1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
|
/*
*----------------------------------------------------------------------
*
* tclStrToD.c --
*
* This file contains a TclStrToD procedure that handles conversion of
* string to double, with correct rounding even where extended precision
* is needed to achieve that. It also contains a TclDoubleDigits
* procedure that handles conversion of double to string (at least the
* significand), and several utility functions for interconverting
* 'double' and the integer types.
*
* Copyright (c) 2005 by Kevin B. Kenny. All rights reserved.
*
* See the file "license.terms" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
* RCS: @(#) $Id: tclStrToD.c,v 1.7 2005/07/16 21:29:23 kennykb Exp $
*
*----------------------------------------------------------------------
*/
#include <tclInt.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <ctype.h>
#include <tommath.h>
/*
* The stuff below is a bit of a hack so that this file can be used in
* environments that include no UNIX, i.e. no errno: just arrange to use the
* errno from tclExecute.c here.
*/
#ifdef TCL_GENERIC_ONLY
# define NO_ERRNO_H
#endif
#ifdef NO_ERRNO_H
extern int errno; /* Use errno from tclExecute.c. */
# define ERANGE 34
#endif
#if (FLT_RADIX == 2) && (DBL_MANT_DIG == 53) && (DBL_MAX_EXP == 1024)
# define IEEE_FLOATING_POINT
#endif
/*
* gcc on x86 needs access to rounding controls. It is tempting to include
* fpu_control.h, but that file exists only on Linux; it is missing on Cygwin
* and MinGW. Most gcc-isms and ix86-isms are factored out here.
*/
#if defined(__GNUC__) && defined(__i386)
typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
# define _FPU_GETCW(cw) __asm__ ("fnstcw %0" : "=m" (*&cw))
# define _FPU_SETCW(cw) __asm__ ("fldcw %0" : : "m" (*&cw))
# define FPU_IEEE_ROUNDING 0x027f
# define ADJUST_FPU_CONTROL_WORD
#endif
/*
* HP's PA_RISC architecture uses 7ff4000000000000 to represent a quiet NaN.
* Everyone else uses 7ff8000000000000. (Why, HP, why?)
*/
#ifdef __hppa
# define NAN_START 0x7ff4
# define NAN_MASK (((Tcl_WideUInt) 1) << 50)
#else
# define NAN_START 0x7ff8
# define NAN_MASK (((Tcl_WideUInt) 1) << 51)
#endif
/*
* There now follows a lot of static variables that are shared across all
* threads but which are not guarded by mutexes. This is OK, because they are
* only ever assigned _ONCE_ during Tcl's library initialization sequence.
*/
static const double pow_10_2_n[] = { /* Inexact higher powers of ten */
1.0,
100.0,
10000.0,
1.0e+8,
1.0e+16,
1.0e+32,
1.0e+64,
1.0e+128,
1.0e+256
};
#define MAXPOW 22 /* Num of exactly representable powers of 10 */
static double pow10[MAXPOW+1]; /* The powers of ten that can be represented
* exactly as IEEE754 doubles. */
static int mmaxpow; /* Largest power of ten that can be
* represented exactly in a 'double'. */
static int log2FLT_RADIX; /* Logarithm of the floating point radix. */
static int mantBits; /* Number of bits in a double's significand. */
static mp_int pow5[9]; /* Table of powers of 5**(2**n), up to
* 5**256. */
static double tiny; /* The smallest representable double. */
static int maxDigits; /* The maximum number of digits to the left of
* the decimal point of a double. */
static int minDigits; /* The maximum number of digits to the right
* of the decimal point in a double. */
static int mantDIGIT; /* Number of mp_digit's needed to hold the
* significand of a double. */
/* Static functions defined in this file */
static double RefineResult(double approx, CONST char *start, int nDigits,
long exponent);
static double ParseNaN(int signum, CONST char **end);
static double SafeLdExp(double fraction, int exponent);
/*
*----------------------------------------------------------------------
*
* TclStrToD --
*
* Scans a double from a string.
*
* Results:
* Returns the scanned number. In the case of underflow, returns an
* appropriately signed zero; in the case of overflow, returns an
* appropriately signed HUGE_VAL.
*
* Side effects:
* Stores a pointer to the end of the scanned number in '*endPtr', if
* endPtr is not NULL. If '*endPtr' is equal to 's' on return from this
* function, it indicates that the input string could not be recognized
* as a number. In the case of underflow or overflow, 'errno' is set to
* ERANGE.
