1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
|
/*
*----------------------------------------------------------------------
*
* tclStrToD.c --
*
* This file contains a collection of procedures for managing conversions
* to/from floating-point in Tcl. They include TclParseNumber, which
* parses numbers from strings; TclDoubleDigits, which formats numbers
* into strings of digits, and procedures for interconversion among
* 'double' and 'mp_int' types.
*
* Copyright (c) 2005 by Kevin B. Kenny. All rights reserved.
*
* See the file "license.terms" for information on usage and redistribution of
* this file, and for a DISCLAIMER OF ALL WARRANTIES.
*----------------------------------------------------------------------
*/
#include "tclInt.h"
#include "tommath.h"
#include <math.h>
/*
* Define KILL_OCTAL to suppress interpretation of numbers with leading zero
* as octal. (Ceterum censeo: numeros octonarios delendos esse.)
*/
#undef KILL_OCTAL
/*
* This code supports (at least hypothetically), IBM, Cray, VAX and IEEE-754
* floating point; of these, only IEEE-754 can represent NaN. IEEE-754 can be
* uniquely determined by radix and by the widths of significand and exponent.
*/
#if (FLT_RADIX == 2) && (DBL_MANT_DIG == 53) && (DBL_MAX_EXP == 1024)
# define IEEE_FLOATING_POINT
#endif
/*
* gcc on x86 needs access to rounding controls, because of a questionable
* feature where it retains intermediate results as IEEE 'long double' values
* somewhat unpredictably. It is tempting to include fpu_control.h, but that
* file exists only on Linux; it is missing on Cygwin and MinGW. Most gcc-isms
* and ix86-isms are factored out here.
*/
#if defined(__GNUC__) && defined(__i386)
typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
#define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw))
#define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw))
# define FPU_IEEE_ROUNDING 0x027f
# define ADJUST_FPU_CONTROL_WORD
#endif
/* Sun ProC needs sunmath for rounding control on x86 like gcc above.
*
*
*/
#if defined(__sun) && defined(__i386) && !defined(__GNUC__)
#include <sunmath.h>
#endif
/*
* MIPS floating-point units need special settings in control registers
* to use gradual underflow as we expect. This fix is for the MIPSpro
* compiler.
*/
#if defined(__sgi) && defined(_COMPILER_VERSION)
#include <sys/fpu.h>
#endif
/*
* HP's PA_RISC architecture uses 7ff4000000000000 to represent a quiet NaN.
* Everyone else uses 7ff8000000000000. (Why, HP, why?)
*/
#ifdef __hppa
# define NAN_START 0x7ff4
# define NAN_MASK (((Tcl_WideUInt) 1) << 50)
#else
# define NAN_START 0x7ff8
# define NAN_MASK (((Tcl_WideUInt) 1) << 51)
#endif
/*
* Constants used by this file (most of which are only ever calculated at
* runtime).
*/
/* Magic constants */
#define LOG10_2 0.3010299956639812
#define TWO_OVER_3LOG10 0.28952965460216784
#define LOG10_3HALVES_PLUS_FUDGE 0.1760912590558
/* Definitions of the parts of an IEEE754-format floating point number */
#define SIGN_BIT 0x80000000
/* Mask for the sign bit in the first
* word of a double */
#define EXP_MASK 0x7ff00000
/* Mask for the exponent field in the
* first word of a double */
#define EXP_SHIFT 20
/* Shift count to make the exponent an
* integer */
#define HIDDEN_BIT (((Tcl_WideUInt) 0x00100000) << 32)
/* Hidden 1 bit for the significand */
#define HI_ORDER_SIG_MASK 0x000fffff
/* Mask for the high-order part of the
* significand in the first word of a
* double */
#define SIG_MASK (((Tcl_WideUInt) HI_ORDER_SIG_MASK << 32) \
| 0xffffffff)
/* Mask for the 52-bit significand. */
#define FP_PRECISION 53
/* Number of bits of significand plus the
* hidden bit */
#define EXPONENT_BIAS 0x3ff
/* Bias of the exponent 0 */
/* Derived quantities */
#define TEN_PMAX 22
/* floor(FP_PRECISION*log(2)/log(5)) */
#define QUICK_MAX 14
/* floor((FP_PRECISION-1)*log(2)/log(10)) - 1 */
#define BLETCH 0x10
/* Highest power of two that is greater than
* DBL_MAX_10_EXP, divided by 16 */
#define DIGIT_GROUP 8
/* floor(DIGIT_BIT*log(2)/log(10)) */
/* Union used to dismantle floating point numbers. */
typedef union Double {
struct {
#ifdef WORDS_BIGENDIAN
int word0;
int word1;
#else
int word1;
int word0;
#endif
} w;
double d;
Tcl_WideUInt q;
} Double;
static int maxpow10_wide; /* The powers of ten that can be represented
* exactly as wide integers. */
static Tcl_WideUInt *pow10_wide;
#define MAXPOW 22
static double pow10vals[MAXPOW+1];
/* The powers of ten that can be represented
* exactly as IEEE754 doubles. */
static int mmaxpow; /* Largest power of ten that can be
* represented exactly in a 'double'. */
static int log10_DIGIT_MAX; /* The number of decimal digits that fit in an
* mp_digit. */
static int log2FLT_RADIX; /* Logarithm of the floating point radix. */
static int mantBits; /* Number of bits in a double's significand */
static mp_int pow5[9]; /* Table of powers of 5**(2**n), up to
* 5**256 */
static double tiny = 0.0; /* The smallest representable double */
static int maxDigits; /* The maximum number of digits to the left of
* the decimal point of a double. */
static int minDigits; /* The maximum number of digits to the right
* of the decimal point in a double. */
static int mantDIGIT; /* Number of mp_digit's needed to hold the
* significand of a double. */
static const double pow_10_2_n[] = { /* Inexact higher powers of ten. */
1.0,
100.0,
10000.0,
1.0e+8,
1.0e+16,
1.0e+32,
1.0e+64,
1.0e+128,
1.0e+256
};
static int n770_fp; /* Flag is 1 on Nokia N770 floating point.
* Nokia's floating point has the words
* reversed: if big-endian is 7654 3210,
* and little-endian is 0123 4567,
* then Nokia's FP is 4567 0123;
* little-endian within the 32-bit words
* but big-endian between them. */
/* Table of powers of 5 that are small enough to fit in an mp_digit. */
static const mp_digit dpow5[13] = {
1, 5, 25, 125,
625, 3125, 15625, 78125,
390625, 1953125, 9765625, 48828125,
244140625
};
/* Table of powers: pow5_13[n] = 5**(13*2**(n+1)) */
static mp_int pow5_13[5]; /* Table of powers: 5**13, 5**26, 5**52,
* 5**104, 5**208 */
static const double tens[] = {
1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22
};
static const int itens [] = {
1,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000
};
static const Tcl_WideUInt wtens[] = {
1, 10, 100, 1000, 10000, 100000, 1000000,
(Tcl_WideUInt) 1000000*10, (Tcl_WideUInt) 1000000*100,
(Tcl_WideUInt) 1000000*1000, (Tcl_WideUInt) 1000000*10000,
(Tcl_WideUInt) 1000000*100000, (Tcl_WideUInt) 1000000*1000000,
(Tcl_WideUInt) 1000000*1000000*10, (Tcl_WideUInt) 1000000*1000000*100,
(Tcl_WideUInt) 1000000*1000000*1000,(Tcl_WideUInt) 1000000*1000000*10000
};
static const double bigtens[] = {
1e016, 1e032, 1e064, 1e128, 1e256
};
#define N_BIGTENS 5
static const int log2pow5[27] = {
01, 3, 5, 7, 10, 12, 14, 17, 19, 21,
24, 26, 28, 31, 33, 35, 38, 40, 42, 45,
47, 49, 52, 54, 56, 59, 61
};
#define N_LOG2POW5 27
static const Tcl_WideUInt wuipow5[27] = {
(Tcl_WideUInt) 1, /* 5**0 */
(Tcl_WideUInt) 5,
(Tcl_WideUInt) 25,
(Tcl_WideUInt) 125,
(Tcl_WideUInt) 625,
(Tcl_WideUInt) 3125, /* 5**5 */
(Tcl_WideUInt) 3125*5,
(Tcl_WideUInt) 3125*25,
(Tcl_WideUInt) 3125*125,
(Tcl_WideUInt) 3125*625,
(Tcl_WideUInt) 3125*3125, /* 5**10 */
(Tcl_WideUInt) 3125*3125*5,
(Tcl_WideUInt) 3125*3125*25,
(Tcl_WideUInt) 3125*3125*125,
(Tcl_WideUInt) 3125*3125*625,
(Tcl_WideUInt) 3125*3125*3125, /* 5**15 */
(Tcl_WideUInt) 3125*3125*3125*5,
(Tcl_WideUInt) 3125*3125*3125*25,
(Tcl_WideUInt) 3125*3125*3125*125,
(Tcl_WideUInt) 3125*3125*3125*625,
(Tcl_WideUInt) 3125*3125*3125*3125, /* 5**20 */
(Tcl_WideUInt) 3125*3125*3125*3125*5,
(Tcl_WideUInt) 3125*3125*3125*3125*25,
(Tcl_WideUInt) 3125*3125*3125*3125*125,
(Tcl_WideUInt) 3125*3125*3125*3125*625,
(Tcl_WideUInt) 3125*3125*3125*3125*3125, /* 5**25 */
(Tcl_WideUInt) 3125*3125*3125*3125*3125*5 /* 5**26 */
};
/*
* Static functions defined in this file.
*/
static int AccumulateDecimalDigit(unsigned, int,
Tcl_WideUInt *, mp_int *, int);
static double MakeHighPrecisionDouble(int signum,
mp_int *significand, int nSigDigs, int exponent);
static double MakeLowPrecisionDouble(int signum,
Tcl_WideUInt significand, int nSigDigs,
int exponent);
static double MakeNaN(int signum, Tcl_WideUInt tag);
static double RefineApproximation(double approx,
mp_int *exactSignificand, int exponent);
static void MulPow5(mp_int*, unsigned, mp_int*);
static int NormalizeRightward(Tcl_WideUInt*);
static int RequiredPrecision(Tcl_WideUInt);
static void DoubleToExpAndSig(double, Tcl_WideUInt*, int*, int*);
static void TakeAbsoluteValue(Double*, int*);
static char* FormatInfAndNaN(Double*, int*, char**);
static char* FormatZero(int*, char**);
static int ApproximateLog10(Tcl_WideUInt, int, int);
static int BetterLog10(double, int, int*);
static void ComputeScale(int, int, int*, int*, int*, int*);
static void SetPrecisionLimits(int, int, int*, int*, int*, int*);
static char* BumpUp(char*, char*, int*);
static int AdjustRange(double*, int);
static char* ShorteningQuickFormat(double, int, int, double,
char*, int*);
static char* StrictQuickFormat(double, int, int, double,
char*, int*);
static char* QuickConversion(double, int, int, int, int, int, int,
int*, char**);
static void CastOutPowersOf2(int*, int*, int*);
static char* ShorteningInt64Conversion(Double*, int, Tcl_WideUInt,
int, int, int, int, int, int, int, int, int,
int, int, int*, char**);
static char* StrictInt64Conversion(Double*, int, Tcl_WideUInt,
int, int, int, int, int, int,
int, int, int*, char**);
static int ShouldBankerRoundUpPowD(mp_int*, int, int);
static int ShouldBankerRoundUpToNextPowD(mp_int*, mp_int*,
int, int, int, mp_int*);
static char* ShorteningBignumConversionPowD(Double* dPtr,
int convType, Tcl_WideUInt bw, int b2, int b5,
int m2plus, int m2minus, int m5,
int sd, int k, int len,
int ilim, int ilim1, int* decpt,
char** endPtr);
static char* StrictBignumConversionPowD(Double* dPtr, int convType,
Tcl_WideUInt bw, int b2, int b5,
int sd, int k, int len,
int ilim, int ilim1, int* decpt,
char** endPtr);
static int ShouldBankerRoundUp(mp_int*, mp_int*, int);
static int ShouldBankerRoundUpToNext(mp_int*, mp_int*, mp_int*,
int, int, mp_int*);
static char* ShorteningBignumConversion(Double* dPtr, int convType,
Tcl_WideUInt bw, int b2,
int m2plus, int m2minus,
int s2, int s5, int k, int len,
int ilim, int ilim1, int* decpt,
char** endPtr);
static char* StrictBignumConversion(Double* dPtr, int convType,
Tcl_WideUInt bw, int b2,
int s2, int s5, int k, int len,
int ilim, int ilim1, int* decpt,
char** endPtr);
static double BignumToBiasedFrExp(mp_int *big, int *machexp);
static double Pow10TimesFrExp(int exponent, double fraction,
int *machexp);
static double SafeLdExp(double fraction, int exponent);
static Tcl_WideUInt Nokia770Twiddle(Tcl_WideUInt w);
/*
*----------------------------------------------------------------------
*
* TclParseNumber --
*
* Scans bytes, interpreted as characters in Tcl's internal encoding, and
* parses the longest prefix that is the string representation of a
* number in a format recognized by Tcl.
*
* The arguments bytes, numBytes, and objPtr are the inputs which
* determine the string to be parsed. If bytes is non-NULL, it points to
* the first byte to be scanned. If bytes is NULL, then objPtr must be
* non-NULL, and the string representation of objPtr will be scanned
* (generated first, if necessary). The numBytes argument determines the
* number of bytes to be scanned. If numBytes is negative, the first NUL
* byte encountered will terminate the scan. If numBytes is non-negative,
* then no more than numBytes bytes will be scanned.
*
* The argument flags is an input that controls the numeric formats
* recognized by the parser. The flag bits are:
*
* - TCL_PARSE_INTEGER_ONLY: accept only integer values; reject
* strings that denote floating point values (or accept only the
* leading portion of them that are integer values).
* - TCL_PARSE_SCAN_PREFIXES: ignore the prefixes 0b and 0o that are
* not part of the [scan] command's vocabulary. Use only in
* combination with TCL_PARSE_INTEGER_ONLY.
* - TCL_PARSE_OCTAL_ONLY: parse only in the octal format, whether
* or not a prefix is present that would lead to octal parsing.
* Use only in combination with TCL_PARSE_INTEGER_ONLY.
* - TCL_PARSE_HEXADECIMAL_ONLY: parse only in the hexadecimal format,
* whether or not a prefix is present that would lead to
* hexadecimal parsing. Use only in combination with
* TCL_PARSE_INTEGER_ONLY.
* - TCL_PARSE_DECIMAL_ONLY: parse only in the decimal format, no
* matter whether a 0 prefix would normally force a different
* base.
* - TCL_PARSE_NO_WHITESPACE: reject any leading/trailing whitespace
*
* The arguments interp and expected are inputs that control error
* message generation. If interp is NULL, no error message will be
* generated. If interp is non-NULL, then expected must also be non-NULL.
* When TCL_ERROR is returned, an error message will be left in the
* result of interp, and the expected argument will appear in the error
* message as the thing TclParseNumber expected, but failed to find in
* the string.
*
* The arguments objPtr and endPtrPtr as well as the return code are the
* outputs.
*
* When the parser cannot find any prefix of the string that matches a
* format it is looking for, TCL_ERROR is returned and an error message
* may be generated and returned as described above. The contents of
* objPtr will not be changed. If endPtrPtr is non-NULL, a pointer to the
* character in the string that terminated the scan will be written to
* *endPtrPtr.
*
* When the parser determines that the entire string matches a format it
* is looking for, TCL_OK is returned, and if objPtr is non-NULL, then
* the internal rep and Tcl_ObjType of objPtr are set to the "canonical"
* numeric value that matches the scanned string. If endPtrPtr is not
* NULL, a pointer to the end of the string will be written to *endPtrPtr
* (that is, either bytes+numBytes or a pointer to a terminating NUL
* byte).
*
* When the parser determines that a partial string matches a format it
* is looking for, the value of endPtrPtr determines what happens:
*
* - If endPtrPtr is NULL, then TCL_ERROR is returned, with error message
* generation as above.
*
* - If endPtrPtr is non-NULL, then TCL_OK is returned and objPtr
* internals are set as above. Also, a pointer to the first
* character following the parsed numeric string is written to
* *endPtrPtr.
*
* In some cases where the string being scanned is the string rep of
* objPtr, this routine can leave objPtr in an inconsistent state where
* its string rep and its internal rep do not agree. In these cases the
* internal rep will be in agreement with only some substring of the
* string rep. This might happen if the caller passes in a non-NULL bytes
* value that points somewhere into the string rep. It might happen if
* the caller passes in a numBytes value that limits the scan to only a
* prefix of the string rep. Or it might happen if a non-NULL value of
* endPtrPtr permits a TCL_OK return from only a partial string match. It
* is the responsibility of the caller to detect and correct such
* inconsistencies when they can and do arise.
