summaryrefslogtreecommitdiffstats
path: root/tests/stringObj.test
stat options
Period:
Authors:

Commits per author per week (path 'tests/stringObj.test')

AuthorW26 2024W27 2024W28 2024W29 2024Total
Total00000
7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
/*
 * tclCompExpr.c --
 *
 *	This file contains the code to parse and compile Tcl expressions and
 *	implementations of the Tcl commands corresponding to expression
 *	operators, such as the command ::tcl::mathop::+ .
 *
 * Contributions from Don Porter, NIST, 2006-2007. (not subject to US copyright)
 *
 * See the file "license.terms" for information on usage and redistribution of
 * this file, and for a DISCLAIMER OF ALL WARRANTIES.
 */

#include "tclInt.h"
#include "tclCompile.h"		/* CompileEnv */

/*
 * Expression parsing takes place in the routine ParseExpr(). It takes a
 * string as input, parses that string, and generates a representation of the
 * expression in the form of a tree of operators, a list of literals, a list
 * of function names, and an array of Tcl_Token's within a Tcl_Parse struct.
 * The tree is composed of OpNodes.
 */

typedef struct OpNode {
    int left;			/* "Pointer" to the left operand. */
    int right;			/* "Pointer" to the right operand. */
    union {
	int parent;		/* "Pointer" to the parent operand. */
	int prev;		/* "Pointer" joining incomplete tree stack */
    } p;
    unsigned char lexeme;	/* Code that identifies the operator. */
    unsigned char precedence;	/* Precedence of the operator */
    unsigned char mark;		/* Mark used to control traversal. */
    unsigned char constant;	/* Flag marking constant subexpressions. */
} OpNode;

/*
 * The storage for the tree is dynamically allocated array of OpNodes. The
 * array is grown as parsing needs dictate according to a scheme similar to
 * Tcl's string growth algorithm, so that the resizing costs are O(N) and so
 * that we use at least half the memory allocated as expressions get large.
 *
 * Each OpNode in the tree represents an operator in the expression, either
 * unary or binary. When parsing is completed successfully, a binary operator
 * OpNode will have its left and right fields filled with "pointers" to its
 * left and right operands. A unary operator OpNode will have its right field
 * filled with a pointer to its single operand. When an operand is a
 * subexpression the "pointer" takes the form of the index -- a non-negative
 * integer -- into the OpNode storage array where the root of that
 * subexpression parse tree is found.
 *
 * Non-operator elements of the expression do not get stored in the OpNode
 * tree. They are stored in the other structures according to their type.
 * Literal values get appended to the literal list. Elements that denote forms
 * of quoting or substitution known to the Tcl parser get stored as
 * Tcl_Tokens. These non-operator elements of the expression are the leaves of
 * the completed parse tree. When an operand of an OpNode is one of these leaf
 * elements, the following negative integer codes are used to indicate which
 * kind of elements it is.
 */

enum OperandTypes {
    OT_LITERAL = -3,	/* Operand is a literal in the literal list */
    OT_TOKENS = -2,	/* Operand is sequence of Tcl_Tokens */
    OT_EMPTY = -1	/* "Operand" is an empty string. This is a special
			 * case used only to represent the EMPTY lexeme. See
			 * below. */
};

/*
 * Readable macros to test whether a "pointer" value points to an operator.
 * They operate on the "non-negative integer -> operator; negative integer ->
 * a non-operator OperandType" distinction.
 */

#define IsOperator(l)	((l) >= 0)
#define NotOperator(l)	((l) < 0)

/*
 * Note that it is sufficient to store in the tree just the type of leaf
 * operand, without any explicit pointer to which leaf. This is true because
 * the traversals of the completed tree we perform are known to visit the
 * leaves in the same order as the original parse.
 *
 * In a completed parse tree, those OpNodes that are themselves (roots of
 * subexpression trees that are) operands of some operator store in their
 * p.parent field a "pointer" to the OpNode of that operator. The p.parent
 * field permits a traversal of the tree within a non-recursive routine
 * (ConvertTreeToTokens() and CompileExprTree()). This means that even
 * expression trees of great depth pose no risk of blowing the C stack.
 *
 * While the parse tree is being constructed, the same memory space is used to
 * hold the p.prev field which chains together a stack of incomplete trees
 * awaiting their right operands.
 *
 * The lexeme field is filled in with the lexeme of the operator that is
 * returned by the ParseLexeme() routine. Only lexemes for unary and binary
 * operators get stored in an OpNode. Other lexmes get different treatement.
 *
 * The precedence field provides a place to store the precedence of the
 * operator, so it need not be looked up again and again.
 *
 * The mark field is use to control the traversal of the tree, so that it can
 * be done non-recursively. The mark values are:
 */

enum Marks {
    MARK_LEFT,		/* Next step of traversal is to visit left subtree */
    MARK_RIGHT,		/* Next step of traversal is to visit right subtree */
    MARK_PARENT		/* Next step of traversal is to return to parent */
};

/*
 * The constant field is a boolean flag marking which subexpressions are
 * completely known at compile time, and are eligible for computing then
 * rather than waiting until run time.
 */

/*
 * Each lexeme belongs to one of four categories, which determine its place in
 * the parse tree. We use the two high bits of the (unsigned char) value to
 * store a NODE_TYPE code.
 */

#define NODE_TYPE	0xC0

/*
 * The four category values are LEAF, UNARY, and BINARY, explained below, and
 * "uncategorized", which is used either temporarily, until context determines
 * which of the other three categories is correct, or for lexemes like
 * INVALID, which aren't really lexemes at all, but indicators of a parsing
 * error. Note that the codes must be distinct to distinguish categories, but
 * need not take the form of a bit array.
 */

#define BINARY		0x40	/* This lexeme is a binary operator. An OpNode
				 * representing it should go into the parse
				 * tree, and two operands should be parsed for
				 * it in the expression. */
#define UNARY		0x80	/* This lexeme is a unary operator. An OpNode
				 * representing it should go into the parse
				 * tree, and one operand should be parsed for
				 * it in the expression. */
#define LEAF		0xC0	/* This lexeme is a leaf operand in the parse
				 * tree. No OpNode will be placed in the tree
				 * for it. Either a literal value will be
				 * appended to the list of literals in this
				 * expression, or appropriate Tcl_Tokens will
				 * be appended in a Tcl_Parse struct to
				 * represent those leaves that require some
				 * form of substitution. */

/* Uncategorized lexemes */

#define PLUS		1	/* Ambiguous. Resolves to UNARY_PLUS or
				 * BINARY_PLUS according to context. */
#define MINUS		2	/* Ambiguous. Resolves to UNARY_MINUS or
				 * BINARY_MINUS according to context. */
#define BAREWORD	3	/* Ambigous. Resolves to BOOLEAN or to
				 * FUNCTION or a parse error according to
				 * context and value. */
#define INCOMPLETE	4	/* A parse error. Used only when the single
				 * "=" is encountered.  */
#define INVALID		5	/* A parse error. Used when any punctuation
				 * appears that's not a supported operator. */

/* Leaf lexemes */

#define NUMBER		(LEAF | 1)
				/* For literal numbers */
#define SCRIPT		(LEAF | 2)
				/* Script substitution; [foo] */
#define BOOLEAN		(LEAF | BAREWORD)
				/* For literal booleans */
#define BRACED		(LEAF | 4)
				/* Braced string; {foo bar} */
#define VARIABLE	(LEAF | 5)
				/* Variable substitution; $x */
#define QUOTED		(LEAF | 6)
				/* Quoted string; "foo $bar [soom]" */
#define EMPTY		(LEAF | 7)
				/* Used only for an empty argument list to a
				 * function. Represents the empty string
				 * within parens in the expression: rand() */

/* Unary operator lexemes */

#define UNARY_PLUS	(UNARY | PLUS)
#define UNARY_MINUS	(UNARY | MINUS)
#define FUNCTION	(UNARY | BAREWORD)
				/* This is a bit of "creative interpretation"
				 * on the part of the parser. A function call
				 * is parsed into the parse tree according to
				 * the perspective that the function name is a
				 * unary operator and its argument list,
				 * enclosed in parens, is its operand. The
				 * additional requirements not implied
				 * generally by treatment as a unary operator
				 * -- for example, the requirement that the
				 * operand be enclosed in parens -- are hard
				 * coded in the relevant portions of
				 * ParseExpr(). We trade off the need to
				 * include such exceptional handling in the
				 * code against the need we would otherwise
				 * have for more lexeme categories. */
#define START		(UNARY | 4)
				/* This lexeme isn't parsed from the
				 * expression text at all. It represents the
				 * start of the expression and sits at the
				 * root of the parse tree where it serves as
				 * the start/end point of traversals. */
#define OPEN_PAREN	(UNARY | 5)
				/* Another bit of creative interpretation,
				 * where we treat "(" as a unary operator with
				 * the sub-expression between it and its
				 * matching ")" as its operand. See
				 * CLOSE_PAREN below. */
#define NOT		(UNARY | 6)
#define BIT_NOT		(UNARY | 7)

/* Binary operator lexemes */

#define BINARY_PLUS	(BINARY |  PLUS)
#define BINARY_MINUS	(BINARY |  MINUS)
#define COMMA		(BINARY |  3)
				/* The "," operator is a low precedence binary
				 * operator that separates the arguments in a
				 * function call. The additional constraint
				 * that this operator can only legally appear
				 * at the right places within a function call
				 * argument list are hard coded within
				 * ParseExpr().  */
#define MULT		(BINARY |  4)
#define DIVIDE		(BINARY |  5)
#define MOD		(BINARY |  6)
#define LESS		(BINARY |  7)
#define GREATER		(BINARY |  8)
#define BIT_AND		(BINARY |  9)
#define BIT_XOR		(BINARY | 10)
#define BIT_OR		(BINARY | 11)
#define QUESTION	(BINARY | 12)
				/* These two lexemes make up the */
#define COLON		(BINARY | 13)
				/* ternary conditional operator, $x ? $y : $z.
				 * We treat them as two binary operators to
				 * avoid another lexeme category, and code the
				 * additional constraints directly in
				 * ParseExpr(). For instance, the right
				 * operand of a "?" operator must be a ":"
				 * operator. */
#define LEFT_SHIFT	(BINARY | 14)
#define RIGHT_SHIFT	(BINARY | 15)
#define LEQ		(BINARY | 16)
#define GEQ		(BINARY | 17)
#define EQUAL		(BINARY | 18)
#define NEQ		(BINARY | 19)
#define AND		(BINARY | 20)
#define OR		(BINARY | 21)
#define STREQ		(BINARY | 22)
#define STRNEQ		(BINARY | 23)
#define EXPON		(BINARY | 24)
				/* Unlike the other binary operators, EXPON is
				 * right associative and this distinction is
				 * coded directly in ParseExpr(). */
#define IN_LIST		(BINARY | 25)
#define NOT_IN_LIST	(BINARY | 26)
#define CLOSE_PAREN	(BINARY | 27)
				/* By categorizing the CLOSE_PAREN lexeme as a
				 * BINARY operator, the normal parsing rules
				 * for binary operators assure that a close
				 * paren will not directly follow another
				 * operator, and the machinery already in
				 * place to connect operands to operators
				 * according to precedence performs most of
				 * the work of matching open and close parens
				 * for us. In the end though, a close paren is
				 * not really a binary operator, and some
				 * special coding in ParseExpr() make sure we
				 * never put an actual CLOSE_PAREN node in the
				 * parse tree. The sub-expression between
				 * parens becomes the single argument of the
				 * matching OPEN_PAREN unary operator. */
#define END		(BINARY | 28)
				/* This lexeme represents the end of the
				 * string being parsed. Treating it as a
				 * binary operator follows the same logic as
				 * the CLOSE_PAREN lexeme and END pairs with
				 * START, in the same way that CLOSE_PAREN
				 * pairs with OPEN_PAREN. */