*
*------------------------------------------------------------------------
*/
double
TclStrToD(CONST char *s, /* String to scan. */
CONST char **endPtr) /* Pointer to the end of the scanned number. */
{
const char *p = s;
const char *startOfSignificand = NULL;
/* Start of the significand in the string. */
int signum = 0; /* Sign of the significand. */
double exactSignificand = 0.0;
/* Significand, represented exactly as a
* floating-point number. */
int seenDigit = 0; /* Flag == 1 if a digit has been seen. */
int nSigDigs = 0; /* Number of significant digits presented. */
int nDigitsAfterDp = 0; /* Number of digits after the decimal point. */
int nTrailZero = 0; /* Number of trailing zeros in the
* significand. */
long exponent = 0; /* Exponent. */
int seenDp = 0; /* Flag == 1 if decimal point has been seen. */
char c; /* One character extracted from the input. */
volatile double v; /* Scanned value; must be 'volatile double' on
* gc-ix86 to force correct rounding to IEEE
* double and not Intel double-extended. */
int machexp; /* Exponent of the machine rep of the scanned
* value. */
int expt2; /* Exponent for computing first approximation
* to the true value. */
int i, j;
/*
* With gcc on x86, the floating point rounding mode is double-extended.
* This causes the result of double-precision calculations to be rounded
* twice: once to the precision of double-extended and then again to the
* precision of double. Double-rounding introduces gratuitous errors of
* one ulp, so we need to change rounding mode to 53-bits.
*/
#ifdef ADJUST_FPU_CONTROL_WORD
fpu_control_t roundTo53Bits = FPU_IEEE_ROUNDING;
fpu_control_t oldRoundingMode;
_FPU_GETCW(oldRoundingMode);
_FPU_SETCW(roundTo53Bits);
# define RestoreRoundingMode() _FPU_SETCW(oldRoundingMode)
#else
# define RestoreRoundingMode() (void) 0 /* Do nothing */
#endif
/*
* Discard leading whitespace from input.
*/
while (isspace(UCHAR(*p))) {
++p;
}
/*
* Determine the sign of the significand.
*/
switch (*p) {
case '-':
signum = 1;
/* FALLTHROUGH */
case '+':
++p;
}
/*
* Discard leading zeroes from input.
*/
while (*p == '0') {
seenDigit = 1;
++p;
}
/*
* Scan digits from the significand. Simultaneously, keep track of the
* number of digits after the decimal point. Maintain a pointer to the
* start of the significand. Keep "exactSignificand" equal to the
* conversion of the DBL_DIG most significant digits.
*/
for (;;) {
c = *p;
if (c == '.' && !seenDp) {
seenDp = 1;
++p;
} else if (isdigit(UCHAR(c))) {
if (c == '0') {
if (startOfSignificand != NULL) {
++nTrailZero;
}
} else {
if (startOfSignificand == NULL) {
startOfSignificand = p;
} else if (nTrailZero) {
if (nTrailZero + nSigDigs < DBL_DIG) {
exactSignificand *= pow10[nTrailZero];
} else if (nSigDigs < DBL_DIG) {
exactSignificand *= pow10[DBL_DIG - nSigDigs];
}
nSigDigs += nTrailZero;
}
if (nSigDigs < DBL_DIG) {
exactSignificand = 10. * exactSignificand + (c - '0');
}
++nSigDigs;
nTrailZero = 0;
}
if (seenDp) {
++nDigitsAfterDp;
}
seenDigit = 1;
++p;
} else {
break;
}
}
/*
* At this point, we've scanned the significand, and p points to the
* character beyond it. "startOfSignificand" is the first non-zero
* character in the significand. "nSigDigs" is the number of significant
* digits of the significand, not including any trailing zeroes.
* "exactSignificand" is a floating point number that represents, without
* loss of precision, the first min(DBL_DIG,n) digits of the significand.
* "nDigitsAfterDp" is the number of digits after the decimal point, again
* excluding trailing zeroes.
*
* Now scan 'E' format
*/
exponent = 0;
if (seenDigit && (*p == 'e' || *p == 'E')) {
const char* stringSave = p;
++p;
c = *p;
if (isdigit(UCHAR(c)) || c == '+' || c == '-') {
errno = 0;
exponent = strtol(p, (char**)&p, 10);
if (errno == ERANGE) {
if (exponent > 0) {
v = HUGE_VAL;
} else {
v = 0.0;
}
*endPtr = p;
goto returnValue;
}
}
if (p == stringSave+1) {
p = stringSave;
exponent = 0;
}
}
exponent += nTrailZero - nDigitsAfterDp;
/*
* If we come here with no significant digits, we might still be looking
* at Inf or NaN. Go parse them.
*/
if (!seenDigit) {
/*
* Test for Inf or Infinity (in any case).
