes_per_write);
        sizes[1] = bytes_per_write;
        bufs[1]  = (void *)(&(decreasing_fi_buf[(mpi_rank * INTS_PER_RANK) + (INTS_PER_RANK / 4)]));

        types[2] = H5FD_MEM_DRAW;
        addrs[2] = addrs[1] + (haddr_t)(bytes_per_write);
        sizes[2] = bytes_per_write;
        bufs[2]  = (void *)(&(negative_fi_buf[(mpi_rank * INTS_PER_RANK) + (INTS_PER_RANK / 2)]));

        types[3] = H5FD_MEM_DRAW;
        addrs[3] = addrs[2] + (haddr_t)(bytes_per_write);
        sizes[3] = bytes_per_write;
        bufs[3]  = (void *)(&(zero_fi_buf[(mpi_rank * INTS_PER_RANK) + (3 * (INTS_PER_RANK / 4))]));

#if 0  /* JRM */
        HDfprintf(stdout, "addrs = { %lld, %lld, %lld, %lld}\n", 
                  (long long)addrs[0], (long long)addrs[1], (long long)addrs[2], (long long)addrs[3]);
        HDfprintf(stdout, "sizes = { %lld, %lld, %lld, %lld}\n", 
                  (long long)sizes[0], (long long)sizes[1], (long long)sizes[2], (long long)sizes[3]);
        HDfprintf(stdout, "bufs = { 0x%llx, 0x%llx, 0x%llx, 0x%llx}\n", 
                  (unsigned long long)bufs[0], (unsigned long long)bufs[1], 
                  (unsigned long long)bufs[2], (unsigned long long)bufs[3]);
#endif /* JRM */

        if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDwrite_vector() failed (1).\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 3) Barrier
     */

    if (pass) {

        MPI_Barrier(MPI_COMM_WORLD);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 4) On each rank, read the entire file into the read_fi_buf,
     *    and compare against increasing_fi_buf,
     *    decreasing_fi_buf, negative_fi_buf, and zero_fi_buf as
     *    appropriate.  Report failure if any differences are
     *    detected.
     */

    if (pass) {

        size_t image_size = (size_t)mpi_size * (size_t)INTS_PER_RANK * sizeof(int32_t);

        if (H5FDread(lf, H5FD_MEM_DRAW, H5P_DEFAULT, (haddr_t)0, image_size, (void *)read_fi_buf) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDread() failed.\n";
        }

        for (i = 0; ((pass) && (i < mpi_size)); i++) {

            base_index = i * INTS_PER_RANK;

            for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) {

                if (read_fi_buf[j] != increasing_fi_buf[j]) {

                    pass         = FALSE;
                    failure_mssg = "unexpected data read from file (1)";
                    break;
                }
            }

            base_index += (INTS_PER_RANK / 4);

            for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) {

                if (read_fi_buf[j] != decreasing_fi_buf[j]) {

                    pass         = FALSE;
                    failure_mssg = "unexpected data read from file (2)";
                    break;
                }
            }

            base_index += (INTS_PER_RANK / 4);

            for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) {

                if (read_fi_buf[j] != negative_fi_buf[j]) {

                    pass         = FALSE;
                    failure_mssg = "unexpected data read from file (3)";
                    break;
                }
            }

            base_index += (INTS_PER_RANK / 4);

            for (j = base_index; j < base_index + (INTS_PER_RANK / 4); j++) {

                if (read_fi_buf[j] != zero_fi_buf[j]) {

                    pass         = FALSE;
                    failure_mssg = "unexpected data read from file (3)";
                    break;
                }
            }
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 5) Close the test file and delete it (on rank 0 only).
     *    Close FAPL and DXPL.
     */

    if (pass) {

        takedown_vfd_test_file(mpi_rank, filename, &lf, &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* report results */
    if (mpi_rank == 0) {

        if (pass) {

            PASSED();
        }
        else {

            H5_FAILED();

            if (show_progress) {
                HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
            }
        }
    }

    return (!pass);

} /* vector_write_test_3() */

/*-------------------------------------------------------------------------
 * Function:    vector_write_test_4()
 *
 * Purpose:     Test vector I/O writes with vectors of multiple entries.
 *              For now, keep the vectors sorted in increasing address
 *              order.
 *
 *              This test differs from vector_write_test_3() in the order
 *              in which the file image buffers appear in the vector
 *              write.  This guarantees that at least one of these
 *              tests will present buffers with non-increasing addresses
 *              in RAM.
 *
 *              1) Open the test file with the specified VFD, and set
 *                 the eoa.
 *
 *              2) For each rank, construct a vector with base address
 *                 (mpi_rank * INTS_PER_RANK) and writing all bytes from
 *                 that address to ((mpi_rank + 1) * INTS_PER_RANK) - 1.
 *                 Draw equal parts from zero_fi_buf, negative_fi_buf,
 *                 decreasing_fi_buf, and increasing_fi_buf.
 *
 *                 Write to file.
 *
 *              3) Barrier
 *
 *              4) On each rank, read the entire file into the read_fi_buf,
 *                 and compare against zero_fi_buf, negative_fi_buf,
 *                 decreasing_fi_buf, and  increasing_fi_buf as
 *                 appropriate.  Report failure if any differences are
 *                 detected.
 *
 *              5) Close the test file.  On rank 0, delete the test file.
 *
 * Return:      FALSE on success, TRUE if any errors are detected.
 *
 * Programmer:  John Mainzer
 *              3/31/21
 *
 * Modifications:
 *
 *        None.
 *
 *-------------------------------------------------------------------------
 */