*
* Results:
* Returns a standard Tcl result.
*
* Side effects:
* The string representaton of objPtr may be generated.
*
* The internal representation and Tcl_ObjType of objPtr may be changed.
* This may involve allocation and/or freeing of memory.
*
*----------------------------------------------------------------------
*/
int
TclParseNumber(
Tcl_Interp *interp, /* Used for error reporting. May be NULL. */
Tcl_Obj *objPtr, /* Object to receive the internal rep. */
const char *expected, /* Description of the type of number the
* caller expects to be able to parse
* ("integer", "boolean value", etc.). */
const char *bytes, /* Pointer to the start of the string to
* scan. */
int numBytes, /* Maximum number of bytes to scan, see
* above. */
const char **endPtrPtr, /* Place to store pointer to the character
* that terminated the scan. */
int flags) /* Flags governing the parse. */
{
enum State {
INITIAL, SIGNUM, ZERO, ZERO_X,
ZERO_O, ZERO_B, BINARY,
HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL,
LEADING_RADIX_POINT, FRACTION,
EXPONENT_START, EXPONENT_SIGNUM, EXPONENT,
sI, sIN, sINF, sINFI, sINFIN, sINFINI, sINFINIT, sINFINITY
#ifdef IEEE_FLOATING_POINT
, sN, sNA, sNAN, sNANPAREN, sNANHEX, sNANFINISH
#endif
} state = INITIAL;
enum State acceptState = INITIAL;
int signum = 0; /* Sign of the number being parsed */
Tcl_WideUInt significandWide = 0;
/* Significand of the number being parsed (if
* no overflow) */
mp_int significandBig; /* Significand of the number being parsed (if
* it overflows significandWide) */
int significandOverflow = 0;/* Flag==1 iff significandBig is used */
Tcl_WideUInt octalSignificandWide = 0;
/* Significand of an octal number; needed
* because we don't know whether a number with
* a leading zero is octal or decimal until
* we've scanned forward to a '.' or 'e' */
mp_int octalSignificandBig; /* Significand of octal number once
* octalSignificandWide overflows */
int octalSignificandOverflow = 0;
/* Flag==1 if octalSignificandBig is used */
int numSigDigs = 0; /* Number of significant digits in the decimal
* significand */
int numTrailZeros = 0; /* Number of trailing zeroes at the current
* point in the parse. */
int numDigitsAfterDp = 0; /* Number of digits scanned after the decimal
* point */
int exponentSignum = 0; /* Signum of the exponent of a floating point
* number */
long exponent = 0; /* Exponent of a floating point number */
const char *p; /* Pointer to next character to scan */
size_t len; /* Number of characters remaining after p */
const char *acceptPoint; /* Pointer to position after last character in
* an acceptable number */
size_t acceptLen; /* Number of characters following that
* point. */
int status = TCL_OK; /* Status to return to caller */
char d = 0; /* Last hexadecimal digit scanned; initialized
* to avoid a compiler warning. */
int shift = 0; /* Amount to shift when accumulating binary */
int explicitOctal = 0;
#define ALL_BITS (~(Tcl_WideUInt)0)
#define MOST_BITS (ALL_BITS >> 1)
/*
* Initialize bytes to start of the object's string rep if the caller
* didn't pass anything else.
*/
if (bytes == NULL) {
bytes = TclGetString(objPtr);
}
p = bytes;
len = numBytes;
acceptPoint = p;
acceptLen = len;
while (1) {
char c = len ? *p : '\0';
switch (state) {
case INITIAL:
/*
* Initial state. Acceptable characters are +, -, digits, period,
* I, N, and whitespace.
*/
if (TclIsSpaceProc(c)) {
if (flags & TCL_PARSE_NO_WHITESPACE) {
goto endgame;
}
break;
} else if (c == '+') {
state = SIGNUM;
break;
} else if (c == '-') {
signum = 1;
state = SIGNUM;
break;
}
/* FALLTHROUGH */
case SIGNUM:
/*
* Scanned a leading + or -. Acceptable characters are digits,
* period, I, and N.
*/
if (c == '0') {
if (flags & TCL_PARSE_DECIMAL_ONLY) {
state = DECIMAL;
} else {
state = ZERO;
}
break;
} else if (flags & TCL_PARSE_HEXADECIMAL_ONLY) {
goto zerox;
} else if (flags & TCL_PARSE_OCTAL_ONLY) {
goto zeroo;
} else if (isdigit(UCHAR(c))) {
significandWide = c - '0';
numSigDigs = 1;
state = DECIMAL;
break;
} else if (flags & TCL_PARSE_INTEGER_ONLY) {
goto endgame;
} else if (c == '.') {
state = LEADING_RADIX_POINT;
break;
} else if (c == 'I' || c == 'i') {
state = sI;
break;
#ifdef IEEE_FLOATING_POINT
} else if (c == 'N' || c == 'n') {
state = sN;
break;
#endif
}
goto endgame;
case ZERO:
/*
* Scanned a leading zero (perhaps with a + or -). Acceptable
* inputs are digits, period, X, b, and E. If 8 or 9 is encountered,
* the number can't be octal. This state and the OCTAL state
* differ only in whether they recognize 'X' and 'b'.
*/
acceptState = state;
acceptPoint = p;
acceptLen = len;
if (c == 'x' || c == 'X') {
state = ZERO_X;
break;
}
if (flags & TCL_PARSE_HEXADECIMAL_ONLY) {
goto zerox;
}
if (flags & TCL_PARSE_SCAN_PREFIXES) {
goto zeroo;
}
if (c == 'b' || c == 'B') {
state = ZERO_B;
break;
}
if (c == 'o' || c == 'O') {
explicitOctal = 1;
state = ZERO_O;
break;
}
#ifdef KILL_OCTAL
goto decimal;
#endif
/* FALLTHROUGH */
case OCTAL:
/*
* Scanned an optional + or -, followed by a string of octal
* digits. Acceptable inputs are more digits, period, or E. If 8
* or 9 is encountered, commit to floating point.
*/
acceptState = state;
acceptPoint = p;
acceptLen = len;
/* FALLTHROUGH */
case ZERO_O:
zeroo:
if (c == '0') {
numTrailZeros++;
state = OCTAL;
break;
} else if (c >= '1' && c <= '7') {
if (objPtr != NULL) {
shift = 3 * (numTrailZeros + 1);
significandOverflow = AccumulateDecimalDigit(
(unsigned)(c-'0'), numTrailZeros,
&significandWide, &significandBig,
significandOverflow);
if (!octalSignificandOverflow) {
/*
* Shifting by more bits than are in the value being
* shifted is at least de facto nonportable. Check for
* too large shifts first.
*/
if ((octalSignificandWide != 0)
&& (((size_t)shift >=
CHAR_BIT*sizeof(Tcl_WideUInt))
|| (octalSignificandWide >
(~(Tcl_WideUInt)0 >> shift)))) {
octalSignificandOverflow = 1;
TclBNInitBignumFromWideUInt(&octalSignificandBig,
octalSignificandWide);
}
}
if (!octalSignificandOverflow) {
octalSignificandWide =
(octalSignificandWide << shift) + (c - '0');
} else {
mp_mul_2d(&octalSignificandBig, shift,
&octalSignificandBig);
mp_add_d(&octalSignificandBig, (mp_digit)(c - '0'),
&octalSignificandBig);
}
}
if (numSigDigs != 0) {
numSigDigs += numTrailZeros+1;
} else {
numSigDigs = 1;
}
numTrailZeros = 0;
state = OCTAL;
break;
}
/* FALLTHROUGH */
case BAD_OCTAL:
if (explicitOctal) {
/*
* No forgiveness for bad digits in explicitly octal numbers.
*/
goto endgame;
}
if (flags & TCL_PARSE_INTEGER_ONLY) {
/*
* No seeking floating point when parsing only integer.
*/
goto endgame;
}
#ifndef KILL_OCTAL
/*
* Scanned a number with a leading zero that contains an 8, 9,
* radix point or E. This is an invalid octal number, but might
* still be floating point.
*/
if (c == '0') {
numTrailZeros++;
state = BAD_OCTAL;
break;
} else if (isdigit(UCHAR(c))) {
if (objPtr != NULL) {
significandOverflow = AccumulateDecimalDigit(
(unsigned)(c-'0'), numTrailZeros,
&significandWide, &significandBig,
significandOverflow);
}
if (numSigDigs != 0) {
numSigDigs += (numTrailZeros + 1);
} else {
numSigDigs = 1;
}
numTrailZeros = 0;
state = BAD_OCTAL;
break;
} else if (c == '.') {
state = FRACTION;
break;
} else if (c == 'E' || c == 'e') {
state = EXPONENT_START;
break;
}
#endif
goto endgame;
/*
* Scanned 0x. If state is HEXADECIMAL, scanned at least one
* character following the 0x. The only acceptable inputs are
* hexadecimal digits.
*/
case HEXADECIMAL:
acceptState = state;
acceptPoint = p;
acceptLen = len;
/* FALLTHROUGH */
case ZERO_X:
zerox:
if (c == '0') {
numTrailZeros++;
state = HEXADECIMAL;
break;
} else if (isdigit(UCHAR(c))) {
d = (c-'0');
} else if (c >= 'A' && c <= 'F') {
d = (c-'A'+10);
} else if (c >= 'a' && c <= 'f') {
d = (c-'a'+10);
} else {
goto endgame;
}
if (objPtr != NULL) {
shift = 4 * (numTrailZeros + 1);
if (!significandOverflow) {
/*
* Shifting by more bits than are in the value being
* shifted is at least de facto nonportable. Check for too
* large shifts first.
*/
if (significandWide != 0 &&
((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
significandWide > (~(Tcl_WideUInt)0 >> shift))) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig,
significandWide);
}
}
if (!significandOverflow) {
significandWide = (significandWide << shift) + d;
} else {
mp_mul_2d(&significandBig, shift, &significandBig);
mp_add_d(&significandBig, (mp_digit) d, &significandBig);
}
}
numTrailZeros = 0;
state = HEXADECIMAL;
break;
case BINARY:
acceptState = state;
acceptPoint = p;
acceptLen = len;
case ZERO_B:
if (c == '0') {
numTrailZeros++;
state = BINARY;
break;
} else if (c != '1') {
goto endgame;
}
if (objPtr != NULL) {
shift = numTrailZeros + 1;
if (!significandOverflow) {
/*
* Shifting by more bits than are in the value being
* shifted is at least de facto nonportable. Check for too
* large shifts first.
*/
if (significandWide != 0 &&
((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
significandWide > (~(Tcl_WideUInt)0 >> shift))) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig,
significandWide);
}
}
if (!significandOverflow) {
significandWide = (significandWide << shift) + 1;
} else {
mp_mul_2d(&significandBig, shift, &significandBig);
mp_add_d(&significandBig, (mp_digit) 1, &significandBig);
}
}
numTrailZeros = 0;
state = BINARY;
break;
case DECIMAL:
/*
* Scanned an optional + or - followed by a string of decimal
* digits.
*/
#ifdef KILL_OCTAL
decimal:
#endif
acceptState = state;
acceptPoint = p;
acceptLen = len;
if (c == '0') {
numTrailZeros++;
state = DECIMAL;
break;
} else if (isdigit(UCHAR(c))) {
if (objPtr != NULL) {
significandOverflow = AccumulateDecimalDigit(
(unsigned)(c - '0'), numTrailZeros,
&significandWide, &significandBig,
significandOverflow);
}
numSigDigs += numTrailZeros+1;
numTrailZeros = 0;
state = DECIMAL;
break;
} else if (flags & TCL_PARSE_INTEGER_ONLY) {
goto endgame;
} else if (c == '.') {
state = FRACTION;
break;
} else if (c == 'E' || c == 'e') {
state = EXPONENT_START;
break;
}
goto endgame;
/*
* Found a decimal point. If no digits have yet been scanned, E is
* not allowed; otherwise, it introduces the exponent. If at least
* one digit has been found, we have a possible complete number.
*/
case FRACTION:
acceptState = state;
acceptPoint = p;
acceptLen = len;
if (c == 'E' || c=='e') {
state = EXPONENT_START;
break;
}
/* FALLTHROUGH */
case LEADING_RADIX_POINT:
if (c == '0') {
numDigitsAfterDp++;
numTrailZeros++;
state = FRACTION;
break;
} else if (isdigit(UCHAR(c))) {
numDigitsAfterDp++;
if (objPtr != NULL) {
significandOverflow = AccumulateDecimalDigit(
(unsigned)(c-'0'), numTrailZeros,
&significandWide, &significandBig,
significandOverflow);
}
if (numSigDigs != 0) {
numSigDigs += numTrailZeros+1;
} else {
numSigDigs = 1;
}
numTrailZeros = 0;
state = FRACTION;
break;
}
goto endgame;
case EXPONENT_START:
/*
* Scanned the E at the start of an exponent. Make sure a legal
* character follows before using the C library strtol routine,
* which allows whitespace.
*/
if (c == '+') {
state = EXPONENT_SIGNUM;
break;
} else if (c == '-') {
exponentSignum = 1;
state = EXPONENT_SIGNUM;
break;
}
/* FALLTHROUGH */
case EXPONENT_SIGNUM:
/*
* Found the E at the start of the exponent, followed by a sign
* character.
*/
if (isdigit(UCHAR(c))) {
exponent = c - '0';
state = EXPONENT;
break;
}
goto endgame;
case EXPONENT:
/*
* Found an exponent with at least one digit. Accumulate it,
* making sure to hard-pin it to LONG_MAX on overflow.
*/
acceptState = state;
acceptPoint = p;
acceptLen = len;
if (isdigit(UCHAR(c))) {
if (exponent < (LONG_MAX - 9) / 10) {
exponent = 10 * exponent + (c - '0');
} else {
exponent = LONG_MAX;
}
state = EXPONENT;
break;
}
goto endgame;
/*
* Parse out INFINITY by simply spelling it out. INF is accepted
* as an abbreviation; other prefices are not.
*/
case sI:
if (c == 'n' || c == 'N') {
state = sIN;
break;
}
goto endgame;
case sIN:
if (c == 'f' || c == 'F') {
state = sINF;
break;
}
goto endgame;
case sINF:
acceptState = state;
acceptPoint = p;
acceptLen = len;
if (c == 'i' || c == 'I') {
state = sINFI;
break;
}
goto endgame;
case sINFI:
if (c == 'n' || c == 'N') {
state = sINFIN;
break;
}
goto endgame;
case sINFIN:
if (c == 'i' || c == 'I') {
state = sINFINI;
break;
}
goto endgame;
case sINFINI:
if (c == 't' || c == 'T') {
state = sINFINIT;
break;
}
goto endgame;
case sINFINIT:
if (c == 'y' || c == 'Y') {
state = sINFINITY;
break;
}
goto endgame;
/*
* Parse NaN's.
*/
#ifdef IEEE_FLOATING_POINT
case sN:
if (c == 'a' || c == 'A') {
state = sNA;
break;
}
goto endgame;
case sNA:
if (c == 'n' || c == 'N') {
state = sNAN;
break;
}
goto endgame;
case sNAN:
acceptState = state;
acceptPoint = p;
acceptLen = len;
if (c == '(') {
state = sNANPAREN;
break;
}
goto endgame;
/*
* Parse NaN(hexdigits)
*/
case sNANHEX:
if (c == ')') {
state = sNANFINISH;
break;
}
/* FALLTHROUGH */
case sNANPAREN:
if (TclIsSpaceProc(c)) {
break;
}
if (numSigDigs < 13) {
if (c >= '0' && c <= '9') {
d = c - '0';
} else if (c >= 'a' && c <= 'f') {
d = 10 + c - 'a';
} else if (c >= 'A' && c <= 'F') {
d = 10 + c - 'A';
}
significandWide = (significandWide << 4) + d;
state = sNANHEX;
break;
}
goto endgame;
case sNANFINISH:
#endif
case sINFINITY:
acceptState = state;
acceptPoint = p;
acceptLen = len;
goto endgame;
}
p++;
len--;
}
endgame:
if (acceptState == INITIAL) {
/*
* No numeric string at all found.
*/
status = TCL_ERROR;
if (endPtrPtr != NULL) {
*endPtrPtr = p;
}
} else {
/*
* Back up to the last accepting state in the lexer.
*/
p = acceptPoint;
len = acceptLen;
if (!(flags & TCL_PARSE_NO_WHITESPACE)) {
/*
* Accept trailing whitespace.
