summaryrefslogtreecommitdiffstats
path: root/generic/tclCompExpr.c
blob: 27d75030f0455da52acaf4ab2e75744413e5fde6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
/*
 * tclCompExpr.c --
 *
 *	This file contains the code to parse and compile Tcl expressions
 *	and implementations of the Tcl commands corresponding to expression
 *	operators, such as the command ::tcl::mathop::+ .
 *
 * Contributions from Don Porter, NIST, 2006-2007. (not subject to US copyright)
 *
 * See the file "license.terms" for information on usage and redistribution of
 * this file, and for a DISCLAIMER OF ALL WARRANTIES.
 */

#include "tclInt.h"
#include "tclCompile.h"		/* CompileEnv */

/*
 * Expression parsing takes place in the routine ParseExpr().  It takes a
 * string as input, parses that string, and generates a representation of
 * the expression in the form of a tree of operators, a list of literals,
 * a list of function names, and an array of Tcl_Token's within a Tcl_Parse
 * struct.  The tree is composed of OpNodes.
 */

typedef struct OpNode {
    int left;			/* "Pointer" to the left operand. */
    int right;			/* "Pointer" to the right operand. */
    union {
	int parent;		/* "Pointer" to the parent operand. */
	int prev;		/* "Pointer" joining incomplete tree stack */
    } p;
    unsigned char lexeme;	/* Code that identifies the operator. */
    unsigned char precedence;	/* Precedence of the operator */
    unsigned char mark;		/* Mark used to control traversal. */
    unsigned char constant;	/* Flag marking constant subexpressions. */
} OpNode;

/*
 * The storage for the tree is dynamically allocated array of OpNodes.  The
 * array is grown as parsing needs dictate according to a scheme similar to
 * Tcl's string growth algorithm, so that the resizing costs are O(N) and so
 * that we use at least half the memory allocated as expressions get large.
 *
 * Each OpNode in the tree represents an operator in the expression, either
 * unary or binary.  When parsing is completed successfully, a binary operator
 * OpNode will have its left and right fields filled with "pointers" to its
 * left and right operands.  A unary operator OpNode will have its right field
 * filled with a pointer to its single operand.  When an operand is a
 * subexpression the "pointer" takes the form of the index -- a non-negative
 * integer -- into the OpNode storage array where the root of that
 * subexpression parse tree is found.
 *
 * Non-operator elements of the expression do not get stored in the OpNode
 * tree.  They are stored in the other structures according to their type.
 * Literal values get appended to the literal list.  Elements that denote
 * forms of quoting or substitution known to the Tcl parser get stored as
 * Tcl_Tokens.  These non-operator elements of the expression are the
 * leaves of the completed parse tree.  When an operand of an OpNode is
 * one of these leaf elements, the following negative integer codes are used
 * to indicate which kind of elements it is.
 */

enum OperandTypes {
    OT_LITERAL = -3,	/* Operand is a literal in the literal list */
    OT_TOKENS = -2,	/* Operand is sequence of Tcl_Tokens */
    OT_EMPTY = -1	/* "Operand" is an empty string.  This is a
			 * special case used only to represent the
			 * EMPTY lexeme.  See below. */
};

/*
 * Readable macros to test whether a "pointer" value points to an operator.
 * They operate on the "non-negative integer -> operator; negative integer ->
 * a non-operator OperandType" distinction.
 */

#define IsOperator(l)	((l) >= 0)
#define NotOperator(l)	((l) < 0)

/*
 * Note that it is sufficient to store in the tree just the type of leaf
 * operand, without any explicit pointer to which leaf.  This is true because
 * the traversals of the completed tree we perform are known to visit
 * the leaves in the same order as the original parse.
 *
 * In a completed parse tree, those OpNodes that are themselves (roots of
 * subexpression trees that are) operands of some operator store in their
 * p.parent field a "pointer" to the OpNode of that operator.  The p.parent
 * field permits a traversal of the tree within a * non-recursive routine
 * (ConvertTreeToTokens() and CompileExprTree()).  This means that even
 * expression trees of great depth pose no risk of blowing the C stack.
 *
 * While the parse tree is being constructed, the same memory space is used
 * to hold the p.prev field which chains together a stack of incomplete
 * trees awaiting their right operands.
 *
 * The lexeme field is filled in with the lexeme of the operator that is
 * returned by the ParseLexeme() routine.  Only lexemes for unary and
 * binary operators get stored in an OpNode.  Other lexmes get different
 * treatement.
 *
 * The precedence field provides a place to store the precedence of the
 * operator, so it need not be looked up again and again.
 *
 * The mark field is use to control the traversal of the tree, so
 * that it can be done non-recursively.  The mark values are:
 */

enum Marks {
    MARK_LEFT,		/* Next step of traversal is to visit left subtree */
    MARK_RIGHT,		/* Next step of traversal is to visit right subtree */
    MARK_PARENT		/* Next step of traversal is to return to parent */
};

/*
 * The constant field is a boolean flag marking which subexpressions are
 * completely known at compile time, and are eligible for computing then
 * rather than waiting until run time.
 */

/*
 * Each lexeme belongs to one of four categories, which determine
 * its place in the parse tree.  We use the two high bits of the
 * (unsigned char) value to store a NODE_TYPE code.
 */

#define NODE_TYPE	0xC0

/*
 * The four category values are LEAF, UNARY, and BINARY, explained below,
 * and "uncategorized", which is used either temporarily, until context
 * determines which of the other three categories is correct, or for
 * lexemes like INVALID, which aren't really lexemes at all, but indicators
 * of a parsing error.  Note that the codes must be distinct to distinguish
 * categories, but need not take the form of a bit array.
 */

#define BINARY		0x40	/* This lexeme is a binary operator.  An
				 * OpNode representing it should go into the
				 * parse tree, and two operands should be
				 * parsed for it in the expression.  */
#define UNARY		0x80	/* This lexeme is a unary operator.  An OpNode
				 * representing it should go into the parse
				 * tree, and one operand should be parsed for
				 * it in the expression. */
#define LEAF		0xC0	/* This lexeme is a leaf operand in the parse
				 * tree.  No OpNode will be placed in the tree
				 * for it.  Either a literal value will be
				 * appended to the list of literals in this
				 * expression, or appropriate Tcl_Tokens will
				 * be appended in a Tcl_Parse struct to
				 * represent those leaves that require some
				 * form of substitution.
				 */

/* Uncategorized lexemes */

#define PLUS		1	/* Ambiguous.  Resolves to UNARY_PLUS or
				 * BINARY_PLUS according to context. */
#define MINUS		2	/* Ambiguous.  Resolves to UNARY_MINUS or
				 * BINARY_MINUS according to context. */
#define BAREWORD	3	/* Ambigous.  Resolves to BOOLEAN or to
				 * FUNCTION or a parse error according to
				 * context and value. */
#define INCOMPLETE	4	/* A parse error.  Used only when the single
				 * "=" is encountered.  */
#define INVALID		5	/* A parse error.  Used when any punctuation
				 * appears that's not a supported operator. */

/* Leaf lexemes */

#define NUMBER		( LEAF | 1)	/* For literal numbers */
#define SCRIPT		( LEAF | 2)	/* Script substitution; [foo] */
#define BOOLEAN		( LEAF | BAREWORD)	/* For literal booleans */
#define BRACED		( LEAF | 4)	/* Braced string; {foo bar} */
#define VARIABLE	( LEAF | 5)	/* Variable substitution; $x */
#define QUOTED		( LEAF | 6)	/* Quoted string; "foo $bar [soom]" */
#define EMPTY		( LEAF | 7)	/* Used only for an empty argument
					 * list to a function.  Represents
					 * the empty string within parens in
					 * the expression: rand() */

/* Unary operator lexemes */

#define UNARY_PLUS	( UNARY | PLUS)
#define UNARY_MINUS	( UNARY | MINUS)
#define FUNCTION	( UNARY | BAREWORD)	/* This is a bit of "creative
					 * interpretation" on the part of the
					 * parser.  A function call is parsed
					 * into the parse tree according to
					 * the perspective that the function
					 * name is a unary operator and its
					 * argument list, enclosed in parens,
					 * is its operand.  The additional
					 * requirements not implied generally
					 * by treatment as a unary operator --
					 * for example, the requirement that
					 * the operand be enclosed in parens --
					 * are hard coded in the relevant
					 * portions of ParseExpr().  We trade
					 * off the need to include such
					 * exceptional handling in the code
					 * against the need we would otherwise
					 * have for more lexeme categories. */
#define START		( UNARY | 4)	/* This lexeme isn't parsed from the
					 * expression text at all.  It
					 * represents the start of the
					 * expression and sits at the root of
					 * the parse tree where it serves as
					 * the start/end point of traversals. */
#define OPEN_PAREN	( UNARY | 5)	/* Another bit of creative
					 * interpretation, where we treat "("
					 * as a unary operator with the
					 * sub-expression between it and its
					 * matching ")" as its operand. See
					 * CLOSE_PAREN below. */
#define NOT		( UNARY | 6)
#define BIT_NOT		( UNARY | 7)

/* Binary operator lexemes */

#define BINARY_PLUS	( BINARY |  PLUS)
#define BINARY_MINUS	( BINARY |  MINUS)
#define COMMA		( BINARY |  3)	/* The "," operator is a low precedence
					 * binary operator that separates the
					 * arguments in a function call.  The
					 * additional constraint that this
					 * operator can only legally appear
					 * at the right places within a
					 * function call argument list are
					 * hard coded within ParseExpr().  */
#define MULT		( BINARY |  4)
#define DIVIDE		( BINARY |  5)
#define MOD		( BINARY |  6)
#define LESS		( BINARY |  7)
#define GREATER		( BINARY |  8)
#define BIT_AND		( BINARY |  9)
#define BIT_XOR		( BINARY | 10)
#define BIT_OR		( BINARY | 11)
#define QUESTION	( BINARY | 12)	/* These two lexemes make up the */
#define COLON		( BINARY | 13)	/* ternary conditional operator,
					 * $x ? $y : $z .  We treat them as
					 * two binary operators to avoid
					 * another lexeme category, and
					 * code the additional constraints
					 * directly in ParseExpr().  For
					 * instance, the right operand of
					 * a "?" operator must be a ":"
					 * operator. */
#define LEFT_SHIFT	( BINARY | 14)
#define RIGHT_SHIFT	( BINARY | 15)
#define LEQ		( BINARY | 16)
#define GEQ		( BINARY | 17)
#define EQUAL		( BINARY | 18)
#define NEQ		( BINARY | 19)
#define AND		( BINARY | 20)
#define OR		( BINARY | 21)
#define STREQ		( BINARY | 22)
#define STRNEQ		( BINARY | 23)
#define EXPON		( BINARY | 24)	/* Unlike the other binary operators,
					 * EXPON is right associative and this
					 * distinction is coded directly in
					 * ParseExpr(). */
#define IN_LIST		( BINARY | 25)
#define NOT_IN_LIST	( BINARY | 26)
#define CLOSE_PAREN	( BINARY | 27)	/* By categorizing the CLOSE_PAREN
					 * lexeme as a BINARY operator, the
					 * normal parsing rules for binary
					 * operators assure that a close paren
					 * will not directly follow another
					 * operator, and the machinery already
					 * in place to connect operands to
					 * operators according to precedence
					 * performs most of the work of
					 * matching open and close parens for
					 * us.  In the end though, a close
					 * paren is not really a binary
					 * operator, and some special coding
					 * in ParseExpr() make sure we never
					 * put an actual CLOSE_PAREN node
					 * in the parse tree.   The
					 * sub-expression between parens
					 * becomes the single argument of
					 * the matching OPEN_PAREN unary
					 * operator. */
#define END		( BINARY | 28)	/* This lexeme represents the end of
					 * the string being parsed.  Treating
					 * it as a binary operator follows the
					 * same logic as the CLOSE_PAREN lexeme
					 * and END pairs with START, in the
					 * same way that CLOSE_PAREN pairs with
					 * OPEN_PAREN. */
/*
 * When ParseExpr() builds the parse tree it must choose which operands to
 * connect to which operators.  This is done according to operator precedence.
 * The greater an operator's precedence the greater claim it has to link to
 * an available operand.  The Precedence enumeration lists the precedence
 * values used by Tcl expression operators, from lowest to highest claim.
 * Each precedence level is commented with the operators that hold that
 * precedence.
 */

