summaryrefslogtreecommitdiffstats
path: root/libtommath/tommath.tex
blob: c79a5370fbd86c820cd6a07074a2baf1e41af147 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
\documentclass[b5paper]{book}
\usepackage{hyperref}
\usepackage{makeidx}
\usepackage{amssymb}
\usepackage{color}
\usepackage{alltt}
\usepackage{graphicx}
\usepackage{layout}
\def\union{\cup}
\def\intersect{\cap}
\def\getsrandom{\stackrel{\rm R}{\gets}}
\def\cross{\times}
\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
\def\catn{$\|$}
\def\divides{\hspace{0.3em} | \hspace{0.3em}}
\def\nequiv{\not\equiv}
\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
\def\lcm{{\rm lcm}}
\def\gcd{{\rm gcd}}
\def\log{{\rm log}}
\def\ord{{\rm ord}}
\def\abs{{\mathit abs}}
\def\rep{{\mathit rep}}
\def\mod{{\mathit\ mod\ }}
\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
\def\Or{{\rm\ or\ }}
\def\And{{\rm\ and\ }}
\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
\def\implies{\Rightarrow}
\def\undefined{{\rm ``undefined"}}
\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
\let\oldphi\phi
\def\phi{\varphi}
\def\Pr{{\rm Pr}}
\newcommand{\str}[1]{{\mathbf{#1}}}
\def\F{{\mathbb F}}
\def\N{{\mathbb N}}
\def\Z{{\mathbb Z}}
\def\R{{\mathbb R}}
\def\C{{\mathbb C}}
\def\Q{{\mathbb Q}}
\definecolor{DGray}{gray}{0.5}
\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
\def\gap{\vspace{0.5ex}}
\makeindex
\begin{document}
\frontmatter
\pagestyle{empty}
\title{Multi--Precision Math}
\author{\mbox{
%\begin{small}
\begin{tabular}{c}
Tom St Denis \\
Algonquin College \\
\\
Mads Rasmussen \\
Open Communications Security \\
\\
Greg Rose \\
QUALCOMM Australia \\
\end{tabular}
%\end{small}
}
}
\maketitle
This text has been placed in the public domain.  This text corresponds to the v0.39 release of the 
LibTomMath project.

\begin{alltt}
Tom St Denis
111 Banning Rd
Ottawa, Ontario
K2L 1C3
Canada

Phone: 1-613-836-3160
Email: tomstdenis@gmail.com
\end{alltt}

This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{} 
{\em book} macro package and the Perl {\em booker} package.

\tableofcontents
\listoffigures
\chapter*{Prefaces}
When I tell people about my LibTom projects and that I release them as public domain they are often puzzled.  
They ask why I did it and especially why I continue to work on them for free.  The best I can explain it is ``Because I can.''  
Which seems odd and perhaps too terse for adult conversation. I often qualify it with ``I am able, I am willing.'' which 
perhaps explains it better.  I am the first to admit there is not anything that special with what I have done.  Perhaps
others can see that too and then we would have a society to be proud of.  My LibTom projects are what I am doing to give 
back to society in the form of tools and knowledge that can help others in their endeavours.

I started writing this book because it was the most logical task to further my goal of open academia.  The LibTomMath source
code itself was written to be easy to follow and learn from.  There are times, however, where pure C source code does not
explain the algorithms properly.  Hence this book.  The book literally starts with the foundation of the library and works
itself outwards to the more complicated algorithms.  The use of both pseudo--code and verbatim source code provides a duality
of ``theory'' and ``practice'' that the computer science students of the world shall appreciate.  I never deviate too far
from relatively straightforward algebra and I hope that this book can be a valuable learning asset.

This book and indeed much of the LibTom projects would not exist in their current form if it was not for a plethora
of kind people donating their time, resources and kind words to help support my work.  Writing a text of significant
length (along with the source code) is a tiresome and lengthy process.  Currently the LibTom project is four years old,
comprises of literally thousands of users and over 100,000 lines of source code, TeX and other material.  People like Mads and Greg 
were there at the beginning to encourage me to work well.  It is amazing how timely validation from others can boost morale to 
continue the project. Definitely my parents were there for me by providing room and board during the many months of work in 2003.  

To my many friends whom I have met through the years I thank you for the good times and the words of encouragement.  I hope I
honour your kind gestures with this project.

Open Source.  Open Academia.  Open Minds.

\begin{flushright} Tom St Denis \end{flushright}

\newpage
I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also 
contribute to educate others facing the problem of having to handle big number mathematical calculations.

This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of 
how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about 
the layout and language used.

I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the 
practical aspects of cryptography. 

Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a 
great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up 
multiple precision calculations is often very important since we deal with outdated machine architecture where modular 
reductions, for example, become painfully slow.

This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks 
themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''

\begin{flushright}
Mads Rasmussen

S\~{a}o Paulo - SP

Brazil
\end{flushright}

\newpage
It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about 
Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not 
really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.

At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the 
sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity. 
Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.

When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully, 
and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close 
friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort, 
and I'm pleased to be involved with it.

\begin{flushright}
Greg Rose, Sydney, Australia, June 2003. 
\end{flushright}

\mainmatter
\pagestyle{headings}
\chapter{Introduction}
\section{Multiple Precision Arithmetic}

\subsection{What is Multiple Precision Arithmetic?}
When we think of long-hand arithmetic such as addition or multiplication we rarely consider the fact that we instinctively
raise or lower the precision of the numbers we are dealing with.  For example, in decimal we almost immediate can 
reason that $7$ times $6$ is $42$.  However, $42$ has two digits of precision as opposed to one digit we started with.  
Further multiplications of say $3$ result in a larger precision result $126$.  In these few examples we have multiple 
precisions for the numbers we are working with.  Despite the various levels of precision a single subset\footnote{With the occasional optimization.}
 of algorithms can be designed to accomodate them.  

By way of comparison a fixed or single precision operation would lose precision on various operations.  For example, in
the decimal system with fixed precision $6 \cdot 7 = 2$.

Essentially at the heart of computer based multiple precision arithmetic are the same long-hand algorithms taught in
schools to manually add, subtract, multiply and divide.  

\subsection{The Need for Multiple Precision Arithmetic}
The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
of public-key cryptography algorithms.   Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require 
integers of significant magnitude to resist known cryptanalytic attacks.  For example, at the time of this writing a 
typical RSA modulus would be at least greater than $10^{309}$.  However, modern programming languages such as ISO C \cite{ISOC} and 
Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.

\begin{figure}[!here]
\begin{center}
\begin{tabular}{|r|c|}
\hline \textbf{Data Type} & \textbf{Range} \\
\hline char  & $-128 \ldots 127$ \\
\hline short & $-32768 \ldots 32767$ \\
\hline long  & $-2147483648 \ldots 2147483647$ \\
\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
\hline
\end{tabular}
\end{center}
\caption{Typical Data Types for the C Programming Language}
\label{fig:ISOC}
\end{figure}

The largest data type guaranteed to be provided by the ISO C programming 
language\footnote{As per the ISO C standard.  However, each compiler vendor is allowed to augment the precision as they 
see fit.}  can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is 
insufficient to accomodate the magnitude required for the problem at hand.  An RSA modulus of magnitude $10^{19}$ could be 
trivially factored\footnote{A Pollard-Rho factoring would take only $2^{16}$ time.} on the average desktop computer, 
rendering any protocol based on the algorithm insecure.  Multiple precision algorithms solve this very problem by 
extending the range of representable integers while using single precision data types.

Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic 
primitives.  Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in 
various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient.  In fact, several 
major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and 
deployment of efficient algorithms.

However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.  
Another auxiliary use of multiple precision integers is high precision floating point data types.  
The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.  
Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE.  Since IEEE 
floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small 
(\textit{23, 48 and 64 bits}).  The mantissa is merely an integer and a multiple precision integer could be used to create
a mantissa of much larger precision than hardware alone can efficiently support.  This approach could be useful where 
scientific applications must minimize the total output error over long calculations.

Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.

\subsection{Benefits of Multiple Precision Arithmetic}
\index{precision}
The benefit of multiple precision representations over single or fixed precision representations is that 
no precision is lost while representing the result of an operation which requires excess precision.  For example, 
the product of two $n$-bit integers requires at least $2n$ bits of precision to be represented faithfully.  A multiple 
precision algorithm would augment the precision of the destination to accomodate the result while a single precision system 
would truncate excess bits to maintain a fixed level of precision.

It is possible to implement algorithms which require large integers with fixed precision algorithms.  For example, elliptic
curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum 
size the system will ever need.  Such an approach can lead to vastly simpler algorithms which can accomodate the 
integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard 
processor has an 8 bit accumulator.}.  However, as efficient as such an approach may be, the resulting source code is not
normally very flexible.  It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.

Multiple precision algorithms have the most overhead of any style of arithmetic.  For the the most part the 
overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
platforms.  However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the 
inputs.  That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input 
without the designer's explicit forethought.  This leads to lower cost of ownership for the code as it only has to 
be written and tested once.

\section{Purpose of This Text}
The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms.  
That is to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping'' 
elements that are neglected by authors of other texts on the subject.  Several well reknowned texts \cite{TAOCPV2,HAC} 
give considerably detailed explanations of the theoretical aspects of algorithms and often very little information 
regarding the practical implementation aspects.  

In most cases how an algorithm is explained and how it is actually implemented are two very different concepts.  For 
example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple 
algorithm for performing multiple precision integer addition.  However, the description lacks any discussion concerning 
the fact that the two integer inputs may be of differing magnitudes.  As a result the implementation is not as simple
as the text would lead people to believe.  Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not 
discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).

Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers 
and fast modular inversion, which we consider practical oversights.  These optimal algorithms are vital to achieve 
any form of useful performance in non-trivial applications.  

To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
package.  As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.com}} package is used 
to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field 
tested and work very well.  The LibTomMath library is freely available on the Internet for all uses and this text 
discusses a very large portion of the inner workings of the library.

The algorithms that are presented will always include at least one ``pseudo-code'' description followed 
by the actual C source code that implements the algorithm.  The pseudo-code can be used to implement the same 
algorithm in other programming languages as the reader sees fit.  

This text shall also serve as a walkthrough of the creation of multiple precision algorithms from scratch.  Showing
the reader how the algorithms fit together as well as where to start on various taskings.  

\section{Discussion and Notation}
\subsection{Notation}
A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$.  The elements of the array $x$ are said to be the radix $\beta$ digits 
of the integer.  For example, $x = (1,2,3)_{10}$ would represent the integer 
$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.  

\index{mp\_int}
The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well 
as auxilary data required to manipulate the data.  These additional members are discussed further in section 
\ref{sec:MPINT}.  For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be 
synonymous.  When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members 
are present as well.  An expression of the type \textit{variablename.item} implies that it should evaluate to the 
member named ``item'' of the variable.  For example, a string of characters may have a member ``length'' which would 
evaluate to the number of characters in the string.  If the string $a$ equals ``hello'' then it follows that 
$a.length = 5$.  

For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
to solve a given problem.  When an algorithm is described as accepting an integer input it is assumed the input is 
a plain integer with no additional multiple-precision members.  That is, algorithms that use integers as opposed to 
mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management.  These 
algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
precision algorithm to solve the same problem.  

\subsection{Precision Notation}
The variable $\beta$ represents the radix of a single digit of a multiple precision integer and 
must be of the form $q^p$ for $q, p \in \Z^+$.  A single precision variable must be able to represent integers in 
the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range 
$0 \le x < q \beta^2$.  The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the 
carry.  Since all modern computers are binary, it is assumed that $q$ is two.

\index{mp\_digit} \index{mp\_word}
Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent 
a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type.  In 
several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.  
For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to 
the $j$'th digit of a double precision array.  Whenever an expression is to be assigned to a double precision
variable it is assumed that all single precision variables are promoted to double precision during the evaluation.  
Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
precision data type.

For example, if $\beta = 10^2$ a single precision data type may represent a value in the 
range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$.  Let
$a = 23$ and $b = 49$ represent two single precision variables.  The single precision product shall be written
as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
In this particular case, $\hat c = 1127$ and $c = 127$.  The most significant digit of the product would not fit 
in a single precision data type and as a result $c \ne \hat c$.  

\subsection{Algorithm Inputs and Outputs}
Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
as indicated.  The only exception to this rule is when variables have been indicated to be of type mp\_int.  This 
distinction is important as scalars are often used as array indicies and various other counters.  

\subsection{Mathematical Expressions}
The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression 
itself.  For example, $\lfloor 5.7 \rfloor = 5$.  Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
rounded to an integer not less than the expression itself.  For example, $\lceil 5.1 \rceil = 6$.  Typically when 
the $/$ division symbol is used the intention is to perform an integer division with truncation.  For example, 
$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity.  When an expression is written as a 
fraction a real value division is implied, for example ${5 \over 2} = 2.5$.  

The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
of the integer.  For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.  

\subsection{Work Effort}
\index{big-Oh}
To measure the efficiency of the specified algorithms, a modified big-Oh notation is used.  In this system all 
single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.  
That is a single precision addition, multiplication and division are assumed to take the same time to 
complete.  While this is generally not true in practice, it will simplify the discussions considerably.

Some algorithms have slight advantages over others which is why some constants will not be removed in 
the notation.  For example, a normal baseline multiplication (section \ref{sec:basemult}) requires $O(n^2)$ work while a 
baseline squaring (section \ref{sec:basesquare}) requires $O({{n^2 + n}\over 2})$ work.  In standard big-Oh notation these 
would both be said to be equivalent to $O(n^2)$.  However, 
in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small.  As a 
result small constant factors in the work effort will make an observable difference in algorithm efficiency.

All of the algorithms presented in this text have a polynomial time work level.  That is, of the form 
$O(n^k)$ for $n, k \in \Z^{+}$.  This will help make useful comparisons in terms of the speed of the algorithms and how 
various optimizations will help pay off in the long run.

\section{Exercises}
Within the more advanced chapters a section will be set aside to give the reader some challenging exercises related to
the discussion at hand.  These exercises are not designed to be prize winning problems, but instead to be thought 
provoking.  Wherever possible the problems are forward minded, stating problems that will be answered in subsequent 
chapters.  The reader is encouraged to finish the exercises as they appear to get a better understanding of the 
subject material.  

That being said, the problems are designed to affirm knowledge of a particular subject matter.  Students in particular
are encouraged to verify they can answer the problems correctly before moving on.

Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
the problem.  However, unlike \cite{TAOCPV2} the problems do not get nearly as hard.  The scoring of these 
exercises ranges from one (the easiest) to five (the hardest).  The following table sumarizes the 
scoring system used.

\begin{figure}[here]
\begin{center}
\begin{small}
\begin{tabular}{|c|l|}
\hline $\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
                            & minutes to solve.  Usually does not involve much computer time \\
                            & to solve. \\
\hline $\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
                     & time usage.  Usually requires a program to be written to \\
                     & solve the problem. \\
\hline $\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
                     & of work.  Usually involves trivial research and development of \\
                     & new theory from the perspective of a student. \\
\hline $\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
                     & of work and research, the solution to which will demonstrate \\
                     & a higher mastery of the subject matter. \\
\hline $\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
                     & novice to solve.  Solutions to these problems will demonstrate a \\
                     & complete mastery of the given subject. \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Exercise Scoring System}
\end{figure}

Problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
devising new theory.  These problems are quick tests to see if the material is understood.  Problems at the second level 
are also designed to be easy but will require a program or algorithm to be implemented to arrive at the answer.  These
two levels are essentially entry level questions.  

Problems at the third level are meant to be a bit more difficult than the first two levels.  The answer is often 
fairly obvious but arriving at an exacting solution requires some thought and skill.  These problems will almost always 
involve devising a new algorithm or implementing a variation of another algorithm previously presented.  Readers who can
answer these questions will feel comfortable with the concepts behind the topic at hand.

Problems at the fourth level are meant to be similar to those of the level three questions except they will require 
additional research to be completed.  The reader will most likely not know the answer right away, nor will the text provide 
the exact details of the answer until a subsequent chapter.  

Problems at the fifth level are meant to be the hardest 
problems relative to all the other problems in the chapter.  People who can correctly answer fifth level problems have a 
mastery of the subject matter at hand.

Often problems will be tied together.  The purpose of this is to start a chain of thought that will be discussed in future chapters.  The reader
is encouraged to answer the follow-up problems and try to draw the relevance of problems.

\section{Introduction to LibTomMath}

\subsection{What is LibTomMath?}
LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C.  By portable it 
is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on 
any given platform.  

The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such 
as the Gameboy Advance.  The library is designed to contain enough functionality to be able to develop applications such 
as public key cryptosystems and still maintain a relatively small footprint.

\subsection{Goals of LibTomMath}

Libraries which obtain the most efficiency are rarely written in a high level programming language such as C.  However, 
even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the 
library.  Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM 
processors.  Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window 
exponentiation and Montgomery reduction have been provided to make the library more efficient.  

Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface 
(\textit{API}) has been kept as simple as possible.  Often generic place holder routines will make use of specialized 
algorithms automatically without the developer's specific attention.  One such example is the generic multiplication 
algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication 
based on the magnitude of the inputs and the configuration of the library.  

Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project.  Ideally the library should 
be source compatible with another popular library which makes it more attractive for developers to use.  In this case the
MPI library was used as a API template for all the basic functions.  MPI was chosen because it is another library that fits 
in the same niche as LibTomMath.  Even though LibTomMath uses MPI as the template for the function names and argument 
passing conventions, it has been written from scratch by Tom St Denis.

The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum'' 
library exists which can be used to teach computer science students how to perform fast and reliable multiple precision 
integer arithmetic.  To this end the source code has been given quite a few comments and algorithm discussion points.  

\section{Choice of LibTomMath}
LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
for more worthy reasons.  Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL 
\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for 
reasons that will be explained in the following sub-sections.

\subsection{Code Base}
The LibTomMath code base is all portable ISO C source code.  This means that there are no platform dependent conditional
segments of code littered throughout the source.  This clean and uncluttered approach to the library means that a
developer can more readily discern the true intent of a given section of source code without trying to keep track of
what conditional code will be used.

The code base of LibTomMath is well organized.  Each function is in its own separate source code file 
which allows the reader to find a given function very quickly.  On average there are $76$ lines of code per source
file which makes the source very easily to follow.  By comparison MPI and LIP are single file projects making code tracing
very hard.  GMP has many conditional code segments which also hinder tracing.  

When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
 which is fairly small compared to GMP (over $250$KiB).  LibTomMath is slightly larger than MPI (which compiles to about 
$50$KiB) but LibTomMath is also much faster and more complete than MPI.

\subsection{API Simplicity}
LibTomMath is designed after the MPI library and shares the API design.  Quite often programs that use MPI will build 
with LibTomMath without change. The function names correlate directly to the action they perform.  Almost all of the 
functions share the same parameter passing convention.  The learning curve is fairly shallow with the API provided 
which is an extremely valuable benefit for the student and developer alike.  

The LIP library is an example of a library with an API that is awkward to work with.  LIP uses function names that are often ``compressed'' to 
illegible short hand.  LibTomMath does not share this characteristic.  

The GMP library also does not return error codes.  Instead it uses a POSIX.1 \cite{POSIX1} signal system where errors
are signaled to the host application.  This happens to be the fastest approach but definitely not the most versatile.  In
effect a math error (i.e. invalid input, heap error, etc) can cause a program to stop functioning which is definitely 
undersireable in many situations.

\subsection{Optimizations}
While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring.  GMP 
and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations.  GMP lacks a few
of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
only had Barrett and Montgomery modular reduction algorithms.}.  

LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
exponentiation.  In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually  
slower than the best libraries such as GMP and OpenSSL by only a small factor.

\subsection{Portability and Stability}
LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler 
(\textit{GCC}).  This means that without changes the library will build without configuration or setting up any 
variables.  LIP and MPI will build ``out of the box'' as well but have numerous known bugs.  Most notably the author of 
MPI has recently stopped working on his library and LIP has long since been discontinued.  

GMP requires a configuration script to run and will not build out of the box.   GMP and LibTomMath are still in active
development and are very stable across a variety of platforms.

\subsection{Choice}
LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
the case study of this text.  Various source files from the LibTomMath project will be included within the text.  However, 
the reader is encouraged to download their own copy of the library to actually be able to work with the library.  

\chapter{Getting Started}
\section{Library Basics}
The trick to writing any useful library of source code is to build a solid foundation and work outwards from it.  First, 
a problem along with allowable solution parameters should be identified and analyzed.  In this particular case the 
inability to accomodate multiple precision integers is the problem.  Futhermore, the solution must be written
as portable source code that is reasonably efficient across several different computer platforms.

After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.  
That is, to implement the lowest level dependencies first and work towards the most abstract functions last.  For example, 
before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
By building outwards from a base foundation instead of using a parallel design methodology the resulting project is 
highly modular.  Being highly modular is a desirable property of any project as it often means the resulting product
has a small footprint and updates are easy to perform.  

Usually when I start a project I will begin with the header files.  I define the data types I think I will need and 
prototype the initial functions that are not dependent on other functions (within the library).  After I 
implement these base functions I prototype more dependent functions and implement them.   The process repeats until
I implement all of the functions I require.  For example, in the case of LibTomMath I implemented functions such as 
mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod().  As an example as to 
why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the 
dependent function mp\_exptmod() was written.  Adding the new multiplication algorithms did not require changes to the 
mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development 
for new algorithms.  This methodology allows new algorithms to be tested in a complete framework with relative ease.

\begin{center}
\begin{figure}[here]
\includegraphics{pics/design_process.ps}
\caption{Design Flow of the First Few Original LibTomMath Functions.}
\label{pic:design_process}
\end{figure}
\end{center}

Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
the source code.  For example, one day I may audit the multipliers and the next day the polynomial basis functions.  

It only makes sense to begin the text with the preliminary data types and support algorithms required as well.  
This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.

\section{What is a Multiple Precision Integer?}
Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot 
be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is 
to use fixed precision data types to create and manipulate multiple precision integers which may represent values 
that are very large.  

As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits.  In the decimal system
the largest single digit value is $9$.  However, by concatenating digits together larger numbers may be represented.  Newly prepended digits 
(\textit{to the left}) are said to be in a different power of ten column.  That is, the number $123$ can be described as having a $1$ in the hundreds 
column, $2$ in the tens column and $3$ in the ones column.  Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$.  Computer based 
multiple precision arithmetic is essentially the same concept.  Larger integers are represented by adjoining fixed 
precision computer words with the exception that a different radix is used.

What most people probably do not think about explicitly are the various other attributes that describe a multiple precision 
integer.  For example, the integer $154_{10}$ has two immediately obvious properties.  First, the integer is positive, 
that is the sign of this particular integer is positive as opposed to negative.  Second, the integer has three digits in 
its representation.  There is an additional property that the integer posesses that does not concern pencil-and-paper 
arithmetic.  The third property is how many digits placeholders are available to hold the integer.  

The human analogy of this third property is ensuring there is enough space on the paper to write the integer.  For example,
if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.  
Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
will not exceed the allowed boundaries.  These three properties make up what is known as a multiple precision 
integer or mp\_int for short.  

\subsection{The mp\_int Structure}
\label{sec:MPINT}
The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer.  The ISO C standard does not provide for 
any such data type but it does provide for making composite data types known as structures.  The following is the structure definition 
used within LibTomMath.

\index{mp\_int}
\begin{figure}[here]
\begin{center}
\begin{small}
%\begin{verbatim}
\begin{tabular}{|l|}
\hline
typedef struct \{ \\
\hspace{3mm}int used, alloc, sign;\\
\hspace{3mm}mp\_digit *dp;\\
\} \textbf{mp\_int}; \\
\hline
\end{tabular}
%\end{verbatim}
\end{small}
\caption{The mp\_int Structure}
\label{fig:mpint}
\end{center}
\end{figure}

The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.

\begin{enumerate}
\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
a given integer.  The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.  

\item The \textbf{alloc} parameter denotes how 
many digits are available in the array to use by functions before it has to increase in size.  When the \textbf{used} count 
of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the 
array to accommodate the precision of the result.  

\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple 
precision integer.  It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits.  The array is maintained in a least 
significant digit order.  As a pencil and paper analogy the array is organized such that the right most digits are stored
first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array.  For example, 
if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then 
it would represent the integer $a + b\beta + c\beta^2 + \ldots$  

\index{MP\_ZPOS} \index{MP\_NEG}
\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).  
\end{enumerate}

\subsubsection{Valid mp\_int Structures}
Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.  
The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().

\begin{enumerate}
\item The value of \textbf{alloc} may not be less than one.  That is \textbf{dp} always points to a previously allocated
array of digits.
\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero.  That is, 
leading zero digits in the most significant positions must be trimmed.
   \begin{enumerate}
   \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
   \end{enumerate}
\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero; 
this represents the mp\_int value of zero.
\end{enumerate}

\section{Argument Passing}
A convention of argument passing must be adopted early on in the development of any library.  Making the function 
prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.  
In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int 
structures.  That means that the source (input) operands are placed on the left and the destination (output) on the right.   
Consider the following examples.

\begin{verbatim}
   mp_mul(&a, &b, &c);   /* c = a * b */
   mp_add(&a, &b, &a);   /* a = a + b */
   mp_sqr(&a, &b);       /* b = a * a */
\end{verbatim}

The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
functions and make sense of them.  For example, the first function would read ``multiply a and b and store in c''.

Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
of assignment expressions.  That is, the destination (output) is on the left and arguments (inputs) are on the right.  In 
truth, it is entirely a matter of preference.  In the case of LibTomMath the convention from the MPI library has been 
adopted.  

Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a 
destination.  For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$.  This is an important 
feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.  
However, to implement this feature specific care has to be given to ensure the destination is not modified before the 
source is fully read.

\section{Return Values}
A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them 
to the caller.  By catching runtime errors a library can be guaranteed to prevent undefined behaviour.  However, the end 
developer can still manage to cause a library to crash.  For example, by passing an invalid pointer an application may
fault by dereferencing memory not owned by the application.

In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for 
instance) and memory allocation errors.  It will not check that the mp\_int passed to any function is valid nor 
will it check pointers for validity.  Any function that can cause a runtime error will return an error code as an 
\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).

\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
\begin{figure}[here]
\begin{center}
\begin{tabular}{|l|l|}
\hline \textbf{Value} & \textbf{Meaning} \\
\hline \textbf{MP\_OKAY} & The function was successful \\
\hline \textbf{MP\_VAL}  & One of the input value(s) was invalid \\
\hline \textbf{MP\_MEM}  & The function ran out of heap memory \\
\hline
\end{tabular}
\end{center}
\caption{LibTomMath Error Codes}
\label{fig:errcodes}
\end{figure}

When an error is detected within a function it should free any memory it allocated, often during the initialization of
temporary mp\_ints, and return as soon as possible.  The goal is to leave the system in the same state it was when the 
function was called.  Error checking with this style of API is fairly simple.

\begin{verbatim}
   int err;
   if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
      printf("Error: %s\n", mp_error_to_string(err));
      exit(EXIT_FAILURE);
   }
\end{verbatim}

The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use.  Not all errors are fatal 
and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.

\section{Initialization and Clearing}
The logical starting point when actually writing multiple precision integer functions is the initialization and 
clearing of the mp\_int structures.  These two algorithms will be used by the majority of the higher level algorithms.

Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
the integer.  Often it is optimal to allocate a sufficiently large pre-set number of digits even though
the initial integer will represent zero.  If only a single digit were allocated quite a few subsequent re-allocations
would occur when operations are performed on the integers.  There is a tradeoff between how many default digits to allocate
and how many re-allocations are tolerable.  Obviously allocating an excessive amount of digits initially will waste 
memory and become unmanageable.  

If the memory for the digits has been successfully allocated then the rest of the members of the structure must
be initialized.  Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
to zero.  The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.

\subsection{Initializing an mp\_int}
An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
structure are set to valid values.  The mp\_init algorithm will perform such an action.

\index{mp\_init}
\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init}. \\
\textbf{Input}.   An mp\_int $a$ \\
\textbf{Output}.  Allocate memory and initialize $a$ to a known valid mp\_int state.  \\
\hline \\
1.  Allocate memory for \textbf{MP\_PREC} digits. \\
2.  If the allocation failed return(\textit{MP\_MEM}) \\
3.  for $n$ from $0$ to $MP\_PREC - 1$ do  \\
\hspace{3mm}3.1  $a_n \leftarrow 0$\\
4.  $a.sign \leftarrow MP\_ZPOS$\\
5.  $a.used \leftarrow 0$\\
6.  $a.alloc \leftarrow MP\_PREC$\\
7.  Return(\textit{MP\_OKAY})\\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_init}
\end{figure}

\textbf{Algorithm mp\_init.}
The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
manipulte it.  It is assumed that the input may not have had any of its members previously initialized which is certainly
a valid assumption if the input resides on the stack.  

Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
the digits is allocated.  If this fails the function returns before setting any of the other members.  The \textbf{MP\_PREC} 
name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.} 
used to dictate the minimum precision of newly initialized mp\_int integers.  Ideally, it is at least equal to the smallest
precision number you'll be working with.

Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
heap operations later functions will have to perform in the future.  If \textbf{MP\_PREC} is set correctly the slack 
memory and the number of heap operations will be trivial.

Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
\textbf{alloc} members initialized.  This ensures that the mp\_int will always represent the default state of zero regardless
of the original condition of the input.

\textbf{Remark.}
This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
when the ``to'' keyword is placed between two expressions.  For example, ``for $a$ from $b$ to $c$ do'' means that
a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$.  In each
iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$.  If $b > c$ occured
the loop would not iterate.  By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate 
decrementally.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_init.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure.  It 
is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack.  The 
call to mp\_init() is used only to initialize the members of the structure to a known default state.  

Here we see (line 24) the memory allocation is performed first.  This allows us to exit cleanly and quickly
if there is an error.  If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
was a memory error.  The function XMALLOC is what actually allocates the memory.  Technically XMALLOC is not a function
but a macro defined in ``tommath.h``.  By default, XMALLOC will evaluate to malloc() which is the C library's built--in
memory allocation routine.

In order to assure the mp\_int is in a known state the digits must be set to zero.  On most platforms this could have been
accomplished by using calloc() instead of malloc().  However,  to correctly initialize a integer type to a given value in a 
portable fashion you have to actually assign the value.  The for loop (line 30) performs this required
operation.

After the memory has been successfully initialized the remainder of the members are initialized 
(lines 34 through 35) to their respective default states.  At this point the algorithm has succeeded and
a success code is returned to the calling function.  If this function returns \textbf{MP\_OKAY} it is safe to assume the 
mp\_int structure has been properly initialized and is safe to use with other functions within the library.  

\subsection{Clearing an mp\_int}
When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be 
returned to the application's memory pool with the mp\_clear algorithm.

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_clear}. \\
\textbf{Input}.   An mp\_int $a$ \\
\textbf{Output}.  The memory for $a$ shall be deallocated.  \\
\hline \\
1.  If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
2.  for $n$ from 0 to $a.used - 1$ do \\
\hspace{3mm}2.1  $a_n \leftarrow 0$ \\
3.  Free the memory allocated for the digits of $a$. \\
4.  $a.used \leftarrow 0$ \\
5.  $a.alloc \leftarrow 0$ \\
6.  $a.sign \leftarrow MP\_ZPOS$ \\
7.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_clear}
\end{figure}

\textbf{Algorithm mp\_clear.}
This algorithm accomplishes two goals.  First, it clears the digits and the other mp\_int members.  This ensures that 
if a developer accidentally re-uses a cleared structure it is less likely to cause problems.  The second goal
is to free the allocated memory.

The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
algorithm will not try to free the memory multiple times.  Cleared mp\_ints are detectable by having a pre-defined invalid 
digit pointer \textbf{dp} setting.

Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_clear.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The algorithm only operates on the mp\_int if it hasn't been previously cleared.  The if statement (line 25)
checks to see if the \textbf{dp} member is not \textbf{NULL}.  If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
\textbf{NULL} in which case the if statement will evaluate to true.

The digits of the mp\_int are cleared by the for loop (line 27) which assigns a zero to every digit.  Similar to mp\_init()
the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.  

The digits are deallocated off the heap via the XFREE macro.  Similar to XMALLOC the XFREE macro actually evaluates to
a standard C library function.  In this case the free() function.  Since free() only deallocates the memory the pointer
still has to be reset to \textbf{NULL} manually (line 35).  

Now that the digits have been cleared and deallocated the other members are set to their final values (lines 36 and 37).

\section{Maintenance Algorithms}

The previous sections describes how to initialize and clear an mp\_int structure.  To further support operations
that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
able to augment the precision of an mp\_int and 
initialize mp\_ints with differing initial conditions.  

These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
algorithms such as addition, multiplication and modular exponentiation.

\subsection{Augmenting an mp\_int's Precision}
When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire 
result of an operation without loss of precision.  Quite often the size of the array given by the \textbf{alloc} member 
is large enough to simply increase the \textbf{used} digit count.  However, when the size of the array is too small it 
must be re-sized appropriately to accomodate the result.  The mp\_grow algorithm will provide this functionality.

\newpage\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_grow}. \\
\textbf{Input}.   An mp\_int $a$ and an integer $b$. \\
\textbf{Output}.  $a$ is expanded to accomodate $b$ digits. \\
\hline \\
1.  if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
2.  $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
3.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
4.  Re-allocate the array of digits $a$ to size $v$ \\
5.  If the allocation failed then return(\textit{MP\_MEM}). \\
6.  for n from a.alloc to $v - 1$ do  \\
\hspace{+3mm}6.1  $a_n \leftarrow 0$ \\
7.  $a.alloc \leftarrow v$ \\
8.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_grow}
\end{figure}

\textbf{Algorithm mp\_grow.}
It is ideal to prevent re-allocations from being performed if they are not required (step one).  This is useful to 
prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.  

The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).  
This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.  

It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact.  This is much 
akin to how the \textit{realloc} function from the standard C library works.  Since the newly allocated digits are 
assumed to contain undefined values they are initially set to zero.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_grow.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

A quick optimization is to first determine if a memory re-allocation is required at all.  The if statement (line 24) checks
if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count.  If the count is not larger than \textbf{alloc}
the function skips the re-allocation part thus saving time.

When a re-allocation is performed it is turned into an optimal request to save time in the future.  The requested digit count is
padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line 25).  The XREALLOC function is used
to re-allocate the memory.  As per the other functions XREALLOC is actually a macro which evaluates to realloc by default.  The realloc
function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
the re-allocation.  All	that is left is to clear the newly allocated digits and return.

Note that the re-allocation result is actually stored in a temporary pointer $tmp$.  This is to allow this function to return
an error with a valid pointer.  Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$.  That would
result in a memory leak if XREALLOC ever failed.  

\subsection{Initializing Variable Precision mp\_ints}
Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size 
of input mp\_ints to a given algorithm.  The purpose of algorithm mp\_init\_size is similar to mp\_init except that it 
will allocate \textit{at least} a specified number of digits.  

\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init\_size}. \\
\textbf{Input}.   An mp\_int $a$ and the requested number of digits $b$. \\
\textbf{Output}.  $a$ is initialized to hold at least $b$ digits. \\
\hline \\
1.  $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
2.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
3.  Allocate $v$ digits. \\
4.  for $n$ from $0$ to $v - 1$ do \\
\hspace{3mm}4.1  $a_n \leftarrow 0$ \\
5.  $a.sign \leftarrow MP\_ZPOS$\\
6.  $a.used \leftarrow 0$\\
7.  $a.alloc \leftarrow v$\\
8.  Return(\textit{MP\_OKAY})\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_init\_size}
\end{figure}

\textbf{Algorithm mp\_init\_size.}
This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of 
digits allocated can be controlled by the second input argument $b$.  The input size is padded upwards so it is a 
multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits.  This padding is used to prevent trivial 
allocations from becoming a bottleneck in the rest of the algorithms.

Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero.  This 
particular algorithm is useful if it is known ahead of time the approximate size of the input.  If the approximation is
correct no further memory re-allocations are required to work with the mp\_int.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_size.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The number of digits $b$ requested is padded (line 24) by first augmenting it to the next multiple of 
\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result.  If the memory can be successfully allocated the 
mp\_int is placed in a default state representing the integer zero.  Otherwise, the error code \textbf{MP\_MEM} will be 
returned (line 29).  

The digits are allocated and set to zero at the same time with the calloc() function (line @25,XCALLOC@).  The 
\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set 
to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines 33, 34 and 35).  If the function 
returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the 
functions to work with.

\subsection{Multiple Integer Initializations and Clearings}
Occasionally a function will require a series of mp\_int data types to be made available simultaneously.  
The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
statement.  It is essentially a shortcut to multiple initializations.

\newpage\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init\_multi}. \\
\textbf{Input}.   Variable length array $V_k$ of mp\_int variables of length $k$. \\
\textbf{Output}.  The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
\hline \\
1.  for $n$ from 0 to $k - 1$ do \\
\hspace{+3mm}1.1.  Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
\hspace{+3mm}1.2.  If initialization failed then do \\
\hspace{+6mm}1.2.1.  for $j$ from $0$ to $n$ do \\
\hspace{+9mm}1.2.1.1.  Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
\hspace{+6mm}1.2.2.   Return(\textit{MP\_MEM}) \\
2.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_init\_multi}
\end{figure}

\textbf{Algorithm mp\_init\_multi.}
The algorithm will initialize the array of mp\_int variables one at a time.  If a runtime error has been detected 
(\textit{step 1.2}) all of the previously initialized variables are cleared.  The goal is an ``all or nothing'' 
initialization which allows for quick recovery from runtime errors.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_multi.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This function intializes a variable length list of mp\_int structure pointers.  However, instead of having the mp\_int
structures in an actual C array they are simply passed as arguments to the function.  This function makes use of the 
``...'' argument syntax of the C programming language.  The list is terminated with a final \textbf{NULL} argument 
appended on the right.  

The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function.  A count
$n$ of succesfully initialized mp\_int structures is maintained (line 48) such that if a failure does occur,
the algorithm can backtrack and free the previously initialized structures (lines 28 to 47).  


\subsection{Clamping Excess Digits}
When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of 
the function instead of checking during the computation.  For example, a multiplication of a $i$ digit number by a 
$j$ digit produces a result of at most $i + j$ digits.  It is entirely possible that the result is $i + j - 1$ 
though, with no final carry into the last position.  However, suppose the destination had to be first expanded 
(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.  
That would be a considerable waste of time since heap operations are relatively slow.

The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
terminates.  This way a single heap operation (\textit{at most}) is required.  However, if the result was not checked
there would be an excess high order zero digit.  

For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$.  The leading zero digit 
will not contribute to the precision of the result.  In fact, through subsequent operations more leading zero digits would
accumulate to the point the size of the integer would be prohibitive.  As a result even though the precision is very 
low the representation is excessively large.  

The mp\_clamp algorithm is designed to solve this very problem.  It will trim high-order zeros by decrementing the 
\textbf{used} count until a non-zero most significant digit is found.  Also in this system, zero is considered to be a 
positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to 
\textbf{MP\_ZPOS}.

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_clamp}. \\
\textbf{Input}.   An mp\_int $a$ \\
\textbf{Output}.  Any excess leading zero digits of $a$ are removed \\
\hline \\
1.  while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
\hspace{+3mm}1.1  $a.used \leftarrow a.used - 1$ \\
2.  if $a.used = 0$ then do \\
\hspace{+3mm}2.1  $a.sign \leftarrow MP\_ZPOS$ \\
\hline \\
\end{tabular}
\end{center}
\caption{Algorithm mp\_clamp}
\end{figure}

\textbf{Algorithm mp\_clamp.}
As can be expected this algorithm is very simple.  The loop on step one is expected to iterate only once or twice at
the most.  For example, this will happen in cases where there is not a carry to fill the last position.  Step two fixes the sign for 
when all of the digits are zero to ensure that the mp\_int is valid at all times.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_clamp.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Note on line 28 how to test for the \textbf{used} count is made on the left of the \&\& operator.  In the C programming
language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails.  This is 
important since if the \textbf{used} is zero the test on the right would fetch below the array.  That is obviously 
undesirable.  The parenthesis on line 31 is used to make sure the \textbf{used} count is decremented and not
the pointer ``a''.  

\section*{Exercises}
\begin{tabular}{cl}
$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
                     & \\
$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations.  \\
                     & \\
$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
                     & encryption when $\beta = 2^{28}$.  \\
                     & \\
$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp.  What does it prevent? \\
                     & \\
$\left [ 1 \right ]$ & Give an example of when the algorithm  mp\_init\_copy might be useful. \\
                     & \\
\end{tabular}


%%%
% CHAPTER FOUR
%%%

\chapter{Basic Operations}

\section{Introduction}
In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
mp\_int structures.  This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low 
level basis of the entire library.  While these algorithm are relatively trivial it is important to understand how they
work before proceeding since these algorithms will be used almost intrinsically in the following chapters.

The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
represent.   

\section{Assigning Values to mp\_int Structures}
\subsection{Copying an mp\_int}
Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
a copy for the purposes of this text.  The copy of the mp\_int will be a separate entity that represents the same
value as the mp\_int it was copied from.  The mp\_copy algorithm provides this functionality. 

\newpage\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_copy}. \\
\textbf{Input}.  An mp\_int $a$ and $b$. \\
\textbf{Output}.  Store a copy of $a$ in $b$. \\
\hline \\
1.  If $b.alloc < a.used$ then grow $b$ to $a.used$ digits.  (\textit{mp\_grow}) \\
2.  for $n$ from 0 to $a.used - 1$ do \\
\hspace{3mm}2.1  $b_{n} \leftarrow a_{n}$ \\
3.  for $n$ from $a.used$ to $b.used - 1$ do \\
\hspace{3mm}3.1  $b_{n} \leftarrow 0$ \\
4.  $b.used \leftarrow a.used$ \\
5.  $b.sign \leftarrow a.sign$ \\
6.  return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_copy}
\end{figure}

\textbf{Algorithm mp\_copy.}
This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
represent the same integer as the mp\_int $a$.  The mp\_int $b$ shall be a complete and distinct copy of the 
mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.

If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow 
algorithm.  The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
and three).  The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
$b$.

\textbf{Remark.}  This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
text.  The error return codes of other algorithms are not explicitly checked in the pseudo-code presented.  For example, in 
step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded.  Text space is 
limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
the error code itself.  However, the C code presented will demonstrate all of the error handling logic required to 
implement the pseudo-code.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_copy.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
mp\_int structures passed to a function are one and the same.  For this case it is optimal to return immediately without 
copying digits (line 25).  

The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$.  If $b.alloc$ is less than
$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines 30 to 33).  In order to
simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
of the mp\_ints $a$ and $b$ respectively.  These aliases (lines 43 and 46) allow the compiler to access the digits without first dereferencing the
mp\_int pointers and then subsequently the pointer to the digits.  

After the aliases are established the digits from $a$ are copied into $b$ (lines 49 to 51) and then the excess 
digits of $b$ are set to zero (lines 54 to 56).  Both ``for'' loops make use of the pointer aliases and in 
fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits.  This optimization 
allows the alias to stay in a machine register fairly easy between the two loops.

\textbf{Remarks.}  The use of pointer aliases is an implementation methodology first introduced in this function that will
be used considerably in other functions.  Technically, a pointer alias is simply a short hand alias used to lower the 
number of pointer dereferencing operations required to access data.  For example, a for loop may resemble

\begin{alltt}
for (x = 0; x < 100; x++) \{
    a->num[4]->dp[x] = 0;
\}
\end{alltt}

This could be re-written using aliases as 

\begin{alltt}
mp_digit *tmpa;
a = a->num[4]->dp;
for (x = 0; x < 100; x++) \{
    *a++ = 0;
\}
\end{alltt}

In this case an alias is used to access the 
array of digits within an mp\_int structure directly.  It may seem that a pointer alias is strictly not required 
as a compiler may optimize out the redundant pointer operations.  However, there are two dominant reasons to use aliases.

The first reason is that most compilers will not effectively optimize pointer arithmetic.  For example, some optimizations 
may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC).  Also some optimizations may 
work for GCC and not MSVC.  As such it is ideal to find a common ground for as many compilers as possible.  Pointer 
aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code 
stands a better chance of being faster.

The second reason is that pointer aliases often can make an algorithm simpler to read.  Consider the first ``for'' 
loop of the function mp\_copy() re-written to not use pointer aliases.

\begin{alltt}
    /* copy all the digits */
    for (n = 0; n < a->used; n++) \{
      b->dp[n] = a->dp[n];
    \}
\end{alltt}

Whether this code is harder to read depends strongly on the individual.  However, it is quantifiably slightly more 
complicated as there are four variables within the statement instead of just two.

\subsubsection{Nested Statements}
Another commonly used technique in the source routines is that certain sections of code are nested.  This is used in
particular with the pointer aliases to highlight code phases.  For example, a Comba multiplier (discussed in chapter six)
will typically have three different phases.  First the temporaries are initialized, then the columns calculated and 
finally the carries are propagated.  In this example the middle column production phase will typically be nested as it
uses temporary variables and aliases the most.

The nesting also simplies the source code as variables that are nested are only valid for their scope.  As a result
the various temporary variables required do not propagate into other sections of code.


\subsection{Creating a Clone}
Another common operation is to make a local temporary copy of an mp\_int argument.  To initialize an mp\_int 
and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone.  This is 
useful within functions that need to modify an argument but do not wish to actually modify the original copy.  The 
mp\_init\_copy algorithm has been designed to help perform this task.

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init\_copy}. \\
\textbf{Input}.   An mp\_int $a$ and $b$\\
\textbf{Output}.  $a$ is initialized to be a copy of $b$. \\
\hline \\
1.  Init $a$.  (\textit{mp\_init}) \\
2.  Copy $b$ to $a$.  (\textit{mp\_copy}) \\
3.  Return the status of the copy operation. \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_init\_copy}
\end{figure}

\textbf{Algorithm mp\_init\_copy.}
This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it.  As 
such this algorithm will perform two operations in one step.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_copy.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}.  Note that 
\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
and \textbf{a} will be left intact.  

\section{Zeroing an Integer}
Reseting an mp\_int to the default state is a common step in many algorithms.  The mp\_zero algorithm will be the algorithm used to
perform this task.

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_zero}. \\
\textbf{Input}.   An mp\_int $a$ \\
\textbf{Output}.  Zero the contents of $a$ \\
\hline \\
1.  $a.used \leftarrow 0$ \\
2.  $a.sign \leftarrow$ MP\_ZPOS \\
3.  for $n$ from 0 to $a.alloc - 1$ do \\
\hspace{3mm}3.1  $a_n \leftarrow 0$ \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_zero}
\end{figure}

\textbf{Algorithm mp\_zero.}
This algorithm simply resets a mp\_int to the default state.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_zero.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the 
\textbf{sign} variable is set to \textbf{MP\_ZPOS}.

\section{Sign Manipulation}
\subsection{Absolute Value}
With the mp\_int representation of an integer, calculating the absolute value is trivial.  The mp\_abs algorithm will compute
the absolute value of an mp\_int.

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_abs}. \\
\textbf{Input}.   An mp\_int $a$ \\
\textbf{Output}.  Computes $b = \vert a \vert$ \\
\hline \\
1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
2.  If the copy failed return(\textit{MP\_MEM}). \\
3.  $b.sign \leftarrow MP\_ZPOS$ \\
4.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_abs}
\end{figure}

\textbf{Algorithm mp\_abs.}
This algorithm computes the absolute of an mp\_int input.  First it copies $a$ over $b$.  This is an example of an
algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful.  This allows,
for instance, the developer to pass the same mp\_int as the source and destination to this function without addition 
logic to handle it.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_abs.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This fairly trivial algorithm first eliminates non--required duplications (line 28) and then sets the
\textbf{sign} flag to \textbf{MP\_ZPOS}.

\subsection{Integer Negation}
With the mp\_int representation of an integer, calculating the negation is also trivial.  The mp\_neg algorithm will compute
the negative of an mp\_int input.

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_neg}. \\
\textbf{Input}.   An mp\_int $a$ \\
\textbf{Output}.  Computes $b = -a$ \\
\hline \\
1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
2.  If the copy failed return(\textit{MP\_MEM}). \\
3.  If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
4.  If $a.sign = MP\_ZPOS$ then do \\
\hspace{3mm}4.1  $b.sign = MP\_NEG$. \\
5.  else do \\
\hspace{3mm}5.1  $b.sign = MP\_ZPOS$. \\
6.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_neg}
\end{figure}

\textbf{Algorithm mp\_neg.}
This algorithm computes the negation of an input.  First it copies $a$ over $b$.  If $a$ has no used digits then
the algorithm returns immediately.  Otherwise it flips the sign flag and stores the result in $b$.  Note that if 
$a$ had no digits then it must be positive by definition.  Had step three been omitted then the algorithm would return
zero as negative.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_neg.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Like mp\_abs() this function avoids non--required duplications (line 22) and then sets the sign.  We
have to make sure that only non--zero values get a \textbf{sign} of \textbf{MP\_NEG}.  If the mp\_int is zero
than the \textbf{sign} is hard--coded to \textbf{MP\_ZPOS}.

\section{Small Constants}
\subsection{Setting Small Constants}
Often a mp\_int must be set to a relatively small value such as $1$ or $2$.  For these cases the mp\_set algorithm is useful.

\newpage\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_set}. \\
\textbf{Input}.   An mp\_int $a$ and a digit $b$ \\
\textbf{Output}.  Make $a$ equivalent to $b$ \\
\hline \\
1.  Zero $a$ (\textit{mp\_zero}). \\
2.  $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
3.  $a.used \leftarrow  \left \lbrace \begin{array}{ll}
                              1 &  \mbox{if }a_0 > 0 \\
                              0 &  \mbox{if }a_0 = 0 
                              \end{array} \right .$ \\
\hline                              
\end{tabular}
\end{center}
\caption{Algorithm mp\_set}
\end{figure}

\textbf{Algorithm mp\_set.}
This algorithm sets a mp\_int to a small single digit value.  Step number 1 ensures that the integer is reset to the default state.  The
single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_set.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

First we zero (line 21) the mp\_int to make sure that the other members are initialized for a 
small positive constant.  mp\_zero() ensures that the \textbf{sign} is positive and the \textbf{used} count
is zero.  Next we set the digit and reduce it modulo $\beta$ (line 22).  After this step we have to 
check if the resulting digit is zero or not.  If it is not then we set the \textbf{used} count to one, otherwise
to zero.

We can quickly reduce modulo $\beta$ since it is of the form $2^k$ and a quick binary AND operation with 
$2^k - 1$ will perform the same operation.

One important limitation of this function is that it will only set one digit.  The size of a digit is not fixed, meaning source that uses 
this function should take that into account.  Only trivially small constants can be set using this function.

\subsection{Setting Large Constants}
To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal.  It accepts a ``long''
data type as input and will always treat it as a 32-bit integer.

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_set\_int}. \\
\textbf{Input}.   An mp\_int $a$ and a ``long'' integer $b$ \\
\textbf{Output}.  Make $a$ equivalent to $b$ \\
\hline \\
1.  Zero $a$ (\textit{mp\_zero}) \\
2.  for $n$ from 0 to 7 do \\
\hspace{3mm}2.1  $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
\hspace{3mm}2.2  $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
\hspace{3mm}2.3  $a_0 \leftarrow a_0 + u$ \\
\hspace{3mm}2.4  $a.used \leftarrow a.used + 1$ \\
3.  Clamp excess used digits (\textit{mp\_clamp}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_set\_int}
\end{figure}

\textbf{Algorithm mp\_set\_int.}
The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the 
mp\_int.  Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions.  In step 2.2 the
next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is 
incremented to reflect the addition.  The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
zero digits used and the newly added four bits would be ignored.

Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_set\_int.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes.  The weird
addition on line 39 ensures that the newly added in bits are added to the number of digits.  While it may not 
seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line 28 
as well as the  call to mp\_clamp() on line 41.  Both functions will clamp excess leading digits which keeps 
the number of used digits low.

\section{Comparisons}
\subsection{Unsigned Comparisions}
Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers.  For example,
to compare $1,234$ to $1,264$ the digits are extracted by their positions.  That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude 
positions.  If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.  

The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
mp\_int variables alone.  It will ignore the sign of the two inputs.  Such a function is useful when an absolute comparison is required or if the 
signs are known to agree in advance.

To facilitate working with the results of the comparison functions three constants are required.  

\begin{figure}[here]
\begin{center}
\begin{tabular}{|r|l|}
\hline \textbf{Constant} & \textbf{Meaning} \\
\hline \textbf{MP\_GT} & Greater Than \\
\hline \textbf{MP\_EQ} & Equal To \\
\hline \textbf{MP\_LT} & Less Than \\
\hline
\end{tabular}
\end{center}
\caption{Comparison Return Codes}
\end{figure}

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_cmp\_mag}. \\
\textbf{Input}.   Two mp\_ints $a$ and $b$.  \\
\textbf{Output}.  Unsigned comparison results ($a$ to the left of $b$). \\
\hline \\
1.  If $a.used > b.used$ then return(\textit{MP\_GT}) \\
2.  If $a.used < b.used$ then return(\textit{MP\_LT}) \\
3.  for n from $a.used - 1$ to 0 do \\
\hspace{+3mm}3.1  if $a_n > b_n$ then return(\textit{MP\_GT}) \\
\hspace{+3mm}3.2  if $a_n < b_n$ then return(\textit{MP\_LT}) \\
4.  Return(\textit{MP\_EQ}) \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_cmp\_mag}
\end{figure}

\textbf{Algorithm mp\_cmp\_mag.}
By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$.  The first two steps compare the number of digits used in both $a$ and $b$.  
Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.  
If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.  

By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
the zero'th digit.  If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_cmp\_mag.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The two if statements (lines 25 and 29) compare the number of digits in the two inputs.  These two are 
performed before all of the digits are compared since it is a very cheap test to perform and can potentially save 
considerable time.  The implementation given is also not valid without those two statements.  $b.alloc$ may be 
smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the array of digits.



\subsection{Signed Comparisons}
Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}).  Based on an unsigned magnitude 
comparison a trivial signed comparison algorithm can be written.