*/
if (c == 'I' || c == 'i') {
if ((p[1] == 'N' || p[1] == 'n')
&& (p[2] == 'F' || p[2] == 'f')) {
p += 3;
if ((p[0] == 'I' || p[0] == 'i')
&& (p[1] == 'N' || p[1] == 'n')
&& (p[2] == 'I' || p[2] == 'i')
&& (p[3] == 'T' || p[3] == 't')
&& (p[4] == 'Y' || p[1] == 'y')) {
p += 5;
}
errno = ERANGE;
v = HUGE_VAL;
if (endPtr != NULL) {
*endPtr = p;
}
goto returnValue;
}
#ifdef IEEE_FLOATING_POINT
/*
* Only IEEE floating point supports NaN
*/
} else if ((c == 'N' || c == 'n')
&& (sizeof(Tcl_WideUInt) == sizeof(double))) {
if ((p[1] == 'A' || p[1] == 'a')
&& (p[2] == 'N' || p[2] == 'n')) {
p += 3;
if (endPtr != NULL) {
*endPtr = p;
}
/*
* Restore FPU mode word.
*/
RestoreRoundingMode();
return ParseNaN(signum, endPtr);
}
#endif
}
goto error;
}
/*
* We've successfully scanned; update the end-of-element pointer.
*/
if (endPtr != NULL) {
*endPtr = p;
}
/*
* Test for zero.
*/
if (nSigDigs == 0) {
v = 0.0;
goto returnValue;
}
/*
* The easy cases are where we have an exact significand and the exponent
* is small enough that we can compute the value with only one roundoff.
* In addition to the cases where we can multiply or divide an
* exact-integer significand by an exact-integer power of 10, there is
* also David Gay's case where we can scale the significand by a power of
* 10 (still keeping it exact) and then multiply by an exact power of 10.
* The last case enables combinations like 83e25 that would otherwise
* require high precision arithmetic.
*/
if (nSigDigs <= DBL_DIG) {
if (exponent >= 0) {
if (exponent <= mmaxpow) {
v = exactSignificand * pow10[exponent];
goto returnValue;
} else {
int diff = DBL_DIG - nSigDigs;
if (exponent - diff <= mmaxpow) {
volatile double factor = exactSignificand * pow10[diff];
v = factor * pow10[exponent - diff];
goto returnValue;
}
}
} else if (exponent >= -mmaxpow) {
v = exactSignificand / pow10[-exponent];
goto returnValue;
}
}
/*
* We don't have one of the easy cases, so we can't compute the scanned
* number exactly, and have to do it in multiple precision. Begin by
* testing for obvious overflows and underflows.
*/
if (nSigDigs + exponent - 1 > maxDigits) {
v = HUGE_VAL;
errno = ERANGE;
goto returnValue;
}
if (nSigDigs + exponent - 1 < minDigits) {
errno = ERANGE;
v = 0.;
goto returnValue;
}
/*
* Nothing exceeds the boundaries of the tables, at least. Compute an
* approximate value for the number, with no possibility of overflow
* because we manage the exponent separately.
*/
if (nSigDigs > DBL_DIG) {
expt2 = exponent + nSigDigs - DBL_DIG;
} else {
expt2 = exponent;
}
v = frexp(exactSignificand, &machexp);
if (expt2 > 0) {
v = frexp(v * pow10[expt2 & 0xf], &j);
machexp += j;
for (i=4 ; i<9 ; ++i) {
if (expt2 & (1 << i)) {
v = frexp(v * pow_10_2_n[i], &j);
machexp += j;
}
}
} else {
v = frexp(v / pow10[(-expt2) & 0xf], &j);
machexp += j;
for (i=4 ; i<9 ; ++i) {
if ((-expt2) & (1 << i)) {
v = frexp(v / pow_10_2_n[i], &j);
machexp += j;
}
}
}
/*
* A first approximation is that the result will be v * 2 ** machexp. v is
* greater than or equal to 0.5 and less than 1. If machexp >
* DBL_MAX_EXP*log2(FLT_RADIX), there is an overflow. Constrain the result
* to the smallest representible number to avoid premature underflow.
*/
if (machexp > DBL_MAX_EXP * log2FLT_RADIX) {
v = HUGE_VAL;
errno = ERANGE;
goto returnValue;
}
v = SafeLdExp(v, machexp);
if (v < tiny) {
v = tiny;
}
/*
* We have a first approximation in v. Now we need to refine it.
*/
v = RefineResult(v, startOfSignificand, nSigDigs, exponent);
/*
* In a very few cases, a second iteration is needed. e.g., 457e-102
*/
v = RefineResult(v, startOfSignificand, nSigDigs, exponent);
/*
* Handle underflow.