enum Precedence {
    PREC_END = 1,	/* END */
    PREC_START,		/* START */
    PREC_CLOSE_PAREN,	/* ")" */
    PREC_OPEN_PAREN,	/* "(" */
    PREC_COMMA,		/* "," */
    PREC_CONDITIONAL,	/* "?", ":" */
    PREC_OR,		/* "||" */
    PREC_AND,		/* "&&" */
    PREC_BIT_OR,	/* "|" */
    PREC_BIT_XOR,	/* "^" */
    PREC_BIT_AND,	/* "&" */
    PREC_EQUAL,		/* "==", "!=", "eq", "ne", "in", "ni" */
    PREC_COMPARE,	/* "<", ">", "<=", ">=" */
    PREC_SHIFT,		/* "<<", ">>" */
    PREC_ADD,		/* "+", "-" */
    PREC_MULT,		/* "*", "/", "%" */
    PREC_EXPON,		/* "**" */
    PREC_UNARY		/* "+", "-", FUNCTION, "!", "~" */
};

/*
 * Here the same information contained in the comments above is stored
 * in inverted form, so that given a lexeme, one can quickly look up
 * its precedence value.
 */

static const unsigned char prec[] = {
    /* Non-operator lexemes */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,
    /* Binary operator lexemes */
    PREC_ADD,		/* BINARY_PLUS */
    PREC_ADD,		/* BINARY_MINUS */
    PREC_COMMA,		/* COMMA */
    PREC_MULT,		/* MULT */
    PREC_MULT,		/* DIVIDE */
    PREC_MULT,		/* MOD */
    PREC_COMPARE,	/* LESS */
    PREC_COMPARE,	/* GREATER */
    PREC_BIT_AND,	/* BIT_AND */
    PREC_BIT_XOR,	/* BIT_XOR */
    PREC_BIT_OR,	/* BIT_OR */
    PREC_CONDITIONAL,	/* QUESTION */
    PREC_CONDITIONAL,	/* COLON */
    PREC_SHIFT,		/* LEFT_SHIFT */
    PREC_SHIFT,		/* RIGHT_SHIFT */
    PREC_COMPARE,	/* LEQ */
    PREC_COMPARE,	/* GEQ */
    PREC_EQUAL,		/* EQUAL */
    PREC_EQUAL,		/* NEQ */
    PREC_AND,		/* AND */
    PREC_OR,		/* OR */
    PREC_EQUAL,		/* STREQ */
    PREC_EQUAL,		/* STRNEQ */
    PREC_EXPON,		/* EXPON */
    PREC_EQUAL,		/* IN_LIST */
    PREC_EQUAL,		/* NOT_IN_LIST */
    PREC_CLOSE_PAREN,	/* CLOSE_PAREN */
    PREC_END,		/* END */
    /* Expansion room for more binary operators */
    0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,
    /* Unary operator lexemes */
    PREC_UNARY,		/* UNARY_PLUS */
    PREC_UNARY,		/* UNARY_MINUS */
    PREC_UNARY,		/* FUNCTION */
    PREC_START,		/* START */
    PREC_OPEN_PAREN,	/* OPEN_PAREN */
    PREC_UNARY,		/* NOT*/
    PREC_UNARY,		/* BIT_NOT*/
};

/*
 * A table mapping lexemes to bytecode instructions, used by CompileExprTree().
 */

static const unsigned char instruction[] = {
    /* Non-operator lexemes */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,
    /* Binary operator lexemes */
    INST_ADD,		/* BINARY_PLUS */
    INST_SUB,		/* BINARY_MINUS */
    0,			/* COMMA */
    INST_MULT,		/* MULT */
    INST_DIV,		/* DIVIDE */
    INST_MOD,		/* MOD */
    INST_LT,		/* LESS */
    INST_GT,		/* GREATER */
    INST_BITAND,	/* BIT_AND */
    INST_BITXOR,	/* BIT_XOR */
    INST_BITOR,		/* BIT_OR */
    0,			/* QUESTION */
    0,			/* COLON */
    INST_LSHIFT,	/* LEFT_SHIFT */
    INST_RSHIFT,	/* RIGHT_SHIFT */
    INST_LE,		/* LEQ */
    INST_GE,		/* GEQ */
    INST_EQ,		/* EQUAL */
    INST_NEQ,		/* NEQ */
    0,			/* AND */
    0,			/* OR */
    INST_STR_EQ,	/* STREQ */
    INST_STR_NEQ,	/* STRNEQ */
    INST_EXPON,		/* EXPON */
    INST_LIST_IN,	/* IN_LIST */
    INST_LIST_NOT_IN,	/* NOT_IN_LIST */
    0,			/* CLOSE_PAREN */
    0,			/* END */
    /* Expansion room for more binary operators */
    0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,
    /* Unary operator lexemes */
    INST_UPLUS,		/* UNARY_PLUS */
    INST_UMINUS,	/* UNARY_MINUS */
    0,			/* FUNCTION */
    0,			/* START */
    0,			/* OPEN_PAREN */
    INST_LNOT,		/* NOT*/
    INST_BITNOT,	/* BIT_NOT*/
};

/*
 * A table mapping a byte value to the corresponding lexeme for use by
 * ParseLexeme().
 */

static const unsigned char Lexeme[] = {
	INVALID		/* NUL */,	INVALID		/* SOH */,
	INVALID		/* STX */,	INVALID		/* ETX */,
	INVALID		/* EOT */,	INVALID		/* ENQ */,
	INVALID		/* ACK */,	INVALID		/* BEL */,
	INVALID		/* BS */,	INVALID		/* HT */,
	INVALID		/* LF */,	INVALID		/* VT */,
	INVALID		/* FF */,	INVALID		/* CR */,
	INVALID		/* SO */,	INVALID		/* SI */,
	INVALID		/* DLE */,	INVALID		/* DC1 */,
	INVALID		/* DC2 */,	INVALID		/* DC3 */,
	INVALID		/* DC4 */,	INVALID		/* NAK */,
	INVALID		/* SYN */,	INVALID		/* ETB */,
	INVALID		/* CAN */,	INVALID		/* EM */,
	INVALID		/* SUB */,	INVALID		/* ESC */,
	INVALID		/* FS */,	INVALID		/* GS */,
	INVALID		/* RS */,	INVALID		/* US */,
	INVALID		/* SPACE */,	0 		/* ! or != */,
	QUOTED		/* " */,	INVALID		/* # */,
	VARIABLE	/* $ */,	MOD		/* % */,
	0		/* & or && */,	INVALID		/* ' */,
	OPEN_PAREN	/* ( */,	CLOSE_PAREN	/* ) */,
	0		/* * or ** */,	PLUS		/* + */,
	COMMA		/* , */,	MINUS		/* - */,
	0		/* . */,	DIVIDE		/* / */,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			/* 0-9 */
	COLON		/* : */,	INVALID		/* ; */,
	0		/* < or << or <= */,
	0		/* == or INVALID */,
	0		/* > or >> or >= */,
	QUESTION	/* ? */,	INVALID		/* @ */,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		/* A-M */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		/* N-Z */
	SCRIPT		/* [ */,	INVALID		/* \ */,
	INVALID		/* ] */,	BIT_XOR		/* ^ */,
	INVALID		/* _ */,	INVALID		/* ` */,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		/* a-m */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		/* n-z */
	BRACED		/* { */,	0		/* | or || */,
	INVALID		/* } */,	BIT_NOT		/* ~ */,
	INVALID		/* DEL */
};

/*
 * The JumpList struct is used to create a stack of data needed for the
 * TclEmitForwardJump() and TclFixupForwardJump() calls that are performed
 * when compiling the short-circuiting operators QUESTION/COLON, AND, and OR.
 * Keeping a stack permits the CompileExprTree() routine to be non-recursive.
 */

typedef struct JumpList {
    JumpFixup jump;		/* Pass this argument to matching calls of
				 * TclEmitForwardJump() and
				 * TclFixupForwardJump(). */
    int depth;			/* Remember the currStackDepth of the
				 * CompileEnv here. */
    int offset;			/* Data used to compute jump lengths to pass
				 * to TclFixupForwardJump() */
    int convert;		/* Temporary storage used to compute whether
				 * numeric conversion will be needed following
				 * the operator we're compiling. */
    struct JumpList *next;	/* Point to next item on the stack */
} JumpList;

/*
 * Declarations for local functions to this file:
 */

static void		CompileExprTree(Tcl_Interp *interp, OpNode *nodes,
			    int index, Tcl_Obj *const **litObjvPtr,
			    Tcl_Obj *const *funcObjv, Tcl_Token *tokenPtr,
			    CompileEnv *envPtr, int optimize);
static void		ConvertTreeToTokens(const char *start, int numBytes,
			    OpNode *nodes, Tcl_Token *tokenPtr,
			    Tcl_Parse *parsePtr);
static int		ExecConstantExprTree(Tcl_Interp *interp, OpNode *nodes,
			    int index, Tcl_Obj * const **litObjvPtr);
static int		ParseExpr(Tcl_Interp *interp, const char *start,
			    int numBytes, OpNode **opTreePtr,
			    Tcl_Obj *litList, Tcl_Obj *funcList,
			    Tcl_Parse *parsePtr, int parseOnly);
static int		ParseLexeme(const char *start, int numBytes,
			    unsigned char *lexemePtr, Tcl_Obj **literalPtr);