/*
 * When ParseExpr() builds the parse tree it must choose which operands to
 * connect to which operators.  This is done according to operator precedence.
 * The greater an operator's precedence the greater claim it has to link to an
 * available operand.  The Precedence enumeration lists the precedence values
 * used by Tcl expression operators, from lowest to highest claim.  Each
 * precedence level is commented with the operators that hold that precedence.
 */

enum Precedence {
    PREC_END = 1,	/* END */
    PREC_START,		/* START */
    PREC_CLOSE_PAREN,	/* ")" */
    PREC_OPEN_PAREN,	/* "(" */
    PREC_COMMA,		/* "," */
    PREC_CONDITIONAL,	/* "?", ":" */
    PREC_OR,		/* "||" */
    PREC_AND,		/* "&&" */
    PREC_BIT_OR,	/* "|" */
    PREC_BIT_XOR,	/* "^" */
    PREC_BIT_AND,	/* "&" */
    PREC_EQUAL,		/* "==", "!=", "eq", "ne", "in", "ni" */
    PREC_COMPARE,	/* "<", ">", "<=", ">=" */
    PREC_SHIFT,		/* "<<", ">>" */
    PREC_ADD,		/* "+", "-" */
    PREC_MULT,		/* "*", "/", "%" */
    PREC_EXPON,		/* "**" */
    PREC_UNARY		/* "+", "-", FUNCTION, "!", "~" */
};

/*
 * Here the same information contained in the comments above is stored in
 * inverted form, so that given a lexeme, one can quickly look up its
 * precedence value.
 */

static const unsigned char prec[] = {
    /* Non-operator lexemes */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,
    /* Binary operator lexemes */
    PREC_ADD,		/* BINARY_PLUS */
    PREC_ADD,		/* BINARY_MINUS */
    PREC_COMMA,		/* COMMA */
    PREC_MULT,		/* MULT */
    PREC_MULT,		/* DIVIDE */
    PREC_MULT,		/* MOD */
    PREC_COMPARE,	/* LESS */
    PREC_COMPARE,	/* GREATER */
    PREC_BIT_AND,	/* BIT_AND */
    PREC_BIT_XOR,	/* BIT_XOR */
    PREC_BIT_OR,	/* BIT_OR */
    PREC_CONDITIONAL,	/* QUESTION */
    PREC_CONDITIONAL,	/* COLON */
    PREC_SHIFT,		/* LEFT_SHIFT */
    PREC_SHIFT,		/* RIGHT_SHIFT */
    PREC_COMPARE,	/* LEQ */
    PREC_COMPARE,	/* GEQ */
    PREC_EQUAL,		/* EQUAL */
    PREC_EQUAL,		/* NEQ */
    PREC_AND,		/* AND */
    PREC_OR,		/* OR */
    PREC_EQUAL,		/* STREQ */
    PREC_EQUAL,		/* STRNEQ */
    PREC_EXPON,		/* EXPON */
    PREC_EQUAL,		/* IN_LIST */
    PREC_EQUAL,		/* NOT_IN_LIST */
    PREC_CLOSE_PAREN,	/* CLOSE_PAREN */
    PREC_END,		/* END */
    /* Expansion room for more binary operators */
    0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  
    /* Unary operator lexemes */
    PREC_UNARY,		/* UNARY_PLUS */
    PREC_UNARY,		/* UNARY_MINUS */
    PREC_UNARY,		/* FUNCTION */
    PREC_START,		/* START */
    PREC_OPEN_PAREN,	/* OPEN_PAREN */
    PREC_UNARY,		/* NOT*/
    PREC_UNARY,		/* BIT_NOT*/
};

/*
 * A table mapping lexemes to bytecode instructions, used by CompileExprTree().
 */

static const unsigned char instruction[] = {
    /* Non-operator lexemes */
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,
    /* Binary operator lexemes */
    INST_ADD,		/* BINARY_PLUS */
    INST_SUB,		/* BINARY_MINUS */
    0,			/* COMMA */
    INST_MULT,		/* MULT */
    INST_DIV,		/* DIVIDE */
    INST_MOD,		/* MOD */
    INST_LT,		/* LESS */
    INST_GT,		/* GREATER */
    INST_BITAND,	/* BIT_AND */
    INST_BITXOR,	/* BIT_XOR */
    INST_BITOR,		/* BIT_OR */
    0,			/* QUESTION */
    0,			/* COLON */
    INST_LSHIFT,	/* LEFT_SHIFT */
    INST_RSHIFT,	/* RIGHT_SHIFT */
    INST_LE,		/* LEQ */
    INST_GE,		/* GEQ */
    INST_EQ,		/* EQUAL */
    INST_NEQ,		/* NEQ */
    0,			/* AND */
    0,			/* OR */
    INST_STR_EQ,	/* STREQ */
    INST_STR_NEQ,	/* STRNEQ */
    INST_EXPON,		/* EXPON */
    INST_LIST_IN,	/* IN_LIST */
    INST_LIST_NOT_IN,	/* NOT_IN_LIST */
    0,			/* CLOSE_PAREN */
    0,			/* END */
    /* Expansion room for more binary operators */
    0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
    0,  
    /* Unary operator lexemes */
    INST_UPLUS,		/* UNARY_PLUS */
    INST_UMINUS,	/* UNARY_MINUS */
    0,			/* FUNCTION */
    0,			/* START */
    0,			/* OPEN_PAREN */
    INST_LNOT,		/* NOT*/
    INST_BITNOT,	/* BIT_NOT*/
};

/*
 * A table mapping a byte value to the corresponding lexeme for use by
 * ParseLexeme().
 */

static const unsigned char Lexeme[] = {
	INVALID		/* NUL */,	INVALID		/* SOH */,
	INVALID		/* STX */,	INVALID		/* ETX */,
	INVALID		/* EOT */,	INVALID		/* ENQ */,
	INVALID		/* ACK */,	INVALID		/* BEL */,
	INVALID		/* BS */,	INVALID		/* HT */,
	INVALID		/* LF */,	INVALID		/* VT */,
	INVALID		/* FF */,	INVALID		/* CR */,
	INVALID		/* SO */,	INVALID		/* SI */,
	INVALID		/* DLE */,	INVALID		/* DC1 */,
	INVALID		/* DC2 */,	INVALID		/* DC3 */,
	INVALID		/* DC4 */,	INVALID		/* NAK */,
	INVALID		/* SYN */,	INVALID		/* ETB */,
	INVALID		/* CAN */,	INVALID		/* EM */,
	INVALID		/* SUB */,	INVALID		/* ESC */,
	INVALID		/* FS */,	INVALID		/* GS */,
	INVALID		/* RS */,	INVALID		/* US */,
	INVALID		/* SPACE */,	0		/* ! or != */,
	QUOTED		/* " */,	INVALID		/* # */,
	VARIABLE	/* $ */,	MOD		/* % */,
	0		/* & or && */,	INVALID		/* ' */,
	OPEN_PAREN	/* ( */,	CLOSE_PAREN	/* ) */,
	0		/* * or ** */,	PLUS		/* + */,
	COMMA		/* , */,	MINUS		/* - */,
	0		/* . */,	DIVIDE		/* / */,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			/* 0-9 */
	COLON		/* : */,	INVALID		/* ; */,
	0		/* < or << or <= */,
	0		/* == or INVALID */,
	0		/* > or >> or >= */,
	QUESTION	/* ? */,	INVALID		/* @ */,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		/* A-M */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		/* N-Z */
	SCRIPT		/* [ */,	INVALID		/* \ */,
	INVALID		/* ] */,	BIT_XOR		/* ^ */,
	INVALID		/* _ */,	INVALID		/* ` */,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		/* a-m */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		/* n-z */
	BRACED		/* { */,	0		/* | or || */,
	INVALID		/* } */,	BIT_NOT		/* ~ */,
	INVALID		/* DEL */
};

/*
 * The JumpList struct is used to create a stack of data needed for the
 * TclEmitForwardJump() and TclFixupForwardJump() calls that are performed
 * when compiling the short-circuiting operators QUESTION/COLON, AND, and OR.
 * Keeping a stack permits the CompileExprTree() routine to be non-recursive.
 */

typedef struct JumpList {
    JumpFixup jump;		/* Pass this argument to matching calls of
				 * TclEmitForwardJump() and 
				 * TclFixupForwardJump(). */
    int depth;			/* Remember the currStackDepth of the
				 * CompileEnv here. */
    int offset;			/* Data used to compute jump lengths to pass
				 * to TclFixupForwardJump() */
    int convert;		/* Temporary storage used to compute whether
				 * numeric conversion will be needed following
				 * the operator we're compiling. */
    struct JumpList *next;	/* Point to next item on the stack */
} JumpList;

/*
 * Declarations for local functions to this file:
 */

static void		CompileExprTree(Tcl_Interp *interp, OpNode *nodes,
			    int index, Tcl_Obj *const **litObjvPtr,
			    Tcl_Obj *const *funcObjv, Tcl_Token *tokenPtr,
			    CompileEnv *envPtr, int optimize);
static void		ConvertTreeToTokens(const char *start, int numBytes,
			    OpNode *nodes, Tcl_Token *tokenPtr,
			    Tcl_Parse *parsePtr);
static int		ExecConstantExprTree(Tcl_Interp *interp, OpNode *nodes,
			    int index, Tcl_Obj * const **litObjvPtr);
static int		ParseExpr(Tcl_Interp *interp, const char *start,
			    int numBytes, OpNode **opTreePtr,
			    Tcl_Obj *litList, Tcl_Obj *funcList,
			    Tcl_Parse *parsePtr, int parseOnly);
static int		ParseLexeme(const char *start, int numBytes,
			    unsigned char *lexemePtr, Tcl_Obj **literalPtr);

/*
 *----------------------------------------------------------------------
 *
 * ParseExpr --
 *
 *	Given a string, the numBytes bytes starting at start, this function
 *	parses it as a Tcl expression and constructs a tree representing the
 *	structure of the expression. The caller must pass in empty lists as
 *	the funcList and litList arguments. The elements of the parsed
 *	expression are returned to the caller as that tree, a list of literal
 *	values, a list of function names, and in Tcl_Tokens added to a
 *	Tcl_Parse struct passed in by the caller.
 *
 * Results:
 *	If the string is successfully parsed as a valid Tcl expression, TCL_OK
 *	is returned, and data about the expression structure is written to the
 *	last four arguments. If the string cannot be parsed as a valid Tcl
 *	expression, TCL_ERROR is returned, and if interp is non-NULL, an error
 *	message is written to interp.
 *
 * Side effects:
 *	Memory will be allocated. If TCL_OK is returned, the caller must clean
 *	up the returned data structures. The (OpNode *) value written to
 *	opTreePtr should be passed to ckfree() and the parsePtr argument
 *	should be passed to Tcl_FreeParse(). The elements appended to the
 *	litList and funcList will automatically be freed whenever the refcount
 *	on those lists indicates they can be freed.
 *
 *----------------------------------------------------------------------
 */

static int
ParseExpr(
    Tcl_Interp *interp,		/* Used for error reporting. */
    const char *start,		/* Start of source string to parse. */
    int numBytes,		/* Number of bytes in string. */
    OpNode **opTreePtr,		/* Points to space where a pointer to the
				 * allocated OpNode tree should go. */
    Tcl_Obj *litList,		/* List to append literals to. */
    Tcl_Obj *funcList,		/* List to append function names to. */
    Tcl_Parse *parsePtr,	/* Structure to fill with tokens representing
				 * those operands that require run time
				 * substitutions. */
    int parseOnly)		/* A boolean indicating whether the caller's
				 * aim is just a parse, or whether it will go
				 * on to compile the expression. Different
				 * optimizations are appropriate for the two
				 * scenarios. */
{
    OpNode *nodes = NULL;	/* Pointer to the OpNode storage array where
				 * we build the parse tree. */
    int nodesAvailable = 64;	/* Initial size of the storage array. This
				 * value establishes a minimum tree memory
				 * cost of only about 1 kibyte, and is large
				 * enough for most expressions to parse with
				 * no need for array growth and
				 * reallocation. */
    int nodesUsed = 0;		/* Number of OpNodes filled. */
    int scanned = 0;		/* Capture number of byte scanned by parsing
				 * routines. */
    int lastParsed;		/* Stores info about what the lexeme parsed
				 * the previous pass through the parsing loop
				 * was. If it was an operator, lastParsed is
				 * the index of the OpNode for that operator.
				 * If it was not an operator, lastParsed holds
				 * an OperandTypes value encoding what we need
				 * to know about it. */
    int incomplete;		/* Index of the most recent incomplete tree in
				 * the OpNode array. Heads a stack of
				 * incomplete trees linked by p.prev. */
    int complete = OT_EMPTY;	/* "Index" of the complete tree (that is, a
				 * complete subexpression) determined at the
				 * moment. OT_EMPTY is a nonsense value used
				 * only to silence compiler warnings. During a
				 * parse, complete will always hold an index
				 * or an OperandTypes value pointing to an
				 * actual leaf at the time the complete tree
				 * is needed. */