*/
while (len != 0 && TclIsSpaceProc(*p)) {
p++;
len--;
}
}
if (endPtrPtr == NULL) {
if ((len != 0) && ((numBytes > 0) || (*p != '\0'))) {
status = TCL_ERROR;
}
} else {
*endPtrPtr = p;
}
}
/*
* Generate and store the appropriate internal rep.
*/
if (status == TCL_OK && objPtr != NULL) {
TclFreeIntRep(objPtr);
switch (acceptState) {
case SIGNUM:
case BAD_OCTAL:
case ZERO_X:
case ZERO_O:
case ZERO_B:
case LEADING_RADIX_POINT:
case EXPONENT_START:
case EXPONENT_SIGNUM:
case sI:
case sIN:
case sINFI:
case sINFIN:
case sINFINI:
case sINFINIT:
#ifdef IEEE_FLOATING_POINT
case sN:
case sNA:
case sNANPAREN:
case sNANHEX:
Tcl_Panic("TclParseNumber: bad acceptState %d parsing '%s'",
acceptState, bytes);
#endif
case BINARY:
shift = numTrailZeros;
if (!significandOverflow && significandWide != 0 &&
((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
significandWide > (MOST_BITS + signum) >> shift)) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig, significandWide);
}
if (shift) {
if (!significandOverflow) {
significandWide <<= shift;
} else {
mp_mul_2d(&significandBig, shift, &significandBig);
}
}
goto returnInteger;
case HEXADECIMAL:
/*
* Returning a hex integer. Final scaling step.
*/
shift = 4 * numTrailZeros;
if (!significandOverflow && significandWide !=0 &&
((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
significandWide > (MOST_BITS + signum) >> shift)) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig, significandWide);
}
if (shift) {
if (!significandOverflow) {
significandWide <<= shift;
} else {
mp_mul_2d(&significandBig, shift, &significandBig);
}
}
goto returnInteger;
case OCTAL:
/*
* Returning an octal integer. Final scaling step
*/
shift = 3 * numTrailZeros;
if (!octalSignificandOverflow && octalSignificandWide != 0 &&
((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
octalSignificandWide > (MOST_BITS + signum) >> shift)) {
octalSignificandOverflow = 1;
TclBNInitBignumFromWideUInt(&octalSignificandBig,
octalSignificandWide);
}
if (shift) {
if (!octalSignificandOverflow) {
octalSignificandWide <<= shift;
} else {
mp_mul_2d(&octalSignificandBig, shift,
&octalSignificandBig);
}
}
if (!octalSignificandOverflow) {
if (octalSignificandWide >
(Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) {
#ifndef NO_WIDE_TYPE
if (octalSignificandWide <= (MOST_BITS + signum)) {
objPtr->typePtr = &tclWideIntType;
if (signum) {
objPtr->internalRep.wideValue =
- (Tcl_WideInt) octalSignificandWide;
} else {
objPtr->internalRep.wideValue =
(Tcl_WideInt) octalSignificandWide;
}
break;
}
#endif
TclBNInitBignumFromWideUInt(&octalSignificandBig,
octalSignificandWide);
octalSignificandOverflow = 1;
} else {
objPtr->typePtr = &tclIntType;
if (signum) {
objPtr->internalRep.longValue =
- (long) octalSignificandWide;
} else {
objPtr->internalRep.longValue =
(long) octalSignificandWide;
}
}
}
if (octalSignificandOverflow) {
if (signum) {
mp_neg(&octalSignificandBig, &octalSignificandBig);
}
TclSetBignumIntRep(objPtr, &octalSignificandBig);
}
break;
case ZERO:
case DECIMAL:
significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1,
&significandWide, &significandBig, significandOverflow);
if (!significandOverflow && (significandWide > MOST_BITS+signum)) {
significandOverflow = 1;
TclBNInitBignumFromWideUInt(&significandBig, significandWide);
}
returnInteger:
if (!significandOverflow) {
if (significandWide >
(Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) {
#ifndef NO_WIDE_TYPE
if (significandWide <= MOST_BITS+signum) {
objPtr->typePtr = &tclWideIntType;
if (signum) {
objPtr->internalRep.wideValue =
- (Tcl_WideInt) significandWide;
} else {
objPtr->internalRep.wideValue =
(Tcl_WideInt) significandWide;
}
break;
}
#endif
TclBNInitBignumFromWideUInt(&significandBig,
significandWide);
significandOverflow = 1;
} else {
objPtr->typePtr = &tclIntType;
if (signum) {
objPtr->internalRep.longValue =
- (long) significandWide;
} else {
objPtr->internalRep.longValue =
(long) significandWide;
}
}
}
if (significandOverflow) {
if (signum) {
mp_neg(&significandBig, &significandBig);
}
TclSetBignumIntRep(objPtr, &significandBig);
}
break;
case FRACTION:
case EXPONENT:
/*
* Here, we're parsing a floating-point number. 'significandWide'
* or 'significandBig' contains the exact significand, according
* to whether 'significandOverflow' is set. The desired floating
* point value is significand * 10**k, where
* k = numTrailZeros+exponent-numDigitsAfterDp.
*/
objPtr->typePtr = &tclDoubleType;
if (exponentSignum) {
exponent = - exponent;
}
if (!significandOverflow) {
objPtr->internalRep.doubleValue = MakeLowPrecisionDouble(
signum, significandWide, numSigDigs,
(numTrailZeros + exponent - numDigitsAfterDp));
} else {
objPtr->internalRep.doubleValue = MakeHighPrecisionDouble(
signum, &significandBig, numSigDigs,
(numTrailZeros + exponent - numDigitsAfterDp));
}
break;
case sINF:
case sINFINITY:
if (signum) {
objPtr->internalRep.doubleValue = -HUGE_VAL;
} else {
objPtr->internalRep.doubleValue = HUGE_VAL;
}
objPtr->typePtr = &tclDoubleType;
break;
#ifdef IEEE_FLOATING_POINT
case sNAN:
case sNANFINISH:
objPtr->internalRep.doubleValue = MakeNaN(signum, significandWide);
objPtr->typePtr = &tclDoubleType;
break;
#endif
case INITIAL:
/* This case only to silence compiler warning */
Tcl_Panic("TclParseNumber: state INITIAL can't happen here");
}
}
/*
* Format an error message when an invalid number is encountered.
*/
if (status != TCL_OK) {
if (interp != NULL) {
Tcl_Obj *msg;
TclNewLiteralStringObj(msg, "expected ");
Tcl_AppendToObj(msg, expected, -1);
Tcl_AppendToObj(msg, " but got \"", -1);
Tcl_AppendLimitedToObj(msg, bytes, numBytes, 50, "");
Tcl_AppendToObj(msg, "\"", -1);
if (state == BAD_OCTAL) {
Tcl_AppendToObj(msg, " (looks like invalid octal number)", -1);
}
Tcl_SetObjResult(interp, msg);
Tcl_SetErrorCode(interp, "TCL", "VALUE", "NUMBER", NULL);
}
}
/*
* Free memory.
*/
if (octalSignificandOverflow) {
mp_clear(&octalSignificandBig);
}
if (significandOverflow) {
mp_clear(&significandBig);
}
return status;
}
/*
*----------------------------------------------------------------------
*
* AccumulateDecimalDigit --
*
* Consume a decimal digit in a number being scanned.
*
* Results:
* Returns 1 if the number has overflowed to a bignum, 0 if it still fits
* in a wide integer.
*
* Side effects:
* Updates either the wide or bignum representation.
*
*----------------------------------------------------------------------
*/
static int
AccumulateDecimalDigit(
unsigned digit, /* Digit being scanned. */
int numZeros, /* Count of zero digits preceding the digit
* being scanned. */
Tcl_WideUInt *wideRepPtr, /* Representation of the partial number as a
* wide integer. */
mp_int *bignumRepPtr, /* Representation of the partial number as a
* bignum. */
int bignumFlag) /* Flag == 1 if the number overflowed previous
* to this digit. */
{
int i, n;
Tcl_WideUInt w;
/*
* Try wide multiplication first
*/
if (!bignumFlag) {
w = *wideRepPtr;
if (w == 0) {
/*
* There's no need to multiply if the multiplicand is zero.
*/
*wideRepPtr = digit;
return 0;
} else if (numZeros >= maxpow10_wide
|| w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) {
/*
* Wide multiplication will overflow. Expand the
* number to a bignum and fall through into the bignum case.
*/
TclBNInitBignumFromWideUInt(bignumRepPtr, w);
} else {
/*
* Wide multiplication.
*/
*wideRepPtr = w * pow10_wide[numZeros+1] + digit;
return 0;
}
}
/*
* Bignum multiplication.
*/
if (numZeros < log10_DIGIT_MAX) {
/*
* Up to about 8 zeros - single digit multiplication.
*/
mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[numZeros+1],
bignumRepPtr);
mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr);
} else {
/*
* More than single digit multiplication. Multiply by the appropriate
* small powers of 5, and then shift. Large strings of zeroes are
* eaten 256 at a time; this is less efficient than it could be, but
* seems implausible. We presume that DIGIT_BIT is at least 27. The
* first multiplication, by up to 10**7, is done with a one-DIGIT
* multiply (this presumes that DIGIT_BIT >= 24).
*/
n = numZeros + 1;
mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[n&0x7], bignumRepPtr);
for (i=3; i<=7; ++i) {
if (n & (1 << i)) {
mp_mul(bignumRepPtr, pow5+i, bignumRepPtr);
}
}
while (n >= 256) {
mp_mul(bignumRepPtr, pow5+8, bignumRepPtr);
n -= 256;
}
mp_mul_2d(bignumRepPtr, (int)(numZeros+1)&~0x7, bignumRepPtr);
mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr);
}
return 1;
}
/*
*----------------------------------------------------------------------
*
* MakeLowPrecisionDouble --
*
* Makes the double precision number, signum*significand*10**exponent.
*
* Results:
* Returns the constructed number.
*
* Common cases, where there are few enough digits that the number can be
* represented with at most roundoff, are handled specially here. If the
* number requires more than one rounded operation to compute, the code
* promotes the significand to a bignum and calls MakeHighPrecisionDouble
* to do it instead.
*
*----------------------------------------------------------------------
*/
static double
MakeLowPrecisionDouble(
int signum, /* 1 if the number is negative, 0 otherwise */
Tcl_WideUInt significand, /* Significand of the number */
int numSigDigs, /* Number of digits in the significand */
int exponent) /* Power of ten */
{
double retval; /* Value of the number */
mp_int significandBig; /* Significand expressed as a bignum */
/*
* With gcc on x86, the floating point rounding mode is double-extended.
* This causes the result of double-precision calculations to be rounded
* twice: once to the precision of double-extended and then again to the
* precision of double. Double-rounding introduces gratuitous errors of 1
* ulp, so we need to change rounding mode to 53-bits.
*/
#if defined(__GNUC__) && defined(__i386)
fpu_control_t roundTo53Bits = 0x027f;
fpu_control_t oldRoundingMode;
_FPU_GETCW(oldRoundingMode);
_FPU_SETCW(roundTo53Bits);
#endif
#if defined(__sun) && defined(__i386) && !defined(__GNUC__)
ieee_flags("set","precision","double",NULL);
#endif
/*
* Test for the easy cases.
*/
if (numSigDigs <= DBL_DIG) {
if (exponent >= 0) {
if (exponent <= mmaxpow) {
/*
* The significand is an exact integer, and so is
* 10**exponent. The product will be correct to within 1/2 ulp
* without special handling.
*/
retval = (double)(Tcl_WideInt)significand * pow10vals[exponent];
goto returnValue;
} else {
int diff = DBL_DIG - numSigDigs;
if (exponent-diff <= mmaxpow) {
/*
* 10**exponent is not an exact integer, but
* 10**(exponent-diff) is exact, and so is
* significand*10**diff, so we can still compute the value
* with only one roundoff.
*/
volatile double factor =
(double)(Tcl_WideInt)significand * pow10vals[diff];
retval = factor * pow10vals[exponent-diff];
goto returnValue;
}
}
} else {
if (exponent >= -mmaxpow) {
/*
* 10**-exponent is an exact integer, and so is the
* significand. Compute the result by one division, again with
* only one rounding.
*/
retval = (double)(Tcl_WideInt)significand / pow10vals[-exponent];
goto returnValue;
}
}
}
/*
* All the easy cases have failed. Promote ths significand to bignum and
* call MakeHighPrecisionDouble to do it the hard way.
*/
TclBNInitBignumFromWideUInt(&significandBig, significand);
retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs,
exponent);
mp_clear(&significandBig);
/*
* Come here to return the computed value.
*/
returnValue:
if (signum) {
retval = -retval;
}
/*
* On gcc on x86, restore the floating point mode word.
*/
#if defined(__GNUC__) && defined(__i386)
_FPU_SETCW(oldRoundingMode);
#endif
#if defined(__sun) && defined(__i386) && !defined(__GNUC__)
ieee_flags("clear","precision",NULL,NULL);
#endif
return retval;
}
/*
*----------------------------------------------------------------------
*
* MakeHighPrecisionDouble --
*
* Makes the double precision number, signum*significand*10**exponent.
*
* Results:
* Returns the constructed number.
*
* MakeHighPrecisionDouble is used when arbitrary-precision arithmetic is
* needed to ensure correct rounding. It begins by calculating a
* low-precision approximation to the desired number, and then refines
* the answer in high precision.
*
*----------------------------------------------------------------------
*/
static double
MakeHighPrecisionDouble(
int signum, /* 1=negative, 0=nonnegative */
mp_int *significand, /* Exact significand of the number */
int numSigDigs, /* Number of significant digits */
int exponent) /* Power of 10 by which to multiply */
{
double retval;
int machexp; /* Machine exponent of a power of 10 */
/*
* With gcc on x86, the floating point rounding mode is double-extended.
* This causes the result of double-precision calculations to be rounded
* twice: once to the precision of double-extended and then again to the
* precision of double. Double-rounding introduces gratuitous errors of 1
* ulp, so we need to change rounding mode to 53-bits.
*/
#if defined(__GNUC__) && defined(__i386)
fpu_control_t roundTo53Bits = 0x027f;
fpu_control_t oldRoundingMode;
_FPU_GETCW(oldRoundingMode);
_FPU_SETCW(roundTo53Bits);
#endif
#if defined(__sun) && defined(__i386) && !defined(__GNUC__)
ieee_flags("set","precision","double",NULL);
#endif
/*
* Quick checks for over/underflow.
*/
if (numSigDigs+exponent-1 > maxDigits) {
retval = HUGE_VAL;
goto returnValue;
}
if (numSigDigs+exponent-1 < minDigits) {
retval = 0;
goto returnValue;
}
/*
* Develop a first approximation to the significand. It is tempting simply
* to force bignum to double, but that will overflow on input numbers like
* 1.[string repeat 0 1000]1; while this is a not terribly likely
* scenario, we still have to deal with it. Use fraction and exponent
* instead. Once we have the significand, multiply by 10**exponent. Test
* for overflow. Convert back to a double, and test for underflow.
*/
retval = BignumToBiasedFrExp(significand, &machexp);
retval = Pow10TimesFrExp(exponent, retval, &machexp);
if (machexp > DBL_MAX_EXP*log2FLT_RADIX) {
retval = HUGE_VAL;
goto returnValue;
}
retval = SafeLdExp(retval, machexp);
if (tiny == 0.0) {
tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits);
}
if (retval < tiny) {
retval = tiny;
}
/*
* Refine the result twice. (The second refinement should be necessary
* only if the best approximation is a power of 2 minus 1/2 ulp).
*/
retval = RefineApproximation(retval, significand, exponent);
retval = RefineApproximation(retval, significand, exponent);
/*
* Come here to return the computed value.
*/
returnValue:
if (signum) {
retval = -retval;
}
/*
* On gcc on x86, restore the floating point mode word.
*/
#if defined(__GNUC__) && defined(__i386)
_FPU_SETCW(oldRoundingMode);
#endif
#if defined(__sun) && defined(__i386) && !defined(__GNUC__)
ieee_flags("clear","precision",NULL,NULL);
#endif
return retval;
}
/*
*----------------------------------------------------------------------
*
* MakeNaN --
*
* Makes a "Not a Number" given a set of bits to put in the tag bits
*
* Note that a signalling NaN is never returned.