/*
 *----------------------------------------------------------------------
 *
 * ParseExpr --
 *
 *	Given a string, the numBytes bytes starting at start, this function
 *	parses it as a Tcl expression and constructs a tree representing
 *	the structure of the expression.  The caller must pass in empty
 * 	lists as the funcList and litList arguments.  The elements of the
 *	parsed expression are returned to the caller as that tree, a list of
 *	literal values, a list of function names, and in Tcl_Tokens
 *	added to a Tcl_Parse struct passed in by the caller.
 *
 * Results:
 *	If the string is successfully parsed as a valid Tcl expression, TCL_OK
 *	is returned, and data about the expression structure is written to
 *	the last four arguments.  If the string cannot be parsed as a valid
 *	Tcl expression, TCL_ERROR is returned, and if interp is non-NULL, an
 *	error message is written to interp.
 *
 * Side effects:
 *	Memory will be allocated.  If TCL_OK is returned, the caller must
 *	clean up the returned data structures.  The (OpNode *) value written
 *	to opTreePtr should be passed to ckfree() and the parsePtr argument
 *	should be passed to Tcl_FreeParse().  The elements appended to the
 *	litList and funcList will automatically be freed whenever the
 *	refcount on those lists indicates they can be freed.
 *
 *----------------------------------------------------------------------
 */

static int
ParseExpr(
    Tcl_Interp *interp,		/* Used for error reporting. */
    const char *start,		/* Start of source string to parse. */
    int numBytes,		/* Number of bytes in string. */
    OpNode **opTreePtr,		/* Points to space where a pointer to the
				 * allocated OpNode tree should go. */
    Tcl_Obj *litList,		/* List to append literals to. */
    Tcl_Obj *funcList,		/* List to append function names to. */
    Tcl_Parse *parsePtr,	/* Structure to fill with tokens representing
				 * those operands that require run time
				 * substitutions. */
    int parseOnly)		/* A boolean indicating whether the caller's
				 * aim is just a parse, or whether it will go
				 * on to compile the expression.  Different
				 * optimizations are appropriate for the
				 * two scenarios. */
{
    OpNode *nodes = NULL;	/* Pointer to the OpNode storage array where
				 * we build the parse tree. */
    unsigned nodesAvailable = 64;	/* Initial size of the storage array.  This
				 * value establishes a minimum tree memory cost
				 * of only about 1 kibyte, and is large enough
				 * for most expressions to parse with no need
				 * for array growth and reallocation. */
    unsigned nodesUsed = 0;		/* Number of OpNodes filled. */
    int scanned = 0;		/* Capture number of byte scanned by
				 * parsing routines. */
    int lastParsed;		/* Stores info about what the lexeme parsed
				 * the previous pass through the parsing loop
				 * was.  If it was an operator, lastParsed is
				 * the index of the OpNode for that operator.
				 * If it was not an operator, lastParsed holds
				 * an OperandTypes value encoding what we
				 * need to know about it. */
    int incomplete;		/* Index of the most recent incomplete tree
				 * in the OpNode array.  Heads a stack of
				 * incomplete trees linked by p.prev. */
    int complete = OT_EMPTY;	/* "Index" of the complete tree (that is, a
				 * complete subexpression) determined at the
				 * moment.   OT_EMPTY is a nonsense value
				 * used only to silence compiler warnings.
				 * During a parse, complete will always hold
				 * an index or an OperandTypes value pointing
				 * to an actual leaf at the time the complete
				 * tree is needed. */

    /* These variables control generation of the error message. */
    Tcl_Obj *msg = NULL;	/* The error message. */
    Tcl_Obj *post = NULL;	/* In a few cases, an additional postscript
				 * for the error message, supplying more
				 * information after the error msg and
				 * location have been reported. */
    const char *mark = "_@_";	/* In the portion of the complete error message
				 * where the error location is reported, this
				 * "mark" substring is inserted into the
				 * string being parsed to aid in pinpointing
				 * the location of the syntax error in the
				 * expression. */
    int insertMark = 0;		/* A boolean controlling whether the "mark"
				 * should be inserted. */
    const int limit = 25;	/* Portions of the error message are
				 * constructed out of substrings of the
				 * original expression.  In order to keep the
				 * error message readable, we impose this limit
				 * on the substring size we extract. */

    TclParseInit(interp, start, numBytes, parsePtr);

    nodes = (OpNode *) attemptckalloc(nodesAvailable * sizeof(OpNode));
    if (nodes == NULL) {
	TclNewLiteralStringObj(msg, "not enough memory to parse expression");
	goto error;
    }

    /* Initialize the parse tree with the special "START" node. */
    nodes->lexeme = START;
    nodes->precedence = prec[START];
    nodes->mark = MARK_RIGHT;
    nodes->constant = 1;
    incomplete = lastParsed = nodesUsed;
    nodesUsed++;

    /*
     * Main parsing loop parses one lexeme per iteration.  We exit the
     * loop only when there's a syntax error with a "goto error" which
     * takes us to the error handling code following the loop, or when
     * we've successfully completed the parse and we return to the caller.
     */

    while (1) {
	OpNode *nodePtr;	/* Points to the OpNode we may fill this
				 * pass through the loop. */
	unsigned char lexeme;	/* The lexeme we parse this iteration. */
	Tcl_Obj *literal;	/* Filled by the ParseLexeme() call when
				 * a literal is parsed that has a Tcl_Obj
				 * rep worth preserving. */

	/*
	 * Each pass through this loop adds up to one more OpNode. Allocate
	 * space for one if required.
	 */

	if (nodesUsed >= nodesAvailable) {
	    unsigned size = nodesUsed * 2;
	    OpNode *newPtr = NULL;

	    do {
	      if (size <= UINT_MAX/sizeof(OpNode)) {
		newPtr = (OpNode *) attemptckrealloc((char *) nodes,
			(unsigned int) size * sizeof(OpNode));
	      }
	    } while ((newPtr == NULL)
		    && ((size -= (size - nodesUsed) / 2) > nodesUsed));
	    if (newPtr == NULL) {
		TclNewLiteralStringObj(msg,
			"not enough memory to parse expression");
		goto error;
	    }
	    nodesAvailable = size;
	    nodes = newPtr;
	}
	nodePtr = nodes + nodesUsed;

	/* Skip white space between lexemes. */
	scanned = TclParseAllWhiteSpace(start, numBytes);
	start += scanned;
	numBytes -= scanned;

	scanned = ParseLexeme(start, numBytes, &lexeme, &literal);

	/* Use context to categorize the lexemes that are ambiguous. */
	if ((NODE_TYPE & lexeme) == 0) {
	    switch (lexeme) {
	    case INVALID:
		msg = Tcl_ObjPrintf(
			"invalid character \"%.*s\"", scanned, start);
		goto error;
	    case INCOMPLETE:
		msg = Tcl_ObjPrintf(
			"incomplete operator \"%.*s\"", scanned, start);
		goto error;
	    case BAREWORD:

		/*
		 * Most barewords in an expression are a syntax error.
		 * The exceptions are that when a bareword is followed by
		 * an open paren, it might be a function call, and when the
		 * bareword is a legal literal boolean value, we accept that
		 * as well.
		 */

		if (start[scanned+TclParseAllWhiteSpace(
			start+scanned, numBytes-scanned)] == '(') {
		    lexeme = FUNCTION;

		    /*
		     * When we compile the expression we'll need the function
		     * name, and there's no place in the parse tree to store
		     * it, so we keep a separate list of all the function
		     * names we've parsed in the order we found them.
		     */

		    Tcl_ListObjAppendElement(NULL, funcList, literal);
		} else {
		    int b;
		    if (Tcl_GetBooleanFromObj(NULL, literal, &b) == TCL_OK) {
			lexeme = BOOLEAN;
		    } else {
			Tcl_DecrRefCount(literal);
			msg = Tcl_ObjPrintf(
				"invalid bareword \"%.*s%s\"",
				(scanned < limit) ? scanned : limit - 3, start,
				(scanned < limit) ? "" : "...");
			post = Tcl_ObjPrintf(
				"should be \"$%.*s%s\" or \"{%.*s%s}\"",
				(scanned < limit) ? scanned : limit - 3,
				start, (scanned < limit) ? "" : "...",
				(scanned < limit) ? scanned : limit - 3,
				start, (scanned < limit) ? "" : "...");
			Tcl_AppendPrintfToObj(post,
				" or \"%.*s%s(...)\" or ...",
				(scanned < limit) ? scanned : limit - 3,
				start, (scanned < limit) ? "" : "...");
			if (start[0] == '0') {
			    const char *stop;
			    TclParseNumber(NULL, NULL, NULL, start, scanned,
				    &stop, TCL_PARSE_NO_WHITESPACE);

			    if (isdigit(UCHAR(*stop)) || (stop == start + 1)) {
				parsePtr->errorType = TCL_PARSE_BAD_NUMBER;

				switch (start[1]) {
				case 'b':
				    Tcl_AppendToObj(post,
					    " (invalid binary number?)", -1);
				    break;
				case 'o':
				    Tcl_AppendToObj(post,
					    " (invalid octal number?)", -1);
				    break;
				default:
				    if (isdigit(UCHAR(start[1]))) {
				        Tcl_AppendToObj(post,
						" (invalid octal number?)", -1);
				    }
				    break;
				}
			    }
			}
			goto error;
		    }
		}
		break;
	    case PLUS:
	    case MINUS:
		if (IsOperator(lastParsed)) {

		    /*
		     * A "+" or "-" coming just after another operator
		     * must be interpreted as a unary operator.
		     */

		    lexeme |= UNARY;
		} else {
		    lexeme |= BINARY;
		}
	    }
	}	/* Uncategorized lexemes */

	/* Handle lexeme based on its category. */
	switch (NODE_TYPE & lexeme) {

	/*
	 * Each LEAF results in either a literal getting appended to the
	 * litList, or a sequence of Tcl_Tokens representing a Tcl word
	 * getting appended to the parsePtr->tokens.  No OpNode is filled
	 * for this lexeme.
	 */

	case LEAF: {
	    Tcl_Token *tokenPtr;
	    const char *end = start;
	    int wordIndex;
	    int code = TCL_OK;

	    /*
	     * A leaf operand appearing just after something that's not an
	     * operator is a syntax error.
	     */

	    if (NotOperator(lastParsed)) {
		msg = Tcl_ObjPrintf("missing operator at %s", mark);
		scanned = 0;
		insertMark = 1;

		/* Free any literal to avoid a memleak. */
		if ((lexeme == NUMBER) || (lexeme == BOOLEAN)) {
		    Tcl_DecrRefCount(literal);
		}
		goto error;
	    }

	    switch (lexeme) {
	    case NUMBER:
	    case BOOLEAN:
		/*
		 * TODO: Consider using a dict or hash to collapse all
		 * duplicate literals into a single representative value.
		 * (Like what is done with [split $s {}]).
		 * Pro:	~75% memory saving on expressions like
		 *	{1+1+1+1+1+.....+1} (Convert "pointer + Tcl_Obj" cost
		 *	to "pointer" cost only)
		 * Con:	Cost of the dict store/retrieve on every literal
		 *	in every expression when expressions like the above
		 *	tend to be uncommon.
		 *	The memory savings is temporary; Compiling to bytecode
		 *	will collapse things as literals are registered
		 * 	anyway, so the savings applies only to the time
		 *	between parsing and compiling.  Possibly important
		 *	due to high-water mark nature of memory allocation.
		 */
		Tcl_ListObjAppendElement(NULL, litList, literal);
		complete = lastParsed = OT_LITERAL;
		start += scanned;
		numBytes -= scanned;
		continue;

	    default:
		break;
	    }

	    /*
	     * Remaining LEAF cases may involve filling Tcl_Tokens, so
	     * make room for at least 2 more tokens.
	     */