    /*
     * These variables control generation of the error message.
     */

    Tcl_Obj *msg = NULL;	/* The error message. */
    Tcl_Obj *post = NULL;	/* In a few cases, an additional postscript
				 * for the error message, supplying more
				 * information after the error msg and
				 * location have been reported. */
    const char *errCode = NULL;	/* The detail word of the errorCode list, or
				 * NULL to indicate that no changes to the
				 * errorCode are to be done. */
    const char *subErrCode = NULL;
				/* Extra information for use in generating the
				 * errorCode. */
    const char *mark = "_@_";	/* In the portion of the complete error
				 * message where the error location is
				 * reported, this "mark" substring is inserted
				 * into the string being parsed to aid in
				 * pinpointing the location of the syntax
				 * error in the expression. */
    int insertMark = 0;		/* A boolean controlling whether the "mark"
				 * should be inserted. */
    const int limit = 25;	/* Portions of the error message are
				 * constructed out of substrings of the
				 * original expression. In order to keep the
				 * error message readable, we impose this
				 * limit on the substring size we extract. */

    TclParseInit(interp, start, numBytes, parsePtr);

    nodes = attemptckalloc(nodesAvailable * sizeof(OpNode));
    if (nodes == NULL) {
	TclNewLiteralStringObj(msg, "not enough memory to parse expression");
	errCode = "NOMEM";
	goto error;
    }

    /*
     * Initialize the parse tree with the special "START" node.
     */

    nodes->lexeme = START;
    nodes->precedence = prec[START];
    nodes->mark = MARK_RIGHT;
    nodes->constant = 1;
    incomplete = lastParsed = nodesUsed;
    nodesUsed++;

    /*
     * Main parsing loop parses one lexeme per iteration. We exit the loop
     * only when there's a syntax error with a "goto error" which takes us to
     * the error handling code following the loop, or when we've successfully
     * completed the parse and we return to the caller.
     */

    while (1) {
	OpNode *nodePtr;	/* Points to the OpNode we may fill this pass
				 * through the loop. */
	unsigned char lexeme;	/* The lexeme we parse this iteration. */
	Tcl_Obj *literal;	/* Filled by the ParseLexeme() call when a
				 * literal is parsed that has a Tcl_Obj rep
				 * worth preserving. */

	/*
	 * Each pass through this loop adds up to one more OpNode. Allocate
	 * space for one if required.
	 */

	if (nodesUsed >= nodesAvailable) {
	    int size = nodesUsed * 2;
	    OpNode *newPtr;

	    do {
		newPtr = attemptckrealloc(nodes, size * sizeof(OpNode));
	    } while ((newPtr == NULL)
		    && ((size -= (size - nodesUsed) / 2) > nodesUsed));
	    if (newPtr == NULL) {
		TclNewLiteralStringObj(msg,
			"not enough memory to parse expression");
		errCode = "NOMEM";
		goto error;
	    }
	    nodesAvailable = size;
	    nodes = newPtr;
	}
	nodePtr = nodes + nodesUsed;

	/*
	 * Skip white space between lexemes.
	 */

	scanned = TclParseAllWhiteSpace(start, numBytes);
	start += scanned;
	numBytes -= scanned;

	scanned = ParseLexeme(start, numBytes, &lexeme, &literal);

	/*
	 * Use context to categorize the lexemes that are ambiguous.
	 */

	if ((NODE_TYPE & lexeme) == 0) {
	    int b;

	    switch (lexeme) {
	    case INVALID:
		msg = Tcl_ObjPrintf("invalid character \"%.*s\"",
			scanned, start);
		errCode = "BADCHAR";
		goto error;
	    case INCOMPLETE:
		msg = Tcl_ObjPrintf("incomplete operator \"%.*s\"",
			scanned, start);
		errCode = "PARTOP";
		goto error;
	    case BAREWORD:

		/*
		 * Most barewords in an expression are a syntax error. The
		 * exceptions are that when a bareword is followed by an open
		 * paren, it might be a function call, and when the bareword
		 * is a legal literal boolean value, we accept that as well.
		 */

		if (start[scanned+TclParseAllWhiteSpace(
			start+scanned, numBytes-scanned)] == '(') {
		    lexeme = FUNCTION;

		    /*
		     * When we compile the expression we'll need the function
		     * name, and there's no place in the parse tree to store
		     * it, so we keep a separate list of all the function
		     * names we've parsed in the order we found them.
		     */

		    Tcl_ListObjAppendElement(NULL, funcList, literal);
		} else if (Tcl_GetBooleanFromObj(NULL,literal,&b) == TCL_OK) {
		    lexeme = BOOLEAN;
		} else {
		    Tcl_DecrRefCount(literal);
		    msg = Tcl_ObjPrintf("invalid bareword \"%.*s%s\"",
			    (scanned < limit) ? scanned : limit - 3, start,
			    (scanned < limit) ? "" : "...");
		    post = Tcl_ObjPrintf(
			    "should be \"$%.*s%s\" or \"{%.*s%s}\"",
			    (scanned < limit) ? scanned : limit - 3,
			    start, (scanned < limit) ? "" : "...",
			    (scanned < limit) ? scanned : limit - 3,
			    start, (scanned < limit) ? "" : "...");
		    Tcl_AppendPrintfToObj(post, " or \"%.*s%s(...)\" or ...",
			    (scanned < limit) ? scanned : limit - 3,
			    start, (scanned < limit) ? "" : "...");
		    errCode = "BAREWORD";
		    if (start[0] == '0') {
			const char *stop;
			TclParseNumber(NULL, NULL, NULL, start, scanned,
				&stop, TCL_PARSE_NO_WHITESPACE);

			if (isdigit(UCHAR(*stop)) || (stop == start + 1)) {
			    switch (start[1]) {
			    case 'b':
				Tcl_AppendToObj(post,
					" (invalid binary number?)", -1);
				parsePtr->errorType = TCL_PARSE_BAD_NUMBER;
				errCode = "BADNUMBER";
				subErrCode = "BINARY";
				break;
			    case 'o':
				Tcl_AppendToObj(post,
					" (invalid octal number?)", -1);
				parsePtr->errorType = TCL_PARSE_BAD_NUMBER;
				errCode = "BADNUMBER";
				subErrCode = "OCTAL";
				break;
			    default:
				if (isdigit(UCHAR(start[1]))) {
				    Tcl_AppendToObj(post,
					    " (invalid octal number?)", -1);
				    parsePtr->errorType = TCL_PARSE_BAD_NUMBER;
				    errCode = "BADNUMBER";
				    subErrCode = "OCTAL";
				}
				break;
			    }
			}
		    }
		    goto error;
		}
		break;
	    case PLUS:
	    case MINUS:
		if (IsOperator(lastParsed)) {
		    /*
		     * A "+" or "-" coming just after another operator must be
		     * interpreted as a unary operator.
		     */

		    lexeme |= UNARY;
		} else {
		    lexeme |= BINARY;
		}
	    }
	}	/* Uncategorized lexemes */

	/*
	 * Handle lexeme based on its category.
	 */

	switch (NODE_TYPE & lexeme) {
	case LEAF: {
	    /*
	     * Each LEAF results in either a literal getting appended to the
	     * litList, or a sequence of Tcl_Tokens representing a Tcl word
	     * getting appended to the parsePtr->tokens. No OpNode is filled
	     * for this lexeme.
	     */

	    Tcl_Token *tokenPtr;
	    const char *end = start;
	    int wordIndex;
	    int code = TCL_OK;

	    /*
	     * A leaf operand appearing just after something that's not an
	     * operator is a syntax error.
	     */

	    if (NotOperator(lastParsed)) {
		msg = Tcl_ObjPrintf("missing operator at %s", mark);
		errCode = "MISSING";
		scanned = 0;
		insertMark = 1;

		/*
		 * Free any literal to avoid a memleak.
		 */

		if ((lexeme == NUMBER) || (lexeme == BOOLEAN)) {
		    Tcl_DecrRefCount(literal);
		}
		goto error;
	    }

	    switch (lexeme) {
	    case NUMBER:
	    case BOOLEAN: 
		/*
		 * TODO: Consider using a dict or hash to collapse all
		 * duplicate literals into a single representative value.
		 * (Like what is done with [split $s {}]).
		 * Pro:	~75% memory saving on expressions like
		 *	{1+1+1+1+1+.....+1} (Convert "pointer + Tcl_Obj" cost
		 *	to "pointer" cost only)
		 * Con:	Cost of the dict store/retrieve on every literal in
		 *	every expression when expressions like the above tend
		 *	to be uncommon.
		 *	The memory savings is temporary; Compiling to bytecode
		 *	will collapse things as literals are registered
		 *	anyway, so the savings applies only to the time
		 *	between parsing and compiling. Possibly important due
		 *	to high-water mark nature of memory allocation.
		 */

		Tcl_ListObjAppendElement(NULL, litList, literal);
		complete = lastParsed = OT_LITERAL;
		start += scanned;
		numBytes -= scanned;
		continue;
	    
	    default:
		break;
	    }

	    /*
	     * Remaining LEAF cases may involve filling Tcl_Tokens, so make
	     * room for at least 2 more tokens.
	     */

	    TclGrowParseTokenArray(parsePtr, 2);
	    wordIndex = parsePtr->numTokens;
	    tokenPtr = parsePtr->tokenPtr + wordIndex;
	    tokenPtr->type = TCL_TOKEN_WORD;
	    tokenPtr->start = start;
	    parsePtr->numTokens++;

	    switch (lexeme) {
	    case QUOTED:
		code = Tcl_ParseQuotedString(NULL, start, numBytes,
			parsePtr, 1, &end);
		scanned = end - start;
		break;

	    case BRACED:
		code = Tcl_ParseBraces(NULL, start, numBytes,
			parsePtr, 1, &end);
		scanned = end - start;
		break;

	    case VARIABLE:
		code = Tcl_ParseVarName(NULL, start, numBytes, parsePtr, 1);

