diff options
author | donal.k.fellows@manchester.ac.uk <dkf> | 2005-10-17 21:24:36 (GMT) |
---|---|---|
committer | donal.k.fellows@manchester.ac.uk <dkf> | 2005-10-17 21:24:36 (GMT) |
commit | 7eee415b98c35e5f7a470be3f387fd20b91268f7 (patch) | |
tree | 8513bf6d895e7a5115bee1b2567540fa259f6489 /generic | |
parent | d3a7632592b9cf6287c0951647c5ad23f592ed8b (diff) | |
download | tk-7eee415b98c35e5f7a470be3f387fd20b91268f7.zip tk-7eee415b98c35e5f7a470be3f387fd20b91268f7.tar.gz tk-7eee415b98c35e5f7a470be3f387fd20b91268f7.tar.bz2 |
Format for style and remove non-ANSI declarations
Diffstat (limited to 'generic')
-rw-r--r-- | generic/tkCanvArc.c | 807 |
1 files changed, 386 insertions, 421 deletions
diff --git a/generic/tkCanvArc.c b/generic/tkCanvArc.c index 276a49a..39b5266 100644 --- a/generic/tkCanvArc.c +++ b/generic/tkCanvArc.c @@ -1,4 +1,4 @@ -/* +/* * tkCanvArc.c -- * * This file implements arc items for canvas widgets. @@ -6,16 +6,17 @@ * Copyright (c) 1992-1994 The Regents of the University of California. * Copyright (c) 1994-1997 Sun Microsystems, Inc. * - * See the file "license.terms" for information on usage and redistribution - * of this file, and for a DISCLAIMER OF ALL WARRANTIES. + * See the file "license.terms" for information on usage and redistribution of + * this file, and for a DISCLAIMER OF ALL WARRANTIES. * - * RCS: @(#) $Id: tkCanvArc.c,v 1.12 2004/01/13 02:06:00 davygrvy Exp $ + * RCS: @(#) $Id: tkCanvArc.c,v 1.13 2005/10/17 21:24:36 dkf Exp $ */ #include <stdio.h> #include "tkPort.h" #include "tkInt.h" #include "tkCanvas.h" + /* * The structure below defines the record for each arc item. */ @@ -24,41 +25,42 @@ typedef enum { PIESLICE_STYLE, CHORD_STYLE, ARC_STYLE } Style; -typedef struct ArcItem { +typedef struct ArcItem { Tk_Item header; /* Generic stuff that's the same for all - * types. MUST BE FIRST IN STRUCTURE. */ + * types. MUST BE FIRST IN STRUCTURE. */ Tk_Outline outline; /* Outline structure */ double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding * box for oval of which arc is a piece. */ double start; /* Angle at which arc begins, in degrees * between 0 and 360. */ - double extent; /* Extent of arc (angular distance from - * start to end of arc) in degrees between - * -360 and 360. */ - double *outlinePtr; /* Points to (x,y) coordinates for points - * that define one or two closed polygons + double extent; /* Extent of arc (angular distance from start + * to end of arc) in degrees between -360 and + * 360. */ + double *outlinePtr; /* Points to (x,y) coordinates for points that + * define one or two closed polygons * representing the portion of the outline - * that isn't part of the arc (the V-shape - * for a pie slice or a line-like segment - * for a chord). Malloc'ed. */ - int numOutlinePoints; /* Number of points at outlinePtr. Zero - * means no space allocated. */ + * that isn't part of the arc (the V-shape for + * a pie slice or a line-like segment for a + * chord). Malloc'ed. */ + int numOutlinePoints; /* Number of points at outlinePtr. Zero means + * no space allocated. */ Tk_TSOffset tsoffset; XColor *fillColor; /* Color for filling arc (used for drawing - * outline too when style is "arc"). NULL + * outline too when style is "arc"). NULL * means don't fill arc. */ XColor *activeFillColor; /* Color for filling arc (used for drawing * outline too when style is "arc" and state - * is "active"). NULL means use fillColor. */ + * is "active"). NULL means use fillColor. */ XColor *disabledFillColor; /* Color for filling arc (used for drawing * outline too when style is "arc" and state * is "disabled". NULL means use fillColor */ Pixmap fillStipple; /* Stipple bitmap for filling item. */ - Pixmap activeFillStipple; /* Stipple bitmap for filling item if state - * is active. */ - Pixmap disabledFillStipple; /* Stipple bitmap for filling item if state - * is disabled. */ - Style style; /* How to draw arc: arc, chord, or pieslice. */ + Pixmap activeFillStipple; /* Stipple bitmap for filling item if state is + * active. */ + Pixmap disabledFillStipple; /* Stipple bitmap for filling item if state is + * disabled. */ + Style style; /* How to draw arc: arc, chord, or + * pieslice. */ GC fillGC; /* Graphics context for filling item. */ double center1[2]; /* Coordinates of center of arc outline at * start (see ComputeArcOutline). */ @@ -67,8 +69,8 @@ typedef struct ArcItem { } ArcItem; /* - * The definitions below define the sizes of the polygons used to - * display outline information for various styles of arcs: + * The definitions below define the sizes of the polygons used to display + * outline information for various styles of arcs: */ #define CHORD_OUTLINE_PTS 7 @@ -79,14 +81,11 @@ typedef struct ArcItem { * Information used for parsing configuration specs: */ -static int StyleParseProc _ANSI_ARGS_(( - ClientData clientData, Tcl_Interp *interp, +static int StyleParseProc(ClientData clientData, Tcl_Interp *interp, Tk_Window tkwin, CONST char *value, - char *widgRec, int offset)); -static char * StylePrintProc _ANSI_ARGS_(( - ClientData clientData, Tk_Window tkwin, - char *widgRec, int offset, - Tcl_FreeProc **freeProcPtr)); + char *widgRec, int offset); +static char * StylePrintProc(ClientData clientData, Tk_Window tkwin, + char *widgRec, int offset, Tcl_FreeProc **freeProcPtr); static Tk_CustomOption stateOption = { (Tk_OptionParseProc *) TkStateParseProc, @@ -193,47 +192,44 @@ static Tk_ConfigSpec configSpecs[] = { * Prototypes for procedures defined in this file: */ -static void ComputeArcBbox _ANSI_ARGS_((Tk_Canvas canvas, - ArcItem *arcPtr)); -static int ConfigureArc _ANSI_ARGS_((Tcl_Interp *interp, +static void ComputeArcBbox(Tk_Canvas canvas, ArcItem *arcPtr); +static int ConfigureArc(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Item *itemPtr, int objc, - Tcl_Obj *CONST objv[], int flags)); -static int CreateArc _ANSI_ARGS_((Tcl_Interp *interp, + Tcl_Obj *CONST objv[], int flags); +static int CreateArc(Tcl_Interp *interp, Tk_Canvas canvas, struct Tk_Item *itemPtr, - int objc, Tcl_Obj *CONST objv[])); -static void DeleteArc _ANSI_ARGS_((Tk_Canvas canvas, - Tk_Item *itemPtr, Display *display)); -static void DisplayArc _ANSI_ARGS_((Tk_Canvas canvas, + int objc, Tcl_Obj *CONST objv[]); +static void DeleteArc(Tk_Canvas canvas, + Tk_Item *itemPtr, Display *display); +static void DisplayArc(Tk_Canvas canvas, Tk_Item *itemPtr, Display *display, Drawable dst, - int x, int y, int width, int height)); -static int ArcCoords _ANSI_ARGS_((Tcl_Interp *interp, - Tk_Canvas canvas, Tk_Item *itemPtr, int objc, - Tcl_Obj *CONST objv[])); -static int ArcToArea _ANSI_ARGS_((Tk_Canvas canvas, - Tk_Item *itemPtr, double *rectPtr)); -static double ArcToPoint _ANSI_ARGS_((Tk_Canvas canvas, - Tk_Item *itemPtr, double *coordPtr)); -static int ArcToPostscript _ANSI_ARGS_((Tcl_Interp *interp, - Tk_Canvas canvas, Tk_Item *itemPtr, int prepass)); -static void ScaleArc _ANSI_ARGS_((Tk_Canvas canvas, + int x, int y, int width, int height); +static int ArcCoords(Tcl_Interp *interp, Tk_Canvas canvas, + Tk_Item *itemPtr, int objc, Tcl_Obj *CONST objv[]); +static int ArcToArea(Tk_Canvas canvas, + Tk_Item *itemPtr, double *rectPtr); +static double ArcToPoint(Tk_Canvas canvas, + Tk_Item *itemPtr, double *coordPtr); +static int ArcToPostscript(Tcl_Interp *interp, + Tk_Canvas canvas, Tk_Item *itemPtr, int prepass); +static void ScaleArc(Tk_Canvas canvas, Tk_Item *itemPtr, double originX, double originY, - double scaleX, double scaleY)); -static void TranslateArc _ANSI_ARGS_((Tk_Canvas canvas, - Tk_Item *itemPtr, double deltaX, double deltaY)); -static int AngleInRange _ANSI_ARGS_((double x, double y, - double start, double extent)); -static void ComputeArcOutline _ANSI_ARGS_((Tk_Canvas canvas, - ArcItem *arcPtr)); -static int HorizLineToArc _ANSI_ARGS_((double x1, double x2, + double