*
*----------------------------------------------------------------------
*/
#ifdef IEEE_FLOATING_POINT
static double
MakeNaN(
int signum, /* Sign bit (1=negative, 0=nonnegative */
Tcl_WideUInt tags) /* Tag bits to put in the NaN */
{
union {
Tcl_WideUInt iv;
double dv;
} theNaN;
theNaN.iv = tags;
theNaN.iv &= (((Tcl_WideUInt) 1) << 51) - 1;
if (signum) {
theNaN.iv |= ((Tcl_WideUInt) (0x8000 | NAN_START)) << 48;
} else {
theNaN.iv |= ((Tcl_WideUInt) NAN_START) << 48;
}
if (n770_fp) {
theNaN.iv = Nokia770Twiddle(theNaN.iv);
}
return theNaN.dv;
}
#endif
/*
*----------------------------------------------------------------------
*
* RefineApproximation --
*
* Given a poor approximation to a floating point number, returns a
* better one. (The better approximation is correct to within 1 ulp, and
* is entirely correct if the poor approximation is correct to 1 ulp.)
*
* Results:
* Returns the improved result.
*
*----------------------------------------------------------------------
*/
static double
RefineApproximation(
double approxResult, /* Approximate result of conversion */
mp_int *exactSignificand, /* Integer significand */
int exponent) /* Power of 10 to multiply by significand */
{
int M2, M5; /* Powers of 2 and of 5 needed to put the
* decimal and binary numbers over a common
* denominator. */
double significand; /* Sigificand of the binary number */
int binExponent; /* Exponent of the binary number */
int msb; /* Most significant bit position of an
* intermediate result */
int nDigits; /* Number of mp_digit's in an intermediate
* result */
mp_int twoMv; /* Approx binary value expressed as an exact
* integer scaled by the multiplier 2M */
mp_int twoMd; /* Exact decimal value expressed as an exact
* integer scaled by the multiplier 2M */
int scale; /* Scale factor for M */
int multiplier; /* Power of two to scale M */
double num, den; /* Numerator and denominator of the correction
* term */
double quot; /* Correction term */
double minincr; /* Lower bound on the absolute value of the
* correction term. */
int i;
/*
* The first approximation is always low. If we find that it's HUGE_VAL,
* we're done.
*/
if (approxResult == HUGE_VAL) {
return approxResult;
}
/*
* Find a common denominator for the decimal and binary fractions. The
* common denominator will be 2**M2 + 5**M5.
*/
significand = frexp(approxResult, &binExponent);
i = mantBits - binExponent;
if (i < 0) {
M2 = 0;
} else {
M2 = i;
}
if (exponent > 0) {
M5 = 0;
} else {
M5 = -exponent;
if ((M5-1) > M2) {
M2 = M5-1;
}
}
/*
* The floating point number is significand*2**binExponent. Compute the
* large integer significand*2**(binExponent+M2+1). The 2**-1 bit of the
* significand (the most significant) corresponds to the
* 2**(binExponent+M2 + 1) bit of 2*M2*v. Allocate enough digits to hold
* that quantity, then convert the significand to a large integer, scaled
* appropriately. Then multiply by the appropriate power of 5.
*/
msb = binExponent + M2; /* 1008 */
nDigits = msb / DIGIT_BIT + 1;
mp_init_size(&twoMv, nDigits);
i = (msb % DIGIT_BIT + 1);
twoMv.used = nDigits;
significand *= SafeLdExp(1.0, i);
while (--nDigits >= 0) {
twoMv.dp[nDigits] = (mp_digit) significand;
significand -= (mp_digit) significand;
significand = SafeLdExp(significand, DIGIT_BIT);
}
for (i = 0; i <= 8; ++i) {
if (M5 & (1 << i)) {
mp_mul(&twoMv, pow5+i, &twoMv);
}
}
/*
* Collect the decimal significand as a high precision integer. The least
* significant bit corresponds to bit M2+exponent+1 so it will need to be
* shifted left by that many bits after being multiplied by
* 5**(M5+exponent).
*/
mp_init_copy(&twoMd, exactSignificand);
for (i=0; i<=8; ++i) {
if ((M5+exponent) & (1 << i)) {
mp_mul(&twoMd, pow5+i, &twoMd);
}
}
mp_mul_2d(&twoMd, M2+exponent+1, &twoMd);
mp_sub(&twoMd, &twoMv, &twoMd);
/*
* The result, 2Mv-2Md, needs to be divided by 2M to yield a correction
* term. Because 2M may well overflow a double, we need to scale the
* denominator by a factor of 2**binExponent-mantBits
*/
scale = binExponent - mantBits - 1;
mp_set(&twoMv, 1);
for (i=0; i<=8; ++i) {
if (M5 & (1 << i)) {
mp_mul(&twoMv, pow5+i, &twoMv);
}
}
multiplier = M2 + scale + 1;
if (multiplier > 0) {
mp_mul_2d(&twoMv, multiplier, &twoMv);
} else if (multiplier < 0) {
mp_div_2d(&twoMv, -multiplier, &twoMv, NULL);
}
/*
* If the result is less than unity, the error is less than 1/2 unit in
* the last place, so there's no correction to make.
*/
if (mp_cmp_mag(&twoMd, &twoMv) == MP_LT) {
mp_clear(&twoMd);
mp_clear(&twoMv);
return approxResult;
}
/*
* Convert the numerator and denominator of the corrector term accurately
* to floating point numbers.
*/
num = TclBignumToDouble(&twoMd);
den = TclBignumToDouble(&twoMv);
quot = SafeLdExp(num/den, scale);
minincr = SafeLdExp(1.0, binExponent-mantBits);
if (quot<0. && quot>-minincr) {
quot = -minincr;
} else if (quot>0. && quot<minincr) {
quot = minincr;
}
mp_clear(&twoMd);
mp_clear(&twoMv);
return approxResult + quot;
}
/*
*-----------------------------------------------------------------------------
*
* MultPow5 --
*
* Multiply a bignum by a power of 5.
*
* Side effects:
* Stores base*5**n in result
*
*-----------------------------------------------------------------------------
*/
inline static void
MulPow5(mp_int* base, /* Number to multiply */
unsigned n, /* Power of 5 to multiply by */
mp_int* result) /* Place to store the result */
{
mp_int* p = base;
int n13 = n / 13;
int r = n % 13;
if (r != 0) {
mp_mul_d(p, dpow5[r], result);
p = result;
}
r = 0;
while (n13 != 0) {
if (n13 & 1) {
mp_mul(p, pow5_13+r, result);
p = result;
}
n13 >>= 1;
++r;
}
if (p != result) {
mp_copy(p, result);
}
}
/*
*-----------------------------------------------------------------------------
*
* NormalizeRightward --
*
* Shifts a number rightward until it is odd (that is, until the
* least significant bit is nonzero.
*
* Results:
* Returns the number of bit positions by which the number was shifted.
*
* Side effects:
* Shifts the number in place; *wPtr is replaced by the shifted number.
*
*-----------------------------------------------------------------------------
*/
inline static int
NormalizeRightward(Tcl_WideUInt* wPtr)
/* INOUT: Number to shift */
{
int rv = 0;
Tcl_WideUInt w = *wPtr;
if (!(w & (Tcl_WideUInt) 0xffffffff)) {
w >>= 32; rv += 32;
}
if (!(w & (Tcl_WideUInt) 0xffff)) {
w >>= 16; rv += 16;
}
if (!(w & (Tcl_WideUInt) 0xff)) {
w >>= 8; rv += 8;
}
if (!(w & (Tcl_WideUInt) 0xf)) {
w >>= 4; rv += 4;
}
if (!(w & 0x3)) {
w >>= 2; rv += 2;
}
if (!(w & 0x1)) {
w >>= 1; ++rv;
}
*wPtr = w;
return rv;
}
/*
*-----------------------------------------------------------------------------0
*
* RequiredPrecision --
*
* Determines the number of bits needed to hold an intger.
*
* Results:
* Returns the position of the most significant bit (0 - 63).
* Returns 0 if the number is zero.
*
*----------------------------------------------------------------------------
*/
static int
RequiredPrecision(Tcl_WideUInt w)
/* Number to interrogate */
{
int rv;
unsigned long wi;
if (w & ((Tcl_WideUInt) 0xffffffff << 32)) {
wi = (unsigned long) (w >> 32); rv = 32;
} else {
wi = (unsigned long) w; rv = 0;
}
if (wi & 0xffff0000) {
wi >>= 16; rv += 16;
}
if (wi & 0xff00) {
wi >>= 8; rv += 8;
}
if (wi & 0xf0) {
wi >>= 4; rv += 4;
}
if (wi & 0xc) {
wi >>= 2; rv += 2;
}
if (wi & 0x2) {
wi >>= 1; ++rv;
}
if (wi & 0x1) {
++rv;
}
return rv;
}
/*
*-----------------------------------------------------------------------------
*
* DoubleToExpAndSig --
*
* Separates a 'double' into exponent and significand.
*
* Side effects:
* Stores the significand in '*significand' and the exponent in
* '*expon' so that dv == significand * 2.0**expon, and significand
* is odd. Also stores the position of the leftmost 1-bit in 'significand'
* in 'bits'.
*
*-----------------------------------------------------------------------------
*/
inline static void
DoubleToExpAndSig(double dv, /* Number to convert */
Tcl_WideUInt* significand,
/* OUTPUT: Significand of the number */
int* expon, /* OUTPUT: Exponent to multiply the number by */
int* bits) /* OUTPUT: Number of significant bits */
{
Double d; /* Number being converted */
Tcl_WideUInt z; /* Significand under construction */
int de; /* Exponent of the number */
int k; /* Bit count */
d.d = dv;
/* Extract exponent and significand */
de = (d.w.word0 & EXP_MASK) >> EXP_SHIFT;
z = d.q & SIG_MASK;
if (de != 0) {
z |= HIDDEN_BIT;
k = NormalizeRightward(&z);
*bits = FP_PRECISION - k;
*expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1);
} else {
k = NormalizeRightward(&z);
*expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1) + 1;
*bits = RequiredPrecision(z);
}
*significand = z;
}
/*
*-----------------------------------------------------------------------------
*
* TakeAbsoluteValue --
*
* Takes the absolute value of a 'double' including 0, Inf and NaN
*
* Side effects:
* The 'double' in *d is replaced with its absolute value. The
* signum is stored in 'sign': 1 for negative, 0 for nonnegative.
*
*-----------------------------------------------------------------------------
*/
inline static void
TakeAbsoluteValue(Double* d, /* Number to replace with absolute value */
int* sign) /* Place to put the signum */
{
if (d->w.word0 & SIGN_BIT) {
*sign = 1;
d->w.word0 &= ~SIGN_BIT;
} else {
*sign = 0;
}
}
/*
*-----------------------------------------------------------------------------
*
* FormatInfAndNaN --
*
* Bailout for formatting infinities and Not-A-Number.
*
* Results:
* Returns one of the strings 'Infinity' and 'NaN'.
*
* Side effects:
* Stores 9999 in *decpt, and sets '*endPtr' to designate the
* terminating NUL byte of the string if 'endPtr' is not NULL.
*
* The string returned must be freed by the caller using 'ckfree'.
*
*-----------------------------------------------------------------------------
*/
inline static char*
FormatInfAndNaN(Double* d, /* Exceptional number to format */
int* decpt, /* Decimal point to set to a bogus value */
char** endPtr) /* Pointer to the end of the formatted data */
{
char* retval;
*decpt = 9999;
if (!(d->w.word1) && !(d->w.word0 & HI_ORDER_SIG_MASK)) {
retval = ckalloc(9);
strcpy(retval, "Infinity");
if (endPtr) {
*endPtr = retval + 8;
}
} else {
retval = ckalloc(4);
strcpy(retval, "NaN");
if (endPtr) {
*endPtr = retval + 3;
}
}
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* FormatZero --
*
* Bailout to format a zero floating-point number.
*
* Results:
* Returns the constant string "0"
*
* Side effects:
* Stores 1 in '*decpt' and puts a pointer to the NUL byte terminating
* the string in '*endPtr' if 'endPtr' is not NULL.
*
*-----------------------------------------------------------------------------
*/
inline static char*
FormatZero(int* decpt, /* Location of the decimal point */
char** endPtr) /* Pointer to the end of the formatted data */
{
char* retval = ckalloc(2);
strcpy(retval, "0");
if (endPtr) {
*endPtr = retval+1;
}
*decpt = 0;
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* ApproximateLog10 --
*
* Computes a two-term Taylor series approximation to the common
* log of a number, and computes the number's binary log.
*
* Results:
* Return an approximation to floor(log10(bw*2**be)) that is either
* exact or 1 too high.
*
*-----------------------------------------------------------------------------
*/
inline static int
ApproximateLog10(Tcl_WideUInt bw,
/* Integer significand of the number */
int be, /* Power of two to scale bw */
int bbits) /* Number of bits of precision in bw */
{
int i; /* Log base 2 of the number */
int k; /* Floor(Log base 10 of the number) */
double ds; /* Mantissa of the number */
Double d2;
/*
* Compute i and d2 such that d = d2*2**i, and 1 < d2 < 2.
* Compute an approximation to log10(d),
* log10(d) ~ log10(2) * i + log10(1.5)
* + (significand-1.5)/(1.5 * log(10))
*/
d2.q = bw << (FP_PRECISION - bbits) & SIG_MASK;
d2.w.word0 |= (EXPONENT_BIAS) << EXP_SHIFT;
i = be + bbits - 1;
ds = (d2.d - 1.5) * TWO_OVER_3LOG10
+ LOG10_3HALVES_PLUS_FUDGE
+ LOG10_2 * i;
k = (int) ds;
if (k > ds) {
--k;
}
return k;
}
/*
*-----------------------------------------------------------------------------
*
* BetterLog10 --
*
* Improves the result of ApproximateLog10 for numbers in the range
* 1 .. 10**(TEN_PMAX)-1
*
* Side effects:
* Sets k_check to 0 if the new result is known to be exact, and to
* 1 if it may still be one too high.
*
* Results:
* Returns the improved approximation to log10(d)
*
*-----------------------------------------------------------------------------
*/
inline static int
BetterLog10(double d, /* Original number to format */
int k, /* Characteristic(Log base 10) of the number */
int* k_check) /* Flag == 1 if k is inexact */
{
/*
* Performance hack. If k is in the range 0..TEN_PMAX, then we can
* use a powers-of-ten table to check it.
*/
if (k >= 0 && k <= TEN_PMAX) {
if (d < tens[k]) {
k--;
}
*k_check = 0;
} else {
*k_check = 1;
}
return k;
}
/*
*-----------------------------------------------------------------------------
*
* ComputeScale --
*
* Prepares to format a floating-point number as decimal.
*
* Parameters:
* floor(log10*x) is k (or possibly k-1). floor(log2(x) is i.
* The significand of x requires bbits bits to represent.
*
* Results:
* Determines integers b2, b5, s2, s5 so that sig*2**b2*5**b5/2**s2*2**s5
* exactly represents the value of the x/10**k. This value will lie
* in the range [1 .. 10), and allows for computing successive digits
* by multiplying sig%10 by 10.
*
*-----------------------------------------------------------------------------
*/
inline static void
ComputeScale(int be, /* Exponent part of number: d = bw * 2**be */
int k, /* Characteristic of log10(number) */
int* b2, /* OUTPUT: Power of 2 in the numerator */
int* b5, /* OUTPUT: Power of 5 in the numerator */
int* s2, /* OUTPUT: Power of 2 in the denominator */
int* s5) /* OUTPUT: Power of 5 in the denominator */
{
/*
* Scale numerator and denominator powers of 2 so that the
* input binary number is the ratio of integers
*/
if (be <= 0) {
*b2 = 0;
*s2 = -be;
} else {
*b2 = be;
*s2 = 0;
}
/*
* Scale numerator and denominator so that the output decimal number
* is the ratio of integers
*/
if (k >= 0) {
*b5 = 0;
*s5 = k;
*s2 += k;
} else {
*b2 -= k;
*b5 = -k;
*s5 = 0;
}
}
/*
*-----------------------------------------------------------------------------
*
* SetPrecisionLimits --
*
* Determines how many digits of significance should be computed
* (and, hence, how much memory need be allocated) for formatting a
* floating point number.
*
* Given that 'k' is floor(log10(x)):
* if 'shortest' format is used, there will be at most 18 digits in the result.
* if 'F' format is used, there will be at most 'ndigits' + k + 1 digits
* if 'E' format is used, there will be exactly 'ndigits' digits.
*
* Side effects:
* Adjusts '*ndigitsPtr' to have a valid value.
* Stores the maximum memory allocation needed in *iPtr.
* Sets '*iLimPtr' to the limiting number of digits to convert if k
* has been guessed correctly, and '*iLim1Ptr' to the limiting number
* of digits to convert if k has been guessed to be one too high.