		/*
		 * Handle the quirk that Tcl_ParseVarName reports a successful
		 * parse even when it gets only a "$" with no variable name.
		 */

		tokenPtr = parsePtr->tokenPtr + wordIndex + 1;
		if (code == TCL_OK && tokenPtr->type != TCL_TOKEN_VARIABLE) {
		    TclNewLiteralStringObj(msg, "invalid character \"$\"");
		    errCode = "BADCHAR";
		    goto error;
		}
		scanned = tokenPtr->size;
		break;

	    case SCRIPT: {
		Tcl_Parse *nestedPtr =
			TclStackAlloc(interp, sizeof(Tcl_Parse));

		tokenPtr = parsePtr->tokenPtr + parsePtr->numTokens;
		tokenPtr->type = TCL_TOKEN_COMMAND;
		tokenPtr->start = start;
		tokenPtr->numComponents = 0;

		end = start + numBytes;
		start++;
		while (1) {
		    code = Tcl_ParseCommand(interp, start, end - start, 1,
			    nestedPtr);
		    if (code != TCL_OK) {
			parsePtr->term = nestedPtr->term;
			parsePtr->errorType = nestedPtr->errorType;
			parsePtr->incomplete = nestedPtr->incomplete;
			break;
		    }
		    start = nestedPtr->commandStart + nestedPtr->commandSize;
		    Tcl_FreeParse(nestedPtr);
		    if ((nestedPtr->term < end) && (nestedPtr->term[0] == ']')
			    && !nestedPtr->incomplete) {
			break;
		    }

		    if (start == end) {
			TclNewLiteralStringObj(msg, "missing close-bracket");
			parsePtr->term = tokenPtr->start;
			parsePtr->errorType = TCL_PARSE_MISSING_BRACKET;
			parsePtr->incomplete = 1;
			code = TCL_ERROR;
			errCode = "UNBALANCED";
			break;
		    }
		}
		TclStackFree(interp, nestedPtr);
		end = start;
		start = tokenPtr->start;
		scanned = end - start;
		tokenPtr->size = scanned;
		parsePtr->numTokens++;
		break;
	    }			/* SCRIPT case */
	    }
	    if (code != TCL_OK) {
		/*
		 * Here we handle all the syntax errors generated by the
		 * Tcl_Token generating parsing routines called in the switch
		 * just above. If the value of parsePtr->incomplete is 1, then
		 * the error was an unbalanced '[', '(', '{', or '"' and
		 * parsePtr->term is pointing to that unbalanced character. If
		 * the value of parsePtr->incomplete is 0, then the error is
		 * one of lacking whitespace following a quoted word, for
		 * example: expr {[an error {foo}bar]}, and parsePtr->term
		 * points to where the whitespace is missing. We reset our
		 * values of start and scanned so that when our error message
		 * is constructed, the location of the syntax error is sure to
		 * appear in it, even if the quoted expression is truncated.
		 */

		start = parsePtr->term;
		scanned = parsePtr->incomplete;
		if (parsePtr->incomplete) {
		    errCode = "UNBALANCED";
		}
		goto error;
	    }

	    tokenPtr = parsePtr->tokenPtr + wordIndex;
	    tokenPtr->size = scanned;
	    tokenPtr->numComponents = parsePtr->numTokens - wordIndex - 1;
	    if (!parseOnly && ((lexeme == QUOTED) || (lexeme == BRACED))) {
		/*
		 * When this expression is destined to be compiled, and a
		 * braced or quoted word within an expression is known at
		 * compile time (no runtime substitutions in it), we can store
		 * it as a literal rather than in its tokenized form. This is
		 * an advantage since the compiled bytecode is going to need
		 * the argument in Tcl_Obj form eventually, so it's just as
		 * well to get there now. Another advantage is that with this
		 * conversion, larger constant expressions might be grown and
		 * optimized.
		 *
		 * On the contrary, if the end goal of this parse is to fill a
		 * Tcl_Parse for a caller of Tcl_ParseExpr(), then it's
		 * wasteful to convert to a literal only to convert back again
		 * later.
		 */

		literal = Tcl_NewObj();
		if (TclWordKnownAtCompileTime(tokenPtr, literal)) {
		    Tcl_ListObjAppendElement(NULL, litList, literal);
		    complete = lastParsed = OT_LITERAL;
		    parsePtr->numTokens = wordIndex;
		    break;
		}
		Tcl_DecrRefCount(literal);
	    }
	    complete = lastParsed = OT_TOKENS;
	    break;
	} /* case LEAF */

	case UNARY:

	    /*
	     * A unary operator appearing just after something that's not an
	     * operator is a syntax error -- something trying to be the left
	     * operand of an operator that doesn't take one.
	     */

	    if (NotOperator(lastParsed)) {
		msg = Tcl_ObjPrintf("missing operator at %s", mark);
		scanned = 0;
		insertMark = 1;
		errCode = "MISSING";
		goto error;
	    }

	    /*
	     * Create an OpNode for the unary operator.
	     */

	    nodePtr->lexeme = lexeme;
	    nodePtr->precedence = prec[lexeme];
	    nodePtr->mark = MARK_RIGHT;

	    /*
	     * A FUNCTION cannot be a constant expression, because Tcl allows
	     * functions to return variable results with the same arguments;
	     * for example, rand(). Other unary operators can root a constant
	     * expression, so long as the argument is a constant expression.
	     */

	    nodePtr->constant = (lexeme != FUNCTION);

	    /*
	     * This unary operator is a new incomplete tree, so push it onto
	     * our stack of incomplete trees. Also remember it as the last
	     * lexeme we parsed.
	     */

	    nodePtr->p.prev = incomplete;
	    incomplete = lastParsed = nodesUsed;
	    nodesUsed++;
	    break;

	case BINARY: {
	    OpNode *incompletePtr;
	    unsigned char precedence = prec[lexeme];

	    /*
	     * A binary operator appearing just after another operator is a
	     * syntax error -- one of the two operators is missing an operand.
	     */

	    if (IsOperator(lastParsed)) {
		if ((lexeme == CLOSE_PAREN)
			&& (nodePtr[-1].lexeme == OPEN_PAREN)) {
		    if (nodePtr[-2].lexeme == FUNCTION) {
			/*
			 * Normally, "()" is a syntax error, but as a special
			 * case accept it as an argument list for a function.
			 * Treat this as a special LEAF lexeme, and restart
			 * the parsing loop with zero characters scanned. We
			 * will parse the ")" again the next time through, but
			 * with the OT_EMPTY leaf as the subexpression between
			 * the parens.
			 */

			scanned = 0;
			complete = lastParsed = OT_EMPTY;
			break;
		    }
		    msg = Tcl_ObjPrintf("empty subexpression at %s", mark);
		    scanned = 0;
		    insertMark = 1;
		    errCode = "EMPTY";
		    goto error;
		}

		if (nodePtr[-1].precedence > precedence) {
		    if (nodePtr[-1].lexeme == OPEN_PAREN) {
			TclNewLiteralStringObj(msg, "unbalanced open paren");
			parsePtr->errorType = TCL_PARSE_MISSING_PAREN;
			errCode = "UNBALANCED";
		    } else if (nodePtr[-1].lexeme == COMMA) {
			msg = Tcl_ObjPrintf(
				"missing function argument at %s", mark);
			scanned = 0;
			insertMark = 1;
			errCode = "MISSING";
		    } else if (nodePtr[-1].lexeme == START) {
			TclNewLiteralStringObj(msg, "empty expression");
			errCode = "EMPTY";
		    }
		} else if (lexeme == CLOSE_PAREN) {
		    TclNewLiteralStringObj(msg, "unbalanced close paren");
		    errCode = "UNBALANCED";
		} else if ((lexeme == COMMA)
			&& (nodePtr[-1].lexeme == OPEN_PAREN)
			&& (nodePtr[-2].lexeme == FUNCTION)) {
		    msg = Tcl_ObjPrintf("missing function argument at %s",
			    mark);
		    scanned = 0;
		    insertMark = 1;
		    errCode = "UNBALANCED";
		}
		if (msg == NULL) {
		    msg = Tcl_ObjPrintf("missing operand at %s", mark);
		    scanned = 0;
		    insertMark = 1;
		    errCode = "MISSING";
		}
		goto error;
	    }

	    /*
	     * Here is where the tree comes together. At this point, we have a
	     * stack of incomplete trees corresponding to substrings that are
	     * incomplete expressions, followed by a complete tree
	     * corresponding to a substring that is itself a complete
	     * expression, followed by the binary operator we have just
	     * parsed. The incomplete trees can each be completed by adding a
	     * right operand.
	     *
	     * To illustrate with an example, when we parse the expression
	     * "1+2*3-4" and we reach this point having just parsed the "-"
	     * operator, we have these incomplete trees: START, "1+", and
	     * "2*". Next we have the complete subexpression "3". Last is the
	     * "-" we've just parsed.
	     *
	     * The next step is to join our complete tree to an operator. The
	     * choice is governed by the precedence and associativity of the
	     * competing operators. If we connect it as the right operand of
	     * our most recent incomplete tree, we get a new complete tree,
	     * and we can repeat the process. The while loop following repeats
	     * this until precedence indicates it is time to join the complete
	     * tree as the left operand of the just parsed binary operator.
	     *
	     * Continuing the example, the first pass through the loop will
	     * join "3" to "2*"; the next pass will join "2*3" to "1+". Then
	     * we'll exit the loop and join "1+2*3" to "-". When we return to
	     * parse another lexeme, our stack of incomplete trees is START
	     * and "1+2*3-".
	     */

	    while (1) {
		incompletePtr = nodes + incomplete;

		if (incompletePtr->precedence < precedence) {
		    break;
		}

		if (incompletePtr->precedence == precedence) {
		    /*
		     * Right association rules for exponentiation.
		     */

		    if (lexeme == EXPON) {
			break;
		    }

		    /*
		     * Special association rules for the conditional
		     * operators. The "?" and ":" operators have equal
		     * precedence, but must be linked up in sensible pairs.
		     */

		    if ((incompletePtr->lexeme == QUESTION)
			    && (NotOperator(complete)
			    || (nodes[complete].lexeme != COLON))) {
			break;
		    }
		    if ((incompletePtr->lexeme == COLON)
			    && (lexeme == QUESTION)) {
			break;
		    }
		}

		/*
		 * Some special syntax checks...
		 */

		/* Parens must balance */
		if ((incompletePtr->lexeme == OPEN_PAREN)
			&& (lexeme != CLOSE_PAREN)) {
		    TclNewLiteralStringObj(msg, "unbalanced open paren");
		    parsePtr->errorType = TCL_PARSE_MISSING_PAREN;
		    errCode = "UNBALANCED";
		    goto error;
		}

		/* Right operand of "?" must be ":" */
		if ((incompletePtr->lexeme == QUESTION)
			&& (NotOperator(complete)
			|| (nodes[complete].lexeme != COLON))) {
		    msg = Tcl_ObjPrintf("missing operator \":\" at %s", mark);
		    scanned = 0;
		    insertMark = 1;
		    errCode = "MISSING";
		    goto error;
		}

		/* Operator ":" may only be right operand of "?" */
		if (IsOperator(complete)
			&& (nodes[complete].lexeme == COLON)
			&& (incompletePtr->lexeme != QUESTION)) {
		    TclNewLiteralStringObj(msg,
			    "unexpected operator \":\" "
			    "without preceding \"?\"");
		    errCode = "SURPRISE";
		    goto error;
		}

		/*
		 * Attach complete tree as right operand of most recent
		 * incomplete tree.
		 */

		incompletePtr->right = complete;
		if (IsOperator(complete)) {
		    nodes[complete].p.parent = incomplete;
		    incompletePtr->constant = incompletePtr->constant
			    && nodes[complete].constant;
		} else {
		    incompletePtr->constant = incompletePtr->constant
			    && (complete == OT_LITERAL);
		}

		/*
		 * The QUESTION/COLON and FUNCTION/OPEN_PAREN combinations
		 * each make up a single operator. Force them to agree whether
		 * they have a constant expression.
		 */

		if ((incompletePtr->lexeme == QUESTION)
			|| (incompletePtr->lexeme == FUNCTION)) {
		    nodes[complete].constant = incompletePtr->constant;
		}

		if (incompletePtr->lexeme == START) {
		    /*
		     * Completing the START tree indicates we're done.
		     * Transfer the parse tree to the caller and return.
		     */