\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_cmp}. \\
\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
\textbf{Output}.  Signed Comparison Results ($a$ to the left of $b$) \\
\hline \\
1.  if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
2.  if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
3.  if $a.sign = MP\_NEG$ then \\
\hspace{+3mm}3.1  Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
4   Otherwise \\
\hspace{+3mm}4.1  Return the unsigned comparison of $a$ and $b$ \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_cmp}
\end{figure}

\textbf{Algorithm mp\_cmp.}
The first two steps compare the signs of the two inputs.  If the signs do not agree then it can return right away with the appropriate 
comparison code.  When the signs are equal the digits of the inputs must be compared to determine the correct result.  In step 
three the unsigned comparision flips the order of the arguments since they are both negative.  For instance, if $-a > -b$ then 
$\vert a \vert < \vert b \vert$.  Step number four will compare the two when they are both positive.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_cmp.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The two if statements (lines 23 and 24) perform the initial sign comparison.  If the signs are not the equal then which ever
has the positive sign is larger.   The inputs are compared (line 32) based on magnitudes.  If the signs were both 
negative then the unsigned comparison is performed in the opposite direction (line 34).  Otherwise, the signs are assumed to 
be both positive and a forward direction unsigned comparison is performed.

\section*{Exercises}
\begin{tabular}{cl}
$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
                     & \\
$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits  \\
                     & of two random digits (of equal magnitude) before a difference is found. \\
                     & \\
$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based  \\
                     & on the observations made in the previous problem. \\
                     &
\end{tabular}

\chapter{Basic Arithmetic}
\section{Introduction}
At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been 
established.  The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms.  These 
algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms.  It is very important 
that these algorithms are highly optimized.  On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms 
which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.  

All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right 
logical shifts respectively.  A logical shift is analogous to sliding the decimal point of radix-10 representations.  For example, the real 
number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).  
Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.  
For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.

One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
from the number.  For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$.  However, with a logical shift the 
result is $110_2$.  

\section{Addition and Subtraction}
In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus.  For example, with 32-bit integers
$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$  since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.  
As a result subtraction can be performed with a trivial series of logical operations and an addition.

However, in multiple precision arithmetic negative numbers are not represented in the same way.  Instead a sign flag is used to keep track of the
sign of the integer.  As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or 
subtraction algorithms with the sign fixed up appropriately.

The lower level algorithms will add or subtract integers without regard to the sign flag.  That is they will add or subtract the magnitude of
the integers respectively.

\subsection{Low Level Addition}
An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers.  That is to add the 
trailing digits first and propagate the resulting carry upwards.  Since this is a lower level algorithm the name will have a ``s\_'' prefix.  
Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.

\newpage
\begin{figure}[!here]
\begin{center}
\begin{small}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_add}. \\
\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
\textbf{Output}.  The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
\hline \\
1.  if $a.used > b.used$ then \\
\hspace{+3mm}1.1  $min \leftarrow b.used$ \\
\hspace{+3mm}1.2  $max \leftarrow a.used$ \\
\hspace{+3mm}1.3  $x   \leftarrow a$ \\
2.  else  \\
\hspace{+3mm}2.1  $min \leftarrow a.used$ \\
\hspace{+3mm}2.2  $max \leftarrow b.used$ \\
\hspace{+3mm}2.3  $x   \leftarrow b$ \\
3.  If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
4.  $oldused \leftarrow c.used$ \\
5.  $c.used \leftarrow max + 1$ \\
6.  $u \leftarrow 0$ \\
7.  for $n$ from $0$ to $min - 1$ do \\
\hspace{+3mm}7.1  $c_n \leftarrow a_n + b_n + u$ \\
\hspace{+3mm}7.2  $u \leftarrow c_n >> lg(\beta)$ \\
\hspace{+3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
8.  if $min \ne max$ then do \\
\hspace{+3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
\hspace{+6mm}8.1.1  $c_n \leftarrow x_n + u$ \\
\hspace{+6mm}8.1.2  $u \leftarrow c_n >> lg(\beta)$ \\
\hspace{+6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
9.  $c_{max} \leftarrow u$ \\
10.  if $olduse > max$ then \\
\hspace{+3mm}10.1  for $n$ from $max + 1$ to $oldused - 1$ do \\
\hspace{+6mm}10.1.1  $c_n \leftarrow 0$ \\
11.  Clamp excess digits in $c$.  (\textit{mp\_clamp}) \\
12.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Algorithm s\_mp\_add}
\end{figure}

\textbf{Algorithm s\_mp\_add.}
This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.  
Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}.  Even the 
MIX pseudo  machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.

The first thing that has to be accomplished is to sort out which of the two inputs is the largest.  The addition logic
will simply add all of the smallest input to the largest input and store that first part of the result in the
destination.  Then it will apply a simpler addition loop to excess digits of the larger input.

The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two 
inputs.  The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
same number of digits.  After the inputs are sorted the destination $c$ is grown as required to accomodate the sum 
of the two inputs.  The original \textbf{used} count of $c$ is copied and set to the new used count.  

At this point the first addition loop will go through as many digit positions that both inputs have.  The carry
variable $\mu$ is set to zero outside the loop.  Inside the loop an ``addition'' step requires three statements to produce
one digit of the summand.  First
two digits from $a$ and $b$ are added together along with the carry $\mu$.  The carry of this step is extracted and stored
in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.

Now all of the digit positions that both inputs have in common have been exhausted.  If $min \ne max$ then $x$ is an alias
for one of the inputs that has more digits.  A simplified addition loop is then used to essentially copy the remaining digits
and the carry to the destination.

The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.


\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_add.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

We first sort (lines 28 to 36) the inputs based on magnitude and determine the $min$ and $max$ variables.
Note that $x$ is a pointer to an mp\_int assigned to the largest input, in effect it is a local alias.  Next we
grow the destination (38 to 42) ensure that it can accomodate the result of the addition. 

Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style.  The three aliases that are on 
lines 56, 59 and 62 represent the two inputs and destination variables respectively.  These aliases are used to ensure the
compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.

The initial carry $u$ will be cleared (line 65), note that $u$ is of type mp\_digit which ensures type 
compatibility within the implementation.  The initial addition (line 66 to 75) adds digits from
both inputs until the smallest input runs out of digits.  Similarly the conditional addition loop
(line 81 to 90) adds the remaining digits from the larger of the two inputs.  The addition is finished 
with the final carry being stored in $tmpc$ (line 94).  Note the ``++'' operator within the same expression.
After line 94, $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$.  This is useful
for the next loop (line 97 to 99) which set any old upper digits to zero.

\subsection{Low Level Subtraction}
The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm.  The principle difference is that the
unsigned subtraction algorithm requires the result to be positive.  That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must 
be met for this algorithm to function properly.  Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.  
This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.


For this algorithm a new variable is required to make the description simpler.  Recall from section 1.3.1 that a mp\_digit must be able to represent
the range $0 \le x < 2\beta$ for the algorithms to work correctly.  However, it is allowable that a mp\_digit represent a larger range of values.  For 
this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a 
mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).  

For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$.  In ISO C an ``unsigned long''
data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma \ge 32$.

\newpage\begin{figure}[!here]
\begin{center}
\begin{small}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_sub}. \\
\textbf{Input}.   Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
\textbf{Output}.  The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
\hline \\
1.  $min \leftarrow b.used$ \\
2.  $max \leftarrow a.used$ \\
3.  If $c.alloc < max$ then grow $c$ to hold at least $max$ digits.  (\textit{mp\_grow}) \\
4.  $oldused \leftarrow c.used$ \\ 
5.  $c.used \leftarrow max$ \\
6.  $u \leftarrow 0$ \\
7.  for $n$ from $0$ to $min - 1$ do \\
\hspace{3mm}7.1  $c_n \leftarrow a_n - b_n - u$ \\
\hspace{3mm}7.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
\hspace{3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
8.  if $min < max$ then do \\
\hspace{3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
\hspace{6mm}8.1.1  $c_n \leftarrow a_n - u$ \\
\hspace{6mm}8.1.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
\hspace{6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
9. if $oldused > max$ then do \\
\hspace{3mm}9.1  for $n$ from $max$ to $oldused - 1$ do \\
\hspace{6mm}9.1.1  $c_n \leftarrow 0$ \\
10. Clamp excess digits of $c$.  (\textit{mp\_clamp}). \\
11. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Algorithm s\_mp\_sub}
\end{figure}

\textbf{Algorithm s\_mp\_sub.}
This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive.  That is when
passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly.  This
algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well.  As was the case
of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.

The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$.  Steps 1 and 2 
set the $min$ and $max$ variables.  Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at 
most $max$ digits in length as opposed to $max + 1$.  Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and 
set to the maximal count for the operation.

The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision 
subtraction is used instead.  Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction 
loops.  Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.  

For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$.  The least significant bit will force a carry upwards to 
the third bit which will be set to zero after the borrow.  After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain,  When the 
third bit of $0101_2$ is subtracted from the result it will cause another carry.  In this case though the carry will be forced to propagate all the 
way to the most significant bit.  

Recall that $\beta < 2^{\gamma}$.  This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most 
significant bit.  Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
is needed is a single zero or one bit for the carry.  Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the 
carry.  This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.  

If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$.  Step
10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sub.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Like low level addition we ``sort'' the inputs.  Except in this case the sorting is hardcoded 
(lines 25 and 26).  In reality the $min$ and $max$ variables are only aliases and are only 
used to make the source code easier to read.  Again the pointer alias optimization is used 
within this algorithm.  The aliases $tmpa$, $tmpb$ and $tmpc$ are initialized
(lines 42, 43 and 44) for $a$, $b$ and $c$ respectively.

The first subtraction loop (lines 47 through 61) subtract digits from both inputs until the smaller of
the two inputs has been exhausted.  As remarked earlier there is an implementation reason for using the ``awkward'' 
method of extracting the carry (line 57).  The traditional method for extracting the carry would be to shift 
by $lg(\beta)$ positions and logically AND the least significant bit.  The AND operation is required because all of 
the bits above the $\lg(\beta)$'th bit will be set to one after a carry occurs from subtraction.  This carry 
extraction requires two relatively cheap operations to extract the carry.  The other method is to simply shift the 
most significant bit to the least significant bit thus extracting the carry with a single cheap operation.  This 
optimization only works on twos compliment machines which is a safe assumption to make.

If $a$ has a larger magnitude than $b$ an additional loop (lines 64 through 73) is required to propagate 
the carry through $a$ and copy the result to $c$.  

\subsection{High Level Addition}
Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
established.  This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data 
types.  

Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign} 
flag.  A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.

\begin{figure}[!here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_add}. \\
\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
\textbf{Output}.  The signed addition $c = a + b$. \\
\hline \\
1.  if $a.sign = b.sign$ then do \\
\hspace{3mm}1.1  $c.sign \leftarrow a.sign$  \\
\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
2.  else do \\
\hspace{3mm}2.1  if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag})  \\
\hspace{6mm}2.1.1  $c.sign \leftarrow b.sign$ \\
\hspace{6mm}2.1.2  $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.2  else do \\
\hspace{6mm}2.2.1  $c.sign \leftarrow a.sign$ \\
\hspace{6mm}2.2.2  $c \leftarrow \vert a \vert - \vert b \vert$ \\
3.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_add}
\end{figure}

\textbf{Algorithm mp\_add.}
This algorithm performs the signed addition of two mp\_int variables.  There is no reference algorithm to draw upon from 
either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations.  The algorithm is fairly 
straightforward but restricted since subtraction can only produce positive results.

\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
\hline $+$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
\hline $-$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
\hline &&&&\\

\hline $+$ & $-$ & No  & $c = b - a$ & $b.sign$ \\
\hline $-$ & $+$ & No  & $c = b - a$ & $b.sign$ \\

\hline &&&&\\

\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\

\hline
\end{tabular}
\end{center}
\end{small}
\caption{Addition Guide Chart}
\label{fig:AddChart}
\end{figure}

Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three 
specific cases need to be handled.  The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are 
forwarded to step three to check for errors.  This simplifies the description of the algorithm considerably and best 
follows how the implementation actually was achieved.

Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed.  Recall from the descriptions of algorithms
s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits.  The mp\_clamp algorithm will set the \textbf{sign}
to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.

For example, consider performing $-a + a$ with algorithm mp\_add.  By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
produce a result of $-0$.  However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp 
within algorithm s\_mp\_add will force $-0$ to become $0$.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_add.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The source code follows the algorithm fairly closely.  The most notable new source code addition is the usage of the $res$ integer variable which
is used to pass result of the unsigned operations forward.  Unlike in the algorithm, the variable $res$ is merely returned as is without
explicitly checking it and returning the constant \textbf{MP\_OKAY}.  The observation is this algorithm will succeed or fail only if the lower
level functions do so.  Returning their return code is sufficient.

\subsection{High Level Subtraction}
The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.  

\newpage\begin{figure}[!here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_sub}. \\
\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
\textbf{Output}.  The signed subtraction $c = a - b$. \\
\hline \\
1.  if $a.sign \ne b.sign$ then do \\
\hspace{3mm}1.1  $c.sign \leftarrow a.sign$ \\
\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
2.  else do \\
\hspace{3mm}2.1  if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
\hspace{6mm}2.1.1  $c.sign \leftarrow a.sign$ \\
\hspace{6mm}2.1.2  $c \leftarrow \vert a \vert  - \vert b \vert$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.2  else do \\
\hspace{6mm}2.2.1  $c.sign \leftarrow  \left \lbrace \begin{array}{ll}
                              MP\_ZPOS &  \mbox{if }a.sign = MP\_NEG \\
                              MP\_NEG  &  \mbox{otherwise} \\
                              \end{array} \right .$ \\
\hspace{6mm}2.2.2  $c \leftarrow \vert b \vert  - \vert a \vert$ \\
3.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\caption{Algorithm mp\_sub}
\end{figure}

\textbf{Algorithm mp\_sub.}
This algorithm performs the signed subtraction of two inputs.  Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or 
\cite{HAC}.  Also this algorithm is restricted by algorithm s\_mp\_sub.  Chart \ref{fig:SubChart} lists the eight possible inputs and
the operations required.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
\hline $+$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
\hline $-$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
\hline &&&& \\
\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
\hline &&&& \\
\hline $+$ & $+$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
\hline $-$ & $-$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Subtraction Guide Chart}
\label{fig:SubChart}
\end{figure}

Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction.  That is to prevent the 
algorithm from producing $-a - -a = -0$ as a result.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_sub.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
and forward it to the end of the function.  On line 39 the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a 
``greater than or equal to'' comparison.  

\section{Bit and Digit Shifting}
It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.  
This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.  

In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established.  That is to shift
the digits left or right as well to shift individual bits of the digits left and right.  It is important to note that not all ``shift'' operations
are on radix-$\beta$ digits.  

\subsection{Multiplication by Two}

In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient 
operation to perform.  A single precision logical shift left is sufficient to multiply a single digit by two.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mul\_2}. \\
\textbf{Input}.   One mp\_int $a$ \\
\textbf{Output}.  $b = 2a$. \\
\hline \\
1.  If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits.  (\textit{mp\_grow}) \\
2.  $oldused \leftarrow b.used$ \\
3.  $b.used \leftarrow a.used$ \\
4.  $r \leftarrow 0$ \\
5.  for $n$ from 0 to $a.used - 1$ do \\
\hspace{3mm}5.1  $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
\hspace{3mm}5.2  $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}5.3  $r \leftarrow rr$ \\
6.  If $r \ne 0$ then do \\
\hspace{3mm}6.1  $b_{n + 1} \leftarrow r$ \\
\hspace{3mm}6.2  $b.used \leftarrow b.used + 1$ \\
7.  If $b.used < oldused - 1$ then do \\
\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
8.  $b.sign \leftarrow a.sign$ \\
9.  Return(\textit{MP\_OKAY}).\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mul\_2}
\end{figure}

\textbf{Algorithm mp\_mul\_2.}
This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two.  Neither \cite{TAOCPV2} nor \cite{HAC} describe such 
an algorithm despite the fact it arises often in other algorithms.  The algorithm is setup much like the lower level algorithm s\_mp\_add since 
it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.  

Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result.  The initial \textbf{used} count
is set to $a.used$ at step 4.  Only if there is a final carry will the \textbf{used} count require adjustment.

Step 6 is an optimization implementation of the addition loop for this specific case.  That is since the two values being added together 
are the same there is no need to perform two reads from the digits of $a$.  Step 6.1 performs a single precision shift on the current digit $a_n$ to
obtain what will be the carry for the next iteration.  Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
the previous carry.  Recall from section 4.1 that $a_n << 1$ is equivalent to $a_n \cdot 2$.  An iteration of the addition loop is finished with 
forwarding the carry to the next iteration.

Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.  
Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input.  The only noteworthy difference
is the use of the logical shift operator on line 52 to perform a single precision doubling.  

\subsection{Division by Two}
A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_div\_2}. \\
\textbf{Input}.   One mp\_int $a$ \\
\textbf{Output}.  $b = a/2$. \\
\hline \\
1.  If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits.  (\textit{mp\_grow}) \\
2.  If the reallocation failed return(\textit{MP\_MEM}). \\
3.  $oldused \leftarrow b.used$ \\
4.  $b.used \leftarrow a.used$ \\
5.  $r \leftarrow 0$ \\
6.  for $n$ from $b.used - 1$ to $0$ do \\
\hspace{3mm}6.1  $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
\hspace{3mm}6.2  $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}6.3  $r \leftarrow rr$ \\
7.  If $b.used < oldused - 1$ then do \\
\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
8.  $b.sign \leftarrow a.sign$ \\
9.  Clamp excess digits of $b$.  (\textit{mp\_clamp}) \\
10.  Return(\textit{MP\_OKAY}).\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_div\_2}
\end{figure}

\textbf{Algorithm mp\_div\_2.}
This algorithm will divide an mp\_int by two using logical shifts to the right.  Like mp\_mul\_2 it uses a modified low level addition
core as the basis of the algorithm.  Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit.  The algorithm
could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
reading past the end of the array of digits.

Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the 
least significant bit not the most significant bit.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\section{Polynomial Basis Operations}
Recall from section 4.3 that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$.  Such a representation is also known as
the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single 
place.  The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
division and Karatsuba multiplication.  

Converting from an array of digits to polynomial basis is very simple.  Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
$y = \sum_{i=0}^{2} a_i \beta^i$.  Simply replace $\beta$ with $x$ and the expression is in polynomial basis.  For example, $f(x) = 8x + 9$ is the
polynomial basis representation for $89$ using radix ten.  That is, $f(10) = 8(10) + 9 = 89$.  

\subsection{Multiplication by $x$}

Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one 
degree.  In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$.  From a scalar basis point of view multiplying by $x$ is equivalent to
multiplying by the integer $\beta$.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_lshd}. \\
\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
\textbf{Output}.  $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
\hline \\
1.  If $b \le 0$ then return(\textit{MP\_OKAY}). \\
2.  If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits.  (\textit{mp\_grow}). \\
3.  If the reallocation failed return(\textit{MP\_MEM}). \\
4.  $a.used \leftarrow a.used + b$ \\
5.  $i \leftarrow a.used - 1$ \\
6.  $j \leftarrow a.used - 1 - b$ \\
7.  for $n$ from $a.used - 1$ to $b$ do \\
\hspace{3mm}7.1  $a_{i} \leftarrow a_{j}$ \\
\hspace{3mm}7.2  $i \leftarrow i - 1$ \\
\hspace{3mm}7.3  $j \leftarrow j - 1$ \\
8.  for $n$ from 0 to $b - 1$ do \\
\hspace{3mm}8.1  $a_n \leftarrow 0$ \\
9.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_lshd}
\end{figure}

\textbf{Algorithm mp\_lshd.}
This algorithm multiplies an mp\_int by the $b$'th power of $x$.  This is equivalent to multiplying by $\beta^b$.  The algorithm differs 
from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location.  The
motivation behind this change is due to the way this function is typically used.  Algorithms such as mp\_add store the result in an optionally
different third mp\_int because the original inputs are often still required.  Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
typically used on values where the original value is no longer required.  The algorithm will return success immediately if 
$b \le 0$ since the rest of algorithm is only valid when $b > 0$.  

First the destination $a$ is grown as required to accomodate the result.  The counters $i$ and $j$ are used to form a \textit{sliding window} over
the digits of $a$ of length $b$.  The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).  
The loop on step 7 copies the digit from the tail to the head.  In each iteration the window is moved down one digit.   The last loop on 
step 8 sets the lower $b$ digits to zero.

\newpage
\begin{center}
\begin{figure}[here]
\includegraphics{pics/sliding_window.ps}
\caption{Sliding Window Movement}
\label{pic:sliding_window}
\end{figure}
\end{center}

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_lshd.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The if statement (line 24) ensures that the $b$ variable is greater than zero since we do not interpret negative
shift counts properly.  The \textbf{used} count is incremented by $b$ before the copy loop begins.  This elminates 
the need for an additional variable in the for loop.  The variable $top$ (line 42) is an alias
for the leading digit while $bottom$ (line 45) is an alias for the trailing edge.  The aliases form a 
window of exactly $b$ digits over the input.  

\subsection{Division by $x$}

Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_rshd}. \\
\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
\textbf{Output}.  $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
\hline \\
1.  If $b \le 0$ then return. \\
2.  If $a.used \le b$ then do \\
\hspace{3mm}2.1  Zero $a$.  (\textit{mp\_zero}). \\
\hspace{3mm}2.2  Return. \\
3.  $i \leftarrow 0$ \\
4.  $j \leftarrow b$ \\
5.  for $n$ from 0 to $a.used - b - 1$ do \\
\hspace{3mm}5.1  $a_i \leftarrow a_j$ \\
\hspace{3mm}5.2  $i \leftarrow i + 1$ \\
\hspace{3mm}5.3  $j \leftarrow j + 1$ \\
6.  for $n$ from $a.used - b$ to $a.used - 1$ do \\
\hspace{3mm}6.1  $a_n \leftarrow 0$ \\
7.  $a.used \leftarrow a.used - b$ \\
8.  Return. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_rshd}
\end{figure}

\textbf{Algorithm mp\_rshd.}
This algorithm divides the input in place by the $b$'th power of $x$.  It is analogous to dividing by a $\beta^b$ but much quicker since
it does not require single precision division.  This algorithm does not actually return an error code as it cannot fail.  

If the input $b$ is less than one the algorithm quickly returns without performing any work.  If the \textbf{used} count is less than or equal
to the shift count $b$ then it will simply zero the input and return.

After the trivial cases of inputs have been handled the sliding window is setup.  Much like the case of algorithm mp\_lshd a sliding window that
is $b$ digits wide is used to copy the digits.  Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.  
Also the digits are copied from the leading to the trailing edge.

Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_rshd.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The only noteworthy element of this routine is the lack of a return type since it cannot fail.  Like mp\_lshd() we
form a sliding window except we copy in the other direction.  After the window (line 60) we then zero
the upper digits of the input to make sure the result is correct.

\section{Powers of Two}

Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required.  For 
example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful.  Instead of performing single
shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.  

\subsection{Multiplication by Power of Two}

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mul\_2d}. \\
\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
\textbf{Output}.  $c \leftarrow a \cdot 2^b$. \\
\hline \\
1.  $c \leftarrow a$.  (\textit{mp\_copy}) \\
2.  If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
3.  If the reallocation failed return(\textit{MP\_MEM}). \\
4.  If $b \ge lg(\beta)$ then \\
\hspace{3mm}4.1  $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
\hspace{3mm}4.2  If step 4.1 failed return(\textit{MP\_MEM}). \\
5.  $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
6.  If $d \ne 0$ then do \\
\hspace{3mm}6.1  $mask \leftarrow 2^d$ \\
\hspace{3mm}6.2  $r \leftarrow 0$ \\
\hspace{3mm}6.3  for $n$ from $0$ to $c.used - 1$ do \\
\hspace{6mm}6.3.1  $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
\hspace{6mm}6.3.2  $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
\hspace{3mm}6.4  If $r > 0$ then do \\
\hspace{6mm}6.4.1  $c_{c.used} \leftarrow r$ \\
\hspace{6mm}6.4.2  $c.used \leftarrow c.used + 1$ \\
7.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mul\_2d}
\end{figure}

\textbf{Algorithm mp\_mul\_2d.}
This algorithm multiplies $a$ by $2^b$ and stores the result in $c$.  The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
quickly compute the product.

First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than 
$\beta$.  For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$ 
left.

After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform.  Step 5 calculates the number of remaining shifts 
required.  If it is non-zero a modified shift loop is used to calculate the remaining product.  
Essentially the loop is a generic version of algorithm mp\_mul\_2 designed to handle any shift count in the range $1 \le x < lg(\beta)$.  The $mask$
variable is used to extract the upper $d$ bits to form the carry for the next iteration.  

This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to 
complete.  It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2d.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The shifting is performed in--place which means the first step (line 25) is to copy the input to the 
destination.  We avoid calling mp\_copy() by making sure the mp\_ints are different.  The destination then
has to be grown (line 32) to accomodate the result.

If the shift count $b$ is larger than $lg(\beta)$ then a call to mp\_lshd() is used to handle all of the multiples 
of $lg(\beta)$.  Leaving only a remaining shift of $lg(\beta) - 1$ or fewer bits left.  Inside the actual shift 
loop (lines 46 to 76) we make use of pre--computed values $shift$ and $mask$.   These are used to
extract the carry bit(s) to pass into the next iteration of the loop.  The $r$ and $rr$ variables form a 
chain between consecutive iterations to propagate the carry.  

\subsection{Division by Power of Two}

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_div\_2d}. \\
\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
\textbf{Output}.  $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
\hline \\
1.  If $b \le 0$ then do \\
\hspace{3mm}1.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
\hspace{3mm}1.2  $d \leftarrow 0$ (\textit{mp\_zero}) \\
\hspace{3mm}1.3  Return(\textit{MP\_OKAY}). \\
2.  $c \leftarrow a$ \\
3.  $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
4.  If $b \ge lg(\beta)$ then do \\
\hspace{3mm}4.1  $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
5.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
6.  If $k \ne 0$ then do \\
\hspace{3mm}6.1  $mask \leftarrow 2^k$ \\
\hspace{3mm}6.2  $r \leftarrow 0$ \\
\hspace{3mm}6.3  for $n$ from $c.used - 1$ to $0$ do \\
\hspace{6mm}6.3.1  $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
\hspace{6mm}6.3.2  $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
7.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
8.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_div\_2d}
\end{figure}

\textbf{Algorithm mp\_div\_2d.}
This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder.  The algorithm is designed much like algorithm 
mp\_mul\_2d by first using whole digit shifts then single precision shifts.  This algorithm will also produce the remainder of the division
by using algorithm mp\_mod\_2d.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2d.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies.  The remainder $d$ may be optionally 
ignored by passing \textbf{NULL} as the pointer to the mp\_int variable.    The temporary mp\_int variable $t$ is used to hold the 
result of the remainder operation until the end.  This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
the quotient is obtained.

The remainder of the source code is essentially the same as the source code for mp\_mul\_2d.  The only significant difference is
the direction of the shifts.

\subsection{Remainder of Division by Power of Two}

The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$.  This
algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mod\_2d}. \\
\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
\textbf{Output}.  $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
\hline \\
1.  If $b \le 0$ then do \\
\hspace{3mm}1.1  $c \leftarrow 0$ (\textit{mp\_zero}) \\
\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
2.  If $b > a.used \cdot lg(\beta)$ then do \\
\hspace{3mm}2.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
\hspace{3mm}2.2  Return the result of step 2.1. \\
3.  $c \leftarrow a$ \\
4.  If step 3 failed return(\textit{MP\_MEM}). \\
5.  for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
\hspace{3mm}5.1  $c_n \leftarrow 0$ \\
6.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
7.  $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
8.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
9.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mod\_2d}
\end{figure}

\textbf{Algorithm mp\_mod\_2d.}
This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$.  First if $b$ is less than or equal to zero the 
result is set to zero.  If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns.  Otherwise, $a$ 
is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mod\_2d.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

We first avoid cases of $b \le 0$ by simply mp\_zero()'ing the destination in such cases.  Next if $2^b$ is larger
than the input we just mp\_copy() the input and return right away.  After this point we know we must actually
perform some work to produce the remainder.