scaleX, double scaleY); +static void TranslateArc(Tk_Canvas canvas, + Tk_Item *itemPtr, double deltaX, double deltaY); +static int AngleInRange(double x, double y, + double start, double extent); +static void ComputeArcOutline(Tk_Canvas canvas, ArcItem *arcPtr); +static int HorizLineToArc(double x1, double x2, double y, double rx, double ry, - double start, double extent)); -static int VertLineToArc _ANSI_ARGS_((double x, double y1, + double start, double extent); +static int VertLineToArc(double x, double y1, double y2, double rx, double ry, - double start, double extent)); + double start, double extent); /* - * The structures below defines the arc item types by means of procedures - * that can be invoked by generic item code. + * The structures below defines the arc item types by means of procedures that + * can be invoked by generic item code. */ Tk_ItemType tkArcType = { @@ -260,23 +256,20 @@ Tk_ItemType tkArcType = { }; #ifndef PI -# define PI 3.14159265358979323846 +#define PI 3.14159265358979323846 #endif - /* *-------------------------------------------------------------- * * CreateArc -- * - * This procedure is invoked to create a new arc item in - * a canvas. + * This procedure is invoked to create a new arc item in a canvas. * * Results: - * A standard Tcl return value. If an error occurred in - * creating the item, then an error message is left in - * the interp's result; in this case itemPtr is - * left uninitialized, so it can be safely freed by the + * A standard Tcl return value. If an error occurred in creating the + * item, then an error message is left in the interp's result; in this + * case itemPtr is left uninitialized, so it can be safely freed by the * caller. * * Side effects: @@ -286,13 +279,13 @@ Tk_ItemType tkArcType = { */ static int -CreateArc(interp, canvas, itemPtr, objc, objv) - Tcl_Interp *interp; /* Interpreter for error reporting. */ - Tk_Canvas canvas; /* Canvas to hold new item. */ - Tk_Item *itemPtr; /* Record to hold new item; header - * has been initialized by caller. */ - int objc; /* Number of arguments in objv. */ - Tcl_Obj *CONST objv[]; /* Arguments describing arc. */ +CreateArc( + Tcl_Interp *interp, /* Interpreter for error reporting. */ + Tk_Canvas canvas, /* Canvas to hold new item. */ + Tk_Item *itemPtr, /* Record to hold new item; header has been + * initialized by caller. */ + int objc, /* Number of arguments in objv. */ + Tcl_Obj *CONST objv[]) /* Arguments describing arc. */ { ArcItem *arcPtr = (ArcItem *) itemPtr; int i; @@ -302,8 +295,8 @@ CreateArc(interp, canvas, itemPtr, objc, objv) } /* - * Carry out initialization that is needed in order to clean - * up after errors during the the remainder of this procedure. + * Carry out initialization that is needed in order to clean up after + * errors during the the remainder of this procedure. */ Tk_CreateOutline(&(arcPtr->outline)); @@ -329,6 +322,7 @@ CreateArc(interp, canvas, itemPtr, objc, objv) for (i = 1; i < objc; i++) { char *arg = Tcl_GetString(objv[i]); + if ((arg[0] == '-') && (arg[1] >= 'a') && (arg[1] <= 'z')) { break; } @@ -339,7 +333,8 @@ CreateArc(interp, canvas, itemPtr, objc, objv) if (ConfigureArc(interp, canvas, itemPtr, objc-i, objv+i, 0) == TCL_OK) { return TCL_OK; } - error: + + error: DeleteArc(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas))); return TCL_ERROR; } @@ -349,9 +344,8 @@ CreateArc(interp, canvas, itemPtr, objc, objv) * * ArcCoords -- * - * This procedure is invoked to process the "coords" widget - * command on arcs. See the user documentation for details - * on what it does. + * This procedure is invoked to process the "coords" widget command on + * arcs. See the user documentation for details on what it does. * * Results: * Returns TCL_OK or TCL_ERROR, and sets the interp's result. @@ -363,21 +357,20 @@ CreateArc(interp, canvas, itemPtr, objc, objv) */ static int -ArcCoords(interp, canvas, itemPtr, objc, objv) - Tcl_Interp *interp; /* Used for error reporting. */ - Tk_Canvas canvas; /* Canvas containing item. */ - Tk_Item *itemPtr; /* Item whose coordinates are to be - * read or modified. */ - int objc; /* Number of coordinates supplied in - * objv. */ - Tcl_Obj *CONST objv[]; /* Array of coordinates: x1, y1, - * x2, y2, ... */ +ArcCoords( + Tcl_Interp *interp, /* Used for error reporting. */ + Tk_Canvas canvas, /* Canvas containing item. */ + Tk_Item *itemPtr, /* Item whose coordinates are to be read or + * modified. */ + int objc, /* Number of coordinates supplied in objv. */ + Tcl_Obj *CONST objv[]) /* Array of coordinates: x1, y1, x2, y2, ... */ { ArcItem *arcPtr = (ArcItem *) itemPtr; if (objc == 0) { Tcl_Obj *obj = Tcl_NewObj(); Tcl_Obj *subobj = Tcl_NewDoubleObj(arcPtr->bbox[0]); + Tcl_ListObjAppendElement(interp, obj, subobj); subobj = Tcl_NewDoubleObj(arcPtr->bbox[1]); Tcl_ListObjAppendElement(interp, obj, subobj); @@ -393,7 +386,7 @@ ArcCoords(interp, canvas, itemPtr, objc, objv) return TCL_ERROR; } else if (objc != 4) { char buf[64 + TCL_INTEGER_SPACE]; - + sprintf(buf, "wrong # coordinates: expected 4, got %d", objc); Tcl_SetResult(interp, buf, TCL_VOLATILE); return TCL_ERROR; @@ -412,7 +405,7 @@ ArcCoords(interp, canvas, itemPtr, objc, objv) ComputeArcBbox(canvas, arcPtr); } else { char buf[64 + TCL_INTEGER_SPACE]; - + sprintf(buf, "wrong # coordinates: expected 0 or 4, got %d", objc); Tcl_SetResult(interp, buf, TCL_VOLATILE); return TCL_ERROR; @@ -425,28 +418,28 @@ ArcCoords(interp, canvas, itemPtr, objc, objv) * * ConfigureArc -- * - * This procedure is invoked to configure various aspects - * of a arc item, such as its outline and fill colors. + * This procedure is invoked to configure various aspects of a arc item, + * such as its outline and fill colors. * * Results: - * A standard Tcl result code. If an error occurs, then - * an error message is left in the interp's result. + * A standard Tcl result code. If an error occurs, then an error message + * is left in the interp's result. * * Side effects: - * Configuration information, such as colors and stipple - * patterns, may be set for itemPtr. + * Configuration information, such as colors and stipple patterns, may be + * set for itemPtr. * *-------------------------------------------------------------- */ static int -ConfigureArc(interp, canvas, itemPtr, objc, objv, flags) - Tcl_Interp *interp; /* Used for error reporting. */ - Tk_Canvas canvas; /* Canvas containing itemPtr. */ - Tk_Item *itemPtr; /* Arc item to reconfigure. */ - int objc; /* Number of elements in objv. */ - Tcl_Obj *CONST objv[]; /* Arguments describing things to configure. */ - int flags; /* Flags to pass to Tk_ConfigureWidget. */ +ConfigureArc( + Tcl_Interp *interp, /* Used for error reporting. */ + Tk_Canvas canvas, /* Canvas containing itemPtr. */ + Tk_Item *itemPtr, /* Arc item to reconfigure. */ + int objc, /* Number of elements in objv. */ + Tcl_Obj *CONST objv[], /* Arguments describing things to configure. */ + int flags) /* Flags to pass to Tk_ConfigureWidget. */ { ArcItem *arcPtr = (ArcItem *) itemPtr; XGCValues gcValues; @@ -468,8 +461,8 @@ ConfigureArc(interp, canvas, itemPtr, objc, objv, flags) state = itemPtr->state; /* - * A few of the options require additional processing, such as - * style and graphics contexts. + * A few of the options require additional processing, such as style and + * graphics contexts. */ if (arcPtr->outline.activeWidth > arcPtr->outline.width || @@ -508,8 +501,7 @@ ConfigureArc(interp, canvas, itemPtr, objc, objv, flags) i = (int) (arcPtr->extent/360.0); arcPtr->extent -= i*360.0; - mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr, - &(arcPtr->outline)); + mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr, &(arcPtr->outline)); if (mask) { gcValues.cap_style = CapButt; mask |= GCCapStyle; @@ -598,8 +590,8 @@ ConfigureArc(interp, canvas, itemPtr, objc, objv, flags) * * DeleteArc -- * - * This procedure is called to clean up the data structure - * associated with a arc item. + * This procedure is called to clean up the data structure associated + * with a arc item. * * Results: * None. @@ -611,11 +603,10 @@ ConfigureArc(interp, canvas, itemPtr, objc, objv, flags) */ static void -DeleteArc(canvas, itemPtr, display) - Tk_Canvas canvas; /* Info about overall canvas. */ - Tk_Item *itemPtr; /* Item that is being deleted. */ - Display *display; /* Display containing window for - * canvas. */ +DeleteArc( + Tk_Canvas canvas, /* Info about overall canvas. */ + Tk_Item *itemPtr, /* Item that is being deleted. */ + Display *display) /* Display containing window for canvas. */ { ArcItem *arcPtr = (ArcItem *) itemPtr; @@ -651,31 +642,29 @@ DeleteArc(canvas, itemPtr, display) * * ComputeArcBbox -- * - * This procedure is invoked to compute the bounding box of - * all the pixels that may be drawn as part of an arc. + * This procedure is invoked to compute the bounding box of all the + * pixels that may be drawn as part of an arc. * * Results: * None. * * Side effects: - * The fields x1, y1, x2, and y2 are updated in the header - * for itemPtr. + * The fields x1, y1, x2, and y2 are updated in the header for itemPtr. * *-------------------------------------------------------------- */ /* ARGSUSED */ static void -ComputeArcBbox(canvas, arcPtr) - Tk_Canvas canvas; /* Canvas that contains item. */ - ArcItem *arcPtr; /* Item whose bbox is to be - * recomputed. */ +ComputeArcBbox( + Tk_Canvas canvas, /* Canvas that contains item. */ + ArcItem *arcPtr) /* Item whose bbox is to be recomputed. */ { double tmp, center[2], point[2]; double width; Tk_State state = arcPtr->header.state; - if(state == TK_STATE_NULL) { + if (state == TK_STATE_NULL) { state = ((TkCanvas *)canvas)->canvas_state; } @@ -702,14 +691,14 @@ ComputeArcBbox(canvas, arcPtr) */ if (arcPtr->bbox[1] > arcPtr->bbox[3]) { - double tmp; - tmp = arcPtr->bbox[3]; + double tmp = arcPtr->bbox[3]; + arcPtr->bbox[3] = arcPtr->bbox[1]; arcPtr->bbox[1] = tmp; } if (arcPtr->bbox[0] > arcPtr->bbox[2]) { - double tmp; - tmp = arcPtr->bbox[2]; + double tmp = arcPtr->bbox[2]; + arcPtr->bbox[2] = arcPtr->bbox[0]; arcPtr->bbox[0] = tmp; } @@ -717,10 +706,10 @@ ComputeArcBbox(canvas, arcPtr) ComputeArcOutline(canvas,arcPtr); /* - * To compute the bounding box, start with the the bbox formed - * by the two endpoints of the arc. Then add in the center of - * the arc's oval (if relevant) and the 3-o'clock, 6-o'clock, - * 9-o'clock, and 12-o'clock positions, if they are relevant. + * To compute the bounding box, start with the the bbox formed by the two + * endpoints of the arc. Then add in the center of the arc's oval (if + * relevant) and the 3-o'clock, 6-o'clock, 9-o'clock, and 12-o'clock + * positions, if they are relevant. */ arcPtr->header.x1 = arcPtr->header.x2 = (int) arcPtr->center1[0]; @@ -770,8 +759,8 @@ ComputeArcBbox(canvas, arcPtr) } /* - * Lastly, expand by the width of the arc (if the arc's outline is - * being drawn) and add one extra pixel just for safety. + * Lastly, expand by the width of the arc (if the arc's outline is being + * drawn) and add one extra pixel just for safety. */ if (arcPtr->outline.gc == None) { @@ -790,28 +779,26 @@ ComputeArcBbox(canvas, arcPtr) * * DisplayArc -- * - * This procedure is invoked to draw an arc item in a given - * drawable. + * This procedure is invoked to draw an arc item in a given drawable. * * Results: * None. * * Side effects: - * ItemPtr is drawn in drawable using the transformation - * information in canvas. + * ItemPtr is drawn in drawable using the transformation information in + * canvas. * *-------------------------------------------------------------- */ static void -DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) - Tk_Canvas canvas; /* Canvas that contains item. */ - Tk_Item *itemPtr; /* Item to be displayed. */ - Display *display; /* Display on which to draw item. */ - Drawable drawable; /* Pixmap or window in which to draw - * item. */ - int x, y, width, height; /* Describes region of canvas that - * must be redisplayed (not used). */ +DisplayArc( + Tk_Canvas canvas, /* Canvas that contains item. */ + Tk_Item *itemPtr, /* Item to be displayed. */ + Display *display, /* Display on which to draw item. */ + Drawable drawable, /* Pixmap or window in which to draw item. */ + int x, int y, /* Describes region of canvas that must be */ + int width, int height) /* redisplayed (not used). */ { ArcItem *arcPtr = (ArcItem *) itemPtr; short x1, y1, x2, y2; @@ -820,7 +807,7 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) Tk_State state = itemPtr->state; Pixmap stipple; - if(state == TK_STATE_NULL) { + if (state == TK_STATE_NULL) { state = ((TkCanvas *)canvas)->canvas_state; } lineWidth = arcPtr->outline.width; @@ -839,7 +826,7 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) if (arcPtr->activeFillStipple != None) { stipple = arcPtr->activeFillStipple; } - } else if (state==TK_STATE_DISABLED) { + } else if (state == TK_STATE_DISABLED) { if (arcPtr->outline.disabledWidth > 0) { lineWidth = arcPtr->outline.disabledWidth; } @@ -852,8 +839,8 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) } /* - * Compute the screen coordinates of the bounding box for the item, - * plus integer values for the angles. + * Compute the screen coordinates of the bounding box for the item, plus + * integer values for the angles. */ Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[0], arcPtr->bbox[1], @@ -870,16 +857,18 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) extent = (int) ((64*arcPtr->extent) + 0.5); /* - * Display filled arc first (if wanted), then outline. If the extent - * is zero then don't invoke XFillArc or XDrawArc, since this causes - * some window servers to crash and should be a no-op anyway. + * Display filled arc first (if wanted), then outline. If the extent is + * zero then don't invoke XFillArc or XDrawArc, since this causes some + * window servers to crash and should be a no-op anyway. */ if ((arcPtr->fillGC != None) && (extent != 0)) { if (stipple != None) { - int w=0; int h=0; + int w = 0; + int h = 0; Tk_TSOffset *tsoffset = &arcPtr->tsoffset; int flags = tsoffset->flags; + if (flags & (TK_OFFSET_CENTER|TK_OFFSET_MIDDLE)) { Tk_SizeOfBitmap(display, stipple, &w, &h); if (flags & TK_OFFSET_CENTER) { @@ -916,10 +905,10 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) } /* - * If the outline width is very thin, don't use polygons to draw - * the linear parts of the outline (this often results in nothing - * being displayed); just draw lines instead. The same is done if - * the outline is dashed, because then polygons don't work. + * If the outline width is very thin, don't use polygons to draw the + * linear parts of the outline (this often results in nothing being + * displayed); just draw lines instead. The same is done if the + * outline is dashed, because then polygons don't work. */ if (lineWidth < 1.5 || dashnumber != 0) { @@ -950,8 +939,8 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) TkFillPolygon(canvas, arcPtr->outlinePtr, PIE_OUTLINE1_PTS, display, drawable, arcPtr->outline.gc, None); TkFillPolygon(canvas, arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, - PIE_OUTLINE2_PTS, display, drawable, arcPtr->outline.gc, - None); + PIE_OUTLINE2_PTS, display, drawable, + arcPtr->outline.gc, None); } } @@ -964,17 +953,16 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) * * ArcToPoint -- * - * Computes the distance from a given point to a given - * arc, in canvas units. + * Computes the distance from a given point to a given arc, in canvas + * units. * * Results: - * The return value is 0 if the point whose x and y coordinates - * are coordPtr[0] and coordPtr[1] is inside the arc. If the - * point isn't inside