*
*-----------------------------------------------------------------------------
*/
inline static void
SetPrecisionLimits(int convType,
/* Type of conversion:
* TCL_DD_SHORTEST
* TCL_DD_STEELE0
* TCL_DD_E_FMT
* TCL_DD_F_FMT */
int k, /* Floor(log10(number to convert)) */
int* ndigitsPtr,
/* IN/OUT: Number of digits requested
* (Will be adjusted if needed) */
int* iPtr, /* OUT: Maximum number of digits
* to return */
int *iLimPtr,/* OUT: Number of digits of significance
* if the bignum method is used.*/
int *iLim1Ptr)
/* OUT: Number of digits of significance
* if the quick method is used. */
{
switch(convType) {
case TCL_DD_SHORTEST0:
case TCL_DD_STEELE0:
*iLimPtr = *iLim1Ptr = -1;
*iPtr = 18;
*ndigitsPtr = 0;
break;
case TCL_DD_E_FORMAT:
if (*ndigitsPtr <= 0) {
*ndigitsPtr = 1;
}
*iLimPtr = *iLim1Ptr = *iPtr = *ndigitsPtr;
break;
case TCL_DD_F_FORMAT:
*iPtr = *ndigitsPtr + k + 1;
*iLimPtr = *iPtr;
*iLim1Ptr = *iPtr - 1;
if (*iPtr <= 0) {
*iPtr = 1;
}
break;
default:
*iPtr = -1;
*iLimPtr = -1;
*iLim1Ptr = -1;
Tcl_Panic("impossible conversion type in TclDoubleDigits");
}
}
/*
*-----------------------------------------------------------------------------
*
* BumpUp --
*
* Increases a string of digits ending in a series of nines to
* designate the next higher number. xxxxb9999... -> xxxx(b+1)0000...
*
* Results:
* Returns a pointer to the end of the adjusted string.
*
* Side effects:
* In the case that the string consists solely of '999999', sets it
* to "1" and moves the decimal point (*kPtr) one place to the right.
*
*-----------------------------------------------------------------------------
*/
inline static char*
BumpUp(char* s, /* Cursor pointing one past the end of the
* string */
char* retval, /* Start of the string of digits */
int* kPtr) /* Position of the decimal point */
{
while (*--s == '9') {
if (s == retval) {
++(*kPtr);
*s = '1';
return s+1;
}
}
++*s;
++s;
return s;
}
/*
*-----------------------------------------------------------------------------
*
* AdjustRange --
*
* Rescales a 'double' in preparation for formatting it using the
* 'quick' double-to-string method.
*
* Results:
* Returns the precision that has been lost in the prescaling as
* a count of units in the least significant place.
*
*-----------------------------------------------------------------------------
*/
inline static int
AdjustRange(double* dPtr, /* INOUT: Number to adjust */
int k) /* IN: floor(log10(d)) */
{
int ieps; /* Number of roundoff errors that have
* accumulated */
double d = *dPtr; /* Number to adjust */
double ds;
int i, j, j1;
ieps = 2;
if (k > 0) {
/*
* The number must be reduced to bring it into range.
*/
ds = tens[k & 0xf];
j = k >> 4;
if (j & BLETCH) {
j &= (BLETCH-1);
d /= bigtens[N_BIGTENS - 1];
ieps++;
}
i = 0;
for (; j != 0; j>>=1) {
if (j & 1) {
ds *= bigtens[i];
++ieps;
}
++i;
}
d /= ds;
} else if ((j1 = -k) != 0) {
/*
* The number must be increased to bring it into range
*/
d *= tens[j1 & 0xf];
i = 0;
for (j = j1>>4; j; j>>=1) {
if (j & 1) {
ieps++;
d *= bigtens[i];
}
++i;
}
}
*dPtr = d;
return ieps;
}
/*
*-----------------------------------------------------------------------------
*
* ShorteningQuickFormat --
*
* Returns a 'quick' format of a double precision number to a string
* of digits, preferring a shorter string of digits if the shorter
* string is still within 1/2 ulp of the number.
*
* Results:
* Returns the string of digits. Returns NULL if the 'quick' method
* fails and the bignum method must be used.
*
* Side effects:
* Stores the position of the decimal point at '*kPtr'.
*
*-----------------------------------------------------------------------------
*/
inline static char*
ShorteningQuickFormat(double d, /* Number to convert */
int k, /* floor(log10(d)) */
int ilim, /* Number of significant digits to return */
double eps,
/* Estimated roundoff error */
char* retval,
/* Buffer to receive the digit string */
int* kPtr)
/* Pointer to stash the position of
* the decimal point */
{
char* s = retval; /* Cursor in the return value */
int digit; /* Current digit */
int i;
eps = 0.5 / tens[ilim-1] - eps;
i = 0;
for (;;) {
/* Convert a digit */
digit = (int) d;
d -= digit;
*s++ = '0' + digit;
/*
* Truncate the conversion if the string of digits is within
* 1/2 ulp of the actual value.
*/
if (d < eps) {
*kPtr = k;
return s;
}
if ((1. - d) < eps) {
*kPtr = k;
return BumpUp(s, retval, kPtr);
}
/*
* Bail out if the conversion fails to converge to a sufficiently
* precise value
*/
if (++i >= ilim) {
return NULL;
}
/*
* Bring the next digit to the integer part.
*/
eps *= 10;
d *= 10.0;
}
}
/*
*-----------------------------------------------------------------------------
*
* StrictQuickFormat --
*
* Convert a double precision number of a string of a precise number
* of digits, using the 'quick' double precision method.
*
* Results:
* Returns the digit string, or NULL if the bignum method must be
* used to do the formatting.
*
* Side effects:
* Stores the position of the decimal point in '*kPtr'.
*
*-----------------------------------------------------------------------------
*/
inline static char*
StrictQuickFormat(double d, /* Number to convert */
int k, /* floor(log10(d)) */
int ilim, /* Number of significant digits to return */
double eps, /* Estimated roundoff error */
char* retval, /* Start of the digit string */
int* kPtr) /* Pointer to stash the position of
* the decimal point */
{
char* s = retval; /* Cursor in the return value */
int digit; /* Current digit of the answer */
int i;
eps *= tens[ilim-1];
i = 1;
for (;;) {
/* Extract a digit */
digit = (int) d;
d -= digit;
if (d == 0.0) {
ilim = i;
}
*s++ = '0' + digit;
/*
* When the given digit count is reached, handle trailing strings
* of 0 and 9.
*/
if (i == ilim) {
if (d > 0.5 + eps) {
*kPtr = k;
return BumpUp(s, retval, kPtr);
} else if (d < 0.5 - eps) {
while (*--s == '0') {
/* do nothing */
}
s++;
*kPtr = k;
return s;
} else {
return NULL;
}
}
/* Advance to the next digit */
++i;
d *= 10.0;
}
}
/*
*-----------------------------------------------------------------------------
*
* QuickConversion --
*
* Converts a floating point number the 'quick' way, when only a limited
* number of digits is required and floating point arithmetic can
* therefore be used for the intermediate results.
*
* Results:
* Returns the converted string, or NULL if the bignum method must
* be used.
*
*-----------------------------------------------------------------------------
*/
inline static char*
QuickConversion(double e, /* Number to format */
int k, /* floor(log10(d)), approximately */
int k_check, /* 0 if k is exact, 1 if it may be too high */
int flags, /* Flags passed to dtoa:
* TCL_DD_SHORTEN_FLAG */
int len, /* Length of the return value */
int ilim, /* Number of digits to store */
int ilim1, /* Number of digits to store if we
* musguessed k */
int* decpt, /* OUTPUT: Location of the decimal point */
char** endPtr) /* OUTPUT: Pointer to the terminal null byte */
{
int ieps; /* Number of 1-ulp roundoff errors that have
* accumulated in the calculation*/
Double eps; /* Estimated roundoff error */
char* retval; /* Returned string */
char* end; /* Pointer to the terminal null byte in the
* returned string */
volatile double d; /* Workaround for a bug in mingw gcc 3.4.5 */
/*
* Bring d into the range [1 .. 10)
*/
ieps = AdjustRange(&e, k);
d = e;
/*
* If the guessed value of k didn't get d into range, adjust it
* by one. If that leaves us outside the range in which quick format
* is accurate, bail out.
*/
if (k_check && d < 1. && ilim > 0) {
if (ilim1 < 0) {
return NULL;
}
ilim = ilim1;
--k;
d *= 10.0;
++ieps;
}
/*
* Compute estimated roundoff error
*/
eps.d = ieps * d + 7.;
eps.w.word0 -= (FP_PRECISION-1) << EXP_SHIFT;
/*
* Handle the peculiar case where the result has no significant
* digits.
*/
retval = ckalloc(len + 1);
if (ilim == 0) {
d -= 5.;
if (d > eps.d) {
*retval = '1';
*decpt = k;
return retval;
} else if (d < -eps.d) {
*decpt = k;
return retval;
} else {
ckfree(retval);
return NULL;
}
}
/* Format the digit string */
if (flags & TCL_DD_SHORTEN_FLAG) {
end = ShorteningQuickFormat(d, k, ilim, eps.d, retval, decpt);
} else {
end = StrictQuickFormat(d, k, ilim, eps.d, retval, decpt);
}
if (end == NULL) {
ckfree(retval);
return NULL;
}
*end = '\0';
if (endPtr != NULL) {
*endPtr = end;
}
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* CastOutPowersOf2 --
*
* Adjust the factors 'b2', 'm2', and 's2' to cast out common powers
* of 2 from numerator and denominator in preparation for the 'bignum'
* method of floating point conversion.
*
*-----------------------------------------------------------------------------
*/
inline static void
CastOutPowersOf2(int* b2, /* Power of 2 to multiply the significand */
int* m2, /* Power of 2 to multiply 1/2 ulp */
int* s2) /* Power of 2 to multiply the common
* denominator */
{
int i;
if (*m2 > 0 && *s2 > 0) { /* Find the smallest power of 2 in the
* numerator */
if (*m2 < *s2) { /* Find the lowest common denominatorr */
i = *m2;
} else {
i = *s2;
}
*b2 -= i; /* Reduce to lowest terms */
*m2 -= i;
*s2 -= i;
}
}
/*
*-----------------------------------------------------------------------------
*
* ShorteningInt64Conversion --
*
* Converts a double-precision number to the shortest string of
* digits that reconverts exactly to the given number, or to
* 'ilim' digits if that will yield a shorter result. The numerator and
* denominator in David Gay's conversion algorithm are known to fit
* in Tcl_WideUInt, giving considerably faster arithmetic than mp_int's.
*
* Results:
* Returns the string of significant decimal digits, in newly
* allocated memory
*
* Side effects:
* Stores the location of the decimal point in '*decpt' and the
* location of the terminal null byte in '*endPtr'.
*
*-----------------------------------------------------------------------------
*/
inline static char*
ShorteningInt64Conversion(Double* dPtr,
/* Original number to convert */
int convType,
/* Type of conversion (shortest, Steele,
E format, F format) */
Tcl_WideUInt bw,
/* Integer significand */
int b2, int b5,
/* Scale factor for the significand
* in the numerator */
int m2plus, int m2minus, int m5,
/* Scale factors for 1/2 ulp in
* the numerator (will be different if
* bw == 1 */
int s2, int s5,
/* Scale factors for the denominator */
int k,
/* Number of output digits before the decimal
* point */
int len,
/* Number of digits to allocate */
int ilim,
/* Number of digits to convert if b >= s */
int ilim1,
/* Number of digits to convert if b < s */
int* decpt,
/* OUTPUT: Position of the decimal point */
char** endPtr)
/* OUTPUT: Position of the terminal '\0'
* at the end of the returned string */
{
char* retval = ckalloc(len + 1);
/* Output buffer */
Tcl_WideUInt b = (bw * wuipow5[b5]) << b2;
/* Numerator of the fraction being converted */
Tcl_WideUInt S = wuipow5[s5] << s2;
/* Denominator of the fraction being
* converted */
Tcl_WideUInt mplus, mminus; /* Ranges for testing whether the result
* is within roundoff of being exact */
int digit; /* Current output digit */
char* s = retval; /* Cursor in the output buffer */
int i; /* Current position in the output buffer */
/* Adjust if the logarithm was guessed wrong */
if (b < S) {
b = 10 * b;
++m2plus; ++m2minus; ++m5;
ilim = ilim1;
--k;
}
/* Compute roundoff ranges */
mplus = wuipow5[m5] << m2plus;
mminus = wuipow5[m5] << m2minus;
/* Loop through the digits */
i = 1;
for (;;) {
digit = (int)(b / S);
if (digit > 10) {
Tcl_Panic("wrong digit!");
}
b = b % S;
/*
* Does the current digit put us on the low side of the exact value
* but within within roundoff of being exact?
*/
if (b < mplus
|| (b == mplus
&& convType != TCL_DD_STEELE0
&& (dPtr->w.word1 & 1) == 0)) {
/*
* Make sure we shouldn't be rounding *up* instead,
* in case the next number above is closer
*/
if (2 * b > S
|| (2 * b == S
&& (digit & 1) != 0)) {
++digit;
if (digit == 10) {
*s++ = '9';
s = BumpUp(s, retval, &k);
break;
}
}
/* Stash the current digit */
*s++ = '0' + digit;
break;
}
/*
* Does one plus the current digit put us within roundoff of the
* number?
*/
if (b > S - mminus
|| (b == S - mminus
&& convType != TCL_DD_STEELE0
&& (dPtr->w.word1 & 1) == 0)) {
if (digit == 9) {
*s++ = '9';
s = BumpUp(s, retval, &k);
break;
}
++digit;
*s++ = '0' + digit;
break;
}
/*
* Have we converted all the requested digits?
*/
*s++ = '0' + digit;
if (i == ilim) {
if (2*b > S
|| (2*b == S && (digit & 1) != 0)) {
s = BumpUp(s, retval, &k);
}
break;
}
/* Advance to the next digit */
b = 10 * b;
mplus = 10 * mplus;
mminus = 10 * mminus;
++i;
}
/*
* Endgame - store the location of the decimal point and the end of the
* string.
*/
*s = '\0';
*decpt = k;
if (endPtr) {
*endPtr = s;
}
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* StrictInt64Conversion --
*
* Converts a double-precision number to a fixed-length string of
* 'ilim' digits that reconverts exactly to the given number.
* ('ilim' should be replaced with 'ilim1' in the case where
* log10(d) has been overestimated). The numerator and
* denominator in David Gay's conversion algorithm are known to fit
* in Tcl_WideUInt, giving considerably faster arithmetic than mp_int's.
*
* Results:
* Returns the string of significant decimal digits, in newly
* allocated memory
*
* Side effects:
* Stores the location of the decimal point in '*decpt' and the
* location of the terminal null byte in '*endPtr'.
*
*-----------------------------------------------------------------------------
*/
inline static char*
StrictInt64Conversion(Double* dPtr,
/* Original number to convert */
int convType,
/* Type of conversion (shortest, Steele,
E format, F format) */
Tcl_WideUInt bw,
/* Integer significand */
int b2, int b5,
/* Scale factor for the significand
* in the numerator */
int s2, int s5,
/* Scale factors for the denominator */
int k,
/* Number of output digits before the decimal
* point */
int len,
/* Number of digits to allocate */
int ilim,
/* Number of digits to convert if b >= s */
int ilim1,
/* Number of digits to convert if b < s */
int* decpt,
/* OUTPUT: Position of the decimal point */
char** endPtr)
/* OUTPUT: Position of the terminal '\0'
* at the end of the returned string */
{
char* retval = ckalloc(len + 1);
/* Output buffer */
Tcl_WideUInt b = (bw * wuipow5[b5]) << b2;
/* Numerator of the fraction being converted */
Tcl_WideUInt S = wuipow5[s5] << s2;
/* Denominator of the fraction being
* converted */
int digit; /* Current output digit */
char* s = retval; /* Cursor in the output buffer */
int i; /* Current position in the output buffer */
/* Adjust if the logarithm was guessed wrong */
if (b < S) {
b = 10 * b;
ilim = ilim1;
--k;
}
/* Loop through the digits */
i = 1;
for (;;) {
digit = (int)(b / S);
if (digit > 10) {
Tcl_Panic("wrong digit!");
}
b = b % S;
/*
* Have we converted all the requested digits?
*/
*s++ = '0' + digit;
if (i == ilim) {
if (2*b > S
|| (2*b == S && (digit & 1) != 0)) {
s = BumpUp(s, retval, &k);
} else {
while (*--s == '0') {
/* do nothing */
}
++s;
}
break;
}
/* Advance to the next digit */
b = 10 * b;
++i;
}
/*
* Endgame - store the location of the decimal point and the end of the
* string.
*/
*s = '\0';
*decpt = k;
if (endPtr) {
*endPtr = s;
}
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* ShouldBankerRoundUpPowD --
*
* Test whether bankers' rounding should round a digit up. Assumption
* is made that the denominator of the fraction being tested is
* a power of 2**DIGIT_BIT.