		    *opTreePtr = nodes;
		    return TCL_OK;
		}

		/*
		 * With a right operand attached, last incomplete tree has
		 * become the complete tree. Pop it from the incomplete tree
		 * stack.
		 */

		complete = incomplete;
		incomplete = incompletePtr->p.prev;

		/* CLOSE_PAREN can only close one OPEN_PAREN. */
		if (incompletePtr->lexeme == OPEN_PAREN) {
		    break;
		}
	    }

	    /*
	     * More syntax checks...
	     */

	    /* Parens must balance. */
	    if (lexeme == CLOSE_PAREN) {
		if (incompletePtr->lexeme != OPEN_PAREN) {
		    TclNewLiteralStringObj(msg, "unbalanced close paren");
		    errCode = "UNBALANCED";
		    goto error;
		}
	    }

	    /* Commas must appear only in function argument lists. */
	    if (lexeme == COMMA) {
		if  ((incompletePtr->lexeme != OPEN_PAREN)
			|| (incompletePtr[-1].lexeme != FUNCTION)) {
		    TclNewLiteralStringObj(msg,
			    "unexpected \",\" outside function argument list");
		    errCode = "SURPRISE";
		    goto error;
		}
	    }

	    /* Operator ":" may only be right operand of "?" */
	    if (IsOperator(complete) && (nodes[complete].lexeme == COLON)) {
		TclNewLiteralStringObj(msg,
			"unexpected operator \":\" without preceding \"?\"");
		errCode = "SURPRISE";
		goto error;
	    }

	    /*
	     * Create no node for a CLOSE_PAREN lexeme.
	     */

	    if (lexeme == CLOSE_PAREN) {
		break;
	    }

	    /*
	     * Link complete tree as left operand of new node.
	     */

	    nodePtr->lexeme = lexeme;
	    nodePtr->precedence = precedence;
	    nodePtr->mark = MARK_LEFT;
	    nodePtr->left = complete;

	    /* 
	     * The COMMA operator cannot be optimized, since the function
	     * needs all of its arguments, and optimization would reduce the
	     * number. Other binary operators root constant expressions when
	     * both arguments are constant expressions.
	     */

	    nodePtr->constant = (lexeme != COMMA);

	    if (IsOperator(complete)) {
		nodes[complete].p.parent = nodesUsed;
		nodePtr->constant = nodePtr->constant
			&& nodes[complete].constant;
	    } else {
		nodePtr->constant = nodePtr->constant
			&& (complete == OT_LITERAL);
	    }

	    /*
	     * With a left operand attached and a right operand missing, the
	     * just-parsed binary operator is root of a new incomplete tree.
	     * Push it onto the stack of incomplete trees.
	     */

	    nodePtr->p.prev = incomplete;
	    incomplete = lastParsed = nodesUsed;
	    nodesUsed++;
	    break;
	}	/* case BINARY */
	}	/* lexeme handler */

	/* Advance past the just-parsed lexeme */
	start += scanned;
	numBytes -= scanned;
    }	/* main parsing loop */

    /*
     * We only get here if there's been an error. Any errors that didn't get a
     * suitable parsePtr->errorType, get recorded as syntax errors.
     */

  error:
    if (parsePtr->errorType == TCL_PARSE_SUCCESS) {
	parsePtr->errorType = TCL_PARSE_SYNTAX;
    }

    /*
     * Free any partial parse tree we've built.
     */

    if (nodes != NULL) {
	ckfree(nodes);
    }

    if (interp == NULL) {
	/*
	 * Nowhere to report an error message, so just free it.
	 */

	if (msg) {
	    Tcl_DecrRefCount(msg);
	}
    } else {
	/*
	 * Construct the complete error message. Start with the simple error
	 * message, pulled from the interp result if necessary...
	 */

	if (msg == NULL) {
	    msg = Tcl_GetObjResult(interp);
	}

	/*
	 * Add a detailed quote from the bad expression, displaying and
	 * sometimes marking the precise location of the syntax error.
	 */

	Tcl_AppendPrintfToObj(msg, "\nin expression \"%s%.*s%.*s%s%s%.*s%s\"",
		((start - limit) < parsePtr->string) ? "" : "...",
		((start - limit) < parsePtr->string)
			? (int) (start - parsePtr->string) : limit - 3,
		((start - limit) < parsePtr->string)
			? parsePtr->string : start - limit + 3,
		(scanned < limit) ? scanned : limit - 3, start,
		(scanned < limit) ? "" : "...", insertMark ? mark : "",
		(start + scanned + limit > parsePtr->end)
			? (int) (parsePtr->end - start) - scanned : limit-3,
		start + scanned,
		(start + scanned + limit > parsePtr->end) ? "" : "...");

	/*
	 * Next, append any postscript message.
	 */

	if (post != NULL) {
	    Tcl_AppendToObj(msg, ";\n", -1);
	    Tcl_AppendObjToObj(msg, post);
	    Tcl_DecrRefCount(post);
	}
	Tcl_SetObjResult(interp, msg);

	/*
	 * Finally, place context information in the errorInfo.
	 */

	numBytes = parsePtr->end - parsePtr->string;
	Tcl_AppendObjToErrorInfo(interp, Tcl_ObjPrintf(
		"\n    (parsing expression \"%.*s%s\")",
		(numBytes < limit) ? numBytes : limit - 3,
		parsePtr->string, (numBytes < limit) ? "" : "..."));
	if (errCode) {
	    Tcl_SetErrorCode(interp, "TCL", "PARSE", "EXPR", errCode,
		    subErrCode, NULL);
	}
    }

    return TCL_ERROR;
}

/*
 *----------------------------------------------------------------------
 *
 * ConvertTreeToTokens --
 *
 *	Given a string, the numBytes bytes starting at start, and an OpNode
 *	tree and Tcl_Token array created by passing that same string to
 *	ParseExpr(), this function writes into *parsePtr the sequence of
 *	Tcl_Tokens needed so to satisfy the historical interface provided by
 *	Tcl_ParseExpr(). Note that this routine exists only for the sake of
 *	the public Tcl_ParseExpr() routine. It is not used by Tcl itself at
 *	all.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	The Tcl_Parse *parsePtr is filled with Tcl_Tokens representing the
 *	parsed expression.
 *
 *----------------------------------------------------------------------
 */

static void
ConvertTreeToTokens(
    const char *start,
    int numBytes,
    OpNode *nodes,
    Tcl_Token *tokenPtr,
    Tcl_Parse *parsePtr)
{
    int subExprTokenIdx = 0;
    OpNode *nodePtr = nodes;
    int next = nodePtr->right;

    while (1) {
	Tcl_Token *subExprTokenPtr;
	int scanned, parentIdx;
	unsigned char lexeme;

	/*
	 * Advance the mark so the next exit from this node won't retrace
	 * steps over ground already covered.
	 */

	nodePtr->mark++;

	/*
	 * Handle next child node or leaf.
	 */

	switch (next) {
	case OT_EMPTY:

	    /* No tokens and no characters for the OT_EMPTY leaf. */
	    break;

	case OT_LITERAL:

	    /*
	     * Skip any white space that comes before the literal.
	     */

	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start += scanned;
	    numBytes -= scanned;

	    /*
	     * Reparse the literal to get pointers into source string.
	     */

	    scanned = ParseLexeme(start, numBytes, &lexeme, NULL);

	    TclGrowParseTokenArray(parsePtr, 2);
	    subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens;
	    subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
	    subExprTokenPtr->start = start;
	    subExprTokenPtr->size = scanned;
	    subExprTokenPtr->numComponents = 1;
	    subExprTokenPtr[1].type = TCL_TOKEN_TEXT;
	    subExprTokenPtr[1].start = start;
	    subExprTokenPtr[1].size = scanned;
	    subExprTokenPtr[1].numComponents = 0;

	    parsePtr->numTokens += 2;
	    start += scanned;
	    numBytes -= scanned;
	    break;

	case OT_TOKENS: {
	    /*
	     * tokenPtr points to a token sequence that came from parsing a
	     * Tcl word. A Tcl word is made up of a sequence of one or more
	     * elements. When the word is only a single element, it's been the
	     * historical practice to replace the TCL_TOKEN_WORD token
	     * directly with a TCL_TOKEN_SUB_EXPR token. However, when the
	     * word has multiple elements, a TCL_TOKEN_WORD token is kept as a
	     * grouping device so that TCL_TOKEN_SUB_EXPR always has only one
	     * element. Wise or not, these are the rules the Tcl expr parser
	     * has followed, and for the sake of those few callers of
	     * Tcl_ParseExpr() we do not change them now. Internally, we can
	     * do better.
	     */
	
	    int toCopy = tokenPtr->numComponents + 1;

	    if (tokenPtr->numComponents == tokenPtr[1].numComponents + 1) {
		/*
		 * Single element word. Copy tokens and convert the leading
		 * token to TCL_TOKEN_SUB_EXPR.
		 */

		TclGrowParseTokenArray(parsePtr, toCopy);
		subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens;
		memcpy(subExprTokenPtr, tokenPtr,
			(size_t) toCopy * sizeof(Tcl_Token));
		subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
		parsePtr->numTokens += toCopy;
	    } else {
		/* 
		 * Multiple element word. Create a TCL_TOKEN_SUB_EXPR token to
		 * lead, with fields initialized from the leading token, then
		 * copy entire set of word tokens.
		 */

		TclGrowParseTokenArray(parsePtr, toCopy+1);
		subExprTokenPtr = parsePtr->tokenPtr + parsePtr->numTokens;
		*subExprTokenPtr = *tokenPtr;
		subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
		subExprTokenPtr->numComponents++;
		subExprTokenPtr++;
		memcpy(subExprTokenPtr, tokenPtr,
			(size_t) toCopy * sizeof(Tcl_Token));
		parsePtr->numTokens += toCopy + 1;
	    }

	    scanned = tokenPtr->start + tokenPtr->size - start;
	    start += scanned;
	    numBytes -= scanned;
	    tokenPtr += toCopy;
	    break;
	}

	default:

	    /*
	     * Advance to the child node, which is an operator.
	     */

	    nodePtr = nodes + next;

	    /*
	     * Skip any white space that comes before the subexpression.
	     */

	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start += scanned;
	    numBytes -= scanned;

	    /*
	     * Generate tokens for the operator / subexpression...
	     */

	    switch (nodePtr->lexeme) {
	    case OPEN_PAREN:
	    case COMMA:
	    case COLON:

		/* 
		 * Historical practice has been to have no Tcl_Tokens for
		 * these operators.
		 */

		break;

	    default: {

		/*
		 * Remember the index of the last subexpression we were
		 * working on -- that of our parent. We'll stack it later.
		 */

		parentIdx = subExprTokenIdx;

		/*
		 * Verify space for the two leading Tcl_Tokens representing
		 * the subexpression rooted by this operator. The first
		 * Tcl_Token will be of type TCL_TOKEN_SUB_EXPR; the second of
		 * type TCL_TOKEN_OPERATOR.
		 */

		TclGrowParseTokenArray(parsePtr, 2);
		subExprTokenIdx = parsePtr->numTokens;
		subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx;
		parsePtr->numTokens += 2;
		subExprTokenPtr->type = TCL_TOKEN_SUB_EXPR;
		subExprTokenPtr[1].type = TCL_TOKEN_OPERATOR;

		/*
		 * Our current position scanning the string is the starting
		 * point for this subexpression.
		 */

		subExprTokenPtr->start = start;