Recalling that reducing modulo $2^k$ and a binary ``and'' with $2^k - 1$ are numerically equivalent we can quickly reduce 
the number.  First we zero any digits above the last digit in $2^b$ (line 42).  Next we reduce the 
leading digit of both (line 46) and then mp\_clamp().

\section*{Exercises}
\begin{tabular}{cl}
$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
                      & in $O(n)$ time. \\
                      &\\
$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming  \\
                      & weight values such as $3$, $5$ and $9$.  Extend it to handle all values \\
                      & upto $64$ with a hamming weight less than three. \\
                      &\\
$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
                      & $2^k - 1$ as well. \\
                      &\\
$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
                      & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
                      & any $n$-bit input.  Note that the time of addition is ignored in the \\
                      & calculation.  \\
                      & \\
$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
                      & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$.  Again ignore \\
                      & the cost of addition. \\
                      & \\
$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
                      & for $n = 64 \ldots 1024$ in steps of $64$. \\
                      & \\
$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
                      & calculating the result of a signed comparison. \\
                      &
\end{tabular}

\chapter{Multiplication and Squaring}
\section{The Multipliers}
For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of 
algorithms of any multiple precision integer package.  The set of multiplier algorithms include integer multiplication, squaring and modular reduction 
where in each of the algorithms single precision multiplication is the dominant operation performed.  This chapter will discuss integer multiplication 
and squaring, leaving modular reductions for the subsequent chapter.  

The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular 
exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$.  During a modular
exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions, 
35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision 
multiplications.

For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied 
against every digit of the other multiplicand.  Traditional long-hand multiplication is based on this process;  while the techniques can differ the 
overall algorithm used is essentially the same.  Only ``recently'' have faster algorithms been studied.  First Karatsuba multiplication was discovered in 
1962.  This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.  
This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.  

\section{Multiplication}
\subsection{The Baseline Multiplication}
\label{sec:basemult}
\index{baseline multiplication}
Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
algorithm that school children are taught.  The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision 
multiplications are required.  More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required.  To 
simplify most discussions, it will be assumed that the inputs have comparable number of digits.  

The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be 
used.  This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible.    One important 
facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution.  The importance of this 
modification will become evident during the discussion of Barrett modular reduction.  Recall that for a $n$ and $m$ digit input the product 
will be at most $n + m$ digits.  Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.  

Recall from sub-section 4.2.2 the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}.  We shall now extend the variable set to 
include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}.  This implies that $2^{\alpha} > 2 \cdot \beta^2$.  The 
constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see sub-section 5.2.2 for more information}).

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
\hline \\
1.  If min$(a.used, b.used) < \delta$ then do \\
\hspace{3mm}1.1  Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}).  \\
\hspace{3mm}1.2  Return the result of step 1.1 \\
\\
Allocate and initialize a temporary mp\_int. \\
2.  Init $t$ to be of size $digs$ \\
3.  If step 2 failed return(\textit{MP\_MEM}). \\
4.  $t.used \leftarrow digs$ \\
\\
Compute the product. \\
5.  for $ix$ from $0$ to $a.used - 1$ do \\
\hspace{3mm}5.1  $u \leftarrow 0$ \\
\hspace{3mm}5.2  $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
\hspace{3mm}5.3  If $pb < 1$ then goto step 6. \\
\hspace{3mm}5.4  for $iy$ from $0$ to $pb - 1$ do \\
\hspace{6mm}5.4.1  $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
\hspace{6mm}5.4.2  $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}5.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
\hspace{3mm}5.5  if $ix + pb < digs$ then do \\
\hspace{6mm}5.5.1  $t_{ix + pb} \leftarrow u$ \\
6.  Clamp excess digits of $t$. \\
7.  Swap $c$ with $t$ \\
8.  Clear $t$ \\
9.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm s\_mp\_mul\_digs}
\end{figure}

\textbf{Algorithm s\_mp\_mul\_digs.}
This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits.  While it may seem
a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent 
algorithm.  The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.  
Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the 
inputs.

The first thing this algorithm checks for is whether a Comba multiplier can be used instead.   If the minimum digit count of either
input is less than $\delta$, then the Comba method may be used instead.    After the Comba method is ruled out, the baseline algorithm begins.  A 
temporary mp\_int variable $t$ is used to hold the intermediate result of the product.  This allows the algorithm to be used to 
compute products when either $a = c$ or $b = c$ without overwriting the inputs.  

All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output.  The $pb$ variable
is given the count of digits to read from $b$ inside the nested loop.  If $pb \le 1$ then no more output digits can be produced and the algorithm
will exit the loop.  The best way to think of the loops are as a series of $pb \times 1$ multiplications.    That is, in each pass of the 
innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.  

For example, consider multiplying $576$ by $241$.  That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
visualized in the following table.

\begin{figure}[here]
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|l|}
\hline   &&          & 5 & 7 & 6 & \\
\hline   $\times$&&  & 2 & 4 & 1 & \\
\hline &&&&&&\\
  &&          & 5 & 7 & 6 & $10^0(1)(576)$ \\
  &2 &   3    & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
  1 & 3 & 8 & 8 & 1 & 6 &   $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
\hline  
\end{tabular}
\end{center}
\caption{Long-Hand Multiplication Diagram}
\end{figure}

Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate 
count.  That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.

Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable.  The multiplication on that step
is assumed to be a double wide output single precision multiplication.  That is, two single precision variables are multiplied to produce a
double precision result.  The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
5.4.1 is propagated through the nested loop.  If the carry was not propagated immediately it would overflow the single precision digit 
$t_{ix+iy}$ and the result would be lost.  

At step 5.5 the nested loop is finished and any carry that was left over should be forwarded.  The carry does not have to be added to the $ix+pb$'th
digit since that digit is assumed to be zero at this point.  However, if $ix + pb \ge digs$ the carry is not set as it would make the result
exceed the precision requested.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_mul\_digs.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

First we determine (line 31) if the Comba method can be used first since it's faster.  The conditions for 
sing the Comba routine are that min$(a.used, b.used) < \delta$ and the number of digits of output is less than 
\textbf{MP\_WARRAY}.  This new constant is used to control the stack usage in the Comba routines.  By default it is 
set to $\delta$ but can be reduced when memory is at a premium.

If we cannot use the Comba method we proceed to setup the baseline routine.  We allocate the the destination mp\_int
$t$ (line 37) to the exact size of the output to avoid further re--allocations.  At this point we now 
begin the $O(n^2)$ loop.

This implementation of multiplication has the caveat that it can be trimmed to only produce a variable number of
digits as output.  In each iteration of the outer loop the $pb$ variable is set (line 49) to the maximum 
number of inner loop iterations.  

Inside the inner loop we calculate $\hat r$ as the mp\_word product of the two mp\_digits and the addition of the
carry from the previous iteration.  A particularly important observation is that most modern optimizing 
C compilers (GCC for instance) can recognize that a $N \times N \rightarrow 2N$ multiplication is all that 
is required for the product.  In x86 terms for example, this means using the MUL instruction.

Each digit of the product is stored in turn (line 69) and the carry propagated (line 72) to the 
next iteration.

\subsection{Faster Multiplication by the ``Comba'' Method}

One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be 
computed and propagated upwards.  This makes the nested loop very sequential and hard to unroll and implement 
in parallel.  The ``Comba'' \cite{COMBA} method is named after little known (\textit{in cryptographic venues}) Paul G. 
Comba who described a method of implementing fast multipliers that do not require nested carry fixup operations.  As an 
interesting aside it seems that Paul Barrett describes a similar technique in his 1986 paper \cite{BARRETT} written 
five years before.

At the heart of the Comba technique is once again the long-hand algorithm.  Except in this case a slight 
twist is placed on how the columns of the result are produced.  In the standard long-hand algorithm rows of products 
are produced then added together to form the final result.  In the baseline algorithm the columns are added together 
after each iteration to get the result instantaneously.  

In the Comba algorithm the columns of the result are produced entirely independently of each other.  That is at 
the $O(n^2)$ level a simple multiplication and addition step is performed.  The carries of the columns are propagated 
after the nested loop to reduce the amount of work requiored. Succintly the first step of the algorithm is to compute 
the product vector $\vec x$ as follows. 

\begin{equation}
\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
\end{equation}

Where $\vec x_n$ is the $n'th$ column of the output vector.  Consider the following example which computes the vector $\vec x$ for the multiplication
of $576$ and $241$.  

\newpage\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
  \hline &          & 5 & 7 & 6 & First Input\\
  \hline $\times$ & & 2 & 4 & 1 & Second Input\\
\hline            &                        & $1 \cdot 5 = 5$   & $1 \cdot 7 = 7$   & $1 \cdot 6 = 6$ & First pass \\
                  &  $4 \cdot 5 = 20$      & $4 \cdot 7+5=33$  & $4 \cdot 6+7=31$  & 6               & Second pass \\
   $2 \cdot 5 = 10$ &  $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31                & 6             & Third pass \\
\hline 10 & 34 & 45 & 31 & 6 & Final Result \\   
\hline   
\end{tabular}
\end{center}
\end{small}
\caption{Comba Multiplication Diagram}
\end{figure}

At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.  
Now the columns must be fixed by propagating the carry upwards.  The resultant vector will have one extra dimension over the input vector which is
congruent to adding a leading zero digit.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Comba Fixup}. \\
\textbf{Input}.   Vector $\vec x$ of dimension $k$ \\
\textbf{Output}.  Vector $\vec x$ such that the carries have been propagated. \\
\hline \\
1.  for $n$ from $0$ to $k - 1$ do \\
\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
2.  Return($\vec x$). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Comba Fixup}
\end{figure}

With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$.  In this case 
$241 \cdot 576$ is in fact $138816$ and the procedure succeeded.  If the algorithm is correct and as will be demonstrated shortly more
efficient than the baseline algorithm why not simply always use this algorithm?

\subsubsection{Column Weight.}
At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output 
independently.  A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
the carries.  For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
three single precision multiplications.  If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
an overflow can occur and the carry information will be lost.  For any $m$ and $n$ digit inputs the maximum weight of any column is 
min$(m, n)$ which is fairly obvious.

The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used.  Recall
from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision.  Given these
two quantities we must not violate the following

\begin{equation}
k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
\end{equation}

Which reduces to 

\begin{equation}
k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
\end{equation}

Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit.  By further re-arrangement of the equation the final solution is
found.

\begin{equation}
k  < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
\end{equation}

The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$.  In this configuration 
the smaller input may not have more than $256$ digits if the Comba method is to be used.  This is quite satisfactory for most applications since 
$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
\hline \\
Place an array of \textbf{MP\_WARRAY} single precision digits named $W$ on the stack. \\
1.  If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
2.  If step 1 failed return(\textit{MP\_MEM}).\\
\\
3.  $pa \leftarrow \mbox{MIN}(digs, a.used + b.used)$ \\
\\
4.  $\_ \hat W \leftarrow 0$ \\
5.  for $ix$ from 0 to $pa - 1$ do \\
\hspace{3mm}5.1  $ty \leftarrow \mbox{MIN}(b.used - 1, ix)$ \\
\hspace{3mm}5.2  $tx \leftarrow ix - ty$ \\
\hspace{3mm}5.3  $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
\hspace{3mm}5.4  for $iz$ from 0 to $iy - 1$ do \\
\hspace{6mm}5.4.1  $\_ \hat W \leftarrow \_ \hat W + a_{tx+iy}b_{ty-iy}$ \\
\hspace{3mm}5.5  $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$\\
\hspace{3mm}5.6  $\_ \hat W \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
\\
6.  $oldused \leftarrow c.used$ \\
7.  $c.used \leftarrow digs$ \\
8.  for $ix$ from $0$ to $pa$ do \\
\hspace{3mm}8.1  $c_{ix} \leftarrow W_{ix}$ \\
9.  for $ix$ from $pa + 1$ to $oldused - 1$ do \\
\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
\\
10.  Clamp $c$. \\
11.  Return MP\_OKAY. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm fast\_s\_mp\_mul\_digs}
\label{fig:COMBAMULT}
\end{figure}

\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision.

The outer loop of this algorithm is more complicated than that of the baseline multiplier.  This is because on the inside of the 
loop we want to produce one column per pass.  This allows the accumulator $\_ \hat W$ to be placed in CPU registers and
reduce the memory bandwidth to two \textbf{mp\_digit} reads per iteration.

The $ty$ variable is set to the minimum count of $ix$ or the number of digits in $b$.  That way if $a$ has more digits than
$b$ this will be limited to $b.used - 1$.  The $tx$ variable is set to the to the distance past $b.used$ the variable
$ix$ is.  This is used for the immediately subsequent statement where we find $iy$.  

The variable $iy$ is the minimum digits we can read from either $a$ or $b$ before running out.  Computing one column at a time
means we have to scan one integer upwards and the other downwards.  $a$ starts at $tx$ and $b$ starts at $ty$.  In each
pass we are producing the $ix$'th output column and we note that $tx + ty = ix$.  As we move $tx$ upwards we have to 
move $ty$ downards so the equality remains valid.  The $iy$ variable is the number of iterations until 
$tx \ge a.used$ or $ty < 0$ occurs.

After every inner pass we store the lower half of the accumulator into $W_{ix}$ and then propagate the carry of the accumulator
into the next round by dividing $\_ \hat W$ by $\beta$.

To measure the benefits of the Comba method over the baseline method consider the number of operations that are required.  If the 
cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require 
$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers.  The Comba method requires only $O(pn^2 + qn)$ time, however in practice, 
the speed increase is actually much more.  With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
and addition operations in the nested loop in parallel.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_mul\_digs.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

As per the pseudo--code we first calculate $pa$ (line 48) as the number of digits to output.  Next we begin the outer loop
to produce the individual columns of the product.  We use the two aliases $tmpx$ and $tmpy$ (lines 62, 63) to point
inside the two multiplicands quickly.  

The inner loop (lines 71 to 74) of this implementation is where the tradeoff come into play.  Originally this comba 
implementation was ``row--major'' which means it adds to each of the columns in each pass.  After the outer loop it would then fix 
the carries.  This was very fast except it had an annoying drawback.  You had to read a mp\_word and two mp\_digits and write 
one mp\_word per iteration.  On processors such as the Athlon XP and P4 this did not matter much since the cache bandwidth 
is very high and it can keep the ALU fed with data.  It did, however, matter on older and embedded cpus where cache is often 
slower and also often doesn't exist.  This new algorithm only performs two reads per iteration under the assumption that the 
compiler has aliased $\_ \hat W$ to a CPU register.

After the inner loop we store the current accumulator in $W$ and shift $\_ \hat W$ (lines 77, 80) to forward it as 
a carry for the next pass.  After the outer loop we use the final carry (line 77) as the last digit of the product.  

\subsection{Polynomial Basis Multiplication}
To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication.  In the following algorithms
the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and  
$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required.  In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
 
The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$.  The coefficients $w_i$ will
directly yield the desired product when $\beta$ is substituted for $x$.  The direct solution to solve for the $2n + 1$ coefficients
requires $O(n^2)$ time and would in practice be slower than the Comba technique.

However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown 
coefficients.   This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with 
Gaussian elimination.  This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in 
effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.  

The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible.  However, since 
$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place.  The benefit of this technique stems from the 
fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively.  As a result finding the $2n + 1$ relations required 
by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.

When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$.  The $\zeta_0$ term
is simply the product $W(0) = w_0 = a_0 \cdot b_0$.  The $\zeta_1$ term is the product 
$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$.  The third point $\zeta_{\infty}$ is less obvious but rather
simple to explain.  The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.  
The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$.  Note that the 
points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.

If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points} 
$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ for small values of $q$.  The term ``mirror point'' stems from the fact that 
$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$.  For
example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.

\begin{eqnarray}
\zeta_{2}                  = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
\end{eqnarray}

Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts.  For example, when $n = 2$ the
polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$.  This technique of polynomial representation is known as Horner's method.  

As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications.  Each multiplication is of 
multiplicands that have $n$ times fewer digits than the inputs.  The asymptotic running time of this algorithm is 
$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}).  Figure~\ref{fig:exponent}
summarizes the exponents for various values of $n$.

\begin{figure}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Split into $n$ Parts} & \textbf{Exponent}  & \textbf{Notes}\\
\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
\hline $4$ & $1.403677461$ &\\
\hline $5$ & $1.365212389$ &\\
\hline $10$ & $1.278753601$ &\\
\hline $100$ & $1.149426538$ &\\
\hline $1000$ & $1.100270931$ &\\
\hline $10000$ & $1.075252070$ &\\
\hline
\end{tabular}
\end{center}
\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
\label{fig:exponent}
\end{figure}

At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$.  However, the overhead
of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
numbers.  

\subsubsection{Cutoff Point}
The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach.  However, 
the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved.  This makes the
polynomial basis approach more costly to use with small inputs.

Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}).  There exists a 
point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and 
when $m > y$ the Comba methods are slower than the polynomial basis algorithms.  

The exact location of $y$ depends on several key architectural elements of the computer platform in question.

\begin{enumerate}
\item  The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc.  For example
on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$.  The higher the ratio in favour of multiplication the lower
the cutoff point $y$ will be.  

\item  The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is.  Generally speaking as the number of splits
grows the complexity grows substantially.  Ideally solving the system will only involve addition, subtraction and shifting of integers.  This
directly reflects on the ratio previous mentioned.

\item  To a lesser extent memory bandwidth and function call overheads.  Provided the values are in the processor cache this is less of an
influence over the cutoff point.

\end{enumerate}

A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met.  For example, if the point
is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster.  Finding the cutoff points is fairly simple when
a high resolution timer is available.  

\subsection{Karatsuba Multiplication}
Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
general purpose multiplication.  Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with 
light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.

\begin{equation}
f(x) \cdot g(x) = acx^2 + ((a + b)(c + d) - (ac + bd))x + bd
\end{equation}

Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product.  Applying
this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique.  It turns 
out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points 
$\zeta_0$, $\zeta_{\infty}$ and $\zeta_{1}$.  Consider the resultant system of equations.

\begin{center}
\begin{tabular}{rcrcrcrc}
$\zeta_{0}$ &      $=$ &  &  &  & & $w_0$ \\
$\zeta_{1}$ &      $=$ & $w_2$ & $+$ & $w_1$ & $+$ & $w_0$ \\
$\zeta_{\infty}$ & $=$ & $w_2$ &  & &  & \\
\end{tabular}
\end{center}

By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for.  The simplicity
of this system of equations has made Karatsuba fairly popular.  In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
\hline \\
1.  Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
2.  If step 2 failed then return(\textit{MP\_MEM}). \\
\\
Split the input.  e.g. $a = x1 \cdot \beta^B + x0$ \\
3.  $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
5.  $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
6.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
7.  $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
\\
Calculate the three products. \\
8.  $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
9.  $x1y1 \leftarrow x1 \cdot y1$ \\
10.  $t1 \leftarrow x1 + x0$ (\textit{mp\_add}) \\
11.  $x0 \leftarrow y1 + y0$ \\
12.  $t1 \leftarrow t1 \cdot x0$ \\
\\
Calculate the middle term. \\
13.  $x0 \leftarrow x0y0 + x1y1$ \\
14.  $t1 \leftarrow t1 - x0$ (\textit{s\_mp\_sub}) \\
\\
Calculate the final product. \\
15.  $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
16.  $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
17.  $t1 \leftarrow x0y0 + t1$ \\
18.  $c \leftarrow t1 + x1y1$ \\
19.  Clear all of the temporary variables. \\
20.  Return(\textit{MP\_OKAY}).\\
\hline 
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_karatsuba\_mul}
\end{figure}

\textbf{Algorithm mp\_karatsuba\_mul.}
This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm.  It is loosely based on the description
from Knuth \cite[pp. 294-295]{TAOCPV2}.  

\index{radix point}
In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen.  The radix point chosen must
be used for both of the inputs meaning that it must be smaller than the smallest input.  Step 3 chooses the radix point $B$ as half of the 
smallest input \textbf{used} count.  After the radix point is chosen the inputs are split into lower and upper halves.  Step 4 and 5 
compute the lower halves.  Step 6 and 7 computer the upper halves.  

After the halves have been computed the three intermediate half-size products must be computed.  Step 8 and 9 compute the trivial products
$x0 \cdot y0$ and $x1 \cdot y1$.  The mp\_int $x0$ is used as a temporary variable after $x1 + x0$ has been computed.  By using $x0$ instead
of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.

The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_mul.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The new coding element in this routine, not  seen in previous routines, is the usage of goto statements.  The conventional
wisdom is that goto statements should be avoided.  This is generally true, however when every single function call can fail, it makes sense
to handle error recovery with a single piece of code.  Lines 62 to 76 handle initializing all of the temporary variables 
required.  Note how each of the if statements goes to a different label in case of failure.  This allows the routine to correctly free only
the temporaries that have been successfully allocated so far.

The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large.  This saves the 
additional reallocation that would have been necessary.  Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
number of digits for the next section of code.

The first algebraic portion of the algorithm is to split the two inputs into their halves.  However, instead of using mp\_mod\_2d and mp\_rshd
to extract the halves, the respective code has been placed inline within the body of the function.  To initialize the halves, the \textbf{used} and 
\textbf{sign} members are copied first.  The first for loop on line 96 copies the lower halves.  Since they are both the same magnitude it 
is simpler to calculate both lower halves in a single loop.  The for loop on lines 102 and 107 calculate the upper halves $x1$ and 
$y1$ respectively.

By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.

When line 151 is reached, the algorithm has completed succesfully.  The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
the same code that handles errors can be used to clear the temporary variables and return.  

\subsection{Toom-Cook $3$-Way Multiplication}
Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points  are 
chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce.  Here, the points $\zeta_{0}$, 
$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients 
of the $W(x)$.

With the five relations that Toom-Cook specifies, the following system of equations is formed.

\begin{center}
\begin{tabular}{rcrcrcrcrcr}
$\zeta_0$                    & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$  \\
$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$  \\
$\zeta_1$                    & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$  \\
$\zeta_2$                    & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$  \\
$\zeta_{\infty}$             & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$  \\
\end{tabular}
\end{center}

A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
of two, two divisions by three and one multiplication by three.  All of these $19$ sub-operations require less than quadratic time, meaning that
the algorithm can be faster than a baseline multiplication.  However, the greater complexity of this algorithm places the cutoff point
(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_toom\_mul}. \\
\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
\textbf{Output}.  $c \leftarrow  a  \cdot  b $ \\
\hline \\
Split $a$ and $b$ into three pieces.  E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
1.  $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
2.  $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
3.  $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
4.  $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
5.  $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
6.  $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
7.  $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
\\
Find the five equations for $w_0, w_1, ..., w_4$. \\
8.  $w_0 \leftarrow a_0 \cdot b_0$ \\
9.  $w_4 \leftarrow a_2 \cdot b_2$ \\
10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
\\
Continued on the next page.\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_toom\_mul}
\end{figure}

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
\textbf{Output}.  $c \leftarrow a \cdot  b $ \\
\hline \\
Now solve the system of equations. \\
18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
\\
Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
26. for $n$ from $1$ to $4$ do \\
\hspace{3mm}26.1  $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
28. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_toom\_mul (continued)}
\end{figure}

\textbf{Algorithm mp\_toom\_mul.}
This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach.  Compared to the Karatsuba multiplication, this 
algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead.  In this
description, several statements have been compounded to save space.  The intention is that the statements are executed from left to right across
any given step.

The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively.  From these smaller
integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.

The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively.  The relation $w_1, w_2$ and $w_3$ correspond
to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively.  These are found using logical shifts to independently find
$f(y)$ and $g(y)$ which significantly speeds up the algorithm.

After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients 
$w_1, w_2$ and $w_3$ to be isolated.  The steps 18 through 25 perform the system reduction required as previously described.  Each step of
the reduction represents the comparable matrix operation that would be performed had this been performed by pencil.  For example, step 18 indicates
that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.  

Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known.  By substituting $\beta^{k}$ for $x$, the integer 
result $a \cdot b$ is produced.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_toom\_mul.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The first obvious thing to note is that this algorithm is complicated.  The complexity is worth it if you are multiplying very 
large numbers.  For example, a 10,000 digit multiplication takes approximaly 99,282,205 fewer single precision multiplications with
Toom--Cook than a Comba or baseline approach (this is a savings of more than 99$\%$).  For most ``crypto'' sized numbers this
algorithm is not practical as Karatsuba has a much lower cutoff point.

First we split $a$ and $b$ into three roughly equal portions.  This has been accomplished (lines 41 to 70) with 
combinations of mp\_rshd() and mp\_mod\_2d() function calls.  At this point $a = a2 \cdot \beta^2 + a1 \cdot \beta + a0$ and similiarly
for $b$.  

Next we compute the five points $w0, w1, w2, w3$ and $w4$.  Recall that $w0$ and $w4$ can be computed directly from the portions so
we get those out of the way first (lines 73 and 78).  Next we compute $w1, w2$ and $w3$ using Horners method.

After this point we solve for the actual values of $w1, w2$ and $w3$ by reducing the $5 \times 5$ system which is relatively
straight forward.  

\subsection{Signed Multiplication}
Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required.  So far all
of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mul}. \\
\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
\textbf{Output}.  $c \leftarrow a \cdot b$ \\
\hline \\
1.  If $a.sign = b.sign$ then \\
\hspace{3mm}1.1  $sign = MP\_ZPOS$ \\
2.  else \\
\hspace{3mm}2.1  $sign = MP\_ZNEG$ \\
3.  If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then  \\
\hspace{3mm}3.1  $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
4.  else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
\hspace{3mm}4.1  $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
5.  else \\
\hspace{3mm}5.1  $digs \leftarrow a.used + b.used + 1$ \\
\hspace{3mm}5.2  If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
\hspace{6mm}5.2.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs.  \\
\hspace{3mm}5.3  else \\
\hspace{6mm}5.3.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs.  \\
6.  $c.sign \leftarrow sign$ \\
7.  Return the result of the unsigned multiplication performed. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mul}
\end{figure}

\textbf{Algorithm mp\_mul.}
This algorithm performs the signed multiplication of two inputs.  It will make use of any of the three unsigned multiplication algorithms 
available when the input is of appropriate size.  The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
s\_mp\_mul\_digs will clear it.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mul.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The implementation is rather simplistic and is not particularly noteworthy.  Line 22 computes the sign of the result using the ``?'' 
operator from the C programming language.  Line 48 computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.  

\section{Squaring}
\label{sec:basesquare}

Squaring is a special case of multiplication where both multiplicands are equal.  At first it may seem like there is no significant optimization
available but in fact there is.  Consider the multiplication of $576$ against $241$.  In total there will be nine single precision multiplications
performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot  6$, $2 \cdot 7$ and $2 \cdot 5$.  Now consider 
the multiplication of $123$ against $123$.  The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$, 
$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$.  On closer inspection some of the products are equivalent.  For example, $3 \cdot 2 = 2 \cdot 3$ 
and $3 \cdot 1 = 1 \cdot 3$. 