	    TclGrowParseTokenArray(parsePtr, 2);
	    wordIndex = parsePtr->numTokens;
	    tokenPtr = parsePtr->tokenPtr + wordIndex;
	    tokenPtr->type = TCL_TOKEN_WORD;
	    tokenPtr->start = start;
	    parsePtr->numTokens++;

	    switch (lexeme) {
	    case QUOTED:
		code = Tcl_ParseQuotedString(NULL, start, numBytes,
			parsePtr, 1, &end);
		scanned = end - start;
		break;

	    case BRACED:
		code = Tcl_ParseBraces(NULL, start, numBytes,
			    parsePtr, 1, &end);
		scanned = end - start;
		break;

	    case VARIABLE:
		code = Tcl_ParseVarName(NULL, start, numBytes, parsePtr, 1);

		/*
		 * Handle the quirk that Tcl_ParseVarName reports a successful
		 * parse even when it gets only a "$" with no variable name.
		 */

		tokenPtr = parsePtr->tokenPtr + wordIndex + 1;
		if (code == TCL_OK && tokenPtr->type != TCL_TOKEN_VARIABLE) {
		    TclNewLiteralStringObj(msg, "invalid character \"$\"");
		    goto error;
		}
		scanned = tokenPtr->size;
		break;

	    case SCRIPT: {
		Tcl_Parse *nestedPtr =
			(Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse));

		tokenPtr = parsePtr->tokenPtr + parsePtr->numTokens;
		tokenPtr->type = TCL_TOKEN_COMMAND;
		tokenPtr->start = start;
		tokenPtr->numComponents = 0;

		end = start + numBytes;
		start++;
		while (1) {
		    code = Tcl_ParseCommand(interp, start, (end - start), 1,
			    nestedPtr);
		    if (code != TCL_OK) {
			parsePtr->term = nestedPtr->term;
			parsePtr->errorType = nestedPtr->errorType;
			parsePtr->incomplete = nestedPtr->incomplete;
			break;
		    }
		    start = (nestedPtr->commandStart + nestedPtr->commandSize);
		    Tcl_FreeParse(nestedPtr);
		    if ((nestedPtr->term < end) && (*(nestedPtr->term) == ']')
			    && !(nestedPtr->incomplete)) {
			break;
		    }

		    if (start == end) {
			TclNewLiteralStringObj(msg, "missing close-bracket");
			parsePtr->term = tokenPtr->start;
			parsePtr->errorType = TCL_PARSE_MISSING_BRACKET;
			parsePtr->incomplete = 1;
			code = TCL_ERROR;
			break;
		    }
		}
		TclStackFree(interp, nestedPtr);
		end = start;
		start = tokenPtr->start;
		scanned = end - start;
		tokenPtr->size = scanned;
		parsePtr->numTokens++;
		break;
	    }
	    }
	    if (code != TCL_OK) {

		/*
		 * Here we handle all the syntax errors generated by
		 * the Tcl_Token generating parsing routines called in the
		 * switch just above.  If the value of parsePtr->incomplete
		 * is 1, then the error was an unbalanced '[', '(', '{',
		 * or '"' and parsePtr->term is pointing to that unbalanced
		 * character.  If the value of parsePtr->incomplete is 0,
		 * then the error is one of lacking whitespace following a
		 * quoted word, for example: expr {[an error {foo}bar]},
		 * and parsePtr->term points to where the whitespace is
		 * missing.  We reset our values of start and scanned so that
		 * when our error message is constructed, the location of
		 * the syntax error is sure to appear in it, even if the
		 * quoted expression is truncated.
		 */

		start = parsePtr->term;
		scanned = parsePtr->incomplete;
		goto error;
	    }

	    tokenPtr = parsePtr->tokenPtr + wordIndex;
	    tokenPtr->size = scanned;
	    tokenPtr->numComponents = parsePtr->numTokens - wordIndex - 1;
	    if (!parseOnly && ((lexeme == QUOTED) || (lexeme == BRACED))) {

		/*
		 * When this expression is destined to be compiled, and a
		 * braced or quoted word within an expression is known at
		 * compile time (no runtime substitutions in it), we can
		 * store it as a literal rather than in its tokenized form.
		 * This is an advantage since the compiled bytecode is going
		 * to need the argument in Tcl_Obj form eventually, so it's
		 * just as well to get there now.  Another advantage is that
		 * with this conversion, larger constant expressions might
		 * be grown and optimized.
		 *
		 * On the contrary, if the end goal of this parse is to
		 * fill a Tcl_Parse for a caller of Tcl_ParseExpr(), then it's
		 * wasteful to convert to a literal only to convert back again
		 * later.
		 */

		literal = Tcl_NewObj();
		if (TclWordKnownAtCompileTime(tokenPtr, literal)) {
		    Tcl_ListObjAppendElement(NULL, litList, literal);
		    complete = lastParsed = OT_LITERAL;
		    parsePtr->numTokens = wordIndex;
		    break;
		}
		Tcl_DecrRefCount(literal);
	    }
	    complete = lastParsed = OT_TOKENS;
	    break;
	} /* case LEAF */

	case UNARY:

	    /*
	     * A unary operator appearing just after something that's not an
	     * operator is a syntax error -- something trying to be the left
	     * operand of an operator that doesn't take one.
	     */

	    if (NotOperator(lastParsed)) {
		msg = Tcl_ObjPrintf("missing operator at %s", mark);
		scanned = 0;
		insertMark = 1;
		goto error;
	    }

	    /* Create an OpNode for the unary operator */
	    nodePtr->lexeme = lexeme;
	    nodePtr->precedence = prec[lexeme];
	    nodePtr->mark = MARK_RIGHT;

	    /*
	     * A FUNCTION cannot be a constant expression, because Tcl allows
	     * functions to return variable results with the same arguments;
	     * for example, rand().  Other unary operators can root a constant
	     * expression, so long as the argument is a constant expression.
	     */

	    nodePtr->constant = (lexeme != FUNCTION);

	    /*
	     * This unary operator is a new incomplete tree, so push it
	     * onto our stack of incomplete trees.  Also remember it as
	     * the last lexeme we parsed.
	     */

	    nodePtr->p.prev = incomplete;
	    incomplete = lastParsed = nodesUsed;
	    nodesUsed++;
	    break;

	case BINARY: {
	    OpNode *incompletePtr;
	    unsigned char precedence = prec[lexeme];

	    /*
	     * A binary operator appearing just after another operator is a
	     * syntax error -- one of the two operators is missing an operand.
	     */

	    if (IsOperator(lastParsed)) {
		if ((lexeme == CLOSE_PAREN)
			&& (nodePtr[-1].lexeme == OPEN_PAREN)) {
		    if (nodePtr[-2].lexeme == FUNCTION) {

			/*
			 * Normally, "()" is a syntax error, but as a special
			 * case accept it as an argument list for a function.
			 * Treat this as a special LEAF lexeme, and restart
			 * the parsing loop with zero characters scanned.
			 * We'll parse the ")" again the next time through,
			 * but with the OT_EMPTY leaf as the subexpression
			 * between the parens.
			 */

			scanned = 0;
			complete = lastParsed = OT_EMPTY;
			break;
		    }
		    msg = Tcl_ObjPrintf("empty subexpression at %s", mark);
		    scanned = 0;
		    insertMark = 1;
		    goto error;
		}

		if (nodePtr[-1].precedence > precedence) {
		    if (nodePtr[-1].lexeme == OPEN_PAREN) {
			TclNewLiteralStringObj(msg, "unbalanced open paren");
			parsePtr->errorType = TCL_PARSE_MISSING_PAREN;
		    } else if (nodePtr[-1].lexeme == COMMA) {
			msg = Tcl_ObjPrintf(
				"missing function argument at %s", mark);
			scanned = 0;
			insertMark = 1;
		    } else if (nodePtr[-1].lexeme == START) {
			TclNewLiteralStringObj(msg, "empty expression");
		    }
		} else {
		    if (lexeme == CLOSE_PAREN) {
			TclNewLiteralStringObj(msg, "unbalanced close paren");
		    } else if ((lexeme == COMMA)
			    && (nodePtr[-1].lexeme == OPEN_PAREN)
			    && (nodePtr[-2].lexeme == FUNCTION)) {
			msg = Tcl_ObjPrintf(
				"missing function argument at %s", mark);
			scanned = 0;
			insertMark = 1;
		    }
		}
		if (msg == NULL) {
		    msg = Tcl_ObjPrintf("missing operand at %s", mark);
		    scanned = 0;
		    insertMark = 1;
		}
		goto error;
	    }

	    /*
	     * Here is where the tree comes together.  At this point, we
	     * have a stack of incomplete trees corresponding to
	     * substrings that are incomplete expressions, followed by
	     * a complete tree corresponding to a substring that is itself
	     * a complete expression, followed by the binary operator we have
	     * just parsed.  The incomplete trees can each be completed by
	     * adding a right operand.
	     *
	     * To illustrate with an example, when we parse the expression
	     * "1+2*3-4" and we reach this point having just parsed the "-"
	     * operator, we have these incomplete trees: START, "1+", and
	     * "2*".  Next we have the complete subexpression "3".  Last is
	     * the "-" we've just parsed.
	     *
	     * The next step is to join our complete tree to an operator.
	     * The choice is governed by the precedence and associativity
	     * of the competing operators.  If we connect it as the right
	     * operand of our most recent incomplete tree, we get a new
	     * complete tree, and we can repeat the process.  The while
	     * loop following repeats this until precedence indicates it
	     * is time to join the complete tree as the left operand of
	     * the just parsed binary operator.
	     *
	     * Continuing the example, the first pass through the loop
	     * will join "3" to "2*"; the next pass will join "2*3" to
	     * "1+".  Then we'll exit the loop and join "1+2*3" to "-".
	     * When we return to parse another lexeme, our stack of
	     * incomplete trees is START and "1+2*3-".
	     */

	    while (1) {
		incompletePtr = nodes + incomplete;

		if (incompletePtr->precedence < precedence) {
		    break;
		}

		if (incompletePtr->precedence == precedence) {

		    /* Right association rules for exponentiation. */
		    if (lexeme == EXPON) {
			break;
		    }

		    /*
		     * Special association rules for the conditional operators.
		     * The "?" and ":" operators have equal precedence, but
		     * must be linked up in sensible pairs.
		     */

		    if ((incompletePtr->lexeme == QUESTION)
			    && (NotOperator(complete)
			    || (nodes[complete].lexeme != COLON))) {
			break;
		    }
		    if ((incompletePtr->lexeme == COLON)
			    && (lexeme == QUESTION)) {
			break;
		    }
		}

		/* Some special syntax checks... */

		/* Parens must balance */
		if ((incompletePtr->lexeme == OPEN_PAREN)
			&& (lexeme != CLOSE_PAREN)) {
		    TclNewLiteralStringObj(msg, "unbalanced open paren");
		    parsePtr->errorType = TCL_PARSE_MISSING_PAREN;
		    goto error;
		}

		/* Right operand of "?" must be ":" */
		if ((incompletePtr->lexeme == QUESTION)
			&& (NotOperator(complete)
			|| (nodes[complete].lexeme != COLON))) {
		    msg = Tcl_ObjPrintf(
			    "missing operator \":\" at %s", mark);
		    scanned = 0;
		    insertMark = 1;
		    goto error;
		}

		/* Operator ":" may only be right operand of "?" */
		if (IsOperator(complete)
			&& (nodes[complete].lexeme == COLON)
			&& (incompletePtr->lexeme != QUESTION)) {
		    TclNewLiteralStringObj(msg,
			    "unexpected operator \":\" "
			    "without preceding \"?\"");
		    goto error;
		}

