summaryrefslogtreecommitdiffstats
path: root/generic/tclTomMath.h
blob: c6a2f847bd2670c3e74a6974f17be84abeec2ca2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 */
#ifndef BN_H_
#define BN_H_

#include <tclTomMathDecls.h>
#ifndef MODULE_SCOPE
#define MODULE_SCOPE extern
#endif

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <limits.h>

#include <tommath_class.h>

#ifndef MIN
   #define MIN(x,y) ((x)<(y)?(x):(y))
#endif

#ifndef MAX
   #define MAX(x,y) ((x)>(y)?(x):(y))
#endif

#ifdef __cplusplus
extern "C" {

/* C++ compilers don't like assigning void * to mp_digit * */
#define  OPT_CAST(x)  (x *)

#else

/* C on the other hand doesn't care */
#define  OPT_CAST(x)

#endif


/* detect 64-bit mode if possible */
#if defined(__x86_64__) 
   #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
      #define MP_64BIT
   #endif
#endif
#if defined(__APPLE__) && defined(__LP64__)
/*
 * At present, use of 128-bit arithmetic via __attribute__ ((mode(TI)))
 * leads to link errors on Darwin x86_64__ and ppc64. rdar://4685527
 */
#   ifdef HAVE_LP64_MODE_TI
#       define MP_64BIT
#   else
#       undef MP_64BIT
#   endif
#endif

/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */
#ifdef MP_8BIT
#ifndef MP_DIGIT_DECLARED
   typedef unsigned char      mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef unsigned short     mp_word;
#elif defined(MP_16BIT)
#ifndef MP_DIGIT_DECLARED
   typedef unsigned short     mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef unsigned long      mp_word;
#elif defined(MP_64BIT)
   /* for GCC only on supported platforms */
#ifndef CRYPT
   typedef unsigned long long ulong64;
   typedef signed long long   long64;
#endif

#ifndef MP_DIGIT_DECLARED
   typedef unsigned long      mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef unsigned long      mp_word __attribute__ ((mode(TI)));

   #define DIGIT_BIT          60
#else
   /* this is the default case, 28-bit digits */
   
   /* this is to make porting into LibTomCrypt easier :-) */
#ifndef CRYPT
   #if defined(_MSC_VER) || defined(__BORLANDC__) 
      typedef unsigned __int64   ulong64;
      typedef signed __int64     long64;
   #else
      typedef unsigned long long ulong64;
      typedef signed long long   long64;
   #endif
#endif

#ifndef MP_DIGIT_DECLARED
   typedef unsigned long      mp_digit;
#define MP_DIGIT_DECLARED
#endif
   typedef ulong64            mp_word;

#ifdef MP_31BIT   
   /* this is an extension that uses 31-bit digits */
   #define DIGIT_BIT          31
#else
   /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
   #define DIGIT_BIT          28
   #define MP_28BIT
#endif   
#endif

/* define heap macros */
#if 0 /* these are macros in tclTomMathDecls.h */
#ifndef CRYPT
   /* default to libc stuff */
   #ifndef XMALLOC 
       #define XMALLOC  malloc
       #define XFREE    free
       #define XREALLOC realloc
       #define XCALLOC  calloc
   #else
      /* prototypes for our heap functions */
      extern void *XMALLOC(size_t n);
      extern void *XREALLOC(void *p, size_t n);
      extern void *XCALLOC(size_t n, size_t s);
      extern void XFREE(void *p);
   #endif
#endif
#endif


/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
   #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* equalities */
#define MP_LT        -1   /* less than */
#define MP_EQ         0   /* equal to */
#define MP_GT         1   /* greater than */

#define MP_ZPOS       0   /* positive integer */
#define MP_NEG        1   /* negative */

#define MP_OKAY       0   /* ok result */
#define MP_MEM        -2  /* out of mem */
#define MP_VAL        -3  /* invalid input */
#define MP_RANGE      MP_VAL

#define MP_YES        1   /* yes response */
#define MP_NO         0   /* no response */

/* Primality generation flags */
#define LTM_PRIME_BBS      0x0001 /* BBS style prime */
#define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */

typedef int           mp_err;

/* you'll have to tune these... */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE int KARATSUBA_MUL_CUTOFF,
           KARATSUBA_SQR_CUTOFF,
           TOOM_MUL_CUTOFF,
           TOOM_SQR_CUTOFF;
#endif

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
   #ifndef MP_LOW_MEM
      #define MP_PREC                 32     /* default digits of precision */
   #else
      #define MP_PREC                 8      /* default digits of precision */
   #endif   
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))

/* the infamous mp_int structure */
#ifndef MP_INT_DECLARED
#define MP_INT_DECLARED
typedef struct mp_int mp_int;
#endif
struct mp_int {
    int used, alloc, sign;
    mp_digit *dp;
};

