summaryrefslogtreecommitdiffstats
path: root/libtommath/bn_mp_prime_frobenius_underwood.c
blob: 253e8d53bc279ce37a03fcc54a13912adf09a837 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/*
 *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
 */
#ifndef LTM_USE_ONLY_MR

#ifdef MP_8BIT
/*
 * floor of positive solution of
 * (2^16)-1 = (a+4)*(2*a+5)
 * TODO: Both values are smaller than N^(1/4), would have to use a bigint
 *       for a instead but any a biger than about 120 are already so rare that
 *       it is possible to ignore them and still get enough pseudoprimes.
 *       But it is still a restriction of the set of available pseudoprimes
 *       which makes this implementation less secure if used stand-alone.
 */
#define LTM_FROBENIUS_UNDERWOOD_A 177
#else
#define LTM_FROBENIUS_UNDERWOOD_A 32764
#endif
mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result)
{
   mp_int T1z, T2z, Np1z, sz, tz;

   int a, ap2, length, i, j;
   mp_err err;

   *result = MP_NO;

   if ((err = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
      return err;
   }

   for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
      /* TODO: That's ugly! No, really, it is! */
      if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
          (a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
         continue;
      }
      /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
      mp_set_u32(&T1z, (uint32_t)a);

      if ((err = mp_sqr(&T1z, &T1z)) != MP_OKAY)                  goto LBL_FU_ERR;

      if ((err = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY)           goto LBL_FU_ERR;

      if ((err = mp_kronecker(&T1z, N, &j)) != MP_OKAY)           goto LBL_FU_ERR;

      if (j == -1) {
         break;
      }

      if (j == 0) {
         /* composite */
         goto LBL_FU_ERR;
      }
   }
   /* Tell it a composite and set return value accordingly */
   if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
      err = MP_ITER;
      goto LBL_FU_ERR;
   }
   /* Composite if N and (a+4)*(2*a+5) are not coprime */
   mp_set_u32(&T1z, (uint32_t)((a+4)*((2*a)+5)));

   if ((err = mp_gcd(N, &T1z, &T1z)) != MP_OKAY)                  goto LBL_FU_ERR;

   if (!((T1z.used == 1) && (T1z.dp[0] == 1u)))                   goto LBL_FU_ERR;

   ap2 = a + 2;
   if ((err = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY)                goto LBL_FU_ERR;

   mp_set(&sz, 1uL);
   mp_set(&tz, 2uL);
   length = mp_count_bits(&Np1z);

   for (i = length - 2; i >= 0; i--) {
      /*
       * temp = (sz*(a*sz+2*tz))%N;
       * tz   = ((tz-sz)*(tz+sz))%N;
       * sz   = temp;
       */
      if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY)                 goto LBL_FU_ERR;

      /* a = 0 at about 50% of the cases (non-square and odd input) */
      if (a != 0) {
         if ((err = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) goto LBL_FU_ERR;
         if ((err = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY)         goto LBL_FU_ERR;
      }

      if ((err = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY)             goto LBL_FU_ERR;
      if ((err = mp_sub(&tz, &sz, &T2z)) != MP_OKAY)              goto LBL_FU_ERR;
      if ((err = mp_add(&sz, &tz, &sz)) != MP_OKAY)               goto LBL_FU_ERR;
      if ((err = mp_mul(&sz, &T2z, &tz)) != MP_OKAY)              goto LBL_FU_ERR;
      if ((err = mp_mod(&tz, N, &tz)) != MP_OKAY)                 goto LBL_FU_ERR;
      if ((err = mp_mod(&T1z, N, &sz)) != MP_OKAY)                goto LBL_FU_ERR;
      if (s_mp_get_bit(&Np1z, (unsigned int)i) == MP_YES) {
         /*
          *  temp = (a+2) * sz + tz
          *  tz   = 2 * tz - sz
          *  sz   = temp
          */
         if (a == 0) {
            if ((err = mp_mul_2(&sz, &T1z)) != MP_OKAY)           goto LBL_FU_ERR;
         } else {
            if ((err = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) goto LBL_FU_ERR;
         }
         if ((err = mp_add(&T1z, &tz, &T1z)) != MP_OKAY)          goto LBL_FU_ERR;
         if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY)              goto LBL_FU_ERR;
         if ((err = mp_sub(&T2z, &sz, &tz)) != MP_OKAY)           goto LBL_FU_ERR;
         mp_exch(&sz, &T1z);
      }
   }

   mp_set_u32(&T1z, (uint32_t)((2 * a) + 5));
   if ((err = mp_mod(&T1z, N, &T1z)) != MP_OKAY)                  goto LBL_FU_ERR;
   if (MP_IS_ZERO(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
      *result = MP_YES;
   }

LBL_FU_ERR:
   mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
   return err;
}

#endif
#endif