*/
returnValue:
if (nSigDigs != 0 && v == 0.0) {
errno = ERANGE;
}
/*
* Return a number with correct sign.
*/
if (signum) {
v = -v;
}
/*
* Restore FPU mode word and return.
*/
RestoreRoundingMode();
return v;
/*
* Come here on an invalid input.
*/
error:
if (endPtr != NULL) {
*endPtr = s;
}
/*
* Restore FPU mode word and return.
*/
RestoreRoundingMode();
return 0.0;
}
/*
*----------------------------------------------------------------------
*
* RefineResult --
*
* Given a poor approximation to a floating point number, returns a
* better one. (The better approximation is correct to within 1 ulp, and
* is entirely correct if the poor approximation is correct to 1 ulp.)
*
* Results:
* Returns the improved result.
*
*----------------------------------------------------------------------
*/
static double
RefineResult(double approxResult, /* Approximate result of conversion. */
CONST char* sigStart,
/* Pointer to start of significand in input
* string. */
int nSigDigs, /* Number of significant digits. */
long exponent) /* Power of ten to multiply by significand. */
{
int M2, M5; /* Powers of 2 and of 5 needed to put the
* decimal and binary numbers over a common
* denominator. */
double significand; /* Sigificand of the binary number. */
int binExponent; /* Exponent of the binary number. */
int msb; /* Most significant bit position of an
* intermediate result. */
int nDigits; /* Number of mp_digit's in an intermediate
* result. */
mp_int twoMv; /* Approx binary value expressed as an exact
* integer scaled by the multiplier 2M. */
mp_int twoMd; /* Exact decimal value expressed as an exact
* integer scaled by the multiplier 2M. */
int scale; /* Scale factor for M. */
int multiplier; /* Power of two to scale M. */
double num, den; /* Numerator and denominator of the correction
* term. */
double quot; /* Correction term. */
double minincr; /* Lower bound on the absolute value of the
* correction term. */
int i;
const char* p;
/*
* The first approximation is always low. If we find that it's HUGE_VAL,
* we're done.
*/
if (approxResult == HUGE_VAL) {
return approxResult;
}
/*
* Find a common denominator for the decimal and binary fractions. The
* common denominator will be 2**M2 + 5**M5.
*/
significand = frexp(approxResult, &binExponent);
i = mantBits - binExponent;
if (i < 0) {
M2 = 0;
} else {
M2 = i;
}
if (exponent > 0) {
M5 = 0;
} else {
M5 = -exponent;
if ((M5-1) > M2) {
M2 = M5-1;
}
}
/*
* The floating point number is significand*2**binExponent. The 2**-1 bit
* of the significand (the most significant) corresponds to the
* 2**(binExponent+M2 + 1) bit of 2*M2*v. Allocate enough digits to hold
* that quantity, then convert the significand to a large integer, scaled
* appropriately. Then multiply by the appropriate power of 5.
*/
msb = binExponent + M2; /* 1008 */
nDigits = msb / DIGIT_BIT + 1;
mp_init_size(&twoMv, nDigits);
i = (msb % DIGIT_BIT + 1);
twoMv.used = nDigits;
significand *= SafeLdExp(1.0, i);
while (--nDigits >= 0) {
twoMv.dp[nDigits] = (mp_digit) significand;
significand -= (mp_digit) significand;
significand = SafeLdExp(significand, DIGIT_BIT);
}
for (i=0 ; i<=8 ; ++i) {
if (M5 & (1 << i)) {
mp_mul(&twoMv, pow5+i, &twoMv);
}
}
/*
* Collect the decimal significand as a high precision integer. The least
* significant bit corresponds to bit M2+exponent+1 so it will need to be
* shifted left by that many bits after being multiplied by
* 5**(M5+exponent).
*/
mp_init(&twoMd);
mp_zero(&twoMd);
i = nSigDigs;
for (p=sigStart ;; ++p) {
char c = *p;
if (isdigit(UCHAR(c))) {
mp_mul_d(&twoMd, (unsigned) 10, &twoMd);
mp_add_d(&twoMd, (unsigned) (c - '0'), &twoMd);
--i;
if (i == 0) {
break;
}
}
}
for (i=0 ; i<=8 ; ++i) {
if ((M5+exponent) & (1 << i)) {
mp_mul(&twoMd, pow5+i, &twoMd);
}
}
mp_mul_2d(&twoMd, M2+exponent+1, &twoMd);
mp_sub(&twoMd, &twoMv, &twoMd);
/*
* The result, 2Mv-2Md, needs to be divided by 2M to yield a correction
* term. Because 2M may well overflow a double, we need to scale the
* denominator by a factor of 2**binExponent-mantBits
*/
scale = binExponent - mantBits - 1;
mp_set(&twoMv, 1);
for (i=0 ; i<=8 ; ++i) {
if (M5 & (1 << i)) {
mp_mul(&twoMv, pow5+i, &twoMv);
}
}
multiplier = M2 + scale + 1;
if (multiplier > 0) {
mp_mul_2d(&twoMv, multiplier, &twoMv);
} else if (multiplier < 0) {
mp_div_2d(&twoMv, -multiplier, &twoMv, NULL);
}
/*
* If the result is less than unity, the error is less than 1/2 unit in
* the last place, so there's no correction to make.