		/*
		 * Attach complete tree as right operand of most recent
		 * incomplete tree.
		 */

		incompletePtr->right = complete;
		if (IsOperator(complete)) {
		    nodes[complete].p.parent = incomplete;
		    incompletePtr->constant = incompletePtr->constant
			    && nodes[complete].constant;
		} else {
		    incompletePtr->constant = incompletePtr->constant
			    && (complete == OT_LITERAL);
		}

		/*
		 * The QUESTION/COLON and FUNCTION/OPEN_PAREN combinations each
		 * make up a single operator.  Force them to agree whether they
		 * have a constant expression.
		 */

		if ((incompletePtr->lexeme == QUESTION)
			|| (incompletePtr->lexeme == FUNCTION)) {
		    nodes[complete].constant = incompletePtr->constant;
		}

		if (incompletePtr->lexeme == START) {

		    /*
		     * Completing the START tree indicates we're done.
		     * Transfer the parse tree to the caller and return.
		     */

		    *opTreePtr = nodes;
		    return TCL_OK;
		}

		/*
		 * With a right operand attached, last incomplete tree has
		 * become the complete tree.  Pop it from the incomplete
		 * tree stack.
		 */

		complete = incomplete;
		incomplete = incompletePtr->p.prev;

		/* CLOSE_PAREN can only close one OPEN_PAREN. */
		if (incompletePtr->lexeme == OPEN_PAREN) {
		    break;
		}
	    }

	    /* More syntax checks... */

	    /* Parens must balance. */
	    if (lexeme == CLOSE_PAREN) {
		if (incompletePtr->lexeme != OPEN_PAREN) {
		    TclNewLiteralStringObj(msg, "unbalanced close paren");
		    goto error;
		}
	    }

	    /* Commas must appear only in function argument lists. */
	    if (lexeme == COMMA) {
		if  ((incompletePtr->lexeme != OPEN_PAREN)
			|| (incompletePtr[-1].lexeme != FUNCTION)) {
		    TclNewLiteralStringObj(msg,
			    "unexpected \",\" outside function argument list");
		    goto error;
		}
	    }

	    /* Operator ":" may only be right operand of "?" */
	    if (IsOperator(complete) && (nodes[complete].lexeme == COLON)) {
		TclNewLiteralStringObj(msg,
			"unexpected operator \":\" without preceding \"?\"");
		goto error;
	    }

	    /* Create no node for a CLOSE_PAREN lexeme. */
	    if (lexeme == CLOSE_PAREN) {
		break;
	    }

	    /* Link complete tree as left operand of new node. */
	    nodePtr->lexeme = lexeme;
	    nodePtr->precedence = precedence;
	    nodePtr->mark = MARK_LEFT;
	    nodePtr->left = complete;

	    /*
	     * The COMMA operator cannot be optimized, since the function
	     * needs all of its arguments, and optimization would reduce
	     * the number.  Other binary operators root constant expressions
	     * when both arguments are constant expressions.
	     */

	    nodePtr->constant = (lexeme != COMMA);

	    if (IsOperator(complete)) {
		nodes[complete].p.parent = nodesUsed;
		nodePtr->constant = nodePtr->constant
			&& nodes[complete].constant;
	    } else {
		nodePtr->constant = nodePtr->constant
			&& (complete == OT_LITERAL);
	    }

	    /*
	     * With a left operand attached and a right operand missing,
	     * the just-parsed binary operator is root of a new incomplete
	     * tree.  Push it onto the stack of incomplete trees.
	     */

	    nodePtr->p.prev = incomplete;
	    incomplete = lastParsed = nodesUsed;
	    nodesUsed++;
	    break;
	}	/* case BINARY */
	}	/* lexeme handler */

	/* Advance past the just-parsed lexeme */
	start += scanned;
	numBytes -= scanned;
    }	/* main parsing loop */

  error:

    /*
     * We only get here if there's been an error.
     * Any errors that didn't get a suitable parsePtr->errorType,
     * get recorded as syntax errors.
     */

    if (parsePtr->errorType == TCL_PARSE_SUCCESS) {
	parsePtr->errorType = TCL_PARSE_SYNTAX;
    }

    /* Free any partial parse tree we've built. */
    if (nodes != NULL) {
	ckfree((char*) nodes);
    }

    if (interp == NULL) {

	/* Nowhere to report an error message, so just free it */
	if (msg) {
	    Tcl_DecrRefCount(msg);
	}
    } else {

	/*
	 * Construct the complete error message.  Start with the simple
	 * error message, pulled from the interp result if necessary...
	 */

	if (msg == NULL) {
	    msg = Tcl_GetObjResult(interp);
	}

	/*
	 * Add a detailed quote from the bad expression, displaying and
	 * sometimes marking the precise location of the syntax error.
	 */

	Tcl_AppendPrintfToObj(msg, "\nin expression \"%s%.*s%.*s%s%s%.*s%s\"",
		((start - limit) < parsePtr->string) ? "" : "...",
		((start - limit) < parsePtr->string)
			? (int) (start - parsePtr->string) : limit - 3,
		((start - limit) < parsePtr->string)
			? parsePtr->string : start - limit + 3,
		(scanned < limit) ? scanned : limit - 3, start,
		(scanned < limit) ? "" : "...", insertMark ? mark : "",
		(start + scanned + limit > parsePtr->end)
			? (int) (parsePtr->end - start) - scanned : limit-3,
		start + scanned,
		(start + scanned + limit > parsePtr->end) ? "" : "...");

	/* Next, append any postscript message. */
	if (post != NULL) {
	    Tcl_AppendToObj(msg, ";\n", -1);
	    Tcl_AppendObjToObj(msg, post);
	    Tcl_DecrRefCount(post);
	}
	Tcl_SetObjResult(interp, msg);

	/* Finally, place context information in the errorInfo. */
	numBytes = parsePtr->end - parsePtr->string;
	Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf(
		"\n    (parsing expression \"%.*s%s\")",
		(numBytes < limit) ? numBytes : limit - 3,
		parsePtr->string, (numBytes < limit) ? "" : "..."));
    }

    return TCL_ERROR;
}

/*
 *----------------------------------------------------------------------
 *
 * ConvertTreeToTokens --
 *
 *	Given a string, the numBytes bytes starting at start, and an OpNode
 *	tree and Tcl_Token array created by passing that same string to
 *	ParseExpr(), this function writes into *parsePtr the sequence of
 * 	Tcl_Tokens needed so to satisfy the historical interface provided
 * 	by Tcl_ParseExpr().  Note that this routine exists only for the sake
 *	of the public Tcl_ParseExpr() routine.  It is not used by Tcl itself
 * 	at all.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	The Tcl_Parse *parsePtr is filled with Tcl_Tokens representing the
 *	parsed expression.
 *
 *----------------------------------------------------------------------
 */

static void
ConvertTreeToTokens(
    const char *start,
    int numBytes,
    OpNode *nodes,
    Tcl_Token *tokenPtr,
    Tcl_Parse *parsePtr)
{
    int subExprTokenIdx = 0;
    OpNode *nodePtr = nodes;
    int next = nodePtr->right;

    while (1) {
	Tcl_Token *subExprTokenPtr;
	int scanned, parentIdx;
	unsigned char lexeme;

	/*
	 * Advance the mark so the next exit from this node won't retrace
	 * steps over ground already covered.
	 */

	nodePtr->mark++;

	/* Handle next child node or leaf */
	switch (next) {
	case OT_EMPTY:

	    /* No tokens and no characters for the OT_EMPTY leaf. */
	    break;

	case OT_LITERAL:

	    /* Skip any white space that comes before the literal */
	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start +=scanned;
	    numBytes -= scanned;

	    /* Reparse the literal to get pointers into source string */
	    scanned = ParseLexeme(start, numBytes, &lexeme, NULL);

	    TclGrowParseTokenArray(parsePtr, 2);
	    subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens;
	    subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
	    subExprTokenPtr->start = start;
	    subExprTokenPtr->size = scanned;
	    subExprTokenPtr->numComponents = 1;
	    subExprTokenPtr[1].type = TCL_TOKEN_TEXT;
	    subExprTokenPtr[1].start = start;
	    subExprTokenPtr[1].size = scanned;
	    subExprTokenPtr[1].numComponents = 0;

	    parsePtr->numTokens += 2;
	    start +=scanned;
	    numBytes -= scanned;
	    break;

	case OT_TOKENS: {

	    /*
	     * tokenPtr points to a token sequence that came from parsing
	     * a Tcl word.  A Tcl word is made up of a sequence of one or
	     * more elements.  When the word is only a single element, it's
	     * been the historical practice to replace the TCL_TOKEN_WORD
	     * token directly with a TCL_TOKEN_SUB_EXPR token.  However,
	     * when the word has multiple elements, a TCL_TOKEN_WORD token
	     * is kept as a grouping device so that TCL_TOKEN_SUB_EXPR
	     * always has only one element.  Wise or not, these are the
	     * rules the Tcl expr parser has followed, and for the sake
	     * of those few callers of Tcl_ParseExpr() we do not change
	     * them now.  Internally, we can do better.
	     */

	    int toCopy = tokenPtr->numComponents + 1;

	    if (tokenPtr->numComponents == tokenPtr[1].numComponents + 1) {

		/*
		 * Single element word.  Copy tokens and convert the leading
		 * token to TCL_TOKEN_SUB_EXPR.
		 */

		TclGrowParseTokenArray(parsePtr, toCopy);
		subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens;
		memcpy(subExprTokenPtr, tokenPtr,
			(size_t) toCopy * sizeof(Tcl_Token));
		subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
		parsePtr->numTokens += toCopy;
	    } else {

		/*
		 * Multiple element word.  Create a TCL_TOKEN_SUB_EXPR
		 * token to lead, with fields initialized from the leading
		 * token, then copy entire set of word tokens.
		 */

		TclGrowParseTokenArray(parsePtr, toCopy+1);
		subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens;
		*subExprTokenPtr = *tokenPtr;
		subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
		subExprTokenPtr->numComponents++;
		subExprTokenPtr++;
		memcpy(subExprTokenPtr, tokenPtr,
			(size_t) toCopy * sizeof(Tcl_Token));
		parsePtr->numTokens += toCopy + 1;
	    }

	    scanned = tokenPtr->start + tokenPtr->size - start;
	    start +=scanned;
	    numBytes -= scanned;
	    tokenPtr += toCopy;
	    break;
	}

	default:

	    /* Advance to the child node, which is an operator. */
	    nodePtr = nodes + next;

	    /* Skip any white space that comes before the subexpression */
	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start +=scanned;
	    numBytes -= scanned;

	    /* Generate tokens for the operator / subexpression... */
	    switch (nodePtr->lexeme) {
	    case OPEN_PAREN:
	    case COMMA:
	    case COLON:

		/*
		 * Historical practice has been to have no Tcl_Tokens for
		 * these operators.
		 */

		break;

	    default: {

		/*
		 * Remember the index of the last subexpression we were
		 * working on -- that of our parent.  We'll stack it later.
		 */

		parentIdx = subExprTokenIdx;