*
* Results:
* Returns 1 iff the fraction is more than 1/2, or if the fraction
* is exactly 1/2 and the digit is odd.
*
*-----------------------------------------------------------------------------
*/
inline static int
ShouldBankerRoundUpPowD(mp_int* b,
/* Numerator of the fraction */
int sd, /* Denominator is 2**(sd*DIGIT_BIT) */
int isodd)
/* 1 if the digit is odd, 0 if even */
{
int i;
const static mp_digit topbit = (1<<(DIGIT_BIT-1));
if (b->used < sd || (b->dp[sd-1] & topbit) == 0) {
return 0;
}
if (b->dp[sd-1] != topbit) {
return 1;
}
for (i = sd-2; i >= 0; --i) {
if (b->dp[i] != 0) {
return 1;
}
}
return isodd;
}
/*
*-----------------------------------------------------------------------------
*
* ShouldBankerRoundUpToNextPowD --
*
* Tests whether bankers' rounding will round down in the
* "denominator is a power of 2**MP_DIGIT" case.
*
* Results:
* Returns 1 if the rounding will be performed - which increases the
* digit by one - and 0 otherwise.
*
*-----------------------------------------------------------------------------
*/
inline static int
ShouldBankerRoundUpToNextPowD(mp_int* b,
/* Numerator of the fraction */
mp_int* m,
/* Numerator of the rounding tolerance */
int sd,
/* Common denominator is 2**(sd*DIGIT_BIT) */
int convType,
/* Conversion type: STEELE defeats
* round-to-even (Not sure why one wants to
* do this; I copied it from Gay) FIXME */
int isodd,
/* 1 if the integer significand is odd */
mp_int* temp)
/* Work area for the calculation */
{
int i;
/*
* Compare B and S-m -- which is the same as comparing B+m and S --
* which we do by computing b+m and doing a bitwhack compare against
* 2**(DIGIT_BIT*sd)
*/
mp_add(b, m, temp);
if (temp->used <= sd) { /* too few digits to be > S */
return 0;
}
if (temp->used > sd+1 || temp->dp[sd] > 1) {
/* >= 2s */
return 1;
}
for (i = sd-1; i >= 0; --i) {
/* check for ==s */
if (temp->dp[i] != 0) { /* > s */
return 1;
}
}
if (convType == TCL_DD_STEELE0) {
/* biased rounding */
return 0;
}
return isodd;
}
/*
*-----------------------------------------------------------------------------
*
* ShorteningBignumConversionPowD --
*
* Converts a double-precision number to the shortest string of
* digits that reconverts exactly to the given number, or to
* 'ilim' digits if that will yield a shorter result. The denominator
* in David Gay's conversion algorithm is known to be a power of
* 2**DIGIT_BIT, and hence the division in the main loop may be replaced
* by a digit shift and mask.
*
* Results:
* Returns the string of significant decimal digits, in newly
* allocated memory
*
* Side effects:
* Stores the location of the decimal point in '*decpt' and the
* location of the terminal null byte in '*endPtr'.
*
*-----------------------------------------------------------------------------
*/
inline static char*
ShorteningBignumConversionPowD(Double* dPtr,
/* Original number to convert */
int convType,
/* Type of conversion (shortest, Steele,
E format, F format) */
Tcl_WideUInt bw,
/* Integer significand */
int b2, int b5,
/* Scale factor for the significand
* in the numerator */
int m2plus, int m2minus, int m5,
/* Scale factors for 1/2 ulp in
* the numerator (will be different if
* bw == 1 */
int sd,
/* Scale factor for the denominator */
int k,
/* Number of output digits before the decimal
* point */
int len,
/* Number of digits to allocate */
int ilim,
/* Number of digits to convert if b >= s */
int ilim1,
/* Number of digits to convert if b < s */
int* decpt,
/* OUTPUT: Position of the decimal point */
char** endPtr)
/* OUTPUT: Position of the terminal '\0'
* at the end of the returned string */
{
char* retval = ckalloc(len + 1);
/* Output buffer */
mp_int b; /* Numerator of the fraction being converted */
mp_int mplus, mminus; /* Bounds for roundoff */
mp_digit digit; /* Current output digit */
char* s = retval; /* Cursor in the output buffer */
int i; /* Index in the output buffer */
mp_int temp;
int r1;
/*
* b = bw * 2**b2 * 5**b5
* mminus = 5**m5
*/
TclBNInitBignumFromWideUInt(&b, bw);
mp_init_set_int(&mminus, 1);
MulPow5(&b, b5, &b);
mp_mul_2d(&b, b2, &b);
/* Adjust if the logarithm was guessed wrong */
if (b.used <= sd) {
mp_mul_d(&b, 10, &b);
++m2plus; ++m2minus; ++m5;
ilim = ilim1;
--k;
}
/*
* mminus = 5**m5 * 2**m2minus
* mplus = 5**m5 * 2**m2plus
*/
mp_mul_2d(&mminus, m2minus, &mminus);
MulPow5(&mminus, m5, &mminus);
if (m2plus > m2minus) {
mp_init_copy(&mplus, &mminus);
mp_mul_2d(&mplus, m2plus-m2minus, &mplus);
}
mp_init(&temp);
/* Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT)
* by mp_digit extraction */
i = 0;
for (;;) {
if (b.used <= sd) {
digit = 0;
} else {
digit = b.dp[sd];
if (b.used > sd+1 || digit >= 10) {
Tcl_Panic("wrong digit!");
}
--b.used; mp_clamp(&b);
}
/*
* Does the current digit put us on the low side of the exact value
* but within within roundoff of being exact?
*/
r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus);
if (r1 == MP_LT
|| (r1 == MP_EQ
&& convType != TCL_DD_STEELE0
&& (dPtr->w.word1 & 1) == 0)) {
/*
* Make sure we shouldn't be rounding *up* instead,
* in case the next number above is closer
*/
if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
++digit;
if (digit == 10) {
*s++ = '9';
s = BumpUp(s, retval, &k);
break;
}
}
/* Stash the last digit */
*s++ = '0' + digit;
break;
}
/*
* Does one plus the current digit put us within roundoff of the
* number?
*/
if (ShouldBankerRoundUpToNextPowD(&b, &mminus, sd,
convType, dPtr->w.word1 & 1,
&temp)) {
if (digit == 9) {
*s++ = '9';
s = BumpUp(s, retval, &k);
break;
}
++digit;
*s++ = '0' + digit;
break;
}
/*
* Have we converted all the requested digits?
*/
*s++ = '0' + digit;
if (i == ilim) {
if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
s = BumpUp(s, retval, &k);
}
break;
}
/* Advance to the next digit */
mp_mul_d(&b, 10, &b);
mp_mul_d(&mminus, 10, &mminus);
if (m2plus > m2minus) {
mp_mul_2d(&mminus, m2plus-m2minus, &mplus);
}
++i;
}
/*
* Endgame - store the location of the decimal point and the end of the
* string.
*/
if (m2plus > m2minus) {
mp_clear(&mplus);
}
mp_clear_multi(&b, &mminus, &temp, NULL);
*s = '\0';
*decpt = k;
if (endPtr) {
*endPtr = s;
}
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* StrictBignumConversionPowD --
*
* Converts a double-precision number to a fixed-lengt string of
* 'ilim' digits (or 'ilim1' if log10(d) has been overestimated.)
* The denominator in David Gay's conversion algorithm is known to
* be a power of 2**DIGIT_BIT, and hence the division in the main
* loop may be replaced by a digit shift and mask.
*
* Results:
* Returns the string of significant decimal digits, in newly
* allocated memory.
*
* Side effects:
* Stores the location of the decimal point in '*decpt' and the
* location of the terminal null byte in '*endPtr'.
*
*-----------------------------------------------------------------------------
*/
inline static char*
StrictBignumConversionPowD(Double* dPtr,
/* Original number to convert */
int convType,
/* Type of conversion (shortest, Steele,
E format, F format) */
Tcl_WideUInt bw,
/* Integer significand */
int b2, int b5,
/* Scale factor for the significand
* in the numerator */
int sd,
/* Scale factor for the denominator */
int k,
/* Number of output digits before the decimal
* point */
int len,
/* Number of digits to allocate */
int ilim,
/* Number of digits to convert if b >= s */
int ilim1,
/* Number of digits to convert if b < s */
int* decpt,
/* OUTPUT: Position of the decimal point */
char** endPtr)
/* OUTPUT: Position of the terminal '\0'
* at the end of the returned string */
{
char* retval = ckalloc(len + 1);
/* Output buffer */
mp_int b; /* Numerator of the fraction being converted */
mp_digit digit; /* Current output digit */
char* s = retval; /* Cursor in the output buffer */
int i; /* Index in the output buffer */
mp_int temp;
/*
* b = bw * 2**b2 * 5**b5
*/
TclBNInitBignumFromWideUInt(&b, bw);
MulPow5(&b, b5, &b);
mp_mul_2d(&b, b2, &b);
/* Adjust if the logarithm was guessed wrong */
if (b.used <= sd) {
mp_mul_d(&b, 10, &b);
ilim = ilim1;
--k;
}
mp_init(&temp);
/*
* Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT)
* by mp_digit extraction
*/
i = 1;
for (;;) {
if (b.used <= sd) {
digit = 0;
} else {
digit = b.dp[sd];
if (b.used > sd+1 || digit >= 10) {
Tcl_Panic("wrong digit!");
}
--b.used; mp_clamp(&b);
}
/*
* Have we converted all the requested digits?
*/
*s++ = '0' + digit;
if (i == ilim) {
if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
s = BumpUp(s, retval, &k);
} else {
while (*--s == '0') {
/* do nothing */
}
++s;
}
break;
}
/* Advance to the next digit */
mp_mul_d(&b, 10, &b);
++i;
}
/*
* Endgame - store the location of the decimal point and the end of the
* string.
*/
mp_clear_multi(&b, &temp, NULL);
*s = '\0';
*decpt = k;
if (endPtr) {
*endPtr = s;
}
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* ShouldBankerRoundUp --
*
* Tests whether a digit should be rounded up or down when finishing
* bignum-based floating point conversion.
*
* Results:
* Returns 1 if the number needs to be rounded up, 0 otherwise.
*
*-----------------------------------------------------------------------------
*/
inline static int
ShouldBankerRoundUp(mp_int* twor,
/* 2x the remainder from thd division that
* produced the last digit */
mp_int* S, /* Denominator */
int isodd) /* Flag == 1 if the last digit is odd */
{
int r = mp_cmp_mag(twor, S);
switch (r) {
case MP_LT:
return 0;
case MP_EQ:
return isodd;
case MP_GT:
return 1;
}
Tcl_Panic("in ShouldBankerRoundUp, trichotomy fails!");
return 0;
}
/*
*-----------------------------------------------------------------------------
*
* ShouldBankerRoundUpToNext --
*
* Tests whether the remainder is great enough to force rounding
* to the next higher digit.
*
* Results:
* Returns 1 if the number should be rounded up, 0 otherwise.
*
*-----------------------------------------------------------------------------
*/
inline static int
ShouldBankerRoundUpToNext(mp_int* b,
/* Remainder from the division that produced
* the last digit. */
mp_int* m,
/* Numerator of the rounding tolerance */
mp_int* S,
/* Denominator */
int convType,
/* Conversion type: STEELE0 defeats
* round-to-even. (Not sure why one would
* want this; I coped it from Gay. FIXME */
int isodd,
/* 1 if the integer significand is odd */
mp_int* temp)
/* Work area needed for the calculation */
{
int r;
/* Compare b and S-m: this is the same as comparing B+m and S. */
mp_add(b, m, temp);
r = mp_cmp_mag(temp, S);
switch(r) {
case MP_LT:
return 0;
case MP_EQ:
if (convType == TCL_DD_STEELE0) {
return 0;
} else {
return isodd;
}
case MP_GT:
return 1;
}
Tcl_Panic("in ShouldBankerRoundUpToNext, trichotomy fails!");
return 0;
}
/*
*-----------------------------------------------------------------------------
*
* ShorteningBignumConversion --
*
* Convert a floating point number to a variable-length digit string
* using the multiprecision method.
*
* Results:
* Returns the string of digits.
*
* Side effects:
* Stores the position of the decimal point in *decpt.
* Stores a pointer to the end of the number in *endPtr.
*
*-----------------------------------------------------------------------------
*/
inline static char*
ShorteningBignumConversion(Double* dPtr,
/* Original number being converted */
int convType,
/* Conversion type */
Tcl_WideUInt bw,
/* Integer significand and exponent */
int b2,
/* Scale factor for the significand */
int m2plus, int m2minus,
/* Scale factors for 1/2 ulp in numerator */
int s2, int s5,
/* Scale factors for denominator */
int k,
/* Guessed position of the decimal point */
int len,
/* Size of the digit buffer to allocate */
int ilim,
/* Number of digits to convert if b >= s */
int ilim1,
/* Number of digits to convert if b < s */
int* decpt,
/* OUTPUT: Position of the decimal point */
char** endPtr)
/* OUTPUT: Pointer to the end of the number */
{
char* retval = ckalloc(len+1);
/* Buffer of digits to return */
char* s = retval; /* Cursor in the return value */
mp_int b; /* Numerator of the result */
mp_int mminus; /* 1/2 ulp below the result */
mp_int mplus; /* 1/2 ulp above the result */
mp_int S; /* Denominator of the result */
mp_int dig; /* Current digit of the result */
int digit; /* Current digit of the result */
mp_int temp; /* Work area */
int minit = 1; /* Fudge factor for when we misguess k */
int i;
int r1;
/*
* b = bw * 2**b2 * 5**b5
* S = 2**s2 * 5*s5
*/
TclBNInitBignumFromWideUInt(&b, bw);
mp_mul_2d(&b, b2, &b);
mp_init_set_int(&S, 1);
MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);
/*
* Handle the case where we guess the position of the decimal point
* wrong.
*/
if (mp_cmp_mag(&b, &S) == MP_LT) {
mp_mul_d(&b, 10, &b);
minit = 10;
ilim =ilim1;
--k;
}
/* mminus = 2**m2minus * 5**m5 */
mp_init_set_int(&mminus, minit);
mp_mul_2d(&mminus, m2minus, &mminus);
if (m2plus > m2minus) {
mp_init_copy(&mplus, &mminus);
mp_mul_2d(&mplus, m2plus-m2minus, &mplus);
}
mp_init(&temp);
/* Loop through the digits */
mp_init(&dig);
i = 1;
for (;;) {
mp_div(&b, &S, &dig, &b);
if (dig.used > 1 || dig.dp[0] >= 10) {
Tcl_Panic("wrong digit!");
}
digit = dig.dp[0];
/*
* Does the current digit leave us with a remainder small enough to
* round to it?
*/
r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus);
if (r1 == MP_LT
|| (r1 == MP_EQ
&& convType != TCL_DD_STEELE0
&& (dPtr->w.word1 & 1) == 0)) {
mp_mul_2d(&b, 1, &b);
if (ShouldBankerRoundUp(&b, &S, digit&1)) {
++digit;
if (digit == 10) {
*s++ = '9';
s = BumpUp(s, retval, &k);
break;
}
}
*s++ = '0' + digit;
break;
}
/*
* Does the current digit leave us with a remainder large enough
* to commit to rounding up to the next higher digit?
*/
if (ShouldBankerRoundUpToNext(&b, &mminus, &S, convType,
dPtr->w.word1 & 1, &temp)) {
++digit;
if (digit == 10) {
*s++ = '9';
s = BumpUp(s, retval, &k);
break;
}
*s++ = '0' + digit;
break;
}
/* Have we converted all the requested digits? */
*s++ = '0' + digit;
if (i == ilim) {
mp_mul_2d(&b, 1, &b);
if (ShouldBankerRoundUp(&b, &S, digit&1)) {
s = BumpUp(s, retval, &k);
}
break;
}
/* Advance to the next digit */
if (s5 > 0) {
/* Can possibly shorten the denominator */
mp_mul_2d(&b, 1, &b);
mp_mul_2d(&mminus, 1, &mminus);
if (m2plus > m2minus) {
mp_mul_2d(&mplus, 1, &mplus);
}
mp_div_d(&S, 5, &S, NULL);
--s5;
/*
* IDEA: It might possibly be a win to fall back to
* int64 arithmetic here if S < 2**64/10. But it's
* a win only for a fairly narrow range of magnitudes
* so perhaps not worth bothering. We already know that
* we shorten the denominator by at least 1 mp_digit, perhaps
* 2. as we do the conversion for 17 digits of significance.