static unsigned
vector_write_test_4(int file_name_id, int mpi_rank, int mpi_size, H5FD_mpio_xfer_t xfer_mode,
                    H5FD_mpio_collective_opt_t coll_opt_mode, const char *vfd_name)
{
    const char *fcn_name = "vector_write_test_4()";
    char        test_title[120];
    char        filename[512];
    haddr_t     base_addr;
    int         base_index;
    int         ints_per_write;
    size_t      bytes_per_write;
    haddr_t     eoa;
    hbool_t     show_progress = FALSE;
    hid_t       fapl_id       = -1;   /* file access property list ID */
    hid_t       dxpl_id       = -1;   /* data access property list ID */
    H5FD_t *    lf            = NULL; /* VFD struct ptr               */
    int         cp            = 0;
    int         i;
    int         j;
    uint32_t    count;
    H5FD_mem_t  types[4];
    haddr_t     addrs[4];
    size_t      sizes[4];
    void *      bufs[4];

    pass = TRUE;

    if (mpi_rank == 0) {

        if (xfer_mode == H5FD_MPIO_INDEPENDENT) {

            sprintf(test_title, "parallel vector write test 4 -- %s / independent", vfd_name);
        }
        else if (coll_opt_mode == H5FD_MPIO_INDIVIDUAL_IO) {

            sprintf(test_title, "parallel vector write test 4 -- %s / col op / ind I/O", vfd_name);
        }
        else {

            HDassert(coll_opt_mode == H5FD_MPIO_COLLECTIVE_IO);

            sprintf(test_title, "parallel vector write test 4 -- %s / col op / col I/O", vfd_name);
        }

        TESTING(test_title);
    }

    show_progress = ((show_progress) && (mpi_rank == 0));

    if (show_progress)
        HDfprintf(stdout, "\n%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 1) Open the test file with the specified VFD, set the eoa, and setup the dxpl */
    if (pass) {

        eoa = (haddr_t)mpi_size * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));

        setup_vfd_test_file(file_name_id, filename, mpi_size, xfer_mode, coll_opt_mode, vfd_name, eoa, &lf,
                            &fapl_id, &dxpl_id);
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 2) For each rank, construct a vector with base address
     *    (mpi_rank * INTS_PER_RANK) and writing all bytes from
     *    that address to ((mpi_rank + 1) * INTS_PER_RANK) - 1.
     *    Draw equal parts from increasing_fi_buf,
     *    decreasing_fi_buf, negative_fi_buf, and zero_fi_buf.
     *
     *    Write to file.
     */
    if (pass) {

        count = 4;

        base_addr       = (haddr_t)mpi_rank * (haddr_t)INTS_PER_RANK * (haddr_t)(sizeof(int32_t));
        ints_per_write  = INTS_PER_RANK / 4;
        bytes_per_write = (size_t)(ints_per_write) * sizeof(int32_t);

        types[0] = H5FD_MEM_DRAW;
        addrs[0] = base_addr;
        sizes[0] = bytes_per_write;
        bufs[0]  = (void *)(&(zero_fi_buf[mpi_rank * INTS_PER_RANK]));

        types[1] = H5FD_MEM_DRAW;
        addrs[1] = addrs[0] + (haddr_t)(bytes_per_write);
        sizes[1] = bytes_per_write;
        bufs[1]  = (void *)(&(negative_fi_buf[(mpi_rank * INTS_PER_RANK) + (INTS_PER_RANK / 4)]));

        types[2] = H5FD_MEM_DRAW;
        addrs[2] = addrs[1] + (haddr_t)(bytes_per_write);
        sizes[2] = bytes_per_write;
        bufs[2]  = (void *)(&(decreasing_fi_buf[(mpi_rank * INTS_PER_RANK) + (INTS_PER_RANK / 2)]));

        types[3] = H5FD_MEM_DRAW;
        addrs[3] = addrs[2] + (haddr_t)(bytes_per_write);
        sizes[3] = bytes_per_write;
        bufs[3]  = (void *)(&(increasing_fi_buf[(mpi_rank * INTS_PER_RANK) + (3 * (INTS_PER_RANK / 4))]));

#if 0  /* JRM */
        HDfprintf(stdout, "addrs = { %lld, %lld, %lld, %lld}\n", 
                  (long long)addrs[0], (long long)addrs[1], (long long)addrs[2], (long long)addrs[3]);
        HDfprintf(stdout, "sizes = { %lld, %lld, %lld, %lld}\n", 
                  (long long)sizes[0], (long long)sizes[1], (long long)sizes[2], (long long)sizes[3]);
        HDfprintf(stdout, "bufs = { 0x%llx, 0x%llx, 0x%llx, 0x%llx}\n", 
                  (unsigned long long)bufs[0], (unsigned long long)bufs[1], 
                  (unsigned long long)bufs[2], (unsigned long long)bufs[3]);
#endif /* JRM */

        if (H5FDwrite_vector(lf, dxpl_id, count, types, addrs, sizes, bufs) < 0) {

            pass         = FALSE;
            failure_mssg = "H5FDwrite_vector() failed (1).\n";
        }
    }

    if (show_progress)
        HDfprintf(stdout, "%s: cp = %d, pass = %d.\n", fcn_name, cp++, pass);

    /* 3) Barrier
     */

    if (pass) {