/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);


#define USED(m)    ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m)    ((m)->sign)

/* error code to char* string */
/*
char *mp_error_to_string(int code);
*/

/* ---> init and deinit bignum functions <--- */
/* init a bignum */
/*
int mp_init(mp_int *a);
*/

/* free a bignum */
/*
void mp_clear(mp_int *a);
*/

/* init a null terminated series of arguments */
/*
int mp_init_multi(mp_int *mp, ...);
*/

/* clear a null terminated series of arguments */
/*
void mp_clear_multi(mp_int *mp, ...);
*/

/* exchange two ints */
/*
void mp_exch(mp_int *a, mp_int *b);
*/

/* shrink ram required for a bignum */
/*
int mp_shrink(mp_int *a);
*/

/* grow an int to a given size */
/*
int mp_grow(mp_int *a, int size);
*/

/* init to a given number of digits */
/*
int mp_init_size(mp_int *a, int size);
*/

/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)

/* set to zero */
/*
void mp_zero(mp_int *a);
*/

/* set to a digit */
/*
void mp_set(mp_int *a, mp_digit b);
*/

/* set a 32-bit const */
/*
int mp_set_int(mp_int *a, unsigned long b);
*/

/* get a 32-bit value */
unsigned long mp_get_int(mp_int * a);

/* initialize and set a digit */
/*
int mp_init_set (mp_int * a, mp_digit b);
*/

/* initialize and set 32-bit value */
/*
int mp_init_set_int (mp_int * a, unsigned long b);
*/

/* copy, b = a */
/*
int mp_copy(mp_int *a, mp_int *b);
*/

/* inits and copies, a = b */
/*
int mp_init_copy(mp_int *a, mp_int *b);
*/

/* trim unused digits */
/*
void mp_clamp(mp_int *a);
*/

/* ---> digit manipulation <--- */

/* right shift by "b" digits */
/*
void mp_rshd(mp_int *a, int b);
*/

/* left shift by "b" digits */
/*
int mp_lshd(mp_int *a, int b);
*/

/* c = a / 2**b */
/*
int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
*/

/* b = a/2 */
/*
int mp_div_2(mp_int *a, mp_int *b);
*/

/* c = a * 2**b */
/*
int mp_mul_2d(mp_int *a, int b, mp_int *c);
*/

/* b = a*2 */
/*
int mp_mul_2(mp_int *a, mp_int *b);
*/

/* c = a mod 2**d */
/*
int mp_mod_2d(mp_int *a, int b, mp_int *c);
*/

/* computes a = 2**b */
/*
int mp_2expt(mp_int *a, int b);
*/

/* Counts the number of lsbs which are zero before the first zero bit */
/*
int mp_cnt_lsb(mp_int *a);
*/

/* I Love Earth! */

/* makes a pseudo-random int of a given size */
/*
int mp_rand(mp_int *a, int digits);
*/

/* ---> binary operations <--- */
/* c = a XOR b  */
/*
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a OR b */
/*
int mp_or(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a AND b */
/*
int mp_and(mp_int *a, mp_int *b, mp_int *c);
*/

/* ---> Basic arithmetic <--- */

/* b = -a */
/*
int mp_neg(mp_int *a, mp_int *b);
*/

/* b = |a| */
/*
int mp_abs(mp_int *a, mp_int *b);
*/

/* compare a to b */
/*
int mp_cmp(mp_int *a, mp_int *b);
*/

/* compare |a| to |b| */
/*
int mp_cmp_mag(mp_int *a, mp_int *b);
*/

/* c = a + b */
/*
int mp_add(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
*/

/* b = a*a  */
/*
int mp_sqr(mp_int *a, mp_int *b);
*/

/* a/b => cb + d == a */
/*
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
*/

/* ---> single digit functions <--- */

/* compare against a single digit */
/*
int mp_cmp_d(mp_int *a, mp_digit b);
*/

/* c = a + b */
/*
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a - b */
/*
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a * b */
/*
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* a/b => cb + d == a */
/*
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
*/

/* a/3 => 3c + d == a */
/*
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
*/

/* c = a**b */
/*
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
*/

/* c = a mod b, 0 <= c < b  */
/*
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
*/

/* ---> number theory <--- */

/* d = a + b (mod c) */
/*
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* d = a - b (mod c) */
/*
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* d = a * b (mod c) */
/*
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* c = a * a (mod b) */
/*
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = 1/a (mod b) */
/*
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
*/

/* c = (a, b) */
/*
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
*/

/* produces value such that U1*a + U2*b = U3 */
/*
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
*/

/* c = [a, b] or (a*b)/(a, b) */
/*
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
*/

/* finds one of the b'th root of a, such that |c|**b <= |a|
 *
 * returns error if a < 0 and b is even
 */
/*
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
*/