For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
required for multiplication.  The following diagram gives an example of the operations required.

\begin{figure}[here]
\begin{center}
\begin{tabular}{ccccc|c}
&&1&2&3&\\
$\times$ &&1&2&3&\\
\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
       & $2 \cdot 1$  & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
         $1 \cdot 1$  & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
\end{tabular}
\end{center}
\caption{Squaring Optimization Diagram}
\end{figure}

Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious.  For the purposes of this discussion let $x$
represent the number being squared.  The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.  

The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product.  Every non-square term of a column will
appear twice hence the name ``double product''.  Every odd column is made up entirely of double products.  In fact every column is made up of double 
products and at most one square (\textit{see the exercise section}).  

The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row, 
occurs at column $2k + 1$.  For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero. 
Column two of row one is a square and column three is the first unique column.

\subsection{The Baseline Squaring Algorithm}
The baseline squaring algorithm is meant to be a catch-all squaring algorithm.  It will handle any of the input sizes that the faster routines
will not handle.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_sqr}. \\
\textbf{Input}.   mp\_int $a$ \\
\textbf{Output}.  $b \leftarrow a^2$ \\
\hline \\
1.  Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits.  (\textit{mp\_init\_size}) \\
2.  If step 1 failed return(\textit{MP\_MEM}) \\
3.  $t.used \leftarrow 2 \cdot a.used + 1$ \\
4.  For $ix$ from 0 to $a.used - 1$ do \\
\hspace{3mm}Calculate the square. \\
\hspace{3mm}4.1  $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
\hspace{3mm}4.2  $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}Calculate the double products after the square. \\
\hspace{3mm}4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
\hspace{3mm}4.4  For $iy$ from $ix + 1$ to $a.used - 1$ do \\
\hspace{6mm}4.4.1  $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
\hspace{6mm}4.4.2  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}4.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
\hspace{3mm}Set the last carry. \\
\hspace{3mm}4.5  While $u > 0$ do \\
\hspace{6mm}4.5.1  $iy \leftarrow iy + 1$ \\
\hspace{6mm}4.5.2  $\hat r \leftarrow t_{ix + iy} + u$ \\
\hspace{6mm}4.5.3  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}4.5.4  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
5.  Clamp excess digits of $t$.  (\textit{mp\_clamp}) \\
6.  Exchange $b$ and $t$. \\
7.  Clear $t$ (\textit{mp\_clear}) \\
8.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm s\_mp\_sqr}
\end{figure}

\textbf{Algorithm s\_mp\_sqr.}
This algorithm computes the square of an input using the three observations on squaring.  It is based fairly faithfully on  algorithm 14.16 of HAC
\cite[pp.596-597]{HAC}.  Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring.  This allows the 
destination mp\_int to be the same as the source mp\_int.

The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
the inner loop computes the columns of the partial result.  Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
the carry and compute the double products.  

The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
very algorithm.  The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
when it is multiplied by two, it can be properly represented by a mp\_word.

Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial 
results calculated so far.  This involves expensive carry propagation which will be eliminated in the next algorithm.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sqr.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Inside the outer loop (line 34) the square term is calculated on line 37.  The carry (line 44) has been
extracted from the mp\_word accumulator using a right shift.  Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized 
(lines 47 and 50) to simplify the inner loop.  The doubling is performed using two
additions (line 59) since it is usually faster than shifting, if not at least as fast.  

The important observation is that the inner loop does not begin at $iy = 0$ like for multiplication.  As such the inner loops
get progressively shorter as the algorithm proceeds.  This is what leads to the savings compared to using a multiplication to
square a number. 

\subsection{Faster Squaring by the ``Comba'' Method}
A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop.  Squaring has an additional
drawback that it must double the product inside the inner loop as well.  As for multiplication, the Comba technique can be used to eliminate these
performance hazards.

The first obvious solution is to make an array of mp\_words which will hold all of the columns.  This will indeed eliminate all of the carry
propagation operations from the inner loop.  However, the inner product must still be doubled $O(n^2)$ times.  The solution stems from the simple fact
that $2a + 2b + 2c = 2(a + b + c)$.  That is the sum of all of the double products is equal to double the sum of all the products.  For example,
$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.  

However, we cannot simply double all of the columns, since the squares appear only once per row.  The most practical solution is to have two 
mp\_word arrays.  One array will hold the squares and the other array will hold the double products.  With both arrays the doubling and 
carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level.  In this case, we have an even simpler solution in mind.

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
\textbf{Input}.   mp\_int $a$ \\
\textbf{Output}.  $b \leftarrow a^2$ \\
\hline \\
Place an array of \textbf{MP\_WARRAY} mp\_digits named $W$ on the stack. \\
1.  If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits.  (\textit{mp\_grow}). \\
2.  If step 1 failed return(\textit{MP\_MEM}). \\
\\
3.  $pa \leftarrow 2 \cdot a.used$ \\
4.  $\hat W1 \leftarrow 0$ \\
5.  for $ix$ from $0$ to $pa - 1$ do \\
\hspace{3mm}5.1  $\_ \hat W \leftarrow 0$ \\
\hspace{3mm}5.2  $ty \leftarrow \mbox{MIN}(a.used - 1, ix)$ \\
\hspace{3mm}5.3  $tx \leftarrow ix - ty$ \\
\hspace{3mm}5.4  $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
\hspace{3mm}5.5  $iy \leftarrow \mbox{MIN}(iy, \lfloor \left (ty - tx + 1 \right )/2 \rfloor)$ \\
\hspace{3mm}5.6  for $iz$ from $0$ to $iz - 1$ do \\
\hspace{6mm}5.6.1  $\_ \hat W \leftarrow \_ \hat W + a_{tx + iz}a_{ty - iz}$ \\
\hspace{3mm}5.7  $\_ \hat W \leftarrow 2 \cdot \_ \hat W  + \hat W1$ \\
\hspace{3mm}5.8  if $ix$ is even then \\
\hspace{6mm}5.8.1  $\_ \hat W \leftarrow \_ \hat W + \left ( a_{\lfloor ix/2 \rfloor}\right )^2$ \\
\hspace{3mm}5.9  $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$ \\
\hspace{3mm}5.10  $\hat W1 \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
\\
6.  $oldused \leftarrow b.used$ \\
7.  $b.used \leftarrow 2 \cdot a.used$ \\
8.  for $ix$ from $0$ to $pa - 1$ do \\
\hspace{3mm}8.1  $b_{ix} \leftarrow W_{ix}$ \\
9.  for $ix$ from $pa$ to $oldused - 1$ do \\
\hspace{3mm}9.1  $b_{ix} \leftarrow 0$ \\
10.  Clamp excess digits from $b$.  (\textit{mp\_clamp}) \\
11.  Return(\textit{MP\_OKAY}). \\ 
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm fast\_s\_mp\_sqr}
\end{figure}

\textbf{Algorithm fast\_s\_mp\_sqr.}
This algorithm computes the square of an input using the Comba technique.  It is designed to be a replacement for algorithm 
s\_mp\_sqr when the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.  
This algorithm is very similar to the Comba multiplier except with a few key differences we shall make note of.

First, we have an accumulator and carry variables $\_ \hat W$ and $\hat W1$ respectively.  This is because the inner loop
products are to be doubled.  If we had added the previous carry in we would be doubling too much.  Next we perform an
addition MIN condition on $iy$ (step 5.5) to prevent overlapping digits.  For example, $a_3 \cdot a_5$ is equal
$a_5 \cdot a_3$.  Whereas in the multiplication case we would have $5 < a.used$ and $3 \ge 0$ is maintained since we double the sum
of the products just outside the inner loop we have to avoid doing this.  This is also a good thing since we perform
fewer multiplications and the routine ends up being faster.

Finally the last difference is the addition of the ``square'' term outside the inner loop (step 5.8).  We add in the square
only to even outputs and it is the square of the term at the $\lfloor ix / 2 \rfloor$ position.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_sqr.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This implementation is essentially a copy of Comba multiplication with the appropriate changes added to make it faster for 
the special case of squaring.  

\subsection{Polynomial Basis Squaring}
The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring.  The minor exception
is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$.  Instead of performing $2n + 1$
multiplications to find the $\zeta$ relations, squaring operations are performed instead.  

\subsection{Karatsuba Squaring}
Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.  
Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial.  The Karatsuba equation can be modified to square a 
number with the following equation.

\begin{equation}
h(x) = a^2x^2 + \left ((a + b)^2 - (a^2 + b^2) \right )x + b^2
\end{equation}

Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a + b)^2$.  As in 
Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of 
$O \left ( n^{lg(3)} \right )$.

If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm 
instead?  The answer to this arises from the cutoff point for squaring.  As in multiplication there exists a cutoff point, at which the 
time required for a Comba based squaring and a Karatsuba based squaring meet.  Due to the overhead inherent in the Karatsuba method, the cutoff 
point is fairly high.  For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.  

Consider squaring a 200 digit number with this technique.  It will be split into two 100 digit halves which are subsequently squared.  
The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm.  If Karatsuba multiplication
were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
\textbf{Input}.   mp\_int $a$ \\
\textbf{Output}.  $b \leftarrow a^2$ \\
\hline \\
1.  Initialize the following temporary mp\_ints:  $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
2.  If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
\\
Split the input.  e.g. $a = x1\beta^B + x0$ \\
3.  $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
5.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
\\
Calculate the three squares. \\
6.  $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
7.  $x1x1 \leftarrow x1^2$ \\
8.  $t1 \leftarrow x1 + x0$ (\textit{s\_mp\_add}) \\
9.  $t1 \leftarrow t1^2$ \\
\\
Compute the middle term. \\
10.  $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
11.  $t1 \leftarrow t1 - t2$ \\
\\
Compute final product. \\
12.  $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
13.  $x1x1 \leftarrow x1x1\beta^{2B}$ \\
14.  $t1 \leftarrow t1 + x0x0$ \\
15.  $b \leftarrow t1 + x1x1$ \\
16.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_karatsuba\_sqr}
\end{figure}

\textbf{Algorithm mp\_karatsuba\_sqr.}
This algorithm computes the square of an input $a$ using the Karatsuba technique.  This algorithm is very similar to the Karatsuba based
multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.

The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
placed just below the middle.  Step 3, 4 and 5 compute the two halves required using $B$
as the radix point.  The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.

By expanding $\left (x1 + x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $(x0 - x1)^2 - (x1^2 + x0^2)  = 2 \cdot x0 \cdot x1$.
Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
this method is faster.  Assuming no further recursions occur, the difference can be estimated with the following inequality.

Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
machine clock cycles.}. 

\begin{equation}
5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
\end{equation}

For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$.  This implies that the following inequality should hold.
\begin{center}
\begin{tabular}{rcl}
${5n \over 3} + 3n^2 + 3n$     & $<$ & ${n \over 3} + 6n^2$ \\
${5 \over 3} + 3n + 3$     & $<$ & ${1 \over 3} + 6n$ \\
${13 \over 9}$     & $<$ & $n$ \\
\end{tabular}
\end{center}

This results in a cutoff point around $n = 2$.  As a consequence it is actually faster to compute the middle term the ``long way'' on processors
where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication.  On
the Intel P4 processor this ratio is 1:29 making this method even more beneficial.  The only common exception is the ARMv4 processor which has a
ratio of 1:7.  } than simpler operations such as addition.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_sqr.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul.  It uses the same inline style to copy and 
shift the input into the two halves.  The loop from line 54 to line 70 has been modified since only one input exists.  The \textbf{used}
count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin.  At this point $x1$ and $x0$ are valid equivalents
to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.  

By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered.  On the Athlon the cutoff point
is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}).  On slower processors such as the Intel P4
it is actually below the Comba limit (\textit{at 110 digits}).

This routine uses the same error trap coding style as mp\_karatsuba\_sqr.  As the temporary variables are initialized errors are 
redirected to the error trap higher up.  If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and 
mp\_clears are executed normally.

\subsection{Toom-Cook Squaring}
The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
instead of multiplication to find the five relations.  The reader is encouraged to read the description of the latter algorithm and try to 
derive their own Toom-Cook squaring algorithm.  

\subsection{High Level Squaring}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_sqr}. \\
\textbf{Input}.   mp\_int $a$ \\
\textbf{Output}.  $b \leftarrow a^2$ \\
\hline \\
1.  If $a.used \ge TOOM\_SQR\_CUTOFF$ then  \\
\hspace{3mm}1.1  $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
2.  else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
\hspace{3mm}2.1  $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
3.  else \\
\hspace{3mm}3.1  $digs \leftarrow a.used + b.used + 1$ \\
\hspace{3mm}3.2  If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
\hspace{6mm}3.2.1  $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr.  \\
\hspace{3mm}3.3  else \\
\hspace{6mm}3.3.1  $b \leftarrow a^2$ using algorithm s\_mp\_sqr.  \\
4.  $b.sign \leftarrow MP\_ZPOS$ \\
5.  Return the result of the unsigned squaring performed. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_sqr}
\end{figure}

\textbf{Algorithm mp\_sqr.}
This algorithm computes the square of the input using one of four different algorithms.  If the input is very large and has at least
\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used.  If
neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_sqr.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\section*{Exercises}
\begin{tabular}{cl}
$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
                      & that have different number of digits in Karatsuba multiplication. \\
                      & \\
$\left [ 2 \right ] $ & In section 5.3 the fact that every column of a squaring is made up \\
                      & of double products and at most one square is stated.  Prove this statement. \\
                      & \\                      
$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
                      & \\
$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
                      & \\ 
$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
                      & required for equation $6.7$ to be true.  \\
                      & \\
$\left [ 3 \right ] $ & Implement a threaded version of Comba multiplication (and squaring) where you \\
                      & compute subsets of the columns in each thread.  Determine a cutoff point where \\
                      & it is effective and add the logic to mp\_mul() and mp\_sqr(). \\
                      &\\
$\left [ 4 \right ] $ & Same as the previous but also modify the Karatsuba and Toom-Cook.  You must \\
                      & increase the throughput of mp\_exptmod() for random odd moduli in the range \\
                      & $512 \ldots 4096$ bits significantly ($> 2x$) to complete this challenge. \\
                      & \\
\end{tabular}

\chapter{Modular Reduction}
\section{Basics of Modular Reduction}
\index{modular residue}
Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms, 
such as factoring.  Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set.  A number $a$ is said to be \textit{reduced}
modulo another number $b$ by finding the remainder of the division $a/b$.  Full integer division with remainder is a topic to be covered 
in~\ref{sec:division}.

Modular reduction is equivalent to solving for $r$ in the following equation.  $a = bq + r$ where $q = \lfloor a/b \rfloor$.  The result 
$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$.  In other vernacular $r$ is known as the 
``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
other forms of residues.  

Modular reductions are normally used to create either finite groups, rings or fields.  The most common usage for performance driven modular reductions 
is in modular exponentiation algorithms.  That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible.  This operation is used in the 
RSA and Diffie-Hellman public key algorithms, for example.  Modular multiplication and squaring also appears as a fundamental operation in 
elliptic curve cryptographic algorithms.  As will be discussed in the subsequent chapter there exist fast algorithms for computing modular 
exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications.  These algorithms will produce partial results in the 
range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms.   They have also been used to create redundancy check 
algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.  

\section{The Barrett Reduction}
The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
division.  Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to 

\begin{equation}
c = a - b \cdot \lfloor a/b \rfloor
\end{equation}

Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper 
targeted the DSP56K processor.}  intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal.  However, 
DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.  
It would take another common optimization to optimize the algorithm.

\subsection{Fixed Point Arithmetic}
The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers.  Fixed
point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were 
fairly slow if not unavailable.   The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit 
integer and a $q$-bit fraction part (\textit{where $p+q = k$}).  

In this system a $k$-bit integer $n$ would actually represent $n/2^q$.  For example, with $q = 4$ the integer $n = 37$ would actually represent the
value $2.3125$.  To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by 
moving the implied decimal point back to where it should be.  For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted 
to fixed point first by multiplying by $2^q$.  Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the 
fixed point representation of $5$.  The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.  

This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
of two fixed point numbers.  Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal.  If $2^q$ is 
equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic.  Using this fact dividing an integer 
$a$ by another integer $b$ can be achieved with the following expression.

\begin{equation}
\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
\end{equation}

The precision of the division is proportional to the value of $q$.  If the divisor $b$ is used frequently as is the case with 
modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift.  Both operations
are considerably faster than division on most processors.  

Consider dividing $19$ by $5$.  The correct result is $\lfloor 19/5 \rfloor = 3$.  With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
leads to a product of $19$ which when divided by $2^q$ produces $2$.  However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct.  The value of $2^q$ must be close to or ideally
larger than the dividend.  In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
to work correctly.  Plugging this form of divison into the original equation the following modular residue equation arises.

\begin{equation}
c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
\end{equation}

Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol.  Using the $\mu$
variable also helps re-inforce the idea that it is meant to be computed once and re-used.

\begin{equation}
c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
\end{equation}

Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one.  In the context of Barrett
reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
precision.  

Let $n$ represent the number of digits in $b$.  This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and 
another $n^2$ single precision multiplications to find the residue.  In total $3n^2$ single precision multiplications are required to 
reduce the number.  

For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$.  Consider reducing
$a = 180388626447$ modulo $b$ using the above reduction equation.  The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.

\subsection{Choosing a Radix Point}
Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications.  If that were the best
that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.  
See~\ref{sec:division} for further details.} might as well be used in its place.  The key to optimizing the reduction is to reduce the precision of
the initial multiplication that finds the quotient.  

Let $a$ represent the number of which the residue is sought.  Let $b$ represent the modulus used to find the residue.  Let $m$ represent
the number of digits in $b$.  For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if 
two $m$-digit numbers have been multiplied.  Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer.  Digits below the 
$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$.  Another way to
express this is by re-writing $a$ as two parts.  If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then 
${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$.  Since $a'$ is bound to be less than $b$ the quotient
is bound by $0 \le {a' \over b} < 1$.

Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero.  However, if the digits 
``might as well be zero'' they might as well not be there in the first place.  Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
with the irrelevant digits trimmed.  Now the modular reduction is trimmed to the almost equivalent equation

\begin{equation}
c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
\end{equation}

Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the 
exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$.  If the optimization had not been performed the divisor 
would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient 
$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two.  The original fixed point quotient can be off
by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
can be off by an additional value of one for a total of at most two.  This implies that 
$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  By first subtracting $b$ times the quotient and then conditionally subtracting 
$b$ once or twice the residue is found.

The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
precision multiplications, ignoring the subtractions required.  In total $2m^2 + m$ single precision multiplications are required to find the residue.  
This is considerably faster than the original attempt.

For example, let $\beta = 10$ represent the radix of the digits.  Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$ 
represent the value of which the residue is desired.  In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.  
With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$.  The quotient is then 
$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$.  Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$ 
is found.  

\subsection{Trimming the Quotient}
So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications.  As 
it stands now the algorithm is already fairly fast compared to a full integer division algorithm.  However, there is still room for
optimization.  

After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
half of the product.  It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision 
multiplications.  If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.  
In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.  

The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number.  Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
multiplications would be required.  Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.  

\subsection{Trimming the Residue}
After the quotient has been calculated it is used to reduce the input.  As previously noted the algorithm is not exact and it can be off by a small
multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  If $b$ is $m$ digits than the 
result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
implicitly zero.  

The next optimization arises from this very fact.  Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed.  Similarly the value of $a$ can
be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well.  A multiplication that produces 
only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.  

With both optimizations in place the algorithm is the algorithm Barrett proposed.  It requires $m^2 + 2m - 1$ single precision multiplications which
is considerably faster than the straightforward $3m^2$ method.  

\subsection{The Barrett Algorithm}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce}. \\
\textbf{Input}.   mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
\textbf{Output}.  $a \mbox{ (mod }b\mbox{)}$ \\
\hline \\
Let $m$ represent the number of digits in $b$.  \\
1.  Make a copy of $a$ and store it in $q$.  (\textit{mp\_init\_copy}) \\
2.  $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
\\
Produce the quotient. \\
3.  $q \leftarrow q \cdot \mu$  (\textit{note: only produce digits at or above $m-1$}) \\
4.  $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
\\
Subtract the multiple of modulus from the input. \\
5.  $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
6.  $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
7.  $a \leftarrow a - q$ (\textit{mp\_sub}) \\
\\
Add $\beta^{m+1}$ if a carry occured. \\
8.  If $a < 0$ then (\textit{mp\_cmp\_d}) \\
\hspace{3mm}8.1  $q \leftarrow 1$ (\textit{mp\_set}) \\
\hspace{3mm}8.2  $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
\hspace{3mm}8.3  $a \leftarrow a + q$ \\
\\
Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
9.  While $a \ge b$ do (\textit{mp\_cmp}) \\
\hspace{3mm}9.1  $c \leftarrow a - b$ \\
10.  Clear $q$. \\
11.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce}
\end{figure}

\textbf{Algorithm mp\_reduce.}
This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm.  It is loosely based on algorithm 14.42 of HAC
\cite[pp.  602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}.  The algorithm has several restrictions and assumptions which must 
be adhered to for the algorithm to work.

First the modulus $b$ is assumed to be positive and greater than one.  If the modulus were less than or equal to one than subtracting
a multiple of it would either accomplish nothing or actually enlarge the input.  The input $a$ must be in the range $0 \le a < b^2$ in order
for the quotient to have enough precision.  If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish.  The value of $\mu$ is passed as an argument to this 
algorithm and is assumed to be calculated and stored before the algorithm is used.  

Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position.  An algorithm called 
$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task.  The algorithm is based on $s\_mp\_mul\_digs$ except that
instead of stopping at a given level of precision it starts at a given level of precision.  This optimal algorithm can only be used if the number
of digits in $b$ is very much smaller than $\beta$.  

While it is known that 
$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied 
``borrow'' from the higher digits might leave a negative result.  After the multiple of the modulus has been subtracted from $a$ the residue must be 
fixed up in case it is negative.  The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.  

The while loop at step 9 will subtract $b$ until the residue is less than $b$.  If the algorithm is performed correctly this step is 
performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up.  This essentially halves
the number of single precision multiplications required.  However, the optimization is only safe if $\beta$ is much larger than the number of digits
in the modulus.  In the source code this is evaluated on lines 36 to 44 where algorithm s\_mp\_mul\_high\_digs is used when it is
safe to do so.  

\subsection{The Barrett Setup Algorithm}
In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance.  Ideally this value should be computed once and stored for
future use so that the Barrett algorithm can be used without delay.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce\_setup}. \\
\textbf{Input}.   mp\_int $a$ ($a > 1$)  \\
\textbf{Output}.  $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
\hline \\
1.  $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot  m}$ (\textit{mp\_2expt}) \\
2.  $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
3.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce\_setup}
\end{figure}

\textbf{Algorithm mp\_reduce\_setup.}
This algorithm computes the reciprocal $\mu$ required for Barrett reduction.  First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot  m}$ which
is equivalent and much faster.  The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_setup.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This simple routine calculates the reciprocal $\mu$ required by Barrett reduction.  Note the extended usage of algorithm mp\_div where the variable
which would received the remainder is passed as NULL.  As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the 
remainder to be passed as NULL meaning to ignore the value.  

\section{The Montgomery Reduction}
Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting 
form of reduction in common use.  It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a 
residue times a constant.  However, as perplexing as this may sound the algorithm is relatively simple and very efficient.  

Throughout this entire section the variable $n$ will represent the modulus used to form the residue.  As will be discussed shortly the value of
$n$ must be odd.  The variable $x$ will represent the quantity of which the residue is sought.  Similar to the Barrett algorithm the input
is restricted to $0 \le x < n^2$.  To begin the description some simple number theory facts must be established.

\textbf{Fact 1.}  Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$.  Another way
to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$.  Adding zero will not change the value of the residue.  

\textbf{Fact 2.}  If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$.  Actually
this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to 
multiplication by $k^{-1}$ modulo $n$.  

From these two simple facts the following simple algorithm can be derived.

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Montgomery Reduction}. \\
\textbf{Input}.   Integer $x$, $n$ and $k$ \\
\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
1.  for $t$ from $1$ to $k$ do \\
\hspace{3mm}1.1  If $x$ is odd then \\
\hspace{6mm}1.1.1  $x \leftarrow x + n$ \\
\hspace{3mm}1.2  $x \leftarrow x/2$ \\
2.  Return $x$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Montgomery Reduction}
\end{figure}

The algorithm reduces the input one bit at a time using the two congruencies stated previously.  Inside the loop $n$, which is odd, is
added to $x$ if $x$ is odd.  This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two.  Since
$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$.  Let $r$ represent the 
final result of the Montgomery algorithm.  If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to 
$0 \le r < \lfloor x/2^k \rfloor + n$.  As a result at most a single subtraction is required to get the residue desired.

\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|c|l|}
\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
\hline $2$ & $x/2 = 1453$ \\
\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
\hline $5$ & $x/2 = 278$ \\
\hline $6$ & $x/2 = 139$ \\
\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
\hline $8$ & $x/2 = 99$ \\
\hline $9$ & $x + n = 356$, $x/2 = 178$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Example of Montgomery Reduction (I)}
\label{fig:MONT1}
\end{figure}

Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 9$ (note $\beta^k = 512$ which is larger than $n$).  The result of 
the algorithm $r = 178$ is congruent to the value of $2^{-9} \cdot 5555 \mbox{ (mod }257\mbox{)}$.  When $r$ is multiplied by $2^9$ modulo $257$ the correct residue 
$r \equiv 158$ is produced.  

Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$.  The current algorithm requires $2k^2$ single precision shifts
and $k^2$ single precision additions.  At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.  
Fortunately there exists an alternative representation of the algorithm.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
\textbf{Input}.   Integer $x$, $n$ and $k$ ($2^k > n$) \\
\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
1.  for $t$ from $1$ to $k$ do \\
\hspace{3mm}1.1  If the $t$'th bit of $x$ is one then \\
\hspace{6mm}1.1.1  $x \leftarrow x + 2^tn$ \\
2.  Return $x/2^k$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Montgomery Reduction (modified I)}
\end{figure}

This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2.  The number of single
precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.

\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|c|l|r|}
\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
\hline -- & $5555$ & $1010110110011$ \\
\hline $1$ & $x + 2^{0}n = 5812$ &  $1011010110100$ \\
\hline $2$ & $5812$ & $1011010110100$ \\
\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
\hline $5$ & $8896$ & $10001011000000$ \\
\hline $6$ & $8896$ & $10001011000000$ \\
\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
\hline $8$ & $25344$ & $110001100000000$ \\
\hline $9$ & $x + 2^{7}n = 91136$ & $10110010000000000$ \\
\hline -- & $x/2^k = 178$ & \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Example of Montgomery Reduction (II)}
\label{fig:MONT2}
\end{figure}

Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 9$. 
With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the 
loop.  Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed.  In those iterations the $t$'th bit of $x$ is 
zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.  

\subsection{Digit Based Montgomery Reduction}
Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis.  Consider the
previous algorithm re-written to compute the Montgomery reduction in this new fashion.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
\textbf{Input}.   Integer $x$, $n$ and $k$ ($\beta^k > n$) \\
\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
1.  for $t$ from $0$ to $k - 1$ do \\
\hspace{3mm}1.1  $x \leftarrow x + \mu n \beta^t$ \\
2.  Return $x/\beta^k$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Montgomery Reduction (modified II)}
\end{figure}

The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue.  If the first digit of 
the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit.  This
problem breaks down to solving the following congruency.  

\begin{center}
\begin{tabular}{rcl}
$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
\end{tabular}
\end{center}

In each iteration of the loop on step 1 a new value of $\mu$ must be calculated.  The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used 
extensively in this algorithm and should be precomputed.  Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.  