*/
if (mp_cmp_mag(&twoMd, &twoMv) == MP_LT) {
mp_clear(&twoMd);
mp_clear(&twoMv);
return approxResult;
}
/*
* Convert the numerator and denominator of the corrector term accurately
* to floating point numbers.
*/
num = TclBignumToDouble(&twoMd);
den = TclBignumToDouble(&twoMv);
quot = SafeLdExp(num/den, scale);
minincr = SafeLdExp(1.0, binExponent - mantBits);
if (quot<0. && quot>-minincr) {
quot = -minincr;
} else if (quot>0. && quot<minincr) {
quot = minincr;
}
mp_clear(&twoMd);
mp_clear(&twoMv);
return approxResult + quot;
}
/*
*----------------------------------------------------------------------
*
* ParseNaN --
*
* Parses a "not a number" from an input string, and returns the double
* precision NaN corresponding to it.
*
* Side effects:
* Advances endPtr to follow any (hex) in the input string.
*
* If the NaN is followed by a left paren, a string of spaes and
* hexadecimal digits, and a right paren, endPtr is advanced to follow
* it.
*
* The string of hexadecimal digits is OR'ed into the resulting NaN, and
* the signum is set as well. Note that a signalling NaN is never
* returned.
*
*----------------------------------------------------------------------
*/
static double
ParseNaN(int signum, /* Flag == 1 if minus sign has been seen in
* front of NaN. */
CONST char** endPtr) /* Pointer-to-pointer to char following "NaN"
* in the input string. */
{
const char* p = *endPtr;
char c;
union {
Tcl_WideUInt iv;
double dv;
} theNaN;
/*
* Scan off a hex number in parentheses. Embedded blanks are ok.
*/
theNaN.iv = 0;
if (*p == '(') {
++p;
for (;;) {
c = *p++;
if (isspace(UCHAR(c))) {
continue;
} else if (c == ')') {
*endPtr = p;
break;
} else if (isdigit(UCHAR(c))) {
c -= '0';
} else if (c >= 'A' && c <= 'F') {
c -= 'A' + 10;
} else if (c >= 'a' && c <= 'f') {
c -= 'a' + 10;
} else {
theNaN.iv = (((Tcl_WideUInt) NAN_START) << 48)
| (((Tcl_WideUInt) signum) << 63);
return theNaN.dv;
}
theNaN.iv = (theNaN.iv << 4) | c;
}
}
/*
* Mask the hex number down to the least significant 51 bits.
*/
theNaN.iv &= (((Tcl_WideUInt) 1) << 51) - 1;
if (signum) {
theNaN.iv |= ((Tcl_WideUInt) 0xfff8) << 48;
} else {
theNaN.iv |= ((Tcl_WideUInt) NAN_START) << 48;
}
*endPtr = p;
return theNaN.dv;
}
/*
*----------------------------------------------------------------------
*
* TclDoubleDigits --
*
* Converts a double to a string of digits.
*
* Results:
* Returns the position of the character in the string after which the
* decimal point should appear. Since the string contains only
* significant digits, the position may be less than zero or greater than
* the length of the string.
*
* Side effects:
* Stores the digits in the given buffer and sets 'signum' according to
* the sign of the number.
*
*----------------------------------------------------------------------
*/
int
TclDoubleDigits(char * strPtr, /* Buffer in which to store the result, must
* have at least 18 chars. */
double v, /* Number to convert. Must be finite, and not
* NaN. */
int *signum) /* Output: 1 if the number is negative.