		/*
		 * Verify space for the two leading Tcl_Tokens representing
		 * the subexpression rooted by this operator.  The first
		 * Tcl_Token will be of type TCL_TOKEN_SUB_EXPR; the second
		 * of type TCL_TOKEN_OPERATOR.
		 */

		TclGrowParseTokenArray(parsePtr, 2);
		subExprTokenIdx = parsePtr->numTokens;
		subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx;
		parsePtr->numTokens += 2;
		subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
		subExprTokenPtr[1].type = TCL_TOKEN_OPERATOR;

		/*
		 * Our current position scanning the string is the starting
		 * point for this subexpression.
		 */

		subExprTokenPtr->start = start;

		/*
		 * Eventually, we know that the numComponents field of the
		 * Tcl_Token of type TCL_TOKEN_OPERATOR will be 0.  This means
		 * we can make other use of this field for now to track the
		 * stack of subexpressions we have pending.
		 */

		subExprTokenPtr[1].numComponents = parentIdx;
		break;
	    }
	    }
	    break;
	}

	/* Determine which way to exit the node on this pass. */
    router:
	switch (nodePtr->mark) {
	case MARK_LEFT:
	    next = nodePtr->left;
	    break;

	case MARK_RIGHT:
	    next = nodePtr->right;

	    /* Skip any white space that comes before the operator */
	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start +=scanned;
	    numBytes -= scanned;

	    /*
	     * Here we scan from the string the operator corresponding to
	     * nodePtr->lexeme.
	     */

	    scanned = ParseLexeme(start, numBytes, &lexeme, NULL);

	    switch(nodePtr->lexeme) {
	    case OPEN_PAREN:
	    case COMMA:
	    case COLON:

		/* No tokens for these lexemes -> nothing to do. */
		break;

	    default:

		/*
		 * Record in the TCL_TOKEN_OPERATOR token the pointers into
		 * the string marking where the operator is.
		 */

		subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx;
		subExprTokenPtr[1].start = start;
		subExprTokenPtr[1].size = scanned;
		break;
	    }

	    start +=scanned;
	    numBytes -= scanned;
	    break;

	case MARK_PARENT:
	    switch (nodePtr->lexeme) {
	    case START:

		/* When we get back to the START node, we're done. */
		return;

	    case COMMA:
	    case COLON:

		/* No tokens for these lexemes -> nothing to do. */
		break;

	    case OPEN_PAREN:

		/* Skip past matching close paren. */
		scanned = TclParseAllWhiteSpace(start, numBytes);
		start +=scanned;
		numBytes -= scanned;
		scanned = ParseLexeme(start, numBytes, &lexeme, NULL);
		start +=scanned;
		numBytes -= scanned;
		break;

	    default: {

		/*
		 * Before we leave this node/operator/subexpression for the
		 * last time, finish up its tokens....
		 *
		 * Our current position scanning the string is where the
		 * substring for the subexpression ends.
		 */

		subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx;
		subExprTokenPtr->size = start - subExprTokenPtr->start;

		/*
		 * All the Tcl_Tokens allocated and filled belong to
		 * this subexpresion.  The first token is the leading
		 * TCL_TOKEN_SUB_EXPR token, and all the rest (one fewer)
		 * are its components.
		 */

		subExprTokenPtr->numComponents =
			(parsePtr->numTokens - subExprTokenIdx) - 1;

		/*
		 * Finally, as we return up the tree to our parent, pop the
		 * parent subexpression off our subexpression stack, and
		 * fill in the zero numComponents for the operator Tcl_Token.
		 */

		parentIdx = subExprTokenPtr[1].numComponents;
		subExprTokenPtr[1].numComponents = 0;
		subExprTokenIdx = parentIdx;
		break;
	    }
	    }

	    /* Since we're returning to parent, skip child handling code. */
	    nodePtr = nodes + nodePtr->p.parent;
	    goto router;
	}
    }
}

/*
 *----------------------------------------------------------------------
 *
 * Tcl_ParseExpr --
 *
 *	Given a string, the numBytes bytes starting at start, this function
 *	parses it as a Tcl expression and stores information about the
 *	structure of the expression in the Tcl_Parse struct indicated by the
 *	caller.
 *
 * Results:
 *	If the string is successfully parsed as a valid Tcl expression, TCL_OK
 *	is returned, and data about the expression structure is written to
 *	*parsePtr. If the string cannot be parsed as a valid Tcl expression,
 *	TCL_ERROR is returned, and if interp is non-NULL, an error message is
 *	written to interp.
 *
 * Side effects:
 *	If there is insufficient space in parsePtr to hold all the information
 *	about the expression, then additional space is malloc-ed. If the
 *	function returns TCL_OK then the caller must eventually invoke
 *	Tcl_FreeParse to release any additional space that was allocated.
 *
 *----------------------------------------------------------------------
 */

int
Tcl_ParseExpr(
    Tcl_Interp *interp,		/* Used for error reporting. */
    const char *start,		/* Start of source string to parse. */
    int numBytes,		/* Number of bytes in string. If < 0, the
				 * string consists of all bytes up to the
				 * first null character. */
    Tcl_Parse *parsePtr)	/* Structure to fill with information about
				 * the parsed expression; any previous
				 * information in the structure is ignored. */
{
    int code;
    OpNode *opTree = NULL;	/* Will point to the tree of operators */
    Tcl_Obj *litList = Tcl_NewObj();	/* List to hold the literals */
    Tcl_Obj *funcList = Tcl_NewObj();	/* List to hold the functon names*/
    Tcl_Parse *exprParsePtr =
	    (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse));
				/* Holds the Tcl_Tokens of substitutions */

    if (numBytes < 0) {
	numBytes = (start ? strlen(start) : 0);
    }

    code = ParseExpr(interp, start, numBytes, &opTree, litList,
	    funcList, exprParsePtr, 1 /* parseOnly */);
    Tcl_DecrRefCount(funcList);
    Tcl_DecrRefCount(litList);

    TclParseInit(interp, start, numBytes, parsePtr);
    if (code == TCL_OK) {
	ConvertTreeToTokens(start, numBytes,
		opTree, exprParsePtr->tokenPtr, parsePtr);
    } else {
	parsePtr->term = exprParsePtr->term;
	parsePtr->errorType = exprParsePtr->errorType;
    }

    Tcl_FreeParse(exprParsePtr);
    TclStackFree(interp, exprParsePtr);
    ckfree((char *) opTree);
    return code;
}

/*
 *----------------------------------------------------------------------
 *
 * ParseLexeme --
 *
 *	Parse a single lexeme from the start of a string, scanning no more
 *	than numBytes bytes.
 *
 * Results:
 *	Returns the number of bytes scanned to produce the lexeme.
 *
 * Side effects:
 *	Code identifying lexeme parsed is writen to *lexemePtr.
 *
 *----------------------------------------------------------------------
 */

static int
ParseLexeme(
    const char *start,		/* Start of lexeme to parse. */
    int numBytes,		/* Number of bytes in string. */
    unsigned char *lexemePtr,	/* Write code of parsed lexeme to this
				 * storage. */
    Tcl_Obj **literalPtr)	/* Write corresponding literal value to this
				   storage, if non-NULL. */
{
    const char *end;
    int scanned;
    Tcl_UniChar ch;
    Tcl_Obj *literal = NULL;
    unsigned char byte;

    if (numBytes == 0) {
	*lexemePtr = END;
	return 0;
    }
    byte = (unsigned char)(*start);
    if (byte < sizeof(Lexeme) && Lexeme[byte] != 0) {
	*lexemePtr = Lexeme[byte];
	return 1;
    }
    switch (byte) {
    case '*':
	if ((numBytes > 1) && (start[1] == '*')) {
	    *lexemePtr = EXPON;
	    return 2;
	}
	*lexemePtr = MULT;
	return 1;

    case '=':
	if ((numBytes > 1) && (start[1] == '=')) {
	    *lexemePtr = EQUAL;
	    return 2;
	}
	*lexemePtr = INCOMPLETE;
	return 1;

    case '!':
	if ((numBytes > 1) && (start[1] == '=')) {
	    *lexemePtr = NEQ;
	    return 2;
	}
	*lexemePtr = NOT;
	return 1;

    case '&':
	if ((numBytes > 1) && (start[1] == '&')) {
	    *lexemePtr = AND;
	    return 2;
	}
	*lexemePtr = BIT_AND;
	return 1;

    case '|':
	if ((numBytes > 1) && (start[1] == '|')) {
	    *lexemePtr = OR;
	    return 2;
	}
	*lexemePtr = BIT_OR;
	return 1;

    case '<':
	if (numBytes > 1) {
	    switch (start[1]) {
	    case '<':
		*lexemePtr = LEFT_SHIFT;
		return 2;
	    case '=':
		*lexemePtr = LEQ;
		return 2;
	    }
	}
	*lexemePtr = LESS;
	return 1;

    case '>':
	if (numBytes > 1) {
	    switch (start[1]) {
	    case '>':
		*lexemePtr = RIGHT_SHIFT;
		return 2;
	    case '=':
		*lexemePtr = GEQ;
		return 2;
	    }
	}
	*lexemePtr = GREATER;
	return 1;

    case 'i':
	if ((numBytes > 1) && (start[1] == 'n')
		&& ((numBytes == 2) || start[2] & 0x80 || !isalpha(UCHAR(start[2])))) {

	    /*
	     * Must make this check so we can tell the difference between
	     * the "in" operator and the "int" function name and the
	     * "infinity" numeric value.
	     */

	    *lexemePtr = IN_LIST;
	    return 2;
	}
	break;

    case 'e':
	if ((numBytes > 1) && (start[1] == 'q')
		&& ((numBytes == 2) || start[2] & 0x80 || !isalpha(UCHAR(start[2])))) {
	    *lexemePtr = STREQ;
	    return 2;
	}
	break;

    case 'n':
	if ((numBytes > 1)
		&& ((numBytes == 2) || start[2] & 0x80 || !isalpha(UCHAR(start[2])))) {
	    switch (start[1]) {
	    case 'e':
		*lexemePtr = STRNEQ;
		return 2;
	    case 'i':
		*lexemePtr = NOT_IN_LIST;
		return 2;
	    }
	}
    }

    literal = Tcl_NewObj();
    if (TclParseNumber(NULL, literal, NULL, start, numBytes, &end,
	    TCL_PARSE_NO_WHITESPACE) == TCL_OK) {
	if (end < start + numBytes && !TclIsBareword(*end)) {
	
	number:
	    TclInitStringRep(literal, start, end-start);
	    *lexemePtr = NUMBER;
	    if (literalPtr) {
		*literalPtr = literal;
	    } else {
		Tcl_DecrRefCount(literal);
	    }
	    return (end-start);
	} else {
	    unsigned char lexeme;

	    /*
	     * We have a number followed directly by bareword characters
	     * (alpha, digit, underscore).  Is this a number followed by
	     * bareword syntax error?  Or should we join into one bareword?
	     * Example: Inf + luence + () becomes a valid function call.
	     * [Bug 3401704]
	     */
	    if (literal->typePtr == &tclDoubleType) {
		const char *p = start;
		while (p < end) {
		    if (!TclIsBareword(*p++)) {
			/*
			 * The number has non-bareword characters, so we 
			 * must treat it as a number.
			 */
			goto number;
		    }
		}
	    }
	    ParseLexeme(end, numBytes-(end-start), &lexeme, NULL);
	    if ((NODE_TYPE & lexeme) == BINARY) {
		/*
		 * The bareword characters following the number take the
		 * form of an operator (eq, ne, in, ni, ...) so we treat
		 * as number + operator.
		 */
		goto number;
	    }
	    /*
	     * Otherwise, fall through and parse the whole as a bareword.
	     */
	}
    }