		/*
		 * Eventually, we know that the numComponents field of the
		 * Tcl_Token of type TCL_TOKEN_OPERATOR will be 0. This means
		 * we can make other use of this field for now to track the
		 * stack of subexpressions we have pending.
		 */

		subExprTokenPtr[1].numComponents = parentIdx;
		break;
	    }
	    }
	    break;
	}

	/* Determine which way to exit the node on this pass. */
    router:
	switch (nodePtr->mark) {
	case MARK_LEFT:
	    next = nodePtr->left;
	    break;

	case MARK_RIGHT:
	    next = nodePtr->right;

	    /*
	     * Skip any white space that comes before the operator.
	     */

	    scanned = TclParseAllWhiteSpace(start, numBytes);
	    start += scanned;
	    numBytes -= scanned;

	    /*
	     * Here we scan from the string the operator corresponding to
	     * nodePtr->lexeme.
	     */

	    scanned = ParseLexeme(start, numBytes, &lexeme, NULL);

	    switch(nodePtr->lexeme) {
	    case OPEN_PAREN:
	    case COMMA:
	    case COLON:

		/*
		 * No tokens for these lexemes -> nothing to do.
		 */

		break;

	    default:

		/*
		 * Record in the TCL_TOKEN_OPERATOR token the pointers into
		 * the string marking where the operator is.
		 */

		subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx;
		subExprTokenPtr[1].start = start;
		subExprTokenPtr[1].size = scanned;
		break;
	    }

	    start += scanned;
	    numBytes -= scanned;
	    break;

	case MARK_PARENT:
	    switch (nodePtr->lexeme) {
	    case START:

		/* When we get back to the START node, we're done. */
		return;

	    case COMMA:
	    case COLON:

		/* No tokens for these lexemes -> nothing to do. */
		break;

	    case OPEN_PAREN:

		/*
		 * Skip past matching close paren.
		 */

		scanned = TclParseAllWhiteSpace(start, numBytes);
		start += scanned;
		numBytes -= scanned;
		scanned = ParseLexeme(start, numBytes, &lexeme, NULL);
		start += scanned;
		numBytes -= scanned;
		break;

	    default:

		/*
		 * Before we leave this node/operator/subexpression for the
		 * last time, finish up its tokens....
		 * 
		 * Our current position scanning the string is where the
		 * substring for the subexpression ends.
		 */

		subExprTokenPtr = parsePtr->tokenPtr + subExprTokenIdx;
		subExprTokenPtr->size = start - subExprTokenPtr->start;

		/*
		 * All the Tcl_Tokens allocated and filled belong to
		 * this subexpresion. The first token is the leading
		 * TCL_TOKEN_SUB_EXPR token, and all the rest (one fewer)
		 * are its components.
		 */

		subExprTokenPtr->numComponents =
			(parsePtr->numTokens - subExprTokenIdx) - 1;

		/*
		 * Finally, as we return up the tree to our parent, pop the
		 * parent subexpression off our subexpression stack, and
		 * fill in the zero numComponents for the operator Tcl_Token.
		 */

		parentIdx = subExprTokenPtr[1].numComponents;
		subExprTokenPtr[1].numComponents = 0;
		subExprTokenIdx = parentIdx;
		break;
	    }

	    /*
	     * Since we're returning to parent, skip child handling code.
	     */

	    nodePtr = nodes + nodePtr->p.parent;
	    goto router;
	}
    }
}

/*
 *----------------------------------------------------------------------
 *
 * Tcl_ParseExpr --
 *
 *	Given a string, the numBytes bytes starting at start, this function
 *	parses it as a Tcl expression and stores information about the
 *	structure of the expression in the Tcl_Parse struct indicated by the
 *	caller.
 *
 * Results:
 *	If the string is successfully parsed as a valid Tcl expression, TCL_OK
 *	is returned, and data about the expression structure is written to
 *	*parsePtr. If the string cannot be parsed as a valid Tcl expression,
 *	TCL_ERROR is returned, and if interp is non-NULL, an error message is
 *	written to interp.
 *
 * Side effects:
 *	If there is insufficient space in parsePtr to hold all the information
 *	about the expression, then additional space is malloc-ed. If the
 *	function returns TCL_OK then the caller must eventually invoke
 *	Tcl_FreeParse to release any additional space that was allocated.
 *
 *----------------------------------------------------------------------
 */

int
Tcl_ParseExpr(
    Tcl_Interp *interp,		/* Used for error reporting. */
    const char *start,		/* Start of source string to parse. */
    int numBytes,		/* Number of bytes in string. If < 0, the
				 * string consists of all bytes up to the
				 * first null character. */
    Tcl_Parse *parsePtr)	/* Structure to fill with information about
				 * the parsed expression; any previous
				 * information in the structure is ignored. */
{
    int code;
    OpNode *opTree = NULL;	/* Will point to the tree of operators. */
    Tcl_Obj *litList = Tcl_NewObj();	/* List to hold the literals. */
    Tcl_Obj *funcList = Tcl_NewObj();	/* List to hold the functon names. */
    Tcl_Parse *exprParsePtr = TclStackAlloc(interp, sizeof(Tcl_Parse));
				/* Holds the Tcl_Tokens of substitutions. */

    if (numBytes < 0) {
	numBytes = (start ? strlen(start) : 0);
    }

    code = ParseExpr(interp, start, numBytes, &opTree, litList, funcList,
	    exprParsePtr, 1 /* parseOnly */);
    Tcl_DecrRefCount(funcList);
    Tcl_DecrRefCount(litList);

    TclParseInit(interp, start, numBytes, parsePtr);
    if (code == TCL_OK) {
	ConvertTreeToTokens(start, numBytes,
		opTree, exprParsePtr->tokenPtr, parsePtr);
    } else {
	parsePtr->term = exprParsePtr->term;
	parsePtr->errorType = exprParsePtr->errorType;
    }

    Tcl_FreeParse(exprParsePtr);
    TclStackFree(interp, exprParsePtr);
    ckfree(opTree);
    return code;
}

/*
 *----------------------------------------------------------------------
 *
 * ParseLexeme --
 *
 *	Parse a single lexeme from the start of a string, scanning no more
 *	than numBytes bytes.
 *
 * Results:
 *	Returns the number of bytes scanned to produce the lexeme.
 *
 * Side effects:
 *	Code identifying lexeme parsed is writen to *lexemePtr.
 *
 *----------------------------------------------------------------------
 */

static int
ParseLexeme(
    const char *start,		/* Start of lexeme to parse. */
    int numBytes,		/* Number of bytes in string. */
    unsigned char *lexemePtr,	/* Write code of parsed lexeme to this
				 * storage. */
    Tcl_Obj **literalPtr)	/* Write corresponding literal value to this
				   storage, if non-NULL. */
{
    const char *end;
    int scanned;
    Tcl_UniChar ch;
    Tcl_Obj *literal = NULL;
    unsigned char byte;

    if (numBytes == 0) {
	*lexemePtr = END;
	return 0;
    }
    byte = UCHAR(*start);
    if (byte < sizeof(Lexeme) && Lexeme[byte] != 0) {
	*lexemePtr = Lexeme[byte];
	return 1;
    }
    switch (byte) {
    case '*':
	if ((numBytes > 1) && (start[1] == '*')) {
	    *lexemePtr = EXPON;
	    return 2;
	}
	*lexemePtr = MULT;
	return 1;

    case '=':
	if ((numBytes > 1) && (start[1] == '=')) {
	    *lexemePtr = EQUAL;
	    return 2;
	}
	*lexemePtr = INCOMPLETE;
	return 1;

    case '!':
	if ((numBytes > 1) && (start[1] == '=')) {
	    *lexemePtr = NEQ;
	    return 2;
	}
	*lexemePtr = NOT;
	return 1;

    case '&':
	if ((numBytes > 1) && (start[1] == '&')) {
	    *lexemePtr = AND;
	    return 2;
	}
	*lexemePtr = BIT_AND;
	return 1;

    case '|':
	if ((numBytes > 1) && (start[1] == '|')) {
	    *lexemePtr = OR;
	    return 2;
	}
	*lexemePtr = BIT_OR;
	return 1;

    case '<':
	if (numBytes > 1) {
	    switch (start[1]) {
	    case '<':
		*lexemePtr = LEFT_SHIFT;
		return 2;
	    case '=':
		*lexemePtr = LEQ;
		return 2;
	    }
	}
	*lexemePtr = LESS;
	return 1;

    case '>':
	if (numBytes > 1) {
	    switch (start[1]) {
	    case '>':
		*lexemePtr = RIGHT_SHIFT;
		return 2;
	    case '=':
		*lexemePtr = GEQ;
		return 2;
	    }
	}
	*lexemePtr = GREATER;
	return 1;

    case 'i':
	if ((numBytes > 1) && (start[1] == 'n')
		&& ((numBytes == 2) || !isalpha(UCHAR(start[2])))) {
	    /*
	     * Must make this check so we can tell the difference between the
	     * "in" operator and the "int" function name and the "infinity"
	     * numeric value.
	     */

	    *lexemePtr = IN_LIST;
	    return 2;
	}
	break;

    case 'e':
	if ((numBytes > 1) && (start[1] == 'q')
		&& ((numBytes == 2) || !isalpha(UCHAR(start[2])))) {
	    *lexemePtr = STREQ;
	    return 2;
	}
	break;

    case 'n':
	if ((numBytes > 1) && ((numBytes == 2) || !isalpha(UCHAR(start[2])))) {
	    switch (start[1]) {
	    case 'e':
		*lexemePtr = STRNEQ;
		return 2;
	    case 'i':
		*lexemePtr = NOT_IN_LIST;
		return 2;
	    }
	}
    }

    literal = Tcl_NewObj();
    if (TclParseNumber(NULL, literal, NULL, start, numBytes, &end,
	    TCL_PARSE_NO_WHITESPACE) == TCL_OK) {
	if (end < start + numBytes && !isalnum(UCHAR(*end))
		&& UCHAR(*end) != '_') {
	
	number:
	    TclInitStringRep(literal, start, end-start);
	    *lexemePtr = NUMBER;
	    if (literalPtr) {
		*literalPtr = literal;
	    } else {
		Tcl_DecrRefCount(literal);
	    }
	    return (end-start);
	} else {
	    unsigned char lexeme;

	    /*
	     * We have a number followed directly by bareword characters
	     * (alpha, digit, underscore).  Is this a number followed by
	     * bareword syntax error?  Or should we join into one bareword?
	     * Example: Inf + luence + () becomes a valid function call.
	     * [Bug 3401704]
	     */
	    if (literal->typePtr == &tclDoubleType) {
		const char *p = start;

		while (p < end) {
		    if (!isalnum(UCHAR(*p++))) {
			/*
			 * The number has non-bareword characters, so we 
			 * must treat it as a number.
			 */
			goto number;
		    }
		}
	    }
	    ParseLexeme(end, numBytes-(end-start), &lexeme, NULL);
	    if ((NODE_TYPE & lexeme) == BINARY) {
		/*
		 * The bareword characters following the number take the
		 * form of an operator (eq, ne, in, ni, ...) so we treat
		 * as number + operator.
		 */
		goto number;
	    }