* Should handle -0 correctly on the IEEE
* architecture. */
{
double f; /* Significand of v. */
int e; /* Power of FLT_RADIX that satisfies
* v = f * FLT_RADIX**e */
int lowOK, highOK;
mp_int r; /* Scaled significand. */
mp_int s; /* Divisor such that v = r / s */
mp_int mplus; /* Scaled epsilon: (r + 2* mplus) == v(+)
* where v(+) is the floating point successor
* of v. */
mp_int mminus; /* Scaled epsilon: (r - 2*mminus) == v(-)
* where v(-) is the floating point
* predecessor of v. */
mp_int temp;
int rfac2 = 0; /* Powers of 2 and 5 by which large */
int rfac5 = 0; /* integers should be scaled. */
int sfac2 = 0;
int sfac5 = 0;
int mplusfac2 = 0;
int mminusfac2 = 0;
double a;
char c;
int i, k, n;
/*
* Take the absolute value of the number, and report the number's sign.
* Take special steps to preserve signed zeroes in IEEE floating point.
* (We can't use fpclassify, because that's a C9x feature and we still
* have to build on C89 compilers.)
*/
#ifndef IEEE_FLOATING_POINT
if (v >= 0.0) {
*signum = 0;
} else {
*signum = 1;
v = -v;
}
#else
union {
Tcl_WideUInt iv;
double dv;
} bitwhack;
bitwhack.dv = v;
if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) {
*signum = 1;
bitwhack.iv &= ~((Tcl_WideUInt) 1 << 63);
v = bitwhack.dv;
} else {
*signum = 0;
}
#endif
/*
* Handle zero specially.
*/
if (v == 0.0) {
*strPtr++ = '0';
*strPtr++ = '\0';
return 1;
}
/*
* Develop f and e such that v = f * FLT_RADIX**e, with
* 1.0/FLT_RADIX <= f < 1.
*/
f = frexp(v, &e);
n = e % log2FLT_RADIX;
if (n > 0) {
n -= log2FLT_RADIX;
e += 1;
}
f *= ldexp(1.0, n);
e = (e - n) / log2FLT_RADIX;
if (f == 1.0) {
f = 1.0 / FLT_RADIX;
e += 1;
}
/*
* If the original number was denormalized, adjust e and f to be denormal
* as well.
*/
if (e < DBL_MIN_EXP) {
n = mantBits + (e - DBL_MIN_EXP)*log2FLT_RADIX;
f = ldexp(f, (e - DBL_MIN_EXP)*log2FLT_RADIX);
e = DBL_MIN_EXP;
n = (n + DIGIT_BIT - 1) / DIGIT_BIT;
} else {
n = mantDIGIT;
}
/*
* Now extract the base-2**DIGIT_BIT digits of f into a multi-precision
* integer r. Preserve the invariant v = r * 2**rfac2 * FLT_RADIX**e by
* adjusting e.
*/
a = f;
n = mantDIGIT;
mp_init_size(&r, n);
r.used = n;
r.sign = MP_ZPOS;
i = (mantBits % DIGIT_BIT);
if (i == 0) {
i = DIGIT_BIT;
}
while (n > 0) {
a *= ldexp(1.0, i);
i = DIGIT_BIT;
r.dp[--n] = (mp_digit) a;
a -= (mp_digit) a;
}
e -= DBL_MANT_DIG;
lowOK = highOK = (mp_iseven(&r));
/*
* We are going to want to develop integers r, s, mplus, and mminus such
* that v = r / s, v(+)-v / 2 = mplus / s; v-v(-) / 2 = mminus / s and
* then scale either s or r, mplus, mminus by an appropriate power of ten.
*
* We actually do this by keeping track of the powers of 2 and 5 by which
* f is multiplied to yield v and by which 1 is multiplied to yield s,
* mplus, and mminus.
*/
if (e >= 0) {
int bits = e * log2FLT_RADIX;
if (f != 1.0/FLT_RADIX) {
/*
* Normal case, m+ and m- are both FLT_RADIX**e
*/
rfac2 += bits + 1;
sfac2 = 1;
mplusfac2 = bits;
mminusfac2 = bits;
} else {
/*
* If f is equal to the smallest significand, then we need another
* factor of FLT_RADIX in s to cope with stepping to the next
* smaller exponent when going to e's predecessor.
*/
rfac2 += bits + log2FLT_RADIX - 1;
sfac2 = 1 + log2FLT_RADIX;
mplusfac2 = bits + log2FLT_RADIX;
mminusfac2 = bits;
}
} else {
/*
* v has digits after the binary point
*/
if (e <= DBL_MIN_EXP-DBL_MANT_DIG || f != 1.0/FLT_RADIX) {
/*
* Either f isn't the smallest significand or e is the smallest
* exponent. mplus and mminus will both be 1.
*/
rfac2 += 1;
sfac2 = 1 - e * log2FLT_RADIX;
mplusfac2 = 0;
mminusfac2 = 0;
} else {
/*
* f is the smallest significand, but e is not the smallest
* exponent. We need to scale by FLT_RADIX again to cope with the
* fact that v's predecessor has a smaller exponent.