* Possible savings:
* 10**26 1 trip through loop before fallback possible
* 10**27 1 trip
* 10**28 2 trips
* 10**29 3 trips
* 10**30 4 trips
* 10**31 5 trips
* 10**32 6 trips
* 10**33 7 trips
* 10**34 8 trips
* 10**35 9 trips
* 10**36 10 trips
* 10**37 11 trips
* 10**38 12 trips
* 10**39 13 trips
* 10**40 14 trips
* 10**41 15 trips
* 10**42 16 trips
* thereafter no gain.
*/
} else {
mp_mul_d(&b, 10, &b);
mp_mul_d(&mminus, 10, &mminus);
if (m2plus > m2minus) {
mp_mul_2d(&mplus, 10, &mplus);
}
}
++i;
}
/*
* Endgame - store the location of the decimal point and the end of the
* string.
*/
if (m2plus > m2minus) {
mp_clear(&mplus);
}
mp_clear_multi(&b, &mminus, &temp, &dig, &S, NULL);
*s = '\0';
*decpt = k;
if (endPtr) {
*endPtr = s;
}
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* StrictBignumConversion --
*
* Convert a floating point number to a fixed-length digit string
* using the multiprecision method.
*
* Results:
* Returns the string of digits.
*
* Side effects:
* Stores the position of the decimal point in *decpt.
* Stores a pointer to the end of the number in *endPtr.
*
*-----------------------------------------------------------------------------
*/
inline static char*
StrictBignumConversion(Double* dPtr,
/* Original number being converted */
int convType,
/* Conversion type */
Tcl_WideUInt bw,
/* Integer significand and exponent */
int b2, /* Scale factor for the significand */
int s2, int s5,
/* Scale factors for denominator */
int k, /* Guessed position of the decimal point */
int len, /* Size of the digit buffer to allocate */
int ilim,
/* Number of digits to convert if b >= s */
int ilim1,
/* Number of digits to convert if b < s */
int* decpt,
/* OUTPUT: Position of the decimal point */
char** endPtr)
/* OUTPUT: Pointer to the end of the number */
{
char* retval = ckalloc(len+1);
/* Buffer of digits to return */
char* s = retval; /* Cursor in the return value */
mp_int b; /* Numerator of the result */
mp_int S; /* Denominator of the result */
mp_int dig; /* Current digit of the result */
int digit; /* Current digit of the result */
mp_int temp; /* Work area */
int g; /* Size of the current digit groun */
int i, j;
/*
* b = bw * 2**b2 * 5**b5
* S = 2**s2 * 5*s5
*/
mp_init_multi(&temp, &dig, NULL);
TclBNInitBignumFromWideUInt(&b, bw);
mp_mul_2d(&b, b2, &b);
mp_init_set_int(&S, 1);
MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);
/*
* Handle the case where we guess the position of the decimal point
* wrong.
*/
if (mp_cmp_mag(&b, &S) == MP_LT) {
mp_mul_d(&b, 10, &b);
ilim =ilim1;
--k;
}
/* Convert the leading digit */
i = 0;
mp_div(&b, &S, &dig, &b);
if (dig.used > 1 || dig.dp[0] >= 10) {
Tcl_Panic("wrong digit!");
}
digit = dig.dp[0];
/* Is a single digit all that was requested? */
*s++ = '0' + digit;
if (++i >= ilim) {
mp_mul_2d(&b, 1, &b);
if (ShouldBankerRoundUp(&b, &S, digit&1)) {
s = BumpUp(s, retval, &k);
}
} else {
for (;;) {
/* Shift by a group of digits. */
g = ilim - i;
if (g > DIGIT_GROUP) {
g = DIGIT_GROUP;
}
if (s5 >= g) {
mp_div_d(&S, dpow5[g], &S, NULL);
s5 -= g;
} else if (s5 > 0) {
mp_div_d(&S, dpow5[s5], &S, NULL);
mp_mul_d(&b, dpow5[g - s5], &b);
s5 = 0;
} else {
mp_mul_d(&b, dpow5[g], &b);
}
mp_mul_2d(&b, g, &b);
/*
* As with the shortening bignum conversion, it's possible at
* this point that we will have reduced the denominator to
* less than 2**64/10, at which point it would be possible to
* fall back to to int64 arithmetic. But the potential payoff
* is tremendously less - unless we're working in F format -
* because we know that three groups of digits will always
* suffice for %#.17e, the longest format that doesn't introduce
* empty precision.
*/
/* Extract the next group of digits */
mp_div(&b, &S, &dig, &b);
if (dig.used > 1) {
Tcl_Panic("wrong digit!");
}
digit = dig.dp[0];
for (j = g-1; j >= 0; --j) {
int t = itens[j];
*s++ = digit / t + '0';
digit %= t;
}
i += g;
/* Have we converted all the requested digits? */
if (i == ilim) {
mp_mul_2d(&b, 1, &b);
if (ShouldBankerRoundUp(&b, &S, digit&1)) {
s = BumpUp(s, retval, &k);
} else {
while (*--s == '0') {
/* do nothing */
}
++s;
}
break;
}
}
}
/*
* Endgame - store the location of the decimal point and the end of the
* string.
*/
mp_clear_multi(&b, &S, &temp, &dig, NULL);
*s = '\0';
*decpt = k;
if (endPtr) {
*endPtr = s;
}
return retval;
}
/*
*-----------------------------------------------------------------------------
*
* TclDoubleDigits --
*
* Core of Tcl's conversion of double-precision floating point numbers
* to decimal.
*
* Results:
* Returns a newly-allocated string of digits.
*
* Side effects:
* Sets *decpt to the index of the character in the string before the
* place that the decimal point should go. If 'endPtr' is not NULL,
* sets endPtr to point to the terminating '\0' byte of the string.
* Sets *sign to 1 if a minus sign should be printed with the number,
* or 0 if a plus sign (or no sign) should appear.
*
* This function is a service routine that produces the string of digits
* for floating-point-to-decimal conversion. It can do a number of things
* according to the 'flags' argument. Valid values for 'flags' include:
* TCL_DD_SHORTEST - This is the default for floating point conversion
* if ::tcl_precision is 0. It constructs the shortest string
* of digits that will reconvert to the given number when scanned.
* For floating point numbers that are exactly between two
* decimal numbers, it resolves using the 'round to even' rule.
* With this value, the 'ndigits' parameter is ignored.
* TCL_DD_STEELE - This value is not recommended and may be removed
* in the future. It follows the conversion algorithm outlined
* in "How to Print Floating-Point Numbers Accurately" by
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90,
* pp. 112-126]. This rule has the effect of rendering 1e23
* as 9.9999999999999999e22 - which is a 'better' approximation
* in the sense that it will reconvert correctly even if
* a subsequent input conversion is 'round up' or 'round down'
* rather than 'round to nearest', but is surprising otherwise.
* TCL_DD_E_FORMAT - This value is used to prepare numbers for %e
* format conversion (or for default floating->string if
* tcl_precision is not 0). It constructs a string of at most
* 'ndigits' digits, choosing the one that is closest to the
* given number (and resolving ties with 'round to even').
* It is allowed to return fewer than 'ndigits' if the number
* converts exactly; if the TCL_DD_E_FORMAT|TCL_DD_SHORTEN_FLAG
* is supplied instead, it also returns fewer digits if the
* shorter string will still reconvert to the given input number.
* In any case, strings of trailing zeroes are suppressed.
* TCL_DD_F_FORMAT - This value is used to prepare numbers for %f
* format conversion. It requests that conversion proceed until
* 'ndigits' digits after the decimal point have been converted.
* It is possible for this format to result in a zero-length
* string if the number is sufficiently small. Again, it
* is permissible for TCL_DD_F_FORMAT to return fewer digits
* for a number that converts exactly, and changing the
* argument to TCL_DD_F_FORMAT|TCL_DD_SHORTEN_FLAG will allow
* the routine also to return fewer digits if the shorter string
* will still reconvert without loss to the given input number.
* Strings of trailing zeroes are suppressed.
*
* To any of these flags may be OR'ed TCL_DD_NO_QUICK; this flag
* requires all calculations to be done in exact arithmetic. Normally,
* E and F format with fewer than about 14 digits will be done with
* a quick floating point approximation and fall back on the exact
* arithmetic only if the input number is close enough to the
* midpoint between two decimal strings that more precision is needed
* to resolve which string is correct.
*
* The value stored in the 'decpt' argument on return may be negative
* (indicating that the decimal point falls to the left of the string)
* or greater than the length of the string. In addition, the value -9999
* is used as a sentinel to indicate that the string is one of the special
* values "Infinity" and "NaN", and that no decimal point should be inserted.
*
*-----------------------------------------------------------------------------
*/
char*
TclDoubleDigits(double dv, /* Number to convert */
int ndigits, /* Number of digits requested */
int flags, /* Conversion flags */
int* decpt, /* OUTPUT: Position of the decimal point */
int* sign, /* OUTPUT: 1 if the result is negative */
char** endPtr) /* OUTPUT: If not NULL, receives a pointer
* to one character beyond the end
* of the returned string */
{
int convType = (flags & TCL_DD_CONVERSION_TYPE_MASK);
/* Type of conversion being performed
* TCL_DD_SHORTEST0
* TCL_DD_STEELE0
* TCL_DD_E_FORMAT
* TCL_DD_F_FORMAT */
Double d; /* Union for deconstructing doubles */
Tcl_WideUInt bw; /* Integer significand */
int be; /* Power of 2 by which b must be multiplied */
int bbits; /* Number of bits needed to represent b */
int denorm; /* Flag == 1 iff the input number was
* denormalized */
int k; /* Estimate of floor(log10(d)) */
int k_check; /* Flag == 1 if d is near enough to a
* power of ten that k must be checked */
int b2, b5, s2, s5; /* Powers of 2 and 5 in the numerator and
* denominator of intermediate results */
int ilim = -1, ilim1 = -1; /* Number of digits to convert, and number
* to convert if log10(d) has been
* overestimated */
char* retval; /* Return value from this function */
int i = -1;
/* Put the input number into a union for bit-whacking */
d.d = dv;
/*
* Handle the cases of negative numbers (by taking the absolute value:
* this includes -Inf and -NaN!), infinity, Not a Number, and zero.
*/
TakeAbsoluteValue(&d, sign);
if ((d.w.word0 & EXP_MASK) == EXP_MASK) {
return FormatInfAndNaN(&d, decpt, endPtr);
}
if (d.d == 0.0) {
return FormatZero(decpt, endPtr);
}
/*
* Unpack the floating point into a wide integer and an exponent.
* Determine the number of bits that the big integer requires, and
* compute a quick approximation (which may be one too high) of
* ceil(log10(d.d)).
*/
denorm = ((d.w.word0 & EXP_MASK) == 0);
DoubleToExpAndSig(d.d, &bw, &be, &bbits);
k = ApproximateLog10(bw, be, bbits);
k = BetterLog10(d.d, k, &k_check);
/* At this point, we have:
* d is the number to convert.
* bw are significand and exponent: d == bw*2**be,
* bbits is the length of bw: 2**bbits-1 <= bw < 2**bbits
* k is either ceil(log10(d)) or ceil(log10(d))+1. k_check is 0
* if we know that k is exactly ceil(log10(d)) and 1 if we need to
* check.
* We want a rational number
* r = b * 10**(1-k) = bw * 2**b2 * 5**b5 / (2**s2 / 5**s5),
* with b2, b5, s2, s5 >= 0. Note that the most significant decimal
* digit is floor(r) and that successive digits can be obtained
* by setting r <- 10*floor(r) (or b <= 10 * (b % S)).
* Find appropriate b2, b5, s2, s5.
*/
ComputeScale(be, k, &b2, &b5, &s2, &s5);
/*
* Correct an incorrect caller-supplied 'ndigits'.
* Also determine:
* i = The maximum number of decimal digits that will be returned in the
* formatted string. This is k + 1 + ndigits for F format, 18 for
* shortest and Steele, and ndigits for E format.
* ilim = The number of significant digits to convert if
* k has been guessed correctly. This is -1 for shortest and Steele
* (which stop when all significance has been lost), 'ndigits'
* for E format, and 'k + 1 + ndigits' for F format.
* ilim1 = The minimum number of significant digits to convert if
* k has been guessed 1 too high. This, too, is -1 for shortest
* and Steele, and 'ndigits' for E format, but it's 'ndigits-1'
* for F format.
*/
SetPrecisionLimits(convType, k, &ndigits, &i, &ilim, &ilim1);
/*
* Try to do low-precision conversion in floating point rather
* than resorting to expensive multiprecision arithmetic
*/
if (ilim >= 0 && ilim <= QUICK_MAX && !(flags & TCL_DD_NO_QUICK)) {
if ((retval = QuickConversion(d.d, k, k_check, flags,
i, ilim, ilim1,
decpt, endPtr)) != NULL) {
return retval;
}
}
/*
* For shortening conversions, determine the upper and lower bounds
* for the remainder at which we can stop.
* m+ = (2**m2plus * 5**m5) / (2**s2 * 5**s5) is the limit on the
* high side, and
* m- = (2**m2minus * 5**m5) / (2**s2 * 5**s5) is the limit on the
* low side.
* We may need to increase s2 to put m2plus, m2minus, b2 over a
* common denominator.
*/
if (flags & TCL_DD_SHORTEN_FLAG) {
int m2minus = b2;
int m2plus;
int m5 = b5;
int len = i;
/*
* Find the quantity i so that (2**i*5**b5)/(2**s2*5**s5)
* is 1/2 unit in the least significant place of the floating
* point number.
*/
if (denorm) {
i = be + EXPONENT_BIAS + (FP_PRECISION-1);
} else {
i = 1 + FP_PRECISION - bbits;
}
b2 += i;
s2 += i;
/*
* Reduce the fractions to lowest terms, since the above calculation
* may have left excess powers of 2 in numerator and denominator
*/
CastOutPowersOf2(&b2, &m2minus, &s2);
/*
* In the special case where bw==1, the nearest floating point number
* to it on the low side is 1/4 ulp below it. Adjust accordingly.
*/
m2plus = m2minus;
if (!denorm && bw == 1) {
++b2;
++s2;
++m2plus;
}
if (s5+1 < N_LOG2POW5
&& s2+1 + log2pow5[s5+1] <= 64) {
/*
* If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit
* word, then all our intermediate calculations can be done
* using exact 64-bit arithmetic with no need for expensive
* multiprecision operations. (This will be true for all numbers
* in the range [1.0e-3 .. 1.0e+24]).
*/
return ShorteningInt64Conversion(&d, convType, bw, b2, b5,
m2plus, m2minus, m5,
s2, s5, k, len, ilim, ilim1,
decpt, endPtr);
} else if (s5 == 0) {
/*
* The denominator is a power of 2, so we can replace division
* by digit shifts. First we round up s2 to a multiple of
* DIGIT_BIT, and adjust m2 and b2 accordingly. Then we launch
* into a version of the comparison that's specialized for
* the 'power of mp_digit in the denominator' case.
*/
if (s2 % DIGIT_BIT != 0) {
int delta = DIGIT_BIT - (s2 % DIGIT_BIT);
b2 += delta;
m2plus += delta;
m2minus += delta;
s2 += delta;
}
return ShorteningBignumConversionPowD(&d, convType, bw, b2, b5,
m2plus, m2minus, m5,
s2/DIGIT_BIT, k, len,
ilim, ilim1, decpt, endPtr);
} else {
/*
* Alas, there's no helpful special case; use full-up
* bignum arithmetic for the conversion
*/
return ShorteningBignumConversion(&d, convType, bw,
b2, m2plus, m2minus,
s2, s5, k, len,
ilim, ilim1, decpt, endPtr);
}
} else {
/* Non-shortening conversion */
int len = i;
/* Reduce numerator and denominator to lowest terms */
if (b2 >= s2 && s2 > 0) {
b2 -= s2; s2 = 0;
} else if (s2 >= b2 && b2 > 0) {
s2 -= b2; b2 = 0;
}
if (s5+1 < N_LOG2POW5
&& s2+1 + log2pow5[s5+1] <= 64) {
/*
* If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit
* word, then all our intermediate calculations can be done
* using exact 64-bit arithmetic with no need for expensive
* multiprecision operations.
*/
return StrictInt64Conversion(&d, convType, bw, b2, b5,
s2, s5, k, len, ilim, ilim1,
decpt, endPtr);
} else if (s5 == 0) {
/*
* The denominator is a power of 2, so we can replace division
* by digit shifts. First we round up s2 to a multiple of
* DIGIT_BIT, and adjust m2 and b2 accordingly. Then we launch
* into a version of the comparison that's specialized for
* the 'power of mp_digit in the denominator' case.