/* special sqrt algo */
/*
int mp_sqrt(mp_int *arg, mp_int *ret);
*/

/* is number a square? */
/*
int mp_is_square(mp_int *arg, int *ret);
*/

/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
/*
int mp_jacobi(mp_int *a, mp_int *n, int *c);
*/

/* used to setup the Barrett reduction for a given modulus b */
/*
int mp_reduce_setup(mp_int *a, mp_int *b);
*/

/* Barrett Reduction, computes a (mod b) with a precomputed value c
 *
 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
 */
/*
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
*/

/* setups the montgomery reduction */
/*
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
*/

/* computes a = B**n mod b without division or multiplication useful for
 * normalizing numbers in a Montgomery system.
 */
/*
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
*/

/* computes x/R == x (mod N) via Montgomery Reduction */
/*
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
*/

/* returns 1 if a is a valid DR modulus */
/*
int mp_dr_is_modulus(mp_int *a);
*/

/* sets the value of "d" required for mp_dr_reduce */
/*
void mp_dr_setup(mp_int *a, mp_digit *d);
*/

/* reduces a modulo b using the Diminished Radix method */
/*
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
*/

/* returns true if a can be reduced with mp_reduce_2k */
/*
int mp_reduce_is_2k(mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
*/

/* returns true if a can be reduced with mp_reduce_2k_l */
/*
int mp_reduce_is_2k_l(mp_int *a);
*/

/* determines k value for 2k reduction */
/*
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
*/

/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
/*
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
*/

/* d = a**b (mod c) */
/*
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
*/

/* ---> Primes <--- */

/* number of primes */
#ifdef MP_8BIT
   #define PRIME_SIZE      31
#else
   #define PRIME_SIZE      256
#endif

/* table of first PRIME_SIZE primes */
#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const mp_digit ltm_prime_tab[];
#endif

/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
/*
int mp_prime_is_divisible(mp_int *a, int *result);
*/

/* performs one Fermat test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
*/

/* performs one Miller-Rabin test of "a" using base "b".
 * Sets result to 0 if composite or 1 if probable prime
 */
/*
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
*/

/* This gives [for a given bit size] the number of trials required
 * such that Miller-Rabin gives a prob of failure lower than 2^-96 
 */
/*
int mp_prime_rabin_miller_trials(int size);
*/

/* performs t rounds of Miller-Rabin on "a" using the first
 * t prime bases.  Also performs an initial sieve of trial
 * division.  Determines if "a" is prime with probability
 * of error no more than (1/4)**t.
 *
 * Sets result to 1 if probably prime, 0 otherwise
 */
/*
int mp_prime_is_prime(mp_int *a, int t, int *result);
*/

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
/*
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
*/

/* makes a truly random prime of a given size (bytes),
 * call with bbs = 1 if you want it to be congruent to 3 mod 4 
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 * The prime generated will be larger than 2^(8*size).
 */
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)

/* makes a truly random prime of a given size (bits),
 *
 * Flags are as follows:
 * 
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 *
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 * so it can be NULL
 *
 */
/*
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
*/

/* ---> radix conversion <--- */
/*
int mp_count_bits(mp_int *a);
*/

/*
int mp_unsigned_bin_size(mp_int *a);
*/
/*
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
*/
/*
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_signed_bin_size(mp_int *a);
*/
/*
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
*/
/*
int mp_to_signed_bin(mp_int *a,  unsigned char *b);
*/
/*
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
*/

/*
int mp_read_radix(mp_int *a, const char *str, int radix);
*/
/*
int mp_toradix(mp_int *a, char *str, int radix);
*/
/*
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
*/
/*
int mp_radix_size(mp_int *a, int radix, int *size);
*/

/*
int mp_fread(mp_int *a, int radix, FILE *stream);
*/
/*
int mp_fwrite(mp_int *a, int radix, FILE *stream);
*/

#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))

#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)

/* lowlevel functions, do not call! */
/*
int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
*/
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
/*
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
*/
/*
int fast_s_mp_sqr(mp_int *a, mp_int *b);
*/
/*
int s_mp_sqr(mp_int *a, mp_int *b);
*/
/*
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
*/
/*
int mp_toom_sqr(mp_int *a, mp_int *b);
*/
/*
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
*/
/*
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
*/
/*
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
*/
/*
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
*/
/*
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
*/
/*
void bn_reverse(unsigned char *s, int len);
*/

#if defined(BUILD_tcl) || !defined(_WIN32)
MODULE_SCOPE const char *mp_s_rmap;
#endif

#ifdef __cplusplus
   }
#endif

#endif


/* $Source: /root/tcl/repos-to-convert/tcl/generic/tclTomMath.h,v $ */
/* $Revision: 1.8 $ */
/* $Date: 2006/12/02 01:22:41 $ */