*/
rfac2 += 1 + log2FLT_RADIX;
sfac2 = 1 + log2FLT_RADIX * (1 - e);
mplusfac2 = FLT_RADIX;
mminusfac2 = 0;
}
}
/*
* Estimate the highest power of ten that will be needed to hold the
* result.
*/
k = (int) ceil(log(v) / log(10.));
if (k >= 0) {
sfac2 += k;
sfac5 = k;
} else {
rfac2 -= k;
mplusfac2 -= k;
mminusfac2 -= k;
rfac5 = -k;
}
/*
* Scale r, s, mplus, mminus by the appropriate powers of 2 and 5.
*/
mp_init_set(&mplus, 1);
for (i=0 ; i<=8 ; ++i) {
if (rfac5 & (1 << i)) {
mp_mul(&mplus, pow5+i, &mplus);
}
}
mp_mul(&r, &mplus, &r);
mp_mul_2d(&r, rfac2, &r);
mp_init_copy(&mminus, &mplus);
mp_mul_2d(&mplus, mplusfac2, &mplus);
mp_mul_2d(&mminus, mminusfac2, &mminus);
mp_init_set(&s, 1);
for (i=0 ; i<=8 ; ++i) {
if (sfac5 & (1 << i)) {
mp_mul(&s, pow5+i, &s);
}
}
mp_mul_2d(&s, sfac2, &s);
/*
* It is possible for k to be off by one because we used an inexact
* logarithm.
*/
mp_init(&temp);
mp_add(&r, &mplus, &temp);
i = mp_cmp_mag(&temp, &s);
if (i>0 || (highOK && i==0)) {
mp_mul_d(&s, 10, &s);
++k;
} else {
mp_mul_d(&temp, 10, &temp);
i = mp_cmp_mag(&temp, &s);
if (i<0 || (highOK && i==0)) {
mp_mul_d(&r, 10, &r);
mp_mul_d(&mplus, 10, &mplus);
mp_mul_d(&mminus, 10, &mminus);
--k;
}
}
/*
* At this point, k contains the power of ten by which we're scaling the
* result. r/s is at least 1/10 and strictly less than ten, and v = r/s *
* 10**k. mplus and mminus give the rounding limits.
*/
for (;;) {
int tc1, tc2;
mp_mul_d(&r, 10, &r);
mp_div(&r, &s, &temp, &r); /* temp = 10r / s; r = 10r mod s */
i = temp.dp[0];
mp_mul_d(&mplus, 10, &mplus);
mp_mul_d(&mminus, 10, &mminus);
tc1 = mp_cmp_mag(&r, &mminus);
if (lowOK) {
tc1 = (tc1 <= 0);
} else {
tc1 = (tc1 < 0);
}
mp_add(&r, &mplus, &temp);
tc2 = mp_cmp_mag(&temp, &s);
if (highOK) {
tc2 = (tc2 >= 0);
} else {
tc2= (tc2 > 0);
}
if (!tc1) {
if (!tc2) {
*strPtr++ = '0' + i;
} else {
c = (char) (i + '1');
break;
}
} else {
if (!tc2) {
c = (char) (i + '0');
} else {
mp_mul_2d(&r, 1, &r);
n = mp_cmp_mag(&r, &s);
if (n < 0) {
c = (char) (i + '0');
} else {
c = (char) (i + '1');
}
}
break;
}
};
*strPtr++ = c;
*strPtr++ = '\0';
/*
* Free memory, and return.
*/
mp_clear_multi(&r, &s, &mplus, &mminus, &temp, NULL);
return k;
}
/*
*----------------------------------------------------------------------
*
* TclInitDoubleConversion --
*
* Initializes constants that are needed for conversions to and from
* 'double'
*
* Results:
* None.
*
* Side effects:
* The log base 2 of the floating point radix, the number of bits in a
* double mantissa, and a table of the powers of five and ten are
* computed and stored.