*/
if (s2 % DIGIT_BIT != 0) {
int delta = DIGIT_BIT - (s2 % DIGIT_BIT);
b2 += delta;
s2 += delta;
}
return StrictBignumConversionPowD(&d, convType, bw, b2, b5,
s2/DIGIT_BIT, k, len,
ilim, ilim1, decpt, endPtr);
} else {
/*
* There are no helpful special cases, but at least we know
* in advance how many digits we will convert. We can run the
* conversion in steps of DIGIT_GROUP digits, so as to
* have many fewer mp_int divisions.
*/
return StrictBignumConversion(&d, convType, bw, b2, s2, s5,
k, len, ilim, ilim1, decpt, endPtr);
}
}
}
/*
*----------------------------------------------------------------------
*
* TclInitDoubleConversion --
*
* Initializes constants that are needed for conversions to and from
* 'double'
*
* Results:
* None.
*
* Side effects:
* The log base 2 of the floating point radix, the number of bits in a
* double mantissa, and a table of the powers of five and ten are
* computed and stored.
*
*----------------------------------------------------------------------
*/
void
TclInitDoubleConversion(void)
{
int i;
int x;
Tcl_WideUInt u;
double d;
#ifdef IEEE_FLOATING_POINT
union {
double dv;
Tcl_WideUInt iv;
} bitwhack;
#endif
#if defined(__sgi) && defined(_COMPILER_VERSION)
union fpc_csr mipsCR;
mipsCR.fc_word = get_fpc_csr();
mipsCR.fc_struct.flush = 0;
set_fpc_csr(mipsCR.fc_word);
#endif
/*
* Initialize table of powers of 10 expressed as wide integers.
*/
maxpow10_wide = (int)
floor(sizeof(Tcl_WideUInt) * CHAR_BIT * log(2.) / log(10.));
pow10_wide = (Tcl_WideUInt *)
ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt));
u = 1;
for (i = 0; i < maxpow10_wide; ++i) {
pow10_wide[i] = u;
u *= 10;
}
pow10_wide[i] = u;
/*
* Determine how many bits of precision a double has, and how many
* decimal digits that represents.
*/
if (frexp((double) FLT_RADIX, &log2FLT_RADIX) != 0.5) {
Tcl_Panic("This code doesn't work on a decimal machine!");
}
log2FLT_RADIX--;
mantBits = DBL_MANT_DIG * log2FLT_RADIX;
d = 1.0;
/*
* Initialize a table of powers of ten that can be exactly represented
* in a double.
*/
x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log(5.0));
if (x < MAXPOW) {
mmaxpow = x;
} else {
mmaxpow = MAXPOW;
}
for (i=0 ; i<=mmaxpow ; ++i) {
pow10vals[i] = d;
d *= 10.0;
}
/*
* Initialize a table of large powers of five.
*/
for (i=0; i<9; ++i) {
mp_init(pow5 + i);
}
mp_set(pow5, 5);
for (i=0; i<8; ++i) {
mp_sqr(pow5+i, pow5+i+1);
}
mp_init_set_int(pow5_13, 1220703125);
for (i = 1; i < 5; ++i) {
mp_init(pow5_13 + i);
mp_sqr(pow5_13 + i - 1, pow5_13 + i);
}
/*
* Determine the number of decimal digits to the left and right of the
* decimal point in the largest and smallest double, the smallest double
* that differs from zero, and the number of mp_digits needed to represent
* the significand of a double.
*/
maxDigits = (int) ((DBL_MAX_EXP * log((double) FLT_RADIX)
+ 0.5 * log(10.)) / log(10.));
minDigits = (int) floor((DBL_MIN_EXP - DBL_MANT_DIG)
* log((double) FLT_RADIX) / log(10.));
mantDIGIT = (mantBits + DIGIT_BIT-1) / DIGIT_BIT;
log10_DIGIT_MAX = (int) floor(DIGIT_BIT * log(2.) / log(10.));
/*
* Nokia 770's software-emulated floating point is "middle endian": the
* bytes within a 32-bit word are little-endian (like the native
* integers), but the two words of a 'double' are presented most
* significant word first.
*/
#ifdef IEEE_FLOATING_POINT
bitwhack.dv = 1.000000238418579;
/* 3ff0 0000 4000 0000 */
if ((bitwhack.iv >> 32) == 0x3ff00000) {
n770_fp = 0;
} else if ((bitwhack.iv & 0xffffffff) == 0x3ff00000) {
n770_fp = 1;
} else {
Tcl_Panic("unknown floating point word order on this machine");
}
#endif
}
/*
*----------------------------------------------------------------------
*
* TclFinalizeDoubleConversion --
*
* Cleans up this file on exit.
*
* Results:
* None
*
* Side effects:
* Memory allocated by TclInitDoubleConversion is freed.
*
*----------------------------------------------------------------------
*/
void
TclFinalizeDoubleConversion(void)
{
int i;
ckfree((char *) pow10_wide);
for (i=0; i<9; ++i) {
mp_clear(pow5 + i);
}
}
/*
*----------------------------------------------------------------------
*
* Tcl_InitBignumFromDouble --
*
* Extracts the integer part of a double and converts it to an arbitrary
* precision integer.
*
* Results:
* None.
*
* Side effects:
* Initializes the bignum supplied, and stores the converted number in
* it.
*
*----------------------------------------------------------------------
*/
int
Tcl_InitBignumFromDouble(
Tcl_Interp *interp, /* For error message */
double d, /* Number to convert */
mp_int *b) /* Place to store the result */
{
double fract;
int expt;
/*
* Infinite values can't convert to bignum.
*/
if (TclIsInfinite(d)) {
if (interp != NULL) {
const char *s = "integer value too large to represent";
Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1));
Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", s, NULL);
}
return TCL_ERROR;
}
fract = frexp(d,&expt);
if (expt <= 0) {
mp_init(b);
mp_zero(b);
} else {
Tcl_WideInt w = (Tcl_WideInt) ldexp(fract, mantBits);
int shift = expt - mantBits;
TclBNInitBignumFromWideInt(b, w);
if (shift < 0) {
mp_div_2d(b, -shift, b, NULL);
} else if (shift > 0) {
mp_mul_2d(b, shift, b);
}
}
return TCL_OK;
}
/*
*----------------------------------------------------------------------
*
* TclBignumToDouble --
*
* Convert an arbitrary-precision integer to a native floating point
* number.
*
* Results:
* Returns the converted number. Sets errno to ERANGE if the number is
* too large to convert.
*
*----------------------------------------------------------------------
*/
double
TclBignumToDouble(
mp_int *a) /* Integer to convert. */
{
mp_int b;
int bits, shift, i, lsb;
double r;
/*
* We need a 'mantBits'-bit significand. Determine what shift will
* give us that.
*/
bits = mp_count_bits(a);
if (bits > DBL_MAX_EXP*log2FLT_RADIX) {
errno = ERANGE;
if (a->sign == MP_ZPOS) {
return HUGE_VAL;
} else {
return -HUGE_VAL;
}
}
shift = mantBits - bits;
/*
* If shift > 0, shift the significand left by the requisite number of
* bits. If shift == 0, the significand is already exactly 'mantBits'
* in length. If shift < 0, we will need to shift the significand right
* by the requisite number of bits, and round it. If the '1-shift'
* least significant bits are 0, but the 'shift'th bit is nonzero,
* then the significand lies exactly between two values and must be
* 'rounded to even'.
*/
mp_init(&b);
if (shift == 0) {
mp_copy(a, &b);
} else if (shift > 0) {
mp_mul_2d(a, shift, &b);
} else if (shift < 0) {
lsb = mp_cnt_lsb(a);
if (lsb == -1-shift) {
/*
* Round to even
*/
mp_div_2d(a, -shift, &b, NULL);
if (mp_isodd(&b)) {
if (b.sign == MP_ZPOS) {
mp_add_d(&b, 1, &b);
} else {
mp_sub_d(&b, 1, &b);
}
}
} else {
/*
* Ordinary rounding
*/
mp_div_2d(a, -1-shift, &b, NULL);
if (b.sign == MP_ZPOS) {
mp_add_d(&b, 1, &b);
} else {
mp_sub_d(&b, 1, &b);
}
mp_div_2d(&b, 1, &b, NULL);
}
}
/*
* Accumulate the result, one mp_digit at a time.
*/
r = 0.0;
for (i=b.used-1 ; i>=0 ; --i) {
r = ldexp(r, DIGIT_BIT) + b.dp[i];
}
mp_clear(&b);
/*
* Scale the result to the correct number of bits.
*/
r = ldexp(r, bits - mantBits);
/*
* Return the result with the appropriate sign.
*/
if (a->sign == MP_ZPOS) {
return r;
} else {
return -r;
}
}
/*
*-----------------------------------------------------------------------------
*
* TclCeil --
*
* Computes the smallest floating point number that is at least the
* mp_int argument.
*
* Results:
* Returns the floating point number.
*
*-----------------------------------------------------------------------------
*/
double
TclCeil(
mp_int *a) /* Integer to convert. */
{
double r = 0.0;
mp_int b;
mp_init(&b);
if (mp_cmp_d(a, 0) == MP_LT) {
mp_neg(a, &b);
r = -TclFloor(&b);
} else {
int bits = mp_count_bits(a);
if (bits > DBL_MAX_EXP*log2FLT_RADIX) {
r = HUGE_VAL;
} else {
int i, exact = 1, shift = mantBits - bits;
if (shift > 0) {
mp_mul_2d(a, shift, &b);
} else if (shift < 0) {
mp_int d;
mp_init(&d);
mp_div_2d(a, -shift, &b, &d);
exact = mp_iszero(&d);
mp_clear(&d);
} else {
mp_copy(a, &b);
}
if (!exact) {
mp_add_d(&b, 1, &b);
}
for (i=b.used-1 ; i>=0 ; --i) {
r = ldexp(r, DIGIT_BIT) + b.dp[i];
}
r = ldexp(r, bits - mantBits);
}
}
mp_clear(&b);
return r;
}
/*
*-----------------------------------------------------------------------------
*
* TclFloor --
*
* Computes the largest floating point number less than or equal to
* the mp_int argument.
*
* Results:
* Returns the floating point value.
*
*-----------------------------------------------------------------------------
*/
double
TclFloor(
mp_int *a) /* Integer to convert. */
{
double r = 0.0;
mp_int b;
mp_init(&b);
if (mp_cmp_d(a, 0) == MP_LT) {
mp_neg(a, &b);
r = -TclCeil(&b);
} else {
int bits = mp_count_bits(a);
if (bits > DBL_MAX_EXP*log2FLT_RADIX) {
r = DBL_MAX;
} else {
int i, shift = mantBits - bits;
if (shift > 0) {
mp_mul_2d(a, shift, &b);
} else if (shift < 0) {
mp_div_2d(a, -shift, &b, NULL);
} else {
mp_copy(a, &b);
}
for (i=b.used-1 ; i>=0 ; --i) {
r = ldexp(r, DIGIT_BIT) + b.dp[i];
}
r = ldexp(r, bits - mantBits);
}
}
mp_clear(&b);
return r;
}
/*
*----------------------------------------------------------------------
*
* BignumToBiasedFrExp --
*
* Convert an arbitrary-precision integer to a native floating point
* number in the range [0.5,1) times a power of two. NOTE: Intentionally
* converts to a number that's a few ulp too small, so that
* RefineApproximation will not overflow near the high end of the
* machine's arithmetic range.
*
* Results:
* Returns the converted number.
*
* Side effects:
* Stores the exponent of two in 'machexp'.
*
*----------------------------------------------------------------------
*/
static double
BignumToBiasedFrExp(
mp_int *a, /* Integer to convert */
int *machexp) /* Power of two */
{
mp_int b;
int bits;
int shift;
int i;
double r;
/*
* Determine how many bits we need, and extract that many from the input.
* Round to nearest unit in the last place.
*/
bits = mp_count_bits(a);
shift = mantBits - 2 - bits;
mp_init(&b);
if (shift > 0) {
mp_mul_2d(a, shift, &b);
} else if (shift < 0) {
mp_div_2d(a, -shift, &b, NULL);
} else {
mp_copy(a, &b);
}
/*
* Accumulate the result, one mp_digit at a time.
*/
r = 0.0;
for (i=b.used-1; i>=0; --i) {
r = ldexp(r, DIGIT_BIT) + b.dp[i];
}
mp_clear(&b);
/*
* Return the result with the appropriate sign.
*/
*machexp = bits - mantBits + 2;
return ((a->sign == MP_ZPOS) ? r : -r);
}
/*
*----------------------------------------------------------------------
*
* Pow10TimesFrExp --
*
* Multiply a power of ten by a number expressed as fraction and
* exponent.
*
* Results:
* Returns the significand of the result.
*
* Side effects:
* Overwrites the 'machexp' parameter with the exponent of the result.
*
* Assumes that 'exponent' is such that 10**exponent would be a double, even
* though 'fraction*10**(machexp+exponent)' might overflow.
*
*----------------------------------------------------------------------
*/
static double
Pow10TimesFrExp(
int exponent, /* Power of 10 to multiply by */
double fraction, /* Significand of multiplicand */
int *machexp) /* On input, exponent of multiplicand. On
* output, exponent of result. */
{
int i, j;
int expt = *machexp;
double retval = fraction;
if (exponent > 0) {
/*
* Multiply by 10**exponent
*/
retval = frexp(retval * pow10vals[exponent&0xf], &j);
expt += j;
for (i=4; i<9; ++i) {
if (exponent & (1<<i)) {
retval = frexp(retval * pow_10_2_n[i], &j);
expt += j;
}
}
} else if (exponent < 0) {
/*
* Divide by 10**-exponent
*/
retval = frexp(retval / pow10vals[(-exponent) & 0xf], &j);
expt += j;
for (i=4; i<9; ++i) {
if ((-exponent) & (1<<i)) {
retval = frexp(retval / pow_10_2_n[i], &j);
expt += j;
}
}
}
*machexp = expt;
return retval;
}
/*
*----------------------------------------------------------------------
*
* SafeLdExp --
*
* Do an 'ldexp' operation, but handle denormals gracefully.
*
* Results:
* Returns the appropriately scaled value.
*
* On some platforms, 'ldexp' fails when presented with a number too
* small to represent as a normalized double. This routine does 'ldexp'
* in two steps for those numbers, to return correctly denormalized
* values.
*
*----------------------------------------------------------------------
*/
static double
SafeLdExp(
double fract,
int expt)
{
int minexpt = DBL_MIN_EXP * log2FLT_RADIX;
volatile double a, b, retval;
if (expt < minexpt) {
a = ldexp(fract, expt - mantBits - minexpt);
b = ldexp(1.0, mantBits + minexpt);
retval = a * b;
} else {
retval = ldexp(fract, expt);
}
return retval;
}
/*
*----------------------------------------------------------------------
*
* TclFormatNaN --
*
* Makes the string representation of a "Not a Number"
*
* Results:
* None.
*
* Side effects:
* Stores the string representation in the supplied buffer, which must be
* at least TCL_DOUBLE_SPACE characters.
*
*----------------------------------------------------------------------
*/
void
TclFormatNaN(
double value, /* The Not-a-Number to format. */
char *buffer) /* String representation. */
{
#ifndef IEEE_FLOATING_POINT
strcpy(buffer, "NaN");
return;
#else
union {
double dv;
Tcl_WideUInt iv;
} bitwhack;
bitwhack.dv = value;
if (n770_fp) {
bitwhack.iv = Nokia770Twiddle(bitwhack.iv);
}
if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) {
bitwhack.iv &= ~ ((Tcl_WideUInt) 1 << 63);
*buffer++ = '-';
}
*buffer++ = 'N';
*buffer++ = 'a';
*buffer++ = 'N';
bitwhack.iv &= (((Tcl_WideUInt) 1) << 51) - 1;
if (bitwhack.iv != 0) {
sprintf(buffer, "(%" TCL_LL_MODIFIER "x)", bitwhack.iv);
} else {
*buffer = '\0';
}
#endif /* IEEE_FLOATING_POINT */
}
/*
*----------------------------------------------------------------------
*
* Nokia770Twiddle --
*
* Transpose the two words of a number for Nokia 770 floating
* point handling.
*
*----------------------------------------------------------------------
*/
static Tcl_WideUInt
Nokia770Twiddle(
Tcl_WideUInt w) /* Number to transpose */
{
return (((w >> 32) & 0xffffffff) | (w << 32));
}
/*
*----------------------------------------------------------------------
*
* TclNokia770Doubles --
*
* Transpose the two words of a number for Nokia 770 floating
* point handling.
*
*----------------------------------------------------------------------
*/
int
TclNokia770Doubles(void)
{
return n770_fp;
}
/*
* Local Variables:
* mode: c
* c-basic-offset: 4
* fill-column: 78
* End:
*/
|