    /*
     * We reject leading underscores in bareword.  No sensible reason why.
     * Might be inspired by reserved identifier rules in C, which of course
     * have no direct relevance here.
     */  

    if (!TclIsBareword(*start) || *start == '_') {
	if (Tcl_UtfCharComplete(start, numBytes)) {
	    scanned = Tcl_UtfToUniChar(start, &ch);
	} else {
	    char utfBytes[TCL_UTF_MAX];
	    memcpy(utfBytes, start, (size_t) numBytes);
	    utfBytes[numBytes] = '\0';
	    scanned = Tcl_UtfToUniChar(utfBytes, &ch);
	}
	*lexemePtr = INVALID;
	Tcl_DecrRefCount(literal);
	return scanned;
    }
    end = start;
    while (numBytes && TclIsBareword(*end)) {
	end += 1;
	numBytes -= 1;
    }
    *lexemePtr = BAREWORD;
    if (literalPtr) {
	Tcl_SetStringObj(literal, start, (int) (end-start));
	*literalPtr = literal;
    } else {
	Tcl_DecrRefCount(literal);
    }
    return (end-start);
}

/*
 *----------------------------------------------------------------------
 *
 * TclCompileExpr --
 *
 *	This procedure compiles a string containing a Tcl expression into Tcl
 *	bytecodes.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	Adds instructions to envPtr to evaluate the expression at runtime.
 *
 *----------------------------------------------------------------------
 */

void
TclCompileExpr(
    Tcl_Interp *interp,		/* Used for error reporting. */
    const char *script,		/* The source script to compile. */
    int numBytes,		/* Number of bytes in script. */
    CompileEnv *envPtr,		/* Holds resulting instructions. */
    int optimize)               /* 0 for one-off expressions */
{
    OpNode *opTree = NULL;	/* Will point to the tree of operators */
    Tcl_Obj *litList = Tcl_NewObj();	/* List to hold the literals */
    Tcl_Obj *funcList = Tcl_NewObj();	/* List to hold the functon names*/
    Tcl_Parse *parsePtr =
	    (Tcl_Parse *) TclStackAlloc(interp, sizeof(Tcl_Parse));
				/* Holds the Tcl_Tokens of substitutions */

    int code = ParseExpr(interp, script, numBytes, &opTree, litList,
	    funcList, parsePtr, 0 /* parseOnly */);

    if (code == TCL_OK) {

	/* Valid parse; compile the tree. */
	int objc;
	Tcl_Obj *const *litObjv;
	Tcl_Obj **funcObjv;

	/* TIP #280 : Track Lines within the expression */
	TclAdvanceLines(&envPtr->line, script,
		script + TclParseAllWhiteSpace(script, numBytes));

	TclListObjGetElements(NULL, litList, &objc, (Tcl_Obj ***)&litObjv);
	TclListObjGetElements(NULL, funcList, &objc, &funcObjv);
	CompileExprTree(interp, opTree, 0, &litObjv, funcObjv,
		parsePtr->tokenPtr, envPtr, optimize);
    } else {
	TclCompileSyntaxError(interp, envPtr);
    }

    Tcl_FreeParse(parsePtr);
    TclStackFree(interp, parsePtr);
    Tcl_DecrRefCount(funcList);
    Tcl_DecrRefCount(litList);
    ckfree((char *) opTree);
}

/*
 *----------------------------------------------------------------------
 *
 * ExecConstantExprTree --
 *	Compiles and executes bytecode for the subexpression tree at index
 *	in the nodes array.  This subexpression must be constant, made up
 *	of only constant operators (not functions) and literals.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 *	Consumes subtree of nodes rooted at index.  Advances the pointer
 *	*litObjvPtr.
 *
 *----------------------------------------------------------------------
 */

static int
ExecConstantExprTree(
    Tcl_Interp *interp,
    OpNode *nodes,
    int index,
    Tcl_Obj *const **litObjvPtr)
{
    CompileEnv *envPtr;
    ByteCode *byteCodePtr;
    int code;
    Tcl_Obj *byteCodeObj = Tcl_NewObj();

    /*
     * Note we are compiling an expression with literal arguments. This means
     * there can be no [info frame] calls when we execute the resulting
     * bytecode, so there's no need to tend to TIP 280 issues.
     */

    envPtr = (CompileEnv *) TclStackAlloc(interp, sizeof(CompileEnv));
    TclInitCompileEnv(interp, envPtr, NULL, 0, NULL, 0);
    CompileExprTree(interp, nodes, index, litObjvPtr, NULL, NULL, envPtr,
	    0 /* optimize */);
    TclEmitOpcode(INST_DONE, envPtr);
    Tcl_IncrRefCount(byteCodeObj);
    TclInitByteCodeObj(byteCodeObj, envPtr);
    TclFreeCompileEnv(envPtr);
    TclStackFree(interp, envPtr);
    byteCodePtr = (ByteCode *) byteCodeObj->internalRep.twoPtrValue.ptr1;
    code = TclExecuteByteCode(interp, byteCodePtr);
    Tcl_DecrRefCount(byteCodeObj);
    return code;
}

/*
 *----------------------------------------------------------------------
 *
 * CompileExprTree --
 *	Compiles and writes to envPtr instructions for the subexpression
 *	tree at index in the nodes array.  (*litObjvPtr) must point to the
 *	proper location in a corresponding literals list.  Likewise, when
 *	non-NULL, funcObjv and tokenPtr must point into matching arrays of
 * 	function names and Tcl_Token's derived from earlier call to
 *	ParseExpr().  When optimize is true, any constant subexpressions
 *	will be precomputed.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	Adds instructions to envPtr to evaluate the expression at runtime.
 *	Consumes subtree of nodes rooted at index.  Advances the pointer
 *	*litObjvPtr.
 *
 *----------------------------------------------------------------------
 */

static void
CompileExprTree(
    Tcl_Interp *interp,
    OpNode *nodes,
    int index,
    Tcl_Obj *const **litObjvPtr,
    Tcl_Obj *const *funcObjv,
    Tcl_Token *tokenPtr,
    CompileEnv *envPtr,
    int optimize)
{
    OpNode *nodePtr = nodes + index;
    OpNode *rootPtr = nodePtr;
    int numWords = 0;
    JumpList *jumpPtr = NULL;
    int convert = 1;

    while (1) {
	int next;
	JumpList *freePtr, *newJump;

	if (nodePtr->mark == MARK_LEFT) {
	    next = nodePtr->left;

	    switch (nodePtr->lexeme) {
	    case QUESTION:
		newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		jumpPtr->depth = envPtr->currStackDepth;
		convert = 1;
		break;
	    case AND:
	    case OR:
		newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		newJump = (JumpList *) TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		jumpPtr->depth = envPtr->currStackDepth;
		break;
	    }
	} else if (nodePtr->mark == MARK_RIGHT) {
	    next = nodePtr->right;

	    switch (nodePtr->lexeme) {
	    case FUNCTION: {
		Tcl_DString cmdName;
		const char *p;
		int length;

		Tcl_DStringInit(&cmdName);
		Tcl_DStringAppend(&cmdName, "tcl::mathfunc::", -1);
		p = TclGetStringFromObj(*funcObjv, &length);
		funcObjv++;
		Tcl_DStringAppend(&cmdName, p, length);
		TclEmitPush(TclRegisterNewNSLiteral(envPtr,
			Tcl_DStringValue(&cmdName),
			Tcl_DStringLength(&cmdName)), envPtr);
		Tcl_DStringFree(&cmdName);

		/*
		 * Start a count of the number of words in this function
		 * command invocation.  In case there's already a count
		 * in progress (nested functions), save it in our unused
		 * "left" field for restoring later.
		 */

		nodePtr->left = numWords;
		numWords = 2;	/* Command plus one argument */
		break;
	    }
	    case QUESTION:
		TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &(jumpPtr->jump));
		break;
	    case COLON:
		TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
			&(jumpPtr->next->jump));
		envPtr->currStackDepth = jumpPtr->depth;
		jumpPtr->offset = (envPtr->codeNext - envPtr->codeStart);
		jumpPtr->convert = convert;
		convert = 1;
		break;
	    case AND:
		TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &(jumpPtr->jump));
		break;
	    case OR:
		TclEmitForwardJump(envPtr, TCL_TRUE_JUMP, &(jumpPtr->jump));
		break;
	    }
	} else {
	    switch (nodePtr->lexeme) {
	    case START:
	    case QUESTION:
		if (convert && (nodePtr == rootPtr)) {
		    TclEmitOpcode(INST_TRY_CVT_TO_NUMERIC, envPtr);
		}
		break;
	    case OPEN_PAREN:

		/* do nothing */
		break;
	    case FUNCTION:

		/*
		 * Use the numWords count we've kept to invoke the
		 * function command with the correct number of arguments.
		 */

		if (numWords < 255) {
		    TclEmitInstInt1(INST_INVOKE_STK1, numWords, envPtr);
		} else {
		    TclEmitInstInt4(INST_INVOKE_STK4, numWords, envPtr);
		}

		/* Restore any saved numWords value. */
		numWords = nodePtr->left;
		convert = 1;
		break;
	    case COMMA:

		/* Each comma implies another function argument. */
		numWords++;
		break;
	    case COLON:
		if (TclFixupForwardJump(envPtr, &(jumpPtr->next->jump),
			(envPtr->codeNext - envPtr->codeStart)
			- jumpPtr->next->jump.codeOffset, 127)) {
		    jumpPtr->offset += 3;
		}
		TclFixupForwardJump(envPtr, &(jumpPtr->jump),
			jumpPtr->offset - jumpPtr->jump.codeOffset, 127);
		convert |= jumpPtr->convert;
		envPtr->currStackDepth = jumpPtr->depth + 1;
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		break;
	    case AND:
	    case OR:
		TclEmitForwardJump(envPtr, (nodePtr->lexeme == AND)
			?  TCL_FALSE_JUMP : TCL_TRUE_JUMP,
			&(jumpPtr->next->jump));
		TclEmitPush(TclRegisterNewLiteral(envPtr,
			(nodePtr->lexeme == AND) ? "1" : "0", 1), envPtr);
		TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
			&(jumpPtr->next->next->jump));
		TclFixupForwardJumpToHere(envPtr, &(jumpPtr->next->jump), 127);
		if (TclFixupForwardJumpToHere(envPtr, &(jumpPtr->jump), 127)) {
		    jumpPtr->next->next->jump.codeOffset += 3;
		}
		TclEmitPush(TclRegisterNewLiteral(envPtr,
			(nodePtr->lexeme == AND) ? "0" : "1", 1), envPtr);
		TclFixupForwardJumpToHere(envPtr, &(jumpPtr->next->next->jump),
			127);
		convert = 0;
		envPtr->currStackDepth = jumpPtr->depth + 1;
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		break;
	    default:
		TclEmitOpcode(instruction[nodePtr->lexeme], envPtr);
		convert = 0;
		break;
	    }
	    if (nodePtr == rootPtr) {