*
*----------------------------------------------------------------------
*/
void
TclInitDoubleConversion(void)
{
int i;
int x;
double d;
if (frexp((double) FLT_RADIX, &log2FLT_RADIX) != 0.5) {
Tcl_Panic("This code doesn't work on a decimal machine!");
}
--log2FLT_RADIX;
mantBits = DBL_MANT_DIG * log2FLT_RADIX;
d = 1.0;
x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log(5.0));
if (x < MAXPOW) {
mmaxpow = x;
} else {
mmaxpow = MAXPOW;
}
for (i=0 ; i<=mmaxpow ; ++i) {
pow10[i] = d;
d *= 10.0;
}
for (i=0 ; i<9 ; ++i) {
mp_init(pow5 + i);
}
mp_set(pow5, 5);
for (i=0 ; i<8 ; ++i) {
mp_sqr(pow5+i, pow5+i+1);
}
tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits);
maxDigits = (int)
((DBL_MAX_EXP * log((double) FLT_RADIX) + log(10.)/2) / log(10.));
minDigits = (int)
floor((DBL_MIN_EXP-DBL_MANT_DIG)*log((double)FLT_RADIX)/log(10.));
mantDIGIT = (mantBits + DIGIT_BIT - 1) / DIGIT_BIT;
}
/*
*----------------------------------------------------------------------
*
* TclFinalizeDoubleConversion --
*
* Cleans up this file on exit.
*
* Results:
* None
*
* Side effects:
* Memory allocated by TclInitDoubleConversion is freed.
*
*----------------------------------------------------------------------
*/
void
TclFinalizeDoubleConversion()
{
int i;
for (i=0 ; i<9 ; ++i) {
mp_clear(pow5 + i);
}
}
/*
*----------------------------------------------------------------------
*
* TclBignumToDouble --
*
* Convert an arbitrary-precision integer to a native floating point
* number.
*
* Results:
* Returns the converted number. Sets errno to ERANGE if the number is
* too large to convert.
*
*----------------------------------------------------------------------
*/
double
TclBignumToDouble(mp_int *a) /* Integer to convert. */
{
mp_int b;
int bits;
int shift;
int i;
double r;
/*
* Determine how many bits we need, and extract that many from the input.
* Round to nearest unit in the last place.
*/
bits = mp_count_bits(a);
if (bits > DBL_MAX_EXP*log2FLT_RADIX) {
errno = ERANGE;
return HUGE_VAL;
}
shift = mantBits + 1 - bits;
mp_init(&b);
if (shift > 0) {
mp_mul_2d(a, shift, &b);
} else if (shift < 0) {
mp_div_2d(a, -shift, &b, NULL);
} else {
mp_copy(a, &b);
}
mp_add_d(&b, 1, &b);
mp_div_2d(&b, 1, &b, NULL);
/*
* Accumulate the result, one mp_digit at a time.
*/
r = 0.0;
for (i=b.used-1 ; i>=0 ; --i) {
r = ldexp(r, DIGIT_BIT) + b.dp[i];
}
mp_clear(&b);
/*
* Scale the result to the correct number of bits.
*/
r = ldexp(r, bits - mantBits);
/*
* Return the result with the appropriate sign.
*/
if (a->sign == MP_ZPOS) {
return r;
} else {
return -r;
}
}
/*
*----------------------------------------------------------------------
*
* SafeLdExp --
*
* Do an 'ldexp' operation, but handle denormals gracefully.
*
* Results:
* Returns the appropriately scaled value.
*
* On some platforms, 'ldexp' fails when presented with a number too
* small to represent as a normalized double. This routine does 'ldexp'
* in two steps for those numbers, to return correctly denormalized
* values.
*
*----------------------------------------------------------------------
*/
static double
SafeLdExp(double fract, int expt)
{
int minexpt = DBL_MIN_EXP * log2FLT_RADIX;
volatile double a, b, retval;
if (expt < minexpt) {
a = ldexp(fract, expt - mantBits - minexpt);
b = ldexp(1.0, mantBits + minexpt);
retval = a * b;
} else {
retval = ldexp(fract, expt);
}
return retval;
}
/*
*----------------------------------------------------------------------
*
* TclFormatNaN --
*
* Makes the string representation of a "Not a Number"
*
* Results:
* None.
*
* Side effects:
* Stores the string representation in the supplied buffer, which must be
* at least TCL_DOUBLE_SPACE characters.
*
*----------------------------------------------------------------------
*/
void
TclFormatNaN(double value, /* The Not-a-Number to format. */
char *buffer) /* String representation. */
{
#ifndef IEEE_FLOATING_POINT
strcpy(buffer, "NaN");
return;
#else
union {
double dv;
Tcl_WideUInt iv;
} bitwhack;
bitwhack.dv = value;
if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) {
bitwhack.iv &= ~ ((Tcl_WideUInt) 1 << 63);
*buffer++ = '-';
}
*buffer++ = 'N';
*buffer++ = 'a';
*buffer++ = 'N';
bitwhack.iv &= (((Tcl_WideUInt) 1) << 51) - 1;
if (bitwhack.iv != 0) {
sprintf(buffer, "(%" TCL_LL_MODIFIER "x)", bitwhack.iv);
} else {
*buffer = '\0';
}
#endif /* IEEE_FLOATING_POINT */
}
|