1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
#include "tommath_private.h"
#ifdef BN_MP_ROOT_U32_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* find the n'th root of an integer
*
* Result found such that (c)**b <= a and (c+1)**b > a
*
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit.
*/
mp_err mp_root_u32(const mp_int *a, uint32_t b, mp_int *c)
{
mp_int t1, t2, t3, a_;
mp_ord cmp;
int ilog2;
mp_err err;
/* input must be positive if b is even */
if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
return MP_VAL;
}
if ((err = mp_init_multi(&t1, &t2, &t3, NULL)) != MP_OKAY) {
return err;
}
/* if a is negative fudge the sign but keep track */
a_ = *a;
a_.sign = MP_ZPOS;
/* Compute seed: 2^(log_2(n)/b + 2)*/
ilog2 = mp_count_bits(a);
/*
If "b" is larger than INT_MAX it is also larger than
log_2(n) because the bit-length of the "n" is measured
with an int and hence the root is always < 2 (two).
*/
if (b > (uint32_t)(INT_MAX/2)) {
mp_set(c, 1uL);
c->sign = a->sign;
err = MP_OKAY;
goto LBL_ERR;
}
/* "b" is smaller than INT_MAX, we can cast safely */
if (ilog2 < (int)b) {
mp_set(c, 1uL);
c->sign = a->sign;
err = MP_OKAY;
goto LBL_ERR;
}
ilog2 = ilog2 / ((int)b);
if (ilog2 == 0) {
mp_set(c, 1uL);
c->sign = a->sign;
err = MP_OKAY;
goto LBL_ERR;
}
/* Start value must be larger than root */
ilog2 += 2;
if ((err = mp_2expt(&t2,ilog2)) != MP_OKAY) goto LBL_ERR;
do {
/* t1 = t2 */
if ((err = mp_copy(&t2, &t1)) != MP_OKAY) goto LBL_ERR;
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((err = mp_expt_u32(&t1, b - 1u, &t3)) != MP_OKAY) goto LBL_ERR;
/* numerator */
/* t2 = t1**b */
if ((err = mp_mul(&t3, &t1, &t2)) != MP_OKAY) goto LBL_ERR;
/* t2 = t1**b - a */
if ((err = mp_sub(&t2, &a_, &t2)) != MP_OKAY) goto LBL_ERR;
/* denominator */
/* t3 = t1**(b-1) * b */
if ((err = mp_mul_d(&t3, b, &t3)) != MP_OKAY) goto LBL_ERR;
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((err = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) goto LBL_ERR;
if ((err = mp_sub(&t1, &t3, &t2)) != MP_OKAY) goto LBL_ERR;
/*
Number of rounds is at most log_2(root). If it is more it
got stuck, so break out of the loop and do the rest manually.
*/
if (ilog2-- == 0) {
break;
}
} while (mp_cmp(&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
/* Loop beneath can overshoot by one if found root is smaller than actual root */
for (;;) {
if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
cmp = mp_cmp(&t2, &a_);
if (cmp == MP_EQ) {
err = MP_OKAY;
goto LBL_ERR;
}
if (cmp == MP_LT) {
if ((err = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
} else {
break;
}
}
/* correct overshoot from above or from recurrence */
for (;;) {
if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
if (mp_cmp(&t2, &a_) == MP_GT) {
if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
} else {
break;
}
}
/* set the result */
mp_exch(&t1, c);
/* set the sign of the result */
c->sign = a->sign;
err = MP_OKAY;
LBL_ERR:
mp_clear_multi(&t1, &t2, &t3, NULL);
return err;
}
#endif
|