		/* We're done */
		return;
	    }
	    nodePtr = nodes + nodePtr->p.parent;
	    continue;
	}

	nodePtr->mark++;
	switch (next) {
	case OT_EMPTY:
	    numWords = 1;	/* No arguments, so just the command */
	    break;
	case OT_LITERAL: {
	    Tcl_Obj *const *litObjv = *litObjvPtr;
	    Tcl_Obj *literal = *litObjv;

	    if (optimize) {
		int length, index;
		const char *bytes = TclGetStringFromObj(literal, &length);
		LiteralEntry *lePtr;
		Tcl_Obj *objPtr;

		index = TclRegisterNewLiteral(envPtr, bytes, length);
		lePtr = envPtr->literalArrayPtr + index;
		objPtr = lePtr->objPtr;
		if ((objPtr->typePtr == NULL) && (literal->typePtr != NULL)) {
		    /*
		     * Would like to do this:
		     *
		     * lePtr->objPtr = literal;
		     * Tcl_IncrRefCount(literal);
		     * Tcl_DecrRefCount(objPtr);
		     *
		     * However, the design of the "global" and "local"
		     * LiteralTable does not permit the value of lePtr->objPtr
		     * to change.  So rather than replace lePtr->objPtr, we
		     * do surgery to transfer our desired intrep into it.
		     *
		     */
		    objPtr->typePtr = literal->typePtr;
		    objPtr->internalRep = literal->internalRep;
		    literal->typePtr = NULL;
		}
		TclEmitPush(index, envPtr);
	    } else {
		/*
		 * When optimize==0, we know the expression is a one-off
		 * and there's nothing to be gained from sharing literals
		 * when they won't live long, and the copies we have already
		 * have an appropriate intrep.  In this case, skip literal
		 * registration that would enable sharing, and use the routine
		 * that preserves intreps.
		 */
		TclEmitPush(TclAddLiteralObj(envPtr, literal, NULL), envPtr);
	    }
	    (*litObjvPtr)++;
	    break;
	}
	case OT_TOKENS:
	    TclCompileTokens(interp, tokenPtr+1, tokenPtr->numComponents,
		    envPtr);
	    tokenPtr += tokenPtr->numComponents + 1;
	    break;
	default:
	    if (optimize && nodes[next].constant) {
		Tcl_InterpState save = Tcl_SaveInterpState(interp, TCL_OK);
		if (ExecConstantExprTree(interp, nodes, next, litObjvPtr)
			== TCL_OK) {
		    TclEmitPush(TclAddLiteralObj(envPtr,
			    Tcl_GetObjResult(interp), NULL), envPtr);
		} else {
		    TclCompileSyntaxError(interp, envPtr);
		}
		Tcl_RestoreInterpState(interp, save);
		convert = 0;
	    } else {
		nodePtr = nodes + next;
	    }
	}
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclSingleOpCmd --
 *	Implements the commands: ~, !, <<, >>, %, !=, ne, in, ni
 *	in the ::tcl::mathop namespace.  These commands have no
 *	extension to arbitrary arguments; they accept only exactly one
 *	or exactly two arguments as suitable for the operator.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 * 	None.
 *
 *----------------------------------------------------------------------
 */

int
TclSingleOpCmd(
    ClientData clientData,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const objv[])
{
    TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData;
    unsigned char lexeme;
    OpNode nodes[2];
    Tcl_Obj *const *litObjv = objv + 1;

    if (objc != 1+occdPtr->i.numArgs) {
	Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected);
	return TCL_ERROR;
    }

    ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL);
    nodes[0].lexeme = START;
    nodes[0].mark = MARK_RIGHT;
    nodes[0].right = 1;
    nodes[1].lexeme = lexeme;
    if (objc == 2) {
	nodes[1].mark = MARK_RIGHT;
    } else {
	nodes[1].mark = MARK_LEFT;
	nodes[1].left = OT_LITERAL;
    }
    nodes[1].right = OT_LITERAL;
    nodes[1].p.parent = 0;

    return ExecConstantExprTree(interp, nodes, 0, &litObjv);
}

/*
 *----------------------------------------------------------------------
 *
 * TclSortingOpCmd --
 *	Implements the commands: <, <=, >, >=, ==, eq
 *	in the ::tcl::mathop namespace.  These commands are defined for
 *	arbitrary number of arguments by computing the AND of the base
 * 	operator applied to all neighbor argument pairs.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 * 	None.
 *
 *----------------------------------------------------------------------
 */

int
TclSortingOpCmd(
    ClientData clientData,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const objv[])
{
    int code = TCL_OK;

    if (objc < 3) {
	Tcl_SetObjResult(interp, Tcl_NewBooleanObj(1));
    } else {
	TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData;
	Tcl_Obj **litObjv = (Tcl_Obj **) TclStackAlloc(interp,
		2*(objc-2)*sizeof(Tcl_Obj *));
	OpNode *nodes = (OpNode *) TclStackAlloc(interp,
		2*(objc-2)*sizeof(OpNode));
	unsigned char lexeme;
	int i, lastAnd = 1;
	Tcl_Obj *const *litObjPtrPtr = litObjv;

	ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL);

	litObjv[0] = objv[1];
	nodes[0].lexeme = START;
	nodes[0].mark = MARK_RIGHT;
	for (i=2; i<objc-1; i++) {
	    litObjv[2*(i-1)-1] = objv[i];
	    nodes[2*(i-1)-1].lexeme = lexeme;
	    nodes[2*(i-1)-1].mark = MARK_LEFT;
	    nodes[2*(i-1)-1].left = OT_LITERAL;
	    nodes[2*(i-1)-1].right = OT_LITERAL;

	    litObjv[2*(i-1)] = objv[i];
	    nodes[2*(i-1)].lexeme = AND;
	    nodes[2*(i-1)].mark = MARK_LEFT;
	    nodes[2*(i-1)].left = lastAnd;
	    nodes[lastAnd].p.parent = 2*(i-1);

	    nodes[2*(i-1)].right = 2*(i-1)+1;
	    nodes[2*(i-1)+1].p.parent= 2*(i-1);

	    lastAnd = 2*(i-1);
	}
	litObjv[2*(objc-2)-1] = objv[objc-1];

	nodes[2*(objc-2)-1].lexeme = lexeme;
	nodes[2*(objc-2)-1].mark = MARK_LEFT;
	nodes[2*(objc-2)-1].left = OT_LITERAL;
	nodes[2*(objc-2)-1].right = OT_LITERAL;

	nodes[0].right = lastAnd;
	nodes[lastAnd].p.parent = 0;

	code = ExecConstantExprTree(interp, nodes, 0, &litObjPtrPtr);

	TclStackFree(interp, nodes);
	TclStackFree(interp, litObjv);
    }
    return code;
}

/*
 *----------------------------------------------------------------------
 *
 * TclVariadicOpCmd --
 *	Implements the commands: +, *, &, |, ^, **
 *	in the ::tcl::mathop namespace.  These commands are defined for
 *	arbitrary number of arguments by repeatedly applying the base
 *	operator with suitable associative rules.  When fewer than two
 *	arguments are provided, suitable identity values are returned.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 * 	None.
 *
 *----------------------------------------------------------------------
 */

int
TclVariadicOpCmd(
    ClientData clientData,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const objv[])
{
    TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData;
    unsigned char lexeme;
    int code;

    if (objc < 2) {
	Tcl_SetObjResult(interp, Tcl_NewIntObj(occdPtr->i.identity));
	return TCL_OK;
    }

    ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL);
    lexeme |= BINARY;

    if (objc == 2) {
	Tcl_Obj *litObjv[2];
	OpNode nodes[2];
	int decrMe = 0;
	Tcl_Obj *const *litObjPtrPtr = litObjv;

	if (lexeme == EXPON) {
	    litObjv[1] = Tcl_NewIntObj(occdPtr->i.identity);
	    Tcl_IncrRefCount(litObjv[1]);
	    decrMe = 1;
	    litObjv[0] = objv[1];
	    nodes[0].lexeme = START;
	    nodes[0].mark = MARK_RIGHT;
	    nodes[0].right = 1;
	    nodes[1].lexeme = lexeme;
	    nodes[1].mark = MARK_LEFT;
	    nodes[1].left = OT_LITERAL;
	    nodes[1].right = OT_LITERAL;
	    nodes[1].p.parent = 0;
	} else {
	    if (lexeme == DIVIDE) {
		litObjv[0] = Tcl_NewDoubleObj(1.0);
	    } else {
		litObjv[0] = Tcl_NewIntObj(occdPtr->i.identity);
	    }
	    Tcl_IncrRefCount(litObjv[0]);
	    litObjv[1] = objv[1];
	    nodes[0].lexeme = START;
	    nodes[0].mark = MARK_RIGHT;
	    nodes[0].right = 1;
	    nodes[1].lexeme = lexeme;
	    nodes[1].mark = MARK_LEFT;
	    nodes[1].left = OT_LITERAL;
	    nodes[1].right = OT_LITERAL;
	    nodes[1].p.parent = 0;
	}

	code = ExecConstantExprTree(interp, nodes, 0, &litObjPtrPtr);

	Tcl_DecrRefCount(litObjv[decrMe]);
	return code;
    } else {
	Tcl_Obj *const *litObjv = objv + 1;
	OpNode *nodes = (OpNode *) TclStackAlloc(interp,
		(objc-1)*sizeof(OpNode));
	int i, lastOp = OT_LITERAL;

	nodes[0].lexeme = START;
	nodes[0].mark = MARK_RIGHT;
	if (lexeme == EXPON) {
	    for (i=objc-2; i>0; i-- ) {
		nodes[i].lexeme = lexeme;
		nodes[i].mark = MARK_LEFT;
		nodes[i].left = OT_LITERAL;
		nodes[i].right = lastOp;
		if (lastOp >= 0) {
		    nodes[lastOp].p.parent = i;
		}
		lastOp = i;
	    }
	} else {
	    for (i=1; i<objc-1; i++ ) {
		nodes[i].lexeme = lexeme;
		nodes[i].mark = MARK_LEFT;
		nodes[i].left = lastOp;
		if (lastOp >= 0) {
		    nodes[lastOp].p.parent = i;
		}
		nodes[i].right = OT_LITERAL;
		lastOp = i;
	    }
	}
	nodes[0].right = lastOp;
	nodes[lastOp].p.parent = 0;

	code = ExecConstantExprTree(interp, nodes, 0, &litObjv);

	TclStackFree(interp, nodes);

	return code;
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclNoIdentOpCmd --
 *	Implements the commands: -, /
 *	in the ::tcl::mathop namespace.  These commands are defined for
 *	arbitrary non-zero number of arguments by repeatedly applying
 *	the base operator with suitable associative rules.  When no
 *	arguments are provided, an error is raised.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 * 	None.
 *
 *----------------------------------------------------------------------
 */

int
TclNoIdentOpCmd(
    ClientData clientData,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const objv[])
{
    TclOpCmdClientData *occdPtr = (TclOpCmdClientData *)clientData;
    if (objc < 2) {
	Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected);
	return TCL_ERROR;
    }
    return TclVariadicOpCmd(clientData, interp, objc, objv);
}
/*
 * Local Variables:
 * mode: c
 * c-basic-offset: 4
 * fill-column: 78
 * End:
 */