For example, let $\beta = 10$ represent the radix.  Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$.  Let $x = 33$ 
represent the value to reduce.

\newpage\begin{figure}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
\hline --                 & $33$ & --\\
\hline $0$                 & $33 + \mu n = 50$ & $1$ \\
\hline $1$                 & $50 + \mu n \beta = 900$ & $5$ \\
\hline
\end{tabular}
\end{center}
\caption{Example of Montgomery Reduction}
\end{figure}

The final result $900$ is then divided by $\beta^k$ to produce the final result $9$.  The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$ 
which implies the result is not the modular residue of $x$ modulo $n$.  However, recall that the residue is actually multiplied by $\beta^{-k}$ in
the algorithm.  To get the true residue the value must be multiplied by $\beta^k$.  In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.  

\subsection{Baseline Montgomery Reduction}
The baseline Montgomery reduction algorithm will produce the residue for any size input.  It is designed to be a catch-all algororithm for 
Montgomery reductions.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
1.  $digs \leftarrow 2n.used + 1$ \\
2.  If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
\hspace{3mm}2.1  Use algorithm fast\_mp\_montgomery\_reduce instead. \\
\\
Setup $x$ for the reduction. \\
3.  If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
4.  $x.used \leftarrow digs$ \\
\\
Eliminate the lower $k$ digits. \\
5.  For $ix$ from $0$ to $k - 1$ do \\
\hspace{3mm}5.1  $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}5.2  $u \leftarrow 0$ \\
\hspace{3mm}5.3  For $iy$ from $0$ to $k - 1$ do \\
\hspace{6mm}5.3.1  $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
\hspace{6mm}5.3.2  $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{6mm}5.3.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
\hspace{3mm}5.4  While $u > 0$ do \\
\hspace{6mm}5.4.1  $iy \leftarrow iy + 1$ \\
\hspace{6mm}5.4.2  $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
\hspace{6mm}5.4.3  $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
\hspace{6mm}5.4.4  $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
\\
Divide by $\beta^k$ and fix up as required. \\
6.  $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
7.  If $x \ge n$ then \\
\hspace{3mm}7.1  $x \leftarrow x - n$ \\
8.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_montgomery\_reduce}
\end{figure}

\textbf{Algorithm mp\_montgomery\_reduce.}
This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm.  The algorithm is loosely based
on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop.  The
restrictions on this algorithm are fairly easy to adapt to.  First $0 \le x < n^2$ bounds the input to numbers in the same range as 
for the Barrett algorithm.  Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$.  $\rho$ must be calculated in
advance of this algorithm.  Finally the variable $k$ is fixed and a pseudonym for $n.used$.  

Step 2 decides whether a faster Montgomery algorithm can be used.  It is based on the Comba technique meaning that there are limits on
the size of the input.  This algorithm is discussed in sub-section 6.3.3.

Step 5 is the main reduction loop of the algorithm.  The value of $\mu$ is calculated once per iteration in the outer loop.  The inner loop
calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits.  Both the addition and
multiplication are performed in the same loop to save time and memory.  Step 5.4 will handle any additional carries that escape the inner loop.

Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications 
in the inner loop.  In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
multiplications.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_reduce.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This is the baseline implementation of the Montgomery reduction algorithm.  Lines 31 to 36 determine if the Comba based
routine can be used instead.  Line 47 computes the value of $\mu$ for that particular iteration of the outer loop.  

The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop.  The alias $tmpx$ refers to the $ix$'th digit of $x$ and
the alias $tmpn$ refers to the modulus $n$.  

\subsection{Faster ``Comba'' Montgomery Reduction}

The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
nature of the inner loop.  The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
technique.  The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
a $k \times 1$ product $k$ times. 

The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$.  This means the 
carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit.  The solution as it turns out is very simple.  
Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.  

With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
the speed of the algorithm.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
\hline \\
Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
1.  if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
Copy the digits of $x$ into the array $\hat W$ \\
2.  For $ix$ from $0$ to $x.used - 1$ do \\
\hspace{3mm}2.1  $\hat W_{ix} \leftarrow x_{ix}$ \\
3.  For $ix$ from $x.used$ to $2n.used - 1$ do \\
\hspace{3mm}3.1  $\hat W_{ix} \leftarrow 0$ \\
Elimiate the lower $k$ digits. \\
4.  for $ix$ from $0$ to $n.used - 1$ do \\
\hspace{3mm}4.1  $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}4.2  For $iy$ from $0$ to $n.used - 1$ do \\
\hspace{6mm}4.2.1  $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
\hspace{3mm}4.3  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
Propagate carries upwards. \\
5.  for $ix$ from $n.used$ to $2n.used + 1$ do \\
\hspace{3mm}5.1  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
Shift right and reduce modulo $\beta$ simultaneously. \\
6.  for $ix$ from $0$ to $n.used + 1$ do \\
\hspace{3mm}6.1  $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
Zero excess digits and fixup $x$. \\
7.  if $x.used > n.used + 1$ then do \\
\hspace{3mm}7.1  for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
\hspace{6mm}7.1.1  $x_{ix} \leftarrow 0$ \\
8.  $x.used \leftarrow n.used + 1$ \\
9.  Clamp excessive digits of $x$. \\
10.  If $x \ge n$ then \\
\hspace{3mm}10.1  $x \leftarrow x - n$ \\
11.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm fast\_mp\_montgomery\_reduce}
\end{figure}

\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique.  It is on most computer platforms significantly
faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}).  The algorithm has the same restrictions
on the input as the baseline reduction algorithm.  An additional two restrictions are imposed on this algorithm.  The number of digits $k$ in the 
the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$.   When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
a modulus of at most $3,556$ bits in length.  

As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product.  It is initially filled with the
contents of $x$ with the excess digits zeroed.  The reduction loop is very similar the to the baseline loop at heart.  The multiplication on step
4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$.  Some multipliers such
as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce.  By performing
a single precision multiplication instead half the amount of time is spent.

Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work.  That is what step
4.3 will do.  In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards.  Note
how the upper bits of those same words are not reduced modulo $\beta$.  This is because those values will be discarded shortly and there is no
point.

Step 5 will propagate the remainder of the carries upwards.  On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
stored in the destination $x$.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_fast\_mp\_montgomery\_reduce.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The $\hat W$ array is first filled with digits of $x$ on line 48 then the rest of the digits are zeroed on line 55.  Both loops share
the same alias variables to make the code easier to read.  

The value of $\mu$ is calculated in an interesting fashion.  First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit.  This
forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision.   Line 110 fixes the carry 
for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.

The for loop on line 109 propagates the rest of the carries upwards through the columns.  The for loop on line 126 reduces the columns
modulo $\beta$ and shifts them $k$ places at the same time.  The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.  

\subsection{Montgomery Setup}
To calculate the variable $\rho$ a relatively simple algorithm will be required.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
\textbf{Input}.   mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
\textbf{Output}.  $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
\hline \\
1.  $b \leftarrow n_0$ \\
2.  If $b$ is even return(\textit{MP\_VAL}) \\
3.  $x \leftarrow (((b + 2) \mbox{ AND } 4) << 1) + b$ \\
4.  for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
\hspace{3mm}4.1  $x \leftarrow x \cdot (2 - bx)$ \\
5.  $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
6.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_montgomery\_setup} 
\end{figure}

\textbf{Algorithm mp\_montgomery\_setup.}
This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms.  It uses a very interesting trick 
to calculate $1/n_0$ when $\beta$ is a power of two.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_setup.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This source code computes the value of $\rho$ required to perform Montgomery reduction.  It has been modified to avoid performing excess
multiplications when $\beta$ is not the default 28-bits.  

\section{The Diminished Radix Algorithm}
The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
or Montgomery methods for certain forms of moduli.  The technique is based on the following simple congruence.

\begin{equation}
(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
\end{equation}

This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive.  It used the fact that if $n = 2^{31}$ and $k=1$ that 
then a x86 multiplier could produce the 62-bit product and use  the ``shrd'' instruction to perform a double-precision right shift.  The proof
of the above equation is very simple.  First write $x$ in the product form.

\begin{equation}
x = qn + r
\end{equation}

Now reduce both sides modulo $(n - k)$.

\begin{equation}
x \equiv qk + r  \mbox{ (mod }(n-k)\mbox{)}
\end{equation}

The variable $n$ reduces modulo $n - k$ to $k$.  By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$ 
into the equation the original congruence is reproduced, thus concluding the proof.  The following algorithm is based on this observation.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Diminished Radix Reduction}. \\
\textbf{Input}.   Integer $x$, $n$, $k$ \\
\textbf{Output}.  $x \mbox{ mod } (n - k)$ \\
\hline \\
1.  $q \leftarrow \lfloor x / n \rfloor$ \\
2.  $q \leftarrow k \cdot q$ \\
3.  $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
4.  $x \leftarrow x + q$ \\
5.  If $x \ge (n - k)$ then \\
\hspace{3mm}5.1  $x \leftarrow x - (n - k)$ \\
\hspace{3mm}5.2  Goto step 1. \\
6.  Return $x$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Diminished Radix Reduction}
\label{fig:DR}
\end{figure}

This algorithm will reduce $x$ modulo $n - k$ and return the residue.  If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
once or twice and occasionally three times.  For simplicity sake the value of $x$ is bounded by the following simple polynomial.

\begin{equation} 
0 \le x < n^2 + k^2 - 2nk
\end{equation}

The true bound is  $0 \le x < (n - k - 1)^2$ but this has quite a few more terms.  The value of $q$ after step 1 is bounded by the following.

\begin{equation}
q < n - 2k - k^2/n
\end{equation}

Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero.  The value of $x$ after step 3 is bounded trivially as
$0 \le x < n$.  By step four the sum $x + q$ is bounded by 

\begin{equation}
0 \le q + x < (k + 1)n - 2k^2 - 1
\end{equation}

With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3.  After the second pass it is highly unlike that the
sum in step 4 will exceed $n - k$.  In practice fewer than three passes of the algorithm are required to reduce virtually every input in the 
range $0 \le x < (n - k - 1)^2$.  

\begin{figure}
\begin{small}
\begin{center}
\begin{tabular}{|l|}
\hline
$x = 123456789, n = 256, k = 3$ \\
\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
$q \leftarrow q*k = 1446759$ \\
$x \leftarrow x \mbox{ mod } n = 21$ \\
$x \leftarrow x + q = 1446780$ \\
$x \leftarrow x - (n - k) = 1446527$ \\
\hline 
$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
$q \leftarrow q*k = 16950$ \\
$x \leftarrow x \mbox{ mod } n = 127$ \\
$x \leftarrow x + q = 17077$ \\
$x \leftarrow x - (n - k) = 16824$ \\
\hline 
$q \leftarrow \lfloor x/n \rfloor = 65$ \\
$q \leftarrow q*k = 195$ \\
$x \leftarrow x \mbox{ mod } n = 184$ \\
$x \leftarrow x + q = 379$ \\
$x \leftarrow x - (n - k) = 126$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Example Diminished Radix Reduction}
\label{fig:EXDR}
\end{figure}

Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$.  Note that even while $x$
is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast.  In this case only
three passes were required to find the residue $x \equiv 126$.


\subsection{Choice of Moduli}
On the surface this algorithm looks like a very expensive algorithm.  It requires a couple of subtractions followed by multiplication and other
modular reductions.  The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.

Division in general is a very expensive operation to perform.  The one exception is when the division is by a power of the radix of representation used.  
Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right.  Similarly division 
by two (\textit{or powers of two}) is very simple for binary computers to perform.  It would therefore seem logical to choose $n$ of the form $2^p$ 
which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.  

However, there is one operation related to division of power of twos that is even faster than this.  If $n = \beta^p$ then the division may be 
performed by moving whole digits to the right $p$ places.  In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.  
Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.  

Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
modulus'' will refer to a modulus of the form $2^p - k$.  The word ``restricted'' in this case refers to the fact that it is based on the 
$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.  

\subsection{Choice of $k$}
Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
in step 2 is the most expensive operation.  Fortunately the choice of $k$ is not terribly limited.  For all intents and purposes it might
as well be a single digit.  The smaller the value of $k$ is the faster the algorithm will be.  

\subsection{Restricted Diminished Radix Reduction}
The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$.  This algorithm can reduce 
an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}.  The implementation
of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition 
of $x$ and $q$.  The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular 
exponentiations are performed.

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_dr\_reduce}. \\
\textbf{Input}.   mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
\textbf{Output}.  $x \mbox{ mod } n$ \\
\hline \\
1.  $m \leftarrow n.used$ \\
2.  If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
3.  $\mu \leftarrow 0$ \\
4.  for $i$ from $0$ to $m - 1$ do \\
\hspace{3mm}4.1  $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
\hspace{3mm}4.2  $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}4.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
5.  $x_{m} \leftarrow \mu$ \\
6.  for $i$ from $m + 1$ to $x.used - 1$ do \\
\hspace{3mm}6.1  $x_{i} \leftarrow 0$ \\
7.  Clamp excess digits of $x$. \\
8.  If $x \ge n$ then \\
\hspace{3mm}8.1  $x \leftarrow x - n$ \\
\hspace{3mm}8.2  Goto step 3. \\
9.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_dr\_reduce}
\end{figure}

\textbf{Algorithm mp\_dr\_reduce.}
This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$.  It has similar restrictions to that of the Barrett reduction
with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.  

This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization.  The division by $\beta^m$, multiplication by $k$
and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4.  The division by $\beta^m$ is emulated by accessing
the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position.  After the loop the $m$'th
digit is set to the carry and the upper digits are zeroed.  Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to 
$x$ before the addition of the multiple of the upper half.  

At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required.  First $n$ is subtracted from $x$ and then the algorithm resumes
at step 3.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_reduce.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$.  The label on line 52 is where
the algorithm will resume if further reduction passes are required.  In theory it could be placed at the top of the function however, the size of
the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.  

The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits.  By reading digits from $x$ offset by $m$ digits
a division by $\beta^m$ can be simulated virtually for free.  The loop on line 64 performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
in this algorithm.

By line 67 the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed.  Similarly by line 74 the 
same pointer will point to the $m+1$'th digit where the zeroes will be placed.  

Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.  
With the same logic at line 81 the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
as well.  Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
does not need to be checked.

\subsubsection{Setup}
To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required.  This algorithm is not really complicated but provided for
completeness.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_dr\_setup}. \\
\textbf{Input}.   mp\_int $n$ \\
\textbf{Output}.  $k = \beta - n_0$ \\
\hline \\
1.  $k \leftarrow \beta - n_0$ \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_dr\_setup}
\end{figure}

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_setup.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\subsubsection{Modulus Detection}
Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus.  An integer is said to be
of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
\textbf{Input}.   mp\_int $n$ \\
\textbf{Output}.  $1$ if $n$ is in D.R form, $0$ otherwise \\
\hline
1.  If $n.used < 2$ then return($0$). \\
2.  for $ix$ from $1$ to $n.used - 1$ do \\
\hspace{3mm}2.1  If $n_{ix} \ne \beta - 1$ return($0$). \\
3.  Return($1$). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_dr\_is\_modulus}
\end{figure}

\textbf{Algorithm mp\_dr\_is\_modulus.}
This algorithm determines if a value is in Diminished Radix form.  Step 1 rejects obvious cases where fewer than two digits are
in the mp\_int.  Step 2 tests all but the first digit to see if they are equal to $\beta - 1$.  If the algorithm manages to get to
step 3 then $n$ must be of Diminished Radix form.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_is\_modulus.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\subsection{Unrestricted Diminished Radix Reduction}
The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$.  This algorithm
is a straightforward adaptation of algorithm~\ref{fig:DR}.

In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead.  However, this new
algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce\_2k}. \\
\textbf{Input}.   mp\_int $a$ and $n$.  mp\_digit $k$  \\
\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
\textbf{Output}.  $a \mbox{ (mod }n\mbox{)}$ \\
\hline
1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
2.  While $a \ge n$ do \\
\hspace{3mm}2.1  $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
\hspace{3mm}2.2  $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
\hspace{3mm}2.3  $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
\hspace{3mm}2.4  $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.5  If $a \ge n$ then do \\
\hspace{6mm}2.5.1  $a \leftarrow a - n$ \\
3.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce\_2k}
\end{figure}

\textbf{Algorithm mp\_reduce\_2k.}
This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$.  Division by $2^p$ is emulated with a right
shift which makes the algorithm fairly inexpensive to use.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$.  The call to mp\_div\_2d
on line 31 calculates both the quotient $q$ and the remainder $a$ required.  By doing both in a single function call the code size
is kept fairly small.  The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
any multiplications.  

The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are 
positive.  By using the unsigned versions the overhead is kept to a minimum.  

\subsubsection{Unrestricted Setup}
To setup this reduction algorithm the value of $k = 2^p - n$ is required.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
\textbf{Input}.   mp\_int $n$   \\
\textbf{Output}.  $k = 2^p - n$ \\
\hline
1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
2.  $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
3.  $x \leftarrow x - n$ (\textit{mp\_sub}) \\
4.  $k \leftarrow x_0$ \\
5.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce\_2k\_setup}
\end{figure}

\textbf{Algorithm mp\_reduce\_2k\_setup.}
This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k.  By making a temporary variable $x$ equal to $2^p$ a subtraction
is sufficient to solve for $k$.  Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k\_setup.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\subsubsection{Unrestricted Detection}
An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.

\begin{enumerate}
\item  The number has only one digit.
\item  The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
\end{enumerate}

If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$.   If the input is only
one digit than it will always be of the correct form.  Otherwise all of the bits above the first digit must be one.  This arises from the fact
that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
significant bit.  The resulting sum will be a power of two.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
\textbf{Input}.   mp\_int $n$   \\
\textbf{Output}.  $1$ if of proper form, $0$ otherwise \\
\hline
1.  If $n.used = 0$ then return($0$). \\
2.  If $n.used = 1$ then return($1$). \\
3.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
4.  for $x$ from $lg(\beta)$ to $p$ do \\
\hspace{3mm}4.1  If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
5.  Return($1$). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_reduce\_is\_2k}
\end{figure}

\textbf{Algorithm mp\_reduce\_is\_2k.}
This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_is\_2k.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}



\section{Algorithm Comparison}
So far three very different algorithms for modular reduction have been discussed.  Each of the algorithms have their own strengths and weaknesses
that makes having such a selection very useful.  The following table sumarizes the three algorithms along with comparisons of work factors.  Since
all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.  

\begin{center}
\begin{small}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
\hline Barrett    & $m^2 + 2m - 1$ & None              & $79$ & $1087$ & $4223$ \\
\hline Montgomery & $m^2 + m$      & $n$ must be odd   & $72$ & $1056$ & $4160$ \\
\hline D.R.       & $2m$           & $n = \beta^m - k$ & $16$ & $64$   & $128$  \\
\hline
\end{tabular}
\end{small}
\end{center}

In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete.  However, in practice since Montgomery
reduction can be written as a single function with the Comba technique it is much faster.  Barrett reduction suffers from the overhead of
calling the half precision multipliers, addition and division by $\beta$ algorithms.

For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice.  The one set of algorithms where Diminished Radix reduction truly
shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}.  In these algorithms
primes of the form $\beta^m - k$ can be found and shared amongst users.  These primes will allow the Diminished Radix algorithm to be used in
modular exponentiation to greatly speed up the operation.



\section*{Exercises}
\begin{tabular}{cl}
$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
                     & calculates the correct value of $\rho$. \\
                     & \\
$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly.  \\
                     & \\
$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
                     & (\textit{figure~\ref{fig:DR}}) terminates.  Also prove the probability that it will \\
                     & terminate within $1 \le k \le 10$ iterations. \\
                     & \\
\end{tabular}                     


\chapter{Exponentiation}
Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$.  A variant of exponentiation, computed
in a finite field or ring, is called modular exponentiation.  This latter style of operation is typically used in public key 
cryptosystems such as RSA and Diffie-Hellman.  The ability to quickly compute modular exponentiations is of great benefit to any
such cryptosystem and many methods have been sought to speed it up.

\section{Exponentiation Basics}
A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired.  However, as $b$ grows in size
the number of multiplications becomes prohibitive.  Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
with a $1024$-bit key.  Such a calculation could never be completed as it would take simply far too long.

Fortunately there is a very simple algorithm based on the laws of exponents.  Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
are two trivial relationships between the base and the exponent.  Let $b_i$ represent the $i$'th bit of $b$ starting from the least 
significant bit.  If $b$ is a $k$-bit integer than the following equation is true.

\begin{equation}
a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
\end{equation}

By taking the base $a$ logarithm of both sides of the equation the following equation is the result.

\begin{equation}
b = \sum_{i=0}^{k-1}2^i \cdot b_i
\end{equation}

The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
$a^{2^{i+1}}$.  This observation forms the basis of essentially all fast exponentiation algorithms.  It requires $k$ squarings and on average
$k \over 2$ multiplications to compute the result.  This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.

While this current method is a considerable speed up there are further improvements to be made.  For example, the $a^{2^i}$ term does not need to 
be computed in an auxilary variable.  Consider the following equivalent algorithm.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Left to Right Exponentiation}. \\
\textbf{Input}.   Integer $a$, $b$ and $k$ \\
\textbf{Output}.  $c = a^b$ \\
\hline \\
1.  $c \leftarrow 1$ \\
2.  for $i$ from $k - 1$ to $0$ do \\
\hspace{3mm}2.1  $c \leftarrow c^2$ \\
\hspace{3mm}2.2  $c \leftarrow c \cdot a^{b_i}$ \\
3.  Return $c$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Left to Right Exponentiation}
\label{fig:LTOR}
\end{figure}

This algorithm starts from the most significant bit and works towards the least significant bit.  When the $i$'th bit of $b$ is set $a$ is
multiplied against the current product.  In each iteration the product is squared which doubles the exponent of the individual terms of the
product.  

For example, let $b = 101100_2 \equiv 44_{10}$.  The following chart demonstrates the actions of the algorithm.

\newpage\begin{figure}
\begin{center}
\begin{tabular}{|c|c|}
\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
\hline - & $1$ \\
\hline $5$ & $a$ \\
\hline $4$ & $a^2$ \\
\hline $3$ & $a^4 \cdot a$ \\
\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
\hline
\end{tabular}
\end{center}
\caption{Example of Left to Right Exponentiation}
\end{figure}

When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation.  This particular algorithm is 
called ``Left to Right'' because it reads the exponent in that order.  All of the exponentiation algorithms that will be presented are of this nature.  

\subsection{Single Digit Exponentiation}
The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit.  It is intended 
to be used when a small power of an input is required (\textit{e.g. $a^5$}).  It is faster than simply multiplying $b - 1$ times for all values of 
$b$ that are greater than three.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_expt\_d}. \\
\textbf{Input}.   mp\_int $a$ and mp\_digit $b$ \\
\textbf{Output}.  $c = a^b$ \\
\hline \\
1.  $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
2.  $c \leftarrow 1$ (\textit{mp\_set}) \\
3.  for $x$ from 1 to $lg(\beta)$ do \\
\hspace{3mm}3.1  $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
\hspace{3mm}3.2  If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
\hspace{6mm}3.2.1  $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
\hspace{3mm}3.3  $b \leftarrow b << 1$ \\
4.  Clear $g$. \\
5.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_expt\_d}
\end{figure}

\textbf{Algorithm mp\_expt\_d.}
This algorithm computes the value of $a$ raised to the power of a single digit $b$.  It uses the left to right exponentiation algorithm to
quickly compute the exponentiation.  It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the 
exponent is a fixed width.  

A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$.  The result is set to the initial value of 
$1$ in the subsequent step.

Inside the loop the exponent is read from the most significant bit first down to the least significant bit.  First $c$ is invariably squared
on step 3.1.  In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$.  The value
of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit.  In effect each
iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_expt\_d.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Line 29 sets the initial value of the result to $1$.  Next the loop on line 31 steps through each bit of the exponent starting from
the most significant down towards the least significant. The invariant squaring operation placed on line 33 is performed first.  After 
the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set.  The shift on line
47 moves all of the bits of the exponent upwards towards the most significant location.  

\section{$k$-ary Exponentiation}
When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
slower than squaring.  Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$.  Suppose instead it referred to
the $i$'th $k$-bit digit of the exponent of $b$.  For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
computes the same exponentiation.  A group of $k$ bits from the exponent is called a \textit{window}.  That is it is a small window on only a
portion of the entire exponent.  Consider the following modification to the basic left to right exponentiation algorithm.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
\textbf{Output}.  $c = a^b$ \\
\hline \\
1.  $c \leftarrow 1$ \\
2.  for $i$ from $t - 1$ to $0$ do \\
\hspace{3mm}2.1  $c \leftarrow c^{2^k} $ \\
\hspace{3mm}2.2  Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
\hspace{3mm}2.3  $c \leftarrow c \cdot a^g$ \\
3.  Return $c$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{$k$-ary Exponentiation}
\label{fig:KARY}
\end{figure}

The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times.  If the values of $a^g$ for $0 < g < 2^k$ have been
precomputed this algorithm requires only $t$ multiplications and $tk$ squarings.  The table can be generated with $2^{k - 1} - 1$ squarings and
$2^{k - 1} + 1$ multiplications.  This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.  
However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.

Suppose $k = 4$ and $t = 100$.  This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation.  The
original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value.  The total number of squarings
has increased slightly but the number of multiplications has nearly halved.

\subsection{Optimal Values of $k$}
An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$.  The simplest
approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result.  Table~\ref{fig:OPTK} lists optimal values of $k$
for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.  

\begin{figure}[here]
\begin{center}
\begin{small}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
\hline $16$ & $2$ & $27$ & $24$ \\
\hline $32$ & $3$ & $49$ & $48$ \\
\hline $64$ & $3$ & $92$ & $96$ \\
\hline $128$ & $4$ & $175$ & $192$ \\
\hline $256$ & $4$ & $335$ & $384$ \\
\hline $512$ & $5$ & $645$ & $768$ \\
\hline $1024$ & $6$ & $1257$ & $1536$ \\
\hline $2048$ & $6$ & $2452$ & $3072$ \\
\hline $4096$ & $7$ & $4808$ & $6144$ \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
\label{fig:OPTK}
\end{figure}

\subsection{Sliding-Window Exponentiation}
A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$.  Essentially
this is a table for all values of $g$ where the most significant bit of $g$ is a one.  However, in order for this to be allowed in the 
algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.  

Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm~\ref{fig:KARY}.  

\begin{figure}[here]
\begin{center}
\begin{small}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
\hline $16$ & $3$ & $24$ & $27$ \\
\hline $32$ & $3$ & $45$ & $49$ \\
\hline $64$ & $4$ & $87$ & $92$ \\
\hline $128$ & $4$ & $167$ & $175$ \\
\hline $256$ & $5$ & $322$ & $335$ \\
\hline $512$ & $6$ & $628$ & $645$ \\
\hline $1024$ & $6$ & $1225$ & $1257$ \\
\hline $2048$ & $7$ & $2403$ & $2452$ \\
\hline $4096$ & $8$ & $4735$ & $4808$ \\
\hline
\end{tabular}
\end{small}
\end{center}
\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
\label{fig:OPTK2}
\end{figure}

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
\textbf{Output}.  $c = a^b$ \\
\hline \\
1.  $c \leftarrow 1$ \\
2.  for $i$ from $t - 1$ to $0$ do \\
\hspace{3mm}2.1  If the $i$'th bit of $b$ is a zero then \\
\hspace{6mm}2.1.1   $c \leftarrow c^2$ \\
\hspace{3mm}2.2  else do \\
\hspace{6mm}2.2.1  $c \leftarrow c^{2^k}$ \\
\hspace{6mm}2.2.2  Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
\hspace{6mm}2.2.3  $c \leftarrow c \cdot a^g$ \\
\hspace{6mm}2.2.4  $i \leftarrow i - k$ \\
3.  Return $c$. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Sliding Window $k$-ary Exponentiation}
\end{figure}

Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent.  While this
algorithm requires the same number of squarings it can potentially have fewer multiplications.  The pre-computed table $a^g$ is also half
the size as the previous table.  

Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms.  The first algorithm will divide the exponent up as 
the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$.  The second algorithm will break the 
exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$.  The single digit $0$ in the second representation are where
a single squaring took place instead of a squaring and multiplication.  In total the first method requires $10$ multiplications and $18$ 
squarings.  The second method requires $8$ multiplications and $18$ squarings.  

In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.  

\section{Modular Exponentiation}

Modular exponentiation is essentially computing the power of a base within a finite field or ring.  For example, computing 
$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation.  Instead of first computing $a^b$ and then reducing it 
modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.  

This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
one of the algorithms presented in chapter six.  

Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first.  This algorithm
will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}).  If no inverse exists the algorithm
terminates with an error.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_exptmod}. \\
\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
\hline \\
1.  If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
2.  If $b.sign = MP\_NEG$ then \\
\hspace{3mm}2.1  $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
\hspace{3mm}2.2  $x' \leftarrow \vert x \vert$ \\
\hspace{3mm}2.3  Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
3.  if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
\hspace{3mm}3.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
4.  else \\
\hspace{3mm}4.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_exptmod}
\end{figure}

\textbf{Algorithm mp\_exptmod.}
The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod.  It is a sliding window $k$-ary algorithm 
which uses Barrett reduction to reduce the product modulo $p$.  The second algorithm mp\_exptmod\_fast performs the same operation 
except it uses either Montgomery or Diminished Radix reduction.  The two latter reduction algorithms are clumped in the same exponentiation
algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_exptmod.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

In order to keep the algorithms in a known state the first step on line 29 is to reject any negative modulus as input.  If the exponent is
negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$.  The temporary variable $tmpG$ is assigned
the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$.  The algorithm will recuse with these new values with a positive
exponent.

If the exponent is positive the algorithm resumes the exponentiation.  Line 77 determines if the modulus is of the restricted Diminished Radix 
form.  If it is not line 70 attempts to determine if it is of a unrestricted Diminished Radix form.  The integer $dr$ will take on one
of three values.

\begin{enumerate}
\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
\end{enumerate}

Line 69 determines if the fast modular exponentiation algorithm can be used.  It is allowed if $dr \ne 0$ or if the modulus is odd.  Otherwise,
the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.  

\subsection{Barrett Modular Exponentiation}

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_exptmod}. \\
\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
\hline \\
1.  $k \leftarrow lg(x)$ \\
2.  $winsize \leftarrow  \left \lbrace \begin{array}{ll}
                              2 &  \mbox{if }k \le 7 \\
                              3 &  \mbox{if }7 < k \le 36 \\
                              4 &  \mbox{if }36 < k \le 140 \\
                              5 &  \mbox{if }140 < k \le 450 \\
                              6 &  \mbox{if }450 < k \le 1303 \\
                              7 &  \mbox{if }1303 < k \le 3529 \\
                              8 &  \mbox{if }3529 < k \\
                              \end{array} \right .$ \\
3.  Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
4.  Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
5.  $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
\\
Setup the table of small powers of $g$.  First find $g^{2^{winsize}}$ and then all multiples of it. \\
6.  $k \leftarrow 2^{winsize - 1}$ \\
7.  $M_{k} \leftarrow M_1$ \\
8.  for $ix$ from 0 to $winsize - 2$ do \\
\hspace{3mm}8.1  $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr})  \\
\hspace{3mm}8.2  $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
9.  for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
\hspace{3mm}9.1  $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
\hspace{3mm}9.2  $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
10.  $res \leftarrow 1$ \\
\\
Start Sliding Window. \\
11.  $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
12.  Loop \\
\hspace{3mm}12.1  $bitcnt \leftarrow bitcnt - 1$ \\
\hspace{3mm}12.2  If $bitcnt = 0$ then do \\
\hspace{6mm}12.2.1  If $digidx = -1$ goto step 13. \\
\hspace{6mm}12.2.2  $buf \leftarrow x_{digidx}$ \\
\hspace{6mm}12.2.3  $digidx \leftarrow digidx - 1$ \\
\hspace{6mm}12.2.4  $bitcnt \leftarrow lg(\beta)$ \\
Continued on next page. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm s\_mp\_exptmod}
\end{figure}

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
\hline \\
\hspace{3mm}12.3  $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
\hspace{3mm}12.4  $buf \leftarrow buf << 1$ \\
\hspace{3mm}12.5  if $mode = 0$ and $y = 0$ then goto step 12. \\
\hspace{3mm}12.6  if $mode = 1$ and $y = 0$ then do \\
\hspace{6mm}12.6.1  $res \leftarrow res^2$ \\
\hspace{6mm}12.6.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
\hspace{6mm}12.6.3  Goto step 12. \\
\hspace{3mm}12.7  $bitcpy \leftarrow bitcpy + 1$ \\
\hspace{3mm}12.8  $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
\hspace{3mm}12.9  $mode \leftarrow 2$ \\
\hspace{3mm}12.10  If $bitcpy = winsize$ then do \\
\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
\hspace{6mm}12.10.1  for $ix$ from $0$ to $winsize -1$ do \\
\hspace{9mm}12.10.1.1  $res \leftarrow res^2$ \\
\hspace{9mm}12.10.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
\hspace{6mm}12.10.2  $res \leftarrow res \cdot M_{bitbuf}$ \\
\hspace{6mm}12.10.3  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
\hspace{6mm}Reset the window. \\
\hspace{6mm}12.10.4  $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
\\
No more windows left.  Check for residual bits of exponent. \\
13.  If $mode = 2$ and $bitcpy > 0$ then do \\
\hspace{3mm}13.1  for $ix$ form $0$ to $bitcpy - 1$ do \\
\hspace{6mm}13.1.1  $res \leftarrow res^2$ \\
\hspace{6mm}13.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
\hspace{6mm}13.1.3  $bitbuf \leftarrow bitbuf << 1$ \\
\hspace{6mm}13.1.4  If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
\hspace{9mm}13.1.4.1  $res \leftarrow res \cdot M_{1}$ \\
\hspace{9mm}13.1.4.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
14.  $y \leftarrow res$ \\
15.  Clear $res$, $mu$ and the $M$ array. \\
16.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm s\_mp\_exptmod (continued)}
\end{figure}

\textbf{Algorithm s\_mp\_exptmod.}
This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$.  It takes advantage of the Barrett reduction
algorithm to keep the product small throughout the algorithm.

The first two steps determine the optimal window size based on the number of bits in the exponent.  The larger the exponent the 
larger the window size becomes.  After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated.  This
table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.  

After the table is allocated the first power of $g$ is found.  Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
the rest of the algorithm more efficient.  The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
times.  The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.

Now that the table is available the sliding window may begin.  The following list describes the functions of all the variables in the window.
\begin{enumerate}
\item The variable $mode$ dictates how the bits of the exponent are interpreted.  
\begin{enumerate}
   \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet.  For example, if the exponent were simply 
         $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit.  In this case bits are ignored until a non-zero bit is found.  
   \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet.  In this mode leading $0$ bits 
         are read and a single squaring is performed.  If a non-zero bit is read a new window is created.  
   \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
         downwards.
\end{enumerate}
\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read.  When it reaches zero a new digit
      is fetched from the exponent.
\item The variable $buf$ holds the currently read digit of the exponent. 
\item The variable $digidx$ is an index into the exponents digits.  It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
\item The variable $bitcpy$ indicates how many bits are in the currently formed window.  When it reaches $winsize$ the window is flushed and
      the appropriate operations performed.
\item The variable $bitbuf$ holds the current bits of the window being formed.  
\end{enumerate}

All of step 12 is the window processing loop.  It will iterate while there are digits available form the exponent to read.  The first step
inside this loop is to extract a new digit if no more bits are available in the current digit.  If there are no bits left a new digit is
read and if there are no digits left than the loop terminates.  

After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
upwards.  In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to 
trailing edges the entire exponent is read from most significant bit to least significant bit.

At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read.  This prevents the 
algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read.  Step 12.6 and 12.7-10 handle
the two cases of $mode = 1$ and $mode = 2$ respectively.  

\begin{center}
\begin{figure}[here]
\includegraphics{pics/expt_state.ps}
\caption{Sliding Window State Diagram}
\label{pic:expt_state}
\end{figure}
\end{center}

By step 13 there are no more digits left in the exponent.  However, there may be partial bits in the window left.  If $mode = 2$ then 
a Left-to-Right algorithm is used to process the remaining few bits.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_exptmod.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Lines 32 through 46 determine the optimal window size based on the length of the exponent in bits.  The window divisions are sorted
from smallest to greatest so that in each \textbf{if} statement only one condition must be tested.  For example, by the \textbf{if} statement 
on line 38 the value of $x$ is already known to be greater than $140$.  

The conditional piece of code beginning on line 48 allows the window size to be restricted to five bits.  This logic is used to ensure
the table of precomputed powers of $G$ remains relatively small.  

The for loop on line 61 initializes the $M$ array while lines 72 and 77 through 86 initialize the reduction
function that will be used for this modulus.

-- More later.

\section{Quick Power of Two}
Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms.  Recall that a logical shift left $m << k$ is
equivalent to $m \cdot 2^k$.  By this logic when $m = 1$ a quick power of two can be achieved.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_2expt}. \\
\textbf{Input}.   integer $b$ \\
\textbf{Output}.  $a \leftarrow 2^b$ \\
\hline \\
1.  $a \leftarrow 0$ \\
2.  If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
3.  $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
4.  $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
5.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_2expt}
\end{figure}

\textbf{Algorithm mp\_2expt.}

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_2expt.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\chapter{Higher Level Algorithms}

This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package.  These
routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.  

The first section describes a method of integer division with remainder that is universally well known.  It provides the signed division logic
for the package.  The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.  
These algorithms serve mostly to simplify other algorithms where small constants are required.  The last two sections discuss how to manipulate 
various representations of integers.  For example, converting from an mp\_int to a string of character.

\section{Integer Division with Remainder}
\label{sec:division}

Integer division aside from modular exponentiation is the most intensive algorithm to compute.  Like addition, subtraction and multiplication
the basis of this algorithm is the long-hand division algorithm taught to school children.  Throughout this discussion several common variables
will be used.  Let $x$ represent the divisor and $y$ represent the dividend.  Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and 
let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$.  The following simple algorithm will be used to start the discussion.

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
\textbf{Input}.   integer $x$ and $y$ \\
\textbf{Output}.  $q = \lfloor y/x\rfloor, r = y - xq$ \\
\hline \\
1.  $q \leftarrow 0$ \\
2.  $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
3.  for $t$ from $n$ down to $0$ do \\
\hspace{3mm}3.1  Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
\hspace{3mm}3.2  $q \leftarrow q + k\beta^t$ \\
\hspace{3mm}3.3  $y \leftarrow y - kx\beta^t$ \\
4.  $r \leftarrow y$ \\
5.  Return($q, r$) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Radix-$\beta$ Integer Division}
\label{fig:raddiv}
\end{figure}

As children we are taught this very simple algorithm for the case of $\beta = 10$.  Almost instinctively several optimizations are taught for which
their reason of existing are never explained.  For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.

To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and 
simultaneously $(k + 1)x\beta^t$ is greater than $y$.  Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have.  The habitual method
used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient.  By only using leading
digits a much simpler division may be used to form an educated guess at what the value must be.  In this case $k = \lfloor 54/23\rfloor = 2$ quickly 
arises as a possible  solution.  Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.  
As a  result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.

Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder 
$y = 841 - 3x\beta = 181$.  Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
remainder $y = 181 - 7x = 20$.  The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since 
$237 \cdot 23 + 20 = 5471$ is true.  

\subsection{Quotient Estimation}
\label{sec:divest}
As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend.  When $p$ leading
digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows.  Technically
speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
dividend and divisor are zero.  

The value of the estimation may off by a few values in either direction and in general is fairly correct.  A simplification \cite[pp. 271]{TAOCPV2}
of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$.  The estimate 
using this technique is never too small.  For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$ 
represent the most significant digits of the dividend and divisor respectively.

\textbf{Proof.}\textit{  The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to 
$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger.  For all other 
cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$.  The latter portion of the inequalility
$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values.  Next a series of 
inequalities will prove the hypothesis.

\begin{equation}
y - \hat k x \le y - \hat k x_s\beta^s
\end{equation}

This is trivially true since $x \ge x_s\beta^s$.  Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.  

\begin{equation}
y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
\end{equation}

By simplifying the previous inequality the following inequality is formed.

\begin{equation}
y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
\end{equation}

Subsequently,

\begin{equation}
y_{t-2}\beta^{t-2} + \ldots +  y_0  + x_s\beta^s - \beta^s < x_s\beta^s \le x
\end{equation}

Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof.  \textbf{QED}


\subsection{Normalized Integers}
For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$.  By multiplying both
$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
remainder.  The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
lie in the domain of a single digit.  Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.  

\begin{equation} 
{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta} 
\end{equation}

At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.  

\subsection{Radix-$\beta$ Division with Remainder}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_div}. \\
\textbf{Input}.   mp\_int $a, b$ \\
\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
\hline \\
1.  If $b = 0$ return(\textit{MP\_VAL}). \\
2.  If $\vert a \vert < \vert b \vert$ then do \\
\hspace{3mm}2.1  $d \leftarrow a$ \\
\hspace{3mm}2.2  $c \leftarrow 0$ \\
\hspace{3mm}2.3  Return(\textit{MP\_OKAY}). \\
\\
Setup the quotient to receive the digits. \\
3.  Grow $q$ to $a.used + 2$ digits. \\
4.  $q \leftarrow 0$ \\
5.  $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
6.  $sign \leftarrow  \left \lbrace \begin{array}{ll}
                              MP\_ZPOS &  \mbox{if }a.sign = b.sign \\
                              MP\_NEG  &  \mbox{otherwise} \\
                              \end{array} \right .$ \\
\\
Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
7.  $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
8.  $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
\\
Find the leading digit of the quotient. \\
9.  $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
10.  $y \leftarrow y \cdot \beta^{n - t}$ \\
11.  While ($x \ge y$) do \\
\hspace{3mm}11.1  $q_{n - t} \leftarrow q_{n - t} + 1$ \\
\hspace{3mm}11.2  $x \leftarrow x - y$ \\
12.  $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
\\
Continued on the next page. \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_div}
\end{figure}

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_div} (continued). \\
\textbf{Input}.   mp\_int $a, b$ \\
\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
\hline \\
Now find the remainder fo the digits. \\
13.  for $i$ from $n$ down to $(t + 1)$ do \\
\hspace{3mm}13.1  If $i > x.used$ then jump to the next iteration of this loop. \\
\hspace{3mm}13.2  If $x_{i} = y_{t}$ then \\
\hspace{6mm}13.2.1  $q_{i - t - 1} \leftarrow \beta - 1$ \\
\hspace{3mm}13.3  else \\
\hspace{6mm}13.3.1  $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
\hspace{6mm}13.3.2  $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
\hspace{6mm}13.3.3  $q_{i - t - 1} \leftarrow \hat r$ \\
\hspace{3mm}13.4  $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
\\
Fixup quotient estimation. \\
\hspace{3mm}13.5  Loop \\
\hspace{6mm}13.5.1  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
\hspace{6mm}13.5.2  t$1 \leftarrow 0$ \\
\hspace{6mm}13.5.3  t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
\hspace{6mm}13.5.4  $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
\hspace{6mm}13.5.5  t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
\hspace{6mm}13.5.6  If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
\hspace{3mm}13.6  t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
\hspace{3mm}13.7  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
\hspace{3mm}13.8  $x \leftarrow x - $ t$1$ \\
\hspace{3mm}13.9  If $x.sign = MP\_NEG$ then \\
\hspace{6mm}13.10  t$1 \leftarrow y$ \\
\hspace{6mm}13.11  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
\hspace{6mm}13.12  $x \leftarrow x + $ t$1$ \\
\hspace{6mm}13.13  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
\\
Finalize the result. \\
14.  Clamp excess digits of $q$ \\
15.  $c \leftarrow q, c.sign \leftarrow sign$ \\
16.  $x.sign \leftarrow a.sign$ \\
17.  $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
18.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_div (continued)}
\end{figure}
\textbf{Algorithm mp\_div.}
This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor.  The algorithm is a signed
division and will produce a fully qualified quotient and remainder.

First the divisor $b$ must be non-zero which is enforced in step one.  If the divisor is larger than the dividend than the quotient is implicitly 
zero and the remainder is the dividend.  

After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient.  Two unsigned copies of the
divisor $y$ and dividend $x$ are made as well.  The core of the division algorithm is an unsigned division and will only work if the values are
positive.  Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.  
This is performed by shifting both to the left by enough bits to get the desired normalization.  

At this point the division algorithm can begin producing digits of the quotient.  Recall that maximum value of the estimation used is 
$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means.  In this case $y$ is shifted
to the left (\textit{step ten}) so that it has the same number of digits as $x$.  The loop on step eleven will subtract multiples of the 
shifted copy of $y$ until $x$ is smaller.  Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
times to produce the desired leading digit of the quotient.  

Now the remainder of the digits can be produced.  The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
accurately approximate the true quotient digit.  The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.  

Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high.  The next step of the estimation process is
to refine the estimation.  The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
order approximation to adjust the quotient digit.

After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
by optimizing Barrett reduction.}.  Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.  

Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the 
remainder.  An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie 
outside their respective boundaries.  For example, if $t = 0$ or $i \le 1$ then the digits would be undefined.  In those cases the digits should
respectively be replaced with a zero.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_div.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The implementation of this algorithm differs slightly from the pseudo code presented previously.  In this algorithm either of the quotient $c$ or
remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired.  For example, the C code to call the division
algorithm with only the quotient is 

\begin{verbatim}
mp_div(&a, &b, &c, NULL);  /* c = [a/b] */
\end{verbatim}

Lines 109 and 113 handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor 
respectively.  After the two trivial cases all of the temporary variables are initialized.  Line 148 determines the sign of 
the quotient and line 148 ensures that both $x$ and $y$ are positive.  

The number of bits in the leading digit is calculated on line 151.  Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
of precision which when reduced modulo $lg(\beta)$ produces the value of $k$.  In this case $k$ is the number of bits in the leading digit which is
exactly what is required.  For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
them to the left by $lg(\beta) - 1 - k$ bits.

Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively.  These are first used to produce the 
leading digit of the quotient.  The loop beginning on line 184 will produce the remainder of the quotient digits.

The conditional ``continue'' on line 187 is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
algorithm eliminates multiple non-zero digits in a single iteration.  This ensures that $x_i$ is always non-zero since by definition the digits
above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.  

Lines 214, 216 and 223 through 225 manually construct the high accuracy estimations by setting the digits of the two mp\_int 
variables directly.  

\section{Single Digit Helpers}

This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants.  All of 
the helper functions assume the single digit input is positive and will treat them as such.

\subsection{Single Digit Addition and Subtraction}

Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction 
algorithms.   As a result these algorithms are subtantially simpler with a slight cost in performance.

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_add\_d}. \\
\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
\textbf{Output}.  $c = a + b$ \\
\hline \\
1.  $t \leftarrow b$ (\textit{mp\_set}) \\
2.  $c \leftarrow a + t$ \\
3.  Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_add\_d}
\end{figure}

\textbf{Algorithm mp\_add\_d.}
This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_add\_d.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Clever use of the letter 't'.

\subsubsection{Subtraction}
The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.

\subsection{Single Digit Multiplication}
Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
multiplication algorithm.  Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
only has one digit.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_mul\_d}. \\
\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
\textbf{Output}.  $c = ab$ \\
\hline \\
1.  $pa \leftarrow a.used$ \\
2.  Grow $c$ to at least $pa + 1$ digits. \\
3.  $oldused \leftarrow c.used$ \\
4.  $c.used \leftarrow pa + 1$ \\
5.  $c.sign \leftarrow a.sign$ \\
6.  $\mu \leftarrow 0$ \\
7.  for $ix$ from $0$ to $pa - 1$ do \\
\hspace{3mm}7.1  $\hat r \leftarrow \mu + a_{ix}b$ \\
\hspace{3mm}7.2  $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}7.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
8.  $c_{pa} \leftarrow \mu$ \\
9.  for $ix$ from $pa + 1$ to $oldused$ do \\
\hspace{3mm}9.1  $c_{ix} \leftarrow 0$ \\
10.  Clamp excess digits of $c$. \\
11.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_mul\_d}
\end{figure}
\textbf{Algorithm mp\_mul\_d.}
This algorithm quickly multiplies an mp\_int by a small single digit value.  It is specially tailored to the job and has a minimal of overhead.  
Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_d.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is 
read from the source.  This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.  

\subsection{Single Digit Division}
Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion.  Since the
divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_div\_d}. \\
\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
\textbf{Output}.  $c = \lfloor a / b \rfloor, d = a - cb$ \\
\hline \\
1.  If $b = 0$ then return(\textit{MP\_VAL}).\\
2.  If $b = 3$ then use algorithm mp\_div\_3 instead. \\
3.  Init $q$ to $a.used$ digits.  \\
4.  $q.used \leftarrow a.used$ \\
5.  $q.sign \leftarrow a.sign$ \\
6.  $\hat w \leftarrow 0$ \\
7.  for $ix$ from $a.used - 1$ down to $0$ do \\
\hspace{3mm}7.1  $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
\hspace{3mm}7.2  If $\hat w \ge b$ then \\
\hspace{6mm}7.2.1  $t \leftarrow \lfloor \hat w / b \rfloor$ \\
\hspace{6mm}7.2.2  $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
\hspace{3mm}7.3  else\\
\hspace{6mm}7.3.1  $t \leftarrow 0$ \\
\hspace{3mm}7.4  $q_{ix} \leftarrow t$ \\
8.  $d \leftarrow \hat w$ \\
9.  Clamp excess digits of $q$. \\
10.  $c \leftarrow q$ \\
11.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_div\_d}
\end{figure}
\textbf{Algorithm mp\_div\_d.}
This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach.  Essentially in every iteration of the
algorithm another digit of the dividend is reduced and another digit of quotient produced.  Provided $b < \beta$ the value of $\hat w$
after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.  

If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3.  It replaces the division by three with
a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup.  In essence it is much like the Barrett reduction
from chapter seven.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_d.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
indicate the respective value is not required.  This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.

The division and remainder on lines 44 and @45,%@ can be replaced often by a single division on most processors.  For example, the 32-bit x86 based 
processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously.  Unfortunately the GCC 
compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.  

\subsection{Single Digit Root Extraction}

Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned.  Algorithms such as the Newton-Raphson approximation 
(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.  

\begin{equation}
x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
\label{eqn:newton}
\end{equation}

In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired.  The derivative of $f(x)$ is 
simply $f'(x) = nx^{n - 1}$.  Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
such as the real numbers.  As a result the root found can be above the true root by few and must be manually adjusted.  Ideally at the end of the 
algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_n\_root}. \\
\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
\textbf{Output}.  $c^b \le a$ \\
\hline \\
1.  If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
2.  $sign \leftarrow a.sign$ \\
3.  $a.sign \leftarrow MP\_ZPOS$ \\
4.  t$2 \leftarrow 2$ \\
5.  Loop \\
\hspace{3mm}5.1  t$1 \leftarrow $ t$2$ \\
\hspace{3mm}5.2  t$3 \leftarrow $ t$1^{b - 1}$ \\
\hspace{3mm}5.3  t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
\hspace{3mm}5.4  t$2 \leftarrow $ t$2 - a$ \\
\hspace{3mm}5.5  t$3 \leftarrow $ t$3 \cdot b$ \\
\hspace{3mm}5.6  t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
\hspace{3mm}5.7  t$2 \leftarrow $ t$1 - $ t$3$ \\
\hspace{3mm}5.8  If t$1 \ne $ t$2$ then goto step 5.  \\
6.  Loop \\
\hspace{3mm}6.1  t$2 \leftarrow $ t$1^b$ \\
\hspace{3mm}6.2  If t$2 > a$ then \\
\hspace{6mm}6.2.1  t$1 \leftarrow $ t$1 - 1$ \\
\hspace{6mm}6.2.2  Goto step 6. \\
7.  $a.sign \leftarrow sign$ \\
8.  $c \leftarrow $ t$1$ \\
9.  $c.sign \leftarrow sign$  \\
10.  Return(\textit{MP\_OKAY}).  \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_n\_root}
\end{figure}
\textbf{Algorithm mp\_n\_root.}
This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach.  It is partially optimized based on the observation
that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator.  That is at first the denominator is calculated by finding
$x^{b - 1}$.  This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator.  This saves a total of $b - 1$ 
multiplications by t$1$ inside the loop.  

The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
root.  Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_n\_root.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\section{Random Number Generation}

Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms.  Pollard-Rho 
factoring for example, can make use of random values as starting points to find factors of a composite integer.  In this case the algorithm presented
is solely for simulations and not intended for cryptographic use.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_rand}. \\
\textbf{Input}.   An integer $b$ \\
\textbf{Output}.  A pseudo-random number of $b$ digits \\
\hline \\
1.  $a \leftarrow 0$ \\
2.  If $b \le 0$ return(\textit{MP\_OKAY}) \\
3.  Pick a non-zero random digit $d$. \\
4.  $a \leftarrow a + d$ \\
5.  for $ix$ from 1 to $d - 1$ do \\
\hspace{3mm}5.1  $a \leftarrow a \cdot \beta$ \\
\hspace{3mm}5.2  Pick a random digit $d$. \\
\hspace{3mm}5.3  $a \leftarrow a + d$ \\
6.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_rand}
\end{figure}
\textbf{Algorithm mp\_rand.}
This algorithm produces a pseudo-random integer of $b$ digits.  By ensuring that the first digit is non-zero the algorithm also guarantees that the
final result has at least $b$ digits.  It relies heavily on a third-part random number generator which should ideally generate uniformly all of
the integers from $0$ to $\beta - 1$.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_rand.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\section{Formatted Representations}
The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties.  For example, the ability to
be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
into a program.

\subsection{Reading Radix-n Input}
For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to 
printable characters.  For example, when the character ``N'' is read it represents the integer $23$.  The first $16$ characters of the
map are for the common representations up to hexadecimal.  After that they match the ``base64'' encoding scheme which are suitable chosen
such that they are printable.  While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
mediums.