	    /*
	     * Otherwise, fall through and parse the whole as a bareword.
	     */
	}
    }

    if (Tcl_UtfCharComplete(start, numBytes)) {
	scanned = Tcl_UtfToUniChar(start, &ch);
    } else {
	char utfBytes[TCL_UTF_MAX];

	memcpy(utfBytes, start, (size_t) numBytes);
	utfBytes[numBytes] = '\0';
	scanned = Tcl_UtfToUniChar(utfBytes, &ch);
    }
    if (!isalnum(UCHAR(ch))) {
	*lexemePtr = INVALID;
	Tcl_DecrRefCount(literal);
	return scanned;
    }
    end = start;
    while (isalnum(UCHAR(ch)) || (UCHAR(ch) == '_')) {
	end += scanned;
	numBytes -= scanned;
	if (Tcl_UtfCharComplete(end, numBytes)) {
	    scanned = Tcl_UtfToUniChar(end, &ch);
	} else {
	    char utfBytes[TCL_UTF_MAX];

	    memcpy(utfBytes, end, (size_t) numBytes);
	    utfBytes[numBytes] = '\0';
	    scanned = Tcl_UtfToUniChar(utfBytes, &ch);
	}
    }
    *lexemePtr = BAREWORD;
    if (literalPtr) {
	Tcl_SetStringObj(literal, start, (int) (end-start));
	*literalPtr = literal;
    } else {
	Tcl_DecrRefCount(literal);
    }
    return (end-start);
}

/*
 *----------------------------------------------------------------------
 *
 * TclCompileExpr --
 *
 *	This procedure compiles a string containing a Tcl expression into Tcl
 *	bytecodes. 
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	Adds instructions to envPtr to evaluate the expression at runtime.
 *
 *----------------------------------------------------------------------
 */

void
TclCompileExpr(
    Tcl_Interp *interp,		/* Used for error reporting. */
    const char *script,		/* The source script to compile. */
    int numBytes,		/* Number of bytes in script. */
    CompileEnv *envPtr,		/* Holds resulting instructions. */
    int optimize)		/* 0 for one-off expressions. */
{
    OpNode *opTree = NULL;	/* Will point to the tree of operators */
    Tcl_Obj *litList = Tcl_NewObj();	/* List to hold the literals */
    Tcl_Obj *funcList = Tcl_NewObj();	/* List to hold the functon names*/
    Tcl_Parse *parsePtr = TclStackAlloc(interp, sizeof(Tcl_Parse));
				/* Holds the Tcl_Tokens of substitutions */

    int code = ParseExpr(interp, script, numBytes, &opTree, litList,
	    funcList, parsePtr, 0 /* parseOnly */);

    if (code == TCL_OK) {
	/*
	 * Valid parse; compile the tree.
	 */

	int objc;
	Tcl_Obj *const *litObjv;
	Tcl_Obj **funcObjv;

	/* TIP #280 : Track Lines within the expression */
	TclAdvanceLines(&envPtr->line, script,
		script + TclParseAllWhiteSpace(script, numBytes));

	TclListObjGetElements(NULL, litList, &objc, (Tcl_Obj ***)&litObjv);
	TclListObjGetElements(NULL, funcList, &objc, &funcObjv);
	CompileExprTree(interp, opTree, 0, &litObjv, funcObjv,
		parsePtr->tokenPtr, envPtr, optimize);
    } else {
	TclCompileSyntaxError(interp, envPtr);
    }

    Tcl_FreeParse(parsePtr);
    TclStackFree(interp, parsePtr);
    Tcl_DecrRefCount(funcList);
    Tcl_DecrRefCount(litList);
    ckfree(opTree);
}

/*
 *----------------------------------------------------------------------
 *
 * ExecConstantExprTree --
 *	Compiles and executes bytecode for the subexpression tree at index
 *	in the nodes array.  This subexpression must be constant, made up
 *	of only constant operators (not functions) and literals.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 *	Consumes subtree of nodes rooted at index.  Advances the pointer
 *	*litObjvPtr.
 *
 *----------------------------------------------------------------------
 */

static int
ExecConstantExprTree(
    Tcl_Interp *interp,
    OpNode *nodes,
    int index,
    Tcl_Obj *const **litObjvPtr)
{
    CompileEnv *envPtr;
    ByteCode *byteCodePtr;
    int code;
    Tcl_Obj *byteCodeObj = Tcl_NewObj();
    NRE_callback *rootPtr = TOP_CB(interp);

    /*
     * Note we are compiling an expression with literal arguments. This means
     * there can be no [info frame] calls when we execute the resulting
     * bytecode, so there's no need to tend to TIP 280 issues.
     */

    envPtr = TclStackAlloc(interp, sizeof(CompileEnv));
    TclInitCompileEnv(interp, envPtr, NULL, 0, NULL, 0);
    CompileExprTree(interp, nodes, index, litObjvPtr, NULL, NULL, envPtr,
	    0 /* optimize */);
    TclEmitOpcode(INST_DONE, envPtr);
    Tcl_IncrRefCount(byteCodeObj);
    TclInitByteCodeObj(byteCodeObj, envPtr);
    TclFreeCompileEnv(envPtr);
    TclStackFree(interp, envPtr);
    byteCodePtr = byteCodeObj->internalRep.twoPtrValue.ptr1;
    TclNRExecuteByteCode(interp, byteCodePtr);
    code = TclNRRunCallbacks(interp, TCL_OK, rootPtr);
    Tcl_DecrRefCount(byteCodeObj);
    return code;
}

/*
 *----------------------------------------------------------------------
 *
 * CompileExprTree --
 *
 *	Compiles and writes to envPtr instructions for the subexpression tree
 *	at index in the nodes array. (*litObjvPtr) must point to the proper
 *	location in a corresponding literals list. Likewise, when non-NULL,
 *	funcObjv and tokenPtr must point into matching arrays of function
 *	names and Tcl_Token's derived from earlier call to ParseExpr(). When
 *	optimize is true, any constant subexpressions will be precomputed.
 *
 * Results:
 *	None.
 *
 * Side effects:
 *	Adds instructions to envPtr to evaluate the expression at runtime.
 *	Consumes subtree of nodes rooted at index. Advances the pointer
 *	*litObjvPtr.
 *
 *----------------------------------------------------------------------
 */

static void
CompileExprTree(
    Tcl_Interp *interp,
    OpNode *nodes,
    int index,
    Tcl_Obj *const **litObjvPtr,
    Tcl_Obj *const *funcObjv,
    Tcl_Token *tokenPtr,
    CompileEnv *envPtr,
    int optimize)
{
    OpNode *nodePtr = nodes + index;
    OpNode *rootPtr = nodePtr;
    int numWords = 0;
    JumpList *jumpPtr = NULL;
    int convert = 1;

    while (1) {
	int next;
	JumpList *freePtr, *newJump;

	if (nodePtr->mark == MARK_LEFT) {
	    next = nodePtr->left;

	    switch (nodePtr->lexeme) {
	    case QUESTION:
		newJump = TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		newJump = TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		jumpPtr->depth = envPtr->currStackDepth;
		convert = 1;
		break;
	    case AND:
	    case OR:
		newJump = TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		newJump = TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		newJump = TclStackAlloc(interp, sizeof(JumpList));
		newJump->next = jumpPtr;
		jumpPtr = newJump;
		jumpPtr->depth = envPtr->currStackDepth;
		break;
	    }
	} else if (nodePtr->mark == MARK_RIGHT) {
	    next = nodePtr->right;

	    switch (nodePtr->lexeme) {
	    case FUNCTION: {
		Tcl_DString cmdName;
		const char *p;
		int length;

		Tcl_DStringInit(&cmdName);
		TclDStringAppendLiteral(&cmdName, "tcl::mathfunc::");
		p = TclGetStringFromObj(*funcObjv, &length);
		funcObjv++;
		Tcl_DStringAppend(&cmdName, p, length);
		TclEmitPush(TclRegisterNewCmdLiteral(envPtr,
			Tcl_DStringValue(&cmdName),
			Tcl_DStringLength(&cmdName)), envPtr);
		Tcl_DStringFree(&cmdName);

		/*
		 * Start a count of the number of words in this function
		 * command invocation. In case there's already a count in
		 * progress (nested functions), save it in our unused "left"
		 * field for restoring later.
		 */

		nodePtr->left = numWords;
		numWords = 2;	/* Command plus one argument */
		break;
	    }
	    case QUESTION:
		TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &jumpPtr->jump);
		break;
	    case COLON:
		CLANG_ASSERT(jumpPtr);
		TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
			&jumpPtr->next->jump);
		envPtr->currStackDepth = jumpPtr->depth;
		jumpPtr->offset = (envPtr->codeNext - envPtr->codeStart);
		jumpPtr->convert = convert;
		convert = 1;
		break;
	    case AND:
		TclEmitForwardJump(envPtr, TCL_FALSE_JUMP, &jumpPtr->jump);
		break;
	    case OR:
		TclEmitForwardJump(envPtr, TCL_TRUE_JUMP, &jumpPtr->jump);
		break;
	    }
	} else {
	    switch (nodePtr->lexeme) {
	    case START:
	    case QUESTION:
		if (convert && (nodePtr == rootPtr)) {
		    TclEmitOpcode(INST_TRY_CVT_TO_NUMERIC, envPtr);
		}
		break;
	    case OPEN_PAREN:

		/* do nothing */
		break;
	    case FUNCTION:
		/*
		 * Use the numWords count we've kept to invoke the function
		 * command with the correct number of arguments.
		 */
		
		if (numWords < 255) {
		    TclEmitInstInt1(INST_INVOKE_STK1, numWords, envPtr);
		} else {
		    TclEmitInstInt4(INST_INVOKE_STK4, numWords, envPtr);
		}

		/*
		 * Restore any saved numWords value.
		 */

		numWords = nodePtr->left;
		convert = 1;
		break;
	    case COMMA:
		/*
		 * Each comma implies another function argument.
		 */

		numWords++;
		break;
	    case COLON:
		CLANG_ASSERT(jumpPtr);
		if (TclFixupForwardJump(envPtr, &jumpPtr->next->jump,
			(envPtr->codeNext - envPtr->codeStart)
			- jumpPtr->next->jump.codeOffset, 127)) {
		    jumpPtr->offset += 3;
		}
		TclFixupForwardJump(envPtr, &jumpPtr->jump,
			jumpPtr->offset - jumpPtr->jump.codeOffset, 127);
		convert |= jumpPtr->convert;
		envPtr->currStackDepth = jumpPtr->depth + 1;
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		break;
	    case AND:
	    case OR:
		CLANG_ASSERT(jumpPtr);
		TclEmitForwardJump(envPtr, (nodePtr->lexeme == AND)
			?  TCL_FALSE_JUMP : TCL_TRUE_JUMP,
			&jumpPtr->next->jump);
		TclEmitPush(TclRegisterNewLiteral(envPtr,
			(nodePtr->lexeme == AND) ? "1" : "0", 1), envPtr);
		TclEmitForwardJump(envPtr, TCL_UNCONDITIONAL_JUMP,
			&jumpPtr->next->next->jump);
		TclFixupForwardJumpToHere(envPtr, &jumpPtr->next->jump, 127);
		if (TclFixupForwardJumpToHere(envPtr, &jumpPtr->jump, 127)) {
		    jumpPtr->next->next->jump.codeOffset += 3;
		}
		TclEmitPush(TclRegisterNewLiteral(envPtr,
			(nodePtr->lexeme == AND) ? "0" : "1", 1), envPtr);
		TclFixupForwardJumpToHere(envPtr, &jumpPtr->next->next->jump,
			127);
		convert = 0;
		envPtr->currStackDepth = jumpPtr->depth + 1;
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		freePtr = jumpPtr;
		jumpPtr = jumpPtr->next;
		TclStackFree(interp, freePtr);
		break;
	    default:
		TclEmitOpcode(instruction[nodePtr->lexeme], envPtr);
		convert = 0;
		break;
	    }
	    if (nodePtr == rootPtr) {
		/* We're done */

		return;
	    }
	    nodePtr = nodes + nodePtr->p.parent;
	    continue;
	}

	nodePtr->mark++;
	switch (next) {
	case OT_EMPTY:
	    numWords = 1;	/* No arguments, so just the command */
	    break;
	case OT_LITERAL: {
	    Tcl_Obj *const *litObjv = *litObjvPtr;
	    Tcl_Obj *literal = *litObjv;

	    if (optimize) {
		int length;
		const char *bytes = TclGetStringFromObj(literal, &length);
		int index = TclRegisterNewLiteral(envPtr, bytes, length);
		Tcl_Obj *objPtr = TclFetchLiteral(envPtr, index);
		
		if ((objPtr->typePtr == NULL) && (literal->typePtr != NULL)) {
		    /*
		     * Would like to do this:
		     *
		     * lePtr->objPtr = literal;
		     * Tcl_IncrRefCount(literal);
		     * Tcl_DecrRefCount(objPtr);
		     *
		     * However, the design of the "global" and "local"
		     * LiteralTable does not permit the value of lePtr->objPtr
		     * to change. So rather than replace lePtr->objPtr, we do
		     * surgery to transfer our desired intrep into it.
		     */

		    objPtr->typePtr = literal->typePtr;
		    objPtr->internalRep = literal->internalRep;
		    literal->typePtr = NULL;
		}
		TclEmitPush(index, envPtr);
	    } else {
		/*
		 * When optimize==0, we know the expression is a one-off and
		 * there's nothing to be gained from sharing literals when
		 * they won't live long, and the copies we have already have
		 * an appropriate intrep. In this case, skip literal
		 * registration that would enable sharing, and use the routine
		 * that preserves intreps.
		 */

