1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
#include <tommath.h>
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
int err, res, x, y;
mp_digit res_tab[PRIME_SIZE], step, kstep;
mp_int b;
/* ensure t is valid */
if (t <= 0 || t > PRIME_SIZE) {
return MP_VAL;
}
/* force positive */
a->sign = MP_ZPOS;
/* simple algo if a is less than the largest prime in the table */
if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
/* find which prime it is bigger than */
for (x = PRIME_SIZE - 2; x >= 0; x--) {
if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
if (bbs_style == 1) {
/* ok we found a prime smaller or
* equal [so the next is larger]
*
* however, the prime must be
* congruent to 3 mod 4
*/
if ((ltm_prime_tab[x + 1] & 3) != 3) {
/* scan upwards for a prime congruent to 3 mod 4 */
for (y = x + 1; y < PRIME_SIZE; y++) {
if ((ltm_prime_tab[y] & 3) == 3) {
mp_set(a, ltm_prime_tab[y]);
return MP_OKAY;
}
}
}
} else {
mp_set(a, ltm_prime_tab[x + 1]);
return MP_OKAY;
}
}
}
/* at this point a maybe 1 */
if (mp_cmp_d(a, 1) == MP_EQ) {
mp_set(a, 2);
return MP_OKAY;
}
/* fall through to the sieve */
}
/* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
if (bbs_style == 1) {
kstep = 4;
} else {
kstep = 2;
}
/* at this point we will use a combination of a sieve and Miller-Rabin */
if (bbs_style == 1) {
/* if a mod 4 != 3 subtract the correct value to make it so */
if ((a->dp[0] & 3) != 3) {
if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
}
} else {
if (mp_iseven(a) == 1) {
/* force odd */
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
return err;
}
}
}
/* generate the restable */
for (x = 1; x < PRIME_SIZE; x++) {
if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
return err;
}
}
/* init temp used for Miller-Rabin Testing */
if ((err = mp_init(&b)) != MP_OKAY) {
return err;
}
for (;;) {
/* skip to the next non-trivially divisible candidate */
step = 0;
do {
/* y == 1 if any residue was zero [e.g. cannot be prime] */
y = 0;
/* increase step to next candidate */
step += kstep;
/* compute the new residue without using division */
for (x = 1; x < PRIME_SIZE; x++) {
/* add the step to each residue */
res_tab[x] += kstep;
/* subtract the modulus [instead of using division] */
if (res_tab[x] >= ltm_prime_tab[x]) {
res_tab[x] -= ltm_prime_tab[x];
}
/* set flag if zero */
if (res_tab[x] == 0) {
y = 1;
}
}
} while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
/* add the step */
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
goto LBL_ERR;
}
/* if didn't pass sieve and step == MAX then skip test */
if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
continue;
}
/* is this prime? */
for (x = 0; x < t; x++) {
mp_set(&b, ltm_prime_tab[x]);
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
goto LBL_ERR;
}
if (res == MP_NO) {
break;
}
}
if (res == MP_YES) {
break;
}
}
err = MP_OKAY;
LBL_ERR:
mp_clear(&b);
return err;
}
#endif
/* $Source$ */
/* $Revision: v0.42.0 $ */
/* $Date: 2010-07-15 13:49:00 +0000 $ */
|