\newpage\begin{figure}[here]
\begin{center}
\begin{tabular}{cc|cc|cc|cc}
\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} &  \textbf{Value} & \textbf{Char} \\
\hline 
0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
8 & 8 & 9 & 9 & 10 & A & 11 & B \\
12 & C & 13 & D & 14 & E & 15 & F \\
16 & G & 17 & H & 18 & I & 19 & J \\
20 & K & 21 & L & 22 & M & 23 & N \\
24 & O & 25 & P & 26 & Q & 27 & R \\
28 & S & 29 & T & 30 & U & 31 & V \\
32 & W & 33 & X & 34 & Y & 35 & Z \\
36 & a & 37 & b & 38 & c & 39 & d \\
40 & e & 41 & f & 42 & g & 43 & h \\
44 & i & 45 & j & 46 & k & 47 & l \\
48 & m & 49 & n & 50 & o & 51 & p \\
52 & q & 53 & r & 54 & s & 55 & t \\
56 & u & 57 & v & 58 & w & 59 & x \\
60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
\hline
\end{tabular}
\end{center}
\caption{Lower ASCII Map}
\label{fig:ASC}
\end{figure}

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_read\_radix}. \\
\textbf{Input}.   A string $str$ of length $sn$ and radix $r$. \\
\textbf{Output}.  The radix-$\beta$ equivalent mp\_int. \\
\hline \\
1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
2.  $ix \leftarrow 0$ \\
3.  If $str_0 =$ ``-'' then do \\
\hspace{3mm}3.1  $ix \leftarrow ix + 1$ \\
\hspace{3mm}3.2  $sign \leftarrow MP\_NEG$ \\
4.  else \\
\hspace{3mm}4.1  $sign \leftarrow MP\_ZPOS$ \\
5.  $a \leftarrow 0$ \\
6.  for $iy$ from $ix$ to $sn - 1$ do \\
\hspace{3mm}6.1  Let $y$ denote the position in the map of $str_{iy}$. \\
\hspace{3mm}6.2  If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
\hspace{3mm}6.3  $a \leftarrow a \cdot r$ \\
\hspace{3mm}6.4  $a \leftarrow a + y$ \\
7.  If $a \ne 0$ then $a.sign \leftarrow sign$ \\
8.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_read\_radix}
\end{figure}
\textbf{Algorithm mp\_read\_radix.}
This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer.  A minus symbol ``-'' may precede the 
string  to indicate the value is negative, otherwise it is assumed to be positive.  The algorithm will read up to $sn$ characters from the input
and will stop when it reads a character it cannot map the algorithm stops reading characters from the string.  This allows numbers to be embedded
as part of larger input without any significant problem.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_read\_radix.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\subsection{Generating Radix-$n$ Output}
Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_toradix}. \\
\textbf{Input}.   A mp\_int $a$ and an integer $r$\\
\textbf{Output}.  The radix-$r$ representation of $a$ \\
\hline \\
1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
2.  If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}).  \\
3.  $t \leftarrow a$ \\
4.  $str \leftarrow$ ``'' \\
5.  if $t.sign = MP\_NEG$ then \\
\hspace{3mm}5.1  $str \leftarrow str + $ ``-'' \\
\hspace{3mm}5.2  $t.sign = MP\_ZPOS$ \\
6.  While ($t \ne 0$) do \\
\hspace{3mm}6.1  $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
\hspace{3mm}6.2  $t \leftarrow \lfloor t / r \rfloor$ \\
\hspace{3mm}6.3  Look up $d$ in the map and store the equivalent character in $y$. \\
\hspace{3mm}6.4  $str \leftarrow str + y$ \\
7.  If $str_0 = $``$-$'' then \\
\hspace{3mm}7.1  Reverse the digits $str_1, str_2, \ldots str_n$. \\
8.  Otherwise \\
\hspace{3mm}8.1  Reverse the digits $str_0, str_1, \ldots str_n$. \\
9.  Return(\textit{MP\_OKAY}).\\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_toradix}
\end{figure}
\textbf{Algorithm mp\_toradix.}
This algorithm computes the radix-$r$ representation of an mp\_int $a$.  The ``digits'' of the representation are extracted by reducing 
successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$.  Note that instead of actually dividing by $r^k$ in
each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration.  As a result a series of trivial $n \times 1$ divisions
are required instead of a series of $n \times k$ divisions.  One design flaw of this approach is that the digits are produced in the reverse order 
(see~\ref{fig:mpradix}).  To remedy this flaw the digits must be swapped or simply ``reversed''.

\begin{figure}
\begin{center}
\begin{tabular}{|c|c|c|}
\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
\hline $1234$ & -- & -- \\
\hline $123$  & $4$ & ``4'' \\
\hline $12$   & $3$ & ``43'' \\
\hline $1$    & $2$ & ``432'' \\
\hline $0$    & $1$ & ``4321'' \\
\hline
\end{tabular}
\end{center}
\caption{Example of Algorithm mp\_toradix.}
\label{fig:mpradix}
\end{figure}

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_toradix.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\chapter{Number Theoretic Algorithms}
This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi 
symbol computation.  These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
various Sieve based factoring algorithms.

\section{Greatest Common Divisor}
The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
both $a$ and $b$.  That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
simultaneously.

The most common approach (cite) is to reduce one input modulo another.  That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
$r$ is also divisible by $k$.  The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
\hline \\
1.  While ($b > 0$) do \\
\hspace{3mm}1.1  $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
\hspace{3mm}1.2  $a \leftarrow b$ \\
\hspace{3mm}1.3  $b \leftarrow r$ \\
2.  Return($a$). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Greatest Common Divisor (I)}
\label{fig:gcd1}
\end{figure}

This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly.  However, divisions are
relatively expensive operations to perform and should ideally be avoided.  There is another approach based on a similar relationship of 
greatest common divisors.  The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.  
In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
\hline \\
1.  While ($b > 0$) do \\
\hspace{3mm}1.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
\hspace{3mm}1.2  $b \leftarrow b - a$ \\
2.  Return($a$). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Greatest Common Divisor (II)}
\label{fig:gcd2}
\end{figure}

\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$.  In other
words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$.  Since both $a$ and $b$ are always 
divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the 
second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof.  \textbf{QED}.

As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful.  Specially if $b$ is much larger than $a$ such that 
$b - a$ is still very much larger than $a$.  A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
not divide the greatest common divisor but will divide $b - a$.  In this case ${b - a} \over p$ is also an integer and still divisible by
the greatest common divisor.

However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.  
Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
\hline \\
1.  $k \leftarrow 0$ \\
2.  While $a$ and $b$ are both divisible by $p$ do \\
\hspace{3mm}2.1  $a \leftarrow \lfloor a / p \rfloor$ \\
\hspace{3mm}2.2  $b \leftarrow \lfloor b / p \rfloor$ \\
\hspace{3mm}2.3  $k \leftarrow k + 1$ \\
3.  While $a$ is divisible by $p$ do \\
\hspace{3mm}3.1  $a \leftarrow \lfloor a / p \rfloor$ \\
4.  While $b$ is divisible by $p$ do \\
\hspace{3mm}4.1  $b \leftarrow \lfloor b / p \rfloor$ \\
5.  While ($b > 0$) do \\
\hspace{3mm}5.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
\hspace{3mm}5.2  $b \leftarrow b - a$ \\
\hspace{3mm}5.3  While $b$ is divisible by $p$ do \\
\hspace{6mm}5.3.1  $b \leftarrow \lfloor b / p \rfloor$ \\
6.  Return($a \cdot p^k$). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm Greatest Common Divisor (III)}
\label{fig:gcd3}
\end{figure}

This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$ 
decreases more rapidly.  The first loop on step two removes powers of $p$ that are in common.  A count, $k$, is kept which will present a common
divisor of $p^k$.  After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$.  This means that $p$ can be safely 
divided out of the difference $b - a$ so long as the division leaves no remainder.  

In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often.  It also helps that division by $p$ be easy
to compute.  The ideal choice of $p$ is two since division by two amounts to a right logical shift.  Another important observation is that by
step five both $a$ and $b$ are odd.  Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the 
largest of the pair.

\subsection{Complete Greatest Common Divisor}
The algorithms presented so far cannot handle inputs which are zero or negative.  The following algorithm can handle all input cases properly
and will produce the greatest common divisor.

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_gcd}. \\
\textbf{Input}.   mp\_int $a$ and $b$ \\
\textbf{Output}.  The greatest common divisor $c = (a, b)$.  \\
\hline \\
1.  If $a = 0$ then \\
\hspace{3mm}1.1  $c \leftarrow \vert b \vert $ \\
\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
2.  If $b = 0$ then \\
\hspace{3mm}2.1  $c \leftarrow \vert a \vert $ \\
\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
3.  $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
4.  $k \leftarrow 0$ \\
5.  While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
\hspace{3mm}5.1  $k \leftarrow k + 1$ \\
\hspace{3mm}5.2  $u \leftarrow \lfloor u / 2 \rfloor$ \\
\hspace{3mm}5.3  $v \leftarrow \lfloor v / 2 \rfloor$ \\
6.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
\hspace{3mm}6.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
7.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
\hspace{3mm}7.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
8.  While $v.used > 0$ \\
\hspace{3mm}8.1  If $\vert u \vert > \vert v \vert$ then \\
\hspace{6mm}8.1.1  Swap $u$ and $v$. \\
\hspace{3mm}8.2  $v \leftarrow \vert v \vert - \vert u \vert$ \\
\hspace{3mm}8.3  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
\hspace{6mm}8.3.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
9.  $c \leftarrow u \cdot 2^k$ \\
10.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_gcd}
\end{figure}
\textbf{Algorithm mp\_gcd.}
This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$.  The algorithm was originally based on Algorithm B of
Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain.  In theory it achieves the same asymptotic working time as
Algorithm B and in practice this appears to be true.  

The first two steps handle the cases where either one of or both inputs are zero.  If either input is zero the greatest common divisor is the 
largest input or zero if they are both zero.  If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of 
$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.

Step five will divide out any common factors of two and keep track of the count in the variable $k$.  After this step, two is no longer a
factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even.  Step 
six and seven ensure that the $u$ and $v$ respectively have no more factors of two.  At most only one of the while--loops will iterate since 
they cannot both be even.

By step eight both of $u$ and $v$ are odd which is required for the inner logic.  First the pair are swapped such that $v$ is equal to
or greater than $u$.  This ensures that the subtraction on step 8.2 will always produce a positive and even result.  Step 8.3 removes any
factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.

After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six.  The result
must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_gcd.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

This function makes use of the macros mp\_iszero and mp\_iseven.  The former evaluates to $1$ if the input mp\_int is equivalent to the 
integer zero otherwise it evaluates to $0$.  The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
it evaluates to $0$.  Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero.  The three 
trivial cases of inputs are handled on lines 24 through 30.  After those lines the inputs are assumed to be non-zero.

Lines 32 and 37 make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively.  At this point the common factors of two 
must be divided out of the two inputs.  The block starting at line 44 removes common factors of two by first counting the number of trailing
zero bits in both.  The local integer $k$ is used to keep track of how many factors of $2$ are pulled out of both values.  It is assumed that 
the number of factors will not exceed the maximum value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than 
entries than are accessible by an ``int'' so this is not a limitation.}.  

At this point there are no more common factors of two in the two values.  The divisions by a power of two on lines 62 and 68 remove 
any independent factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm.  The while loop
on line 73 performs the reduction of the pair until $v$ is equal to zero.  The unsigned comparison and subtraction algorithms are used in
place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.

\section{Least Common Multiple}
The least common multiple of a pair of integers is their product divided by their greatest common divisor.  For two integers $a$ and $b$ the
least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$.  For example, if $a = 2 \cdot 2 \cdot 3 = 12$
and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.

The least common multiple arises often in coding theory as well as number theory.  If two functions have periods of $a$ and $b$ respectively they will
collide, that is be in synchronous states, after only $[ a, b ]$ iterations.  This is why, for example, random number generators based on 
Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).  
Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_lcm}. \\
\textbf{Input}.   mp\_int $a$ and $b$ \\
\textbf{Output}.  The least common multiple $c = [a, b]$.  \\
\hline \\
1.  $c \leftarrow (a, b)$ \\
2.  $t \leftarrow a \cdot b$ \\
3.  $c \leftarrow \lfloor t / c \rfloor$ \\
4.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_lcm}
\end{figure}
\textbf{Algorithm mp\_lcm.}
This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$.  It computes the least common multiple directly by
dividing the product of the two inputs by their greatest common divisor.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_lcm.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\section{Jacobi Symbol Computation}
To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg.  What is the name of this?} off which the Jacobi symbol is 
defined.  The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$.  Numerically it is
equivalent to equation \ref{eqn:legendre}.

\textit{-- Tom, don't be an ass, cite your source here...!}

\begin{equation}
a^{(p-1)/2} \equiv \begin{array}{rl}
                              -1 &  \mbox{if }a\mbox{ is a quadratic non-residue.} \\
                              0  &  \mbox{if }a\mbox{ divides }p\mbox{.} \\
                              1  &  \mbox{if }a\mbox{ is a quadratic residue}. 
                              \end{array} \mbox{ (mod }p\mbox{)}
\label{eqn:legendre}                              
\end{equation}

\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
An integer $a$ is a quadratic residue if the following equation has a solution.

\begin{equation}
x^2 \equiv a \mbox{ (mod }p\mbox{)}
\label{eqn:root}
\end{equation}

Consider the following equation.

\begin{equation}
0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
\label{eqn:rooti}
\end{equation}

Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true.  If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
then the quantity in the braces must be zero.  By reduction,

\begin{eqnarray}
\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0  \nonumber \\
\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
x^2 \equiv a \mbox{ (mod }p\mbox{)} 
\end{eqnarray}

As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue.  If $a$ does not divide $p$ and $a$
is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
\begin{equation}
0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
\end{equation}
One of the terms on the right hand side must be zero.  \textbf{QED}

\subsection{Jacobi Symbol}
The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2.  If $p = \prod_{i=0}^n p_i$ then
the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.

\begin{equation}
\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
\end{equation}

By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function.  The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
further details.} will be used to derive an efficient Jacobi symbol algorithm.  Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
following are true.  

\begin{enumerate}
\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$. 
\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$.  Otherwise, it equals $-1$.
\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$.  More specifically 
$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.  
\end{enumerate}

Using these facts if $a = 2^k \cdot a'$ then

\begin{eqnarray}
\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
                               = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right ) 
\label{eqn:jacobi}
\end{eqnarray}

By fact five, 

\begin{equation}
\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4} 
\end{equation}

Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then 

\begin{equation}
\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4} 
\end{equation}

By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.

\begin{equation}
\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right )  \cdot (-1)^{(p-1)(a'-1)/4} 
\end{equation}

The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively.  The value of 
$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$.  Using this approach the 
factors of $p$ do not have to be known.  Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the 
Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.  

\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_jacobi}. \\
\textbf{Input}.   mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
\textbf{Output}.  The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
\hline \\
1.  If $a = 0$ then \\
\hspace{3mm}1.1  $c \leftarrow 0$ \\
\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
2.  If $a = 1$ then \\
\hspace{3mm}2.1  $c \leftarrow 1$ \\
\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
3.  $a' \leftarrow a$ \\
4.  $k \leftarrow 0$ \\
5.  While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
\hspace{3mm}5.1  $k \leftarrow k + 1$ \\
\hspace{3mm}5.2  $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
6.  If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
\hspace{3mm}6.1  $s \leftarrow 1$ \\
7.  else \\
\hspace{3mm}7.1  $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
\hspace{3mm}7.2  If $r = 1$ or $r = 7$ then \\
\hspace{6mm}7.2.1  $s \leftarrow 1$ \\
\hspace{3mm}7.3  else \\
\hspace{6mm}7.3.1  $s \leftarrow -1$ \\
8.  If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
\hspace{3mm}8.1  $s \leftarrow -s$ \\
9.  If $a' \ne 1$ then \\
\hspace{3mm}9.1  $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
\hspace{3mm}9.2  $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
10.  $c \leftarrow s$ \\
11.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_jacobi}
\end{figure}
\textbf{Algorithm mp\_jacobi.}
This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three.  The algorithm
is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.  

Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively.  Step five determines the number of two factors in the
input $a$.  If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one.  If $k$ is odd than the term evaluates to one 
if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled 
the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$.  The latter term evaluates to one if both $p$ and $a'$ 
are congruent to one modulo four, otherwise it evaluates to negative one.

By step nine if $a'$ does not equal one a recursion is required.  Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_jacobi.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C 
variable name character. 

The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm.  If the input is non-trivial the algorithm
has to proceed compute the Jacobi.  The variable $s$ is used to hold the current Jacobi product.  Note that $s$ is merely a C ``int'' data type since
the values it may obtain are merely $-1$, $0$ and $1$.  

After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$.  Technically only the least significant
bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same 
processor requirements and neither is faster than the other.

Line 58 through 71 determines the value of $\left ( { 2 \over p } \right )^k$.  If the least significant bit of $k$ is zero than
$k$ is even and the value is one.  Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight.  The value of
$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines 71 through 74.  

Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.  

\textit{-- Comment about default $s$ and such...}

\section{Modular Inverse}
\label{sec:modinv}
The modular inverse of a number actually refers to the modular multiplicative inverse.  Essentially for any integer $a$ such that $(a, p) = 1$ there
exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$.  The integer $b$ is called the multiplicative inverse of $a$ which is
denoted as $b = a^{-1}$.  Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and 
fields of integers.  However, the former will be the matter of discussion.

The simplest approach is to compute the algebraic inverse of the input.  That is to compute $b \equiv a^{\Phi(p) - 1}$.  If $\Phi(p)$ is the 
order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$.  The proof of which is trivial.

\begin{equation}
ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
\end{equation}

However, as simple as this approach may be it has two serious flaws.  It requires that the value of $\Phi(p)$ be known which if $p$ is composite 
requires all of the prime factors.  This approach also is very slow as the size of $p$ grows.  

A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear 
Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.

\begin{equation}
ab + pq = 1
\end{equation}

Where $a$, $b$, $p$ and $q$ are all integers.  If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of 
$a$ modulo $p$.  The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.  
However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place.  The
binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine 
equation.  

\subsection{General Case}
\newpage\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_invmod}. \\
\textbf{Input}.   mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$.  \\
\textbf{Output}.  The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
\hline \\
1.  If $b \le 0$ then return(\textit{MP\_VAL}). \\
2.  If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
3.  $x \leftarrow \vert a \vert, y \leftarrow b$ \\
4.  If $x_0 \equiv y_0  \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
5.  $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
6.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
\hspace{3mm}6.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
\hspace{3mm}6.2  If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
\hspace{6mm}6.2.1  $A \leftarrow A + y$ \\
\hspace{6mm}6.2.2  $B \leftarrow B - x$ \\
\hspace{3mm}6.3  $A \leftarrow \lfloor A / 2 \rfloor$ \\
\hspace{3mm}6.4  $B \leftarrow \lfloor B / 2 \rfloor$ \\
7.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
\hspace{3mm}7.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
\hspace{3mm}7.2  If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
\hspace{6mm}7.2.1  $C \leftarrow C + y$ \\
\hspace{6mm}7.2.2  $D \leftarrow D - x$ \\
\hspace{3mm}7.3  $C \leftarrow \lfloor C / 2 \rfloor$ \\
\hspace{3mm}7.4  $D \leftarrow \lfloor D / 2 \rfloor$ \\
8.  If $u \ge v$ then \\
\hspace{3mm}8.1  $u \leftarrow u - v$ \\
\hspace{3mm}8.2  $A \leftarrow A - C$ \\
\hspace{3mm}8.3  $B \leftarrow B - D$ \\
9.  else \\
\hspace{3mm}9.1  $v \leftarrow v - u$ \\
\hspace{3mm}9.2  $C \leftarrow C - A$ \\
\hspace{3mm}9.3  $D \leftarrow D - B$ \\
10.  If $u \ne 0$ goto step 6. \\
11.  If $v \ne 1$ return(\textit{MP\_VAL}). \\
12.  While $C \le 0$ do \\
\hspace{3mm}12.1  $C \leftarrow C + b$ \\
13.  While $C \ge b$ do \\
\hspace{3mm}13.1  $C \leftarrow C - b$ \\
14.  $c \leftarrow C$ \\
15.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\end{figure}
\textbf{Algorithm mp\_invmod.}
This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$.  This algorithm is a variation of the 
extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}.  It has been modified to only compute the modular inverse and not a complete
Diophantine solution.  

If $b \le 0$ than the modulus is invalid and MP\_VAL is returned.  Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
inverse for $a$ and the error is reported.  

The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd.  In this case
the other variables to the Diophantine equation are solved.  The algorithm terminates when $u = 0$ in which case the solution is

\begin{equation}
Ca + Db = v
\end{equation}

If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists.  Otherwise, $C$
is the modular inverse of $a$.  The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie 
within $1 \le a^{-1} < b$.  Step numbers twelve and thirteen adjust the inverse until it is in range.  If the original input $a$ is within $0 < a < p$ 
then only a couple of additions or subtractions will be required to adjust the inverse.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_invmod.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\subsubsection{Odd Moduli}

When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse.  In particular by attempting to solve
the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.  

The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed.  This 
optimization will halve the time required to compute the modular inverse.

\section{Primality Tests}

A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself.  For example, $a = 7$ is prime 
since the integers $2 \ldots 6$ do not evenly divide $a$.  By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$. 

Prime numbers arise in cryptography considerably as they allow finite fields to be formed.  The ability to determine whether an integer is prime or
not quickly has been a viable subject in cryptography and number theory for considerable time.  The algorithms that will be presented are all
probablistic algorithms in that when they report an integer is composite it must be composite.  However, when the algorithms report an integer is
prime the algorithm may be incorrect.  

As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as 
well be zero.  For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.

\subsection{Trial Division}

Trial division means to attempt to evenly divide a candidate integer by small prime integers.  If the candidate can be evenly divided it obviously
cannot be prime.  By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime.  However, such a test
would require a prohibitive amount of time as $n$ grows.

Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead.  By performing trial division with only a subset
of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime.  However, often it can prove a candidate is not prime.

The benefit of this test is that trial division by small values is fairly efficient.  Specially compared to the other algorithms that will be
discussed shortly.  The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
$1 - {1.12 \over ln(q)}$.  The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range 
$3 \le q \le 100$.  

At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly.  At $q = 90$ further testing is generally not going to 
be of any practical use.  In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate 
approximately $80\%$ of all candidate integers.  The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base.  The 
array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.  

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
\textbf{Input}.   mp\_int $a$ \\
\textbf{Output}.  $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$.  \\
\hline \\
1.  for $ix$ from $0$ to $PRIME\_SIZE$ do \\
\hspace{3mm}1.1  $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
\hspace{3mm}1.2  If $d = 0$ then \\
\hspace{6mm}1.2.1  $c \leftarrow 1$ \\
\hspace{6mm}1.2.2  Return(\textit{MP\_OKAY}). \\
2.  $c \leftarrow 0$ \\
3.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_prime\_is\_divisible}
\end{figure}
\textbf{Algorithm mp\_prime\_is\_divisible.}
This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_is\_divisible.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

The algorithm defaults to a return of $0$ in case an error occurs.  The values in the prime table are all specified to be in the range of a 
mp\_digit.  The table \_\_prime\_tab is defined in the following file.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_prime\_tab.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

Note that there are two possible tables.  When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
upto $1619$ are used.  Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit. 

\subsection{The Fermat Test}
The Fermat test is probably one the oldest tests to have a non-trivial probability of success.  It is based on the fact that if $n$ is in 
fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$.  The reason being that if $n$ is prime than the order of
the multiplicative sub group is $n - 1$.  Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to 
$a^1 = a$.  

If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$.  In which case 
it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$.  However, this test is not absolute as it is possible that the order
of a base will divide $n - 1$ which would then be reported as prime.  Such a base yields what is known as a Fermat pseudo-prime.  Several 
integers known as Carmichael numbers will be a pseudo-prime to all valid bases.  Fortunately such numbers are extremely rare as $n$ grows
in size.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_prime\_fermat}. \\
\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
\textbf{Output}.  $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$.  \\
\hline \\
1.  $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
2.  If $t = b$ then \\
\hspace{3mm}2.1  $c = 1$ \\
3.  else \\
\hspace{3mm}3.1  $c = 0$ \\
4.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_prime\_fermat}
\end{figure}
\textbf{Algorithm mp\_prime\_fermat.}
This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not.  It uses a single modular exponentiation to
determine the result.  

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_fermat.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}

\subsection{The Miller-Rabin Test}
The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen 
candidate  integers.  The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the 
value must be equal to $-1$.  The squarings are stopped as soon as $-1$ is observed.  If the value of $1$ is observed first it means that
some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.

\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
\textbf{Output}.  $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$.  \\
\hline
1.  $a' \leftarrow a - 1$ \\
2.  $r  \leftarrow n1$    \\
3.  $c \leftarrow 0, s  \leftarrow 0$ \\
4.  While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
\hspace{3mm}4.1  $s \leftarrow s + 1$ \\
\hspace{3mm}4.2  $r \leftarrow \lfloor r / 2 \rfloor$ \\
5.  $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
6.  If $y \nequiv \pm 1$ then \\
\hspace{3mm}6.1  $j \leftarrow 1$ \\
\hspace{3mm}6.2  While $j \le (s - 1)$ and $y \nequiv a'$ \\
\hspace{6mm}6.2.1  $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
\hspace{6mm}6.2.2  If $y = 1$ then goto step 8. \\
\hspace{6mm}6.2.3  $j \leftarrow j + 1$ \\
\hspace{3mm}6.3  If $y \nequiv a'$ goto step 8. \\
7.  $c \leftarrow 1$\\
8.  Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
\end{small}
\caption{Algorithm mp\_prime\_miller\_rabin}
\end{figure}
\textbf{Algorithm mp\_prime\_miller\_rabin.}
This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$.  It will set $c = 1$ if the algorithm cannot determine
if $b$ is composite or $c = 0$ if $b$ is provably composite.  The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.  

If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not.  Otherwise, the algorithm will
square $y$ upto $s - 1$ times stopping only when $y \equiv -1$.  If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
is provably composite.  If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite.  If $a$ is not provably 
composite then it is \textit{probably} prime.

\vspace{+3mm}\begin{small}
\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_miller\_rabin.c
\vspace{-3mm}
\begin{alltt}
\end{alltt}
\end{small}




\backmatter
\appendix
\begin{thebibliography}{ABCDEF}
\bibitem[1]{TAOCPV2}
Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998

\bibitem[2]{HAC}
A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996

\bibitem[3]{ROSE}
Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999

\bibitem[4]{COMBA}
Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)

\bibitem[5]{KARA}
A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294

\bibitem[6]{KARAP}
Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002

\bibitem[7]{BARRETT}
Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.

\bibitem[8]{MONT}
P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.

\bibitem[9]{DRMET}
Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories

\bibitem[10]{MMB}
J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89

\bibitem[11]{RSAREF}
R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}

\bibitem[12]{DHREF}
Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976

\bibitem[13]{IEEE}
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)

\bibitem[14]{GMP}
GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}

\bibitem[15]{MPI}
Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}

\bibitem[16]{OPENSSL}
OpenSSL Cryptographic Toolkit, \url{http://openssl.org}

\bibitem[17]{LIP}
Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}

\bibitem[18]{ISOC}
JTC1/SC22/WG14, ISO/IEC 9899:1999, ``A draft rationale for the C99 standard.''

\bibitem[19]{JAVA}
The Sun Java Website, \url{http://java.sun.com/}

\end{thebibliography}

\input{tommath.ind}

\end{document}