		TclEmitPush(TclAddLiteralObj(envPtr, literal, NULL), envPtr);
	    }
	    (*litObjvPtr)++;
	    break;
	}
	case OT_TOKENS:
	    TclCompileTokens(interp, tokenPtr+1, tokenPtr->numComponents,
		    envPtr);
	    tokenPtr += tokenPtr->numComponents + 1;
	    break;
	default:
	    if (optimize && nodes[next].constant) {
		Tcl_InterpState save = Tcl_SaveInterpState(interp, TCL_OK);

		if (ExecConstantExprTree(interp, nodes, next, litObjvPtr)
			== TCL_OK) {
		    int index;
		    Tcl_Obj *objPtr = Tcl_GetObjResult(interp);

		    /*
		     * Don't generate a string rep, but if we have one
		     * already, then use it to share via the literal table.
		     */

		    if (objPtr->bytes) {
			Tcl_Obj *tableValue;

			index = TclRegisterNewLiteral(envPtr, objPtr->bytes,
				objPtr->length);
			tableValue = TclFetchLiteral(envPtr, index);
			if ((tableValue->typePtr == NULL) &&
				(objPtr->typePtr != NULL)) {
			    /*
			     * Same intrep surgery as for OT_LITERAL.
			     */

			    tableValue->typePtr = objPtr->typePtr;
			    tableValue->internalRep = objPtr->internalRep;
			    objPtr->typePtr = NULL;
			}
		    } else {
			index = TclAddLiteralObj(envPtr, objPtr, NULL);
		    }
		    TclEmitPush(index, envPtr);
		} else {
		    TclCompileSyntaxError(interp, envPtr);
		}
		Tcl_RestoreInterpState(interp, save);
		convert = 0;
	    } else {
		nodePtr = nodes + next;
	    }
	}
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclSingleOpCmd --
 *
 *	Implements the commands: ~, !, <<, >>, %, !=, ne, in, ni
 *	in the ::tcl::mathop namespace.  These commands have no
 *	extension to arbitrary arguments; they accept only exactly one
 *	or exactly two arguments as suitable for the operator.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

int
TclSingleOpCmd(
    ClientData clientData,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const objv[])
{
    TclOpCmdClientData *occdPtr = clientData;
    unsigned char lexeme;
    OpNode nodes[2];
    Tcl_Obj *const *litObjv = objv + 1;

    if (objc != 1 + occdPtr->i.numArgs) {
	Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected);
	return TCL_ERROR;
    }

    ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL);
    nodes[0].lexeme = START;
    nodes[0].mark = MARK_RIGHT;
    nodes[0].right = 1;
    nodes[1].lexeme = lexeme;
    if (objc == 2) {
	nodes[1].mark = MARK_RIGHT;
    } else {
	nodes[1].mark = MARK_LEFT;
	nodes[1].left = OT_LITERAL;
    }
    nodes[1].right = OT_LITERAL;
    nodes[1].p.parent = 0;

    return ExecConstantExprTree(interp, nodes, 0, &litObjv);
}

/*
 *----------------------------------------------------------------------
 *
 * TclSortingOpCmd --
 *	Implements the commands:
 *		<, <=, >, >=, ==, eq 
 *	in the ::tcl::mathop namespace. These commands are defined for
 *	arbitrary number of arguments by computing the AND of the base
 *	operator applied to all neighbor argument pairs.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

int
TclSortingOpCmd(
    ClientData clientData,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const objv[])
{
    int code = TCL_OK;

    if (objc < 3) {
	Tcl_SetObjResult(interp, Tcl_NewBooleanObj(1));
    } else {
	TclOpCmdClientData *occdPtr = clientData;
	Tcl_Obj **litObjv = TclStackAlloc(interp,
		2 * (objc-2) * sizeof(Tcl_Obj *));
	OpNode *nodes = TclStackAlloc(interp, 2 * (objc-2) * sizeof(OpNode));
	unsigned char lexeme;
	int i, lastAnd = 1;
	Tcl_Obj *const *litObjPtrPtr = litObjv;

	ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL);

	litObjv[0] = objv[1];
	nodes[0].lexeme = START;
	nodes[0].mark = MARK_RIGHT;
	for (i=2; i<objc-1; i++) {
	    litObjv[2*(i-1)-1] = objv[i];
	    nodes[2*(i-1)-1].lexeme = lexeme;
	    nodes[2*(i-1)-1].mark = MARK_LEFT;
	    nodes[2*(i-1)-1].left = OT_LITERAL;
	    nodes[2*(i-1)-1].right = OT_LITERAL;

	    litObjv[2*(i-1)] = objv[i];
	    nodes[2*(i-1)].lexeme = AND;
	    nodes[2*(i-1)].mark = MARK_LEFT;
	    nodes[2*(i-1)].left = lastAnd;
	    nodes[lastAnd].p.parent = 2*(i-1);

	    nodes[2*(i-1)].right = 2*(i-1)+1;
	    nodes[2*(i-1)+1].p.parent= 2*(i-1);

	    lastAnd = 2*(i-1);
	}
	litObjv[2*(objc-2)-1] = objv[objc-1];

	nodes[2*(objc-2)-1].lexeme = lexeme;
	nodes[2*(objc-2)-1].mark = MARK_LEFT;
	nodes[2*(objc-2)-1].left = OT_LITERAL;
	nodes[2*(objc-2)-1].right = OT_LITERAL;

	nodes[0].right = lastAnd;
	nodes[lastAnd].p.parent = 0;

	code = ExecConstantExprTree(interp, nodes, 0, &litObjPtrPtr);

	TclStackFree(interp, nodes);
	TclStackFree(interp, litObjv);
    }
    return code;
}

/*
 *----------------------------------------------------------------------
 *
 * TclVariadicOpCmd --
 *	Implements the commands: +, *, &, |, ^, **
 *	in the ::tcl::mathop namespace. These commands are defined for
 *	arbitrary number of arguments by repeatedly applying the base
 *	operator with suitable associative rules. When fewer than two
 *	arguments are provided, suitable identity values are returned.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

int
TclVariadicOpCmd(
    ClientData clientData,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const objv[])
{
    TclOpCmdClientData *occdPtr = clientData;
    unsigned char lexeme;
    int code;

    if (objc < 2) {
	Tcl_SetObjResult(interp, Tcl_NewIntObj(occdPtr->i.identity));
	return TCL_OK;
    }

    ParseLexeme(occdPtr->op, strlen(occdPtr->op), &lexeme, NULL);
    lexeme |= BINARY;

    if (objc == 2) {
	Tcl_Obj *litObjv[2];
	OpNode nodes[2];
	int decrMe = 0;
	Tcl_Obj *const *litObjPtrPtr = litObjv;

	if (lexeme == EXPON) {
	    litObjv[1] = Tcl_NewIntObj(occdPtr->i.identity);
	    Tcl_IncrRefCount(litObjv[1]);
	    decrMe = 1;
	    litObjv[0] = objv[1];
	    nodes[0].lexeme = START;
	    nodes[0].mark = MARK_RIGHT;
	    nodes[0].right = 1;
	    nodes[1].lexeme = lexeme;
	    nodes[1].mark = MARK_LEFT;
	    nodes[1].left = OT_LITERAL;
	    nodes[1].right = OT_LITERAL;
	    nodes[1].p.parent = 0;
	} else {
	    if (lexeme == DIVIDE) {
		litObjv[0] = Tcl_NewDoubleObj(1.0);
	    } else {
		litObjv[0] = Tcl_NewIntObj(occdPtr->i.identity);
	    }
	    Tcl_IncrRefCount(litObjv[0]);
	    litObjv[1] = objv[1];
	    nodes[0].lexeme = START;
	    nodes[0].mark = MARK_RIGHT;
	    nodes[0].right = 1;
	    nodes[1].lexeme = lexeme;
	    nodes[1].mark = MARK_LEFT;
	    nodes[1].left = OT_LITERAL;
	    nodes[1].right = OT_LITERAL;
	    nodes[1].p.parent = 0;
	}

	code = ExecConstantExprTree(interp, nodes, 0, &litObjPtrPtr);

	Tcl_DecrRefCount(litObjv[decrMe]);
	return code;
    } else {
	Tcl_Obj *const *litObjv = objv + 1;
	OpNode *nodes = TclStackAlloc(interp, (objc-1) * sizeof(OpNode));
	int i, lastOp = OT_LITERAL;

	nodes[0].lexeme = START;
	nodes[0].mark = MARK_RIGHT;
	if (lexeme == EXPON) {
	    for (i=objc-2; i>0; i--) {
		nodes[i].lexeme = lexeme;
		nodes[i].mark = MARK_LEFT;
		nodes[i].left = OT_LITERAL;
		nodes[i].right = lastOp;
		if (lastOp >= 0) {
		    nodes[lastOp].p.parent = i;
		}
		lastOp = i;
	    }
	} else {
	    for (i=1; i<objc-1; i++) {
		nodes[i].lexeme = lexeme;
		nodes[i].mark = MARK_LEFT;
		nodes[i].left = lastOp;
		if (lastOp >= 0) {
		    nodes[lastOp].p.parent = i;
		}
		nodes[i].right = OT_LITERAL;
		lastOp = i;
	    }
	}
	nodes[0].right = lastOp;
	nodes[lastOp].p.parent = 0;

	code = ExecConstantExprTree(interp, nodes, 0, &litObjv);

	TclStackFree(interp, nodes);
	return code;
    }
}

/*
 *----------------------------------------------------------------------
 *
 * TclNoIdentOpCmd --
 *	Implements the commands: -, /
 *	in the ::tcl::mathop namespace. These commands are defined for
 *	arbitrary non-zero number of arguments by repeatedly applying the base
 *	operator with suitable associative rules. When no arguments are
 *	provided, an error is raised.
 *
 * Results:
 *	A standard Tcl return code and result left in interp.
 *
 * Side effects:
 *	None.
 *
 *----------------------------------------------------------------------
 */

int
TclNoIdentOpCmd(
    ClientData clientData,
    Tcl_Interp *interp,
    int objc,
    Tcl_Obj *const objv[])
{
    TclOpCmdClientData *occdPtr = clientData;

    if (objc < 2) {
	Tcl_WrongNumArgs(interp, 1, objv, occdPtr->expected);
	return TCL_ERROR;
    }
    return TclVariadicOpCmd(clientData, interp, objc, objv);
}
/*
 * Local Variables:
 * mode: c
 * c-basic-offset: 4
 * fill-column: 78
 * End:
 */