the arc then the return value is the - * distance from the point to the arc. If itemPtr is filled, - * then anywhere in the interior is considered "inside"; if - * itemPtr isn't filled, then "inside" means only the area - * occupied by the outline. + * The return value is 0 if the point whose x and y coordinates are + * coordPtr[0] and coordPtr[1] is inside the arc. If the point isn't + * inside the arc then the return value is the distance from the point to + * the arc. If itemPtr is filled, then anywhere in the interior is + * considered "inside"; if itemPtr isn't filled, then "inside" means only + * the area occupied by the outline. * * Side effects: * None. @@ -984,10 +972,10 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height) /* ARGSUSED */ static double -ArcToPoint(canvas, itemPtr, pointPtr) - Tk_Canvas canvas; /* Canvas containing item. */ - Tk_Item *itemPtr; /* Item to check against point. */ - double *pointPtr; /* Pointer to x and y coordinates. */ +ArcToPoint( + Tk_Canvas canvas, /* Canvas containing item. */ + Tk_Item *itemPtr, /* Item to check against point. */ + double *pointPtr) /* Pointer to x and y coordinates. */ { ArcItem *arcPtr = (ArcItem *) itemPtr; double vertex[2], pointAngle, diff, dist, newDist; @@ -995,7 +983,7 @@ ArcToPoint(canvas, itemPtr, pointPtr) int filled, angleInRange; Tk_State state = itemPtr->state; - if(state == TK_STATE_NULL) { + if (state == TK_STATE_NULL) { state = ((TkCanvas *)canvas)->canvas_state; } @@ -1011,10 +999,9 @@ ArcToPoint(canvas, itemPtr, pointPtr) } /* - * See if the point is within the angular range of the arc. - * Remember, X angles are backwards from the way we'd normally - * think of them. Also, compensate for any eccentricity of - * the oval. + * See if the point is within the angular range of the arc. Remember, X + * angles are backwards from the way we'd normally think of them. Also, + * compensate for any eccentricity of the oval. */ vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; @@ -1041,14 +1028,13 @@ ArcToPoint(canvas, itemPtr, pointPtr) ((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent)); /* - * Now perform different tests depending on what kind of arc - * we're dealing with. + * Now perform different tests depending on what kind of arc we're dealing + * with. */ if (arcPtr->style == ARC_STYLE) { if (angleInRange) { - return TkOvalToPoint(arcPtr->bbox, width, - 0, pointPtr); + return TkOvalToPoint(arcPtr->bbox, width, 0, pointPtr); } dist = hypot(pointPtr[0] - arcPtr->center1[0], pointPtr[1] - arcPtr->center1[1]); @@ -1074,7 +1060,7 @@ ArcToPoint(canvas, itemPtr, pointPtr) dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS, pointPtr); newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, - PIE_OUTLINE2_PTS, pointPtr); + PIE_OUTLINE2_PTS, pointPtr); } else { dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr); newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr); @@ -1092,17 +1078,16 @@ ArcToPoint(canvas, itemPtr, pointPtr) } /* - * This is a chord-style arc. We have to deal specially with the - * triangular piece that represents the difference between a - * chord-style arc and a pie-slice arc (for small angles this piece - * is excluded here where it would be included for pie slices; - * for large angles the piece is included here but would be - * excluded for pie slices). + * This is a chord-style arc. We have to deal specially with the + * triangular piece that represents the difference between a chord-style + * arc and a pie-slice arc (for small angles this piece is excluded here + * where it would be included for pie slices; for large angles the piece + * is included here but would be excluded for pie slices). */ if (width > 1.0) { dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS, - pointPtr); + pointPtr); } else { dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr); } @@ -1136,14 +1121,13 @@ ArcToPoint(canvas, itemPtr, pointPtr) * * ArcToArea -- * - * This procedure is called to determine whether an item - * lies entirely inside, entirely outside, or overlapping - * a given area. + * This procedure is called to determine whether an item lies entirely + * inside, entirely outside, or overlapping a given area. * * Results: - * -1 is returned if the item is entirely outside the area - * given by rectPtr, 0 if it overlaps, and 1 if it is entirely - * inside the given area. + * -1 is returned if the item is entirely outside the area given by + * rectPtr, 0 if it overlaps, and 1 if it is entirely inside the given + * area. * * Side effects: * None. @@ -1153,26 +1137,25 @@ ArcToPoint(canvas, itemPtr, pointPtr) /* ARGSUSED */ static int -ArcToArea(canvas, itemPtr, rectPtr) - Tk_Canvas canvas; /* Canvas containing item. */ - Tk_Item *itemPtr; /* Item to check against arc. */ - double *rectPtr; /* Pointer to array of four coordinates - * (x1, y1, x2, y2) describing rectangular - * area. */ +ArcToArea( + Tk_Canvas canvas, /* Canvas containing item. */ + Tk_Item *itemPtr, /* Item to check against arc. */ + double *rectPtr) /* Pointer to array of four coordinates (x1, + * y1, x2, y2) describing rectangular area. */ { ArcItem *arcPtr = (ArcItem *) itemPtr; - double rx, ry; /* Radii for transformed oval: these define - * an oval centered at the origin. */ - double tRect[4]; /* Transformed version of x1, y1, x2, y2, - * for coord. system where arc is centered - * on the origin. */ + double rx, ry; /* Radii for transformed oval: these define an + * oval centered at the origin. */ + double tRect[4]; /* Transformed version of x1, y1, x2, y2, for + * coord. system where arc is centered on the + * origin. */ double center[2], width, angle, tmp; double points[20], *pointPtr; int numPoints, filled; int inside; /* Non-zero means every test so far suggests - * that arc is inside rectangle. 0 means - * every test so far shows arc to be outside - * of rectangle. */ + * that arc is inside rectangle. 0 means every + * test so far shows arc to be outside of + * rectangle. */ int newInside; Tk_State state = itemPtr->state; @@ -1184,7 +1167,7 @@ ArcToArea(canvas, itemPtr, rectPtr) if (arcPtr->outline.activeWidth>width) { width = (double) arcPtr->outline.activeWidth; } - } else if (state==TK_STATE_DISABLED) { + } else if (state == TK_STATE_DISABLED) { if (arcPtr->outline.disabledWidth>0) { width = (double) arcPtr->outline.disabledWidth; } @@ -1200,8 +1183,8 @@ ArcToArea(canvas, itemPtr, rectPtr) } /* - * Transform both the arc and the rectangle so that the arc's oval - * is centered on the origin. + * Transform both the arc and the rectangle so that the arc's oval is + * centered on the origin. */ center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0; @@ -1214,17 +1197,16 @@ ArcToArea(canvas, itemPtr, rectPtr) ry = arcPtr->bbox[3] - center[1] + width/2.0; /* - * Find the extreme points of the arc and see whether these are all - * inside the rectangle (in which case we're done), partly in and - * partly out (in which case we're done), or all outside (in which - * case we have more work to do). The extreme points include the - * following, which are checked in order: + * Find the extreme points of the arc and see whether these are all inside + * the rectangle (in which case we're done), partly in and partly out (in + * which case we're done), or all outside (in which case we have more work + * to do). The extreme points include the following, which are checked in + * order: * - * 1. The outside points of the arc, corresponding to start and - * extent. + * 1. The outside points of the arc, corresponding to start and extent. * 2. The center of the arc (but only in pie-slice mode). - * 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc - * includes those angles). + * 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc includes + * those angles). */ pointPtr = points; @@ -1285,8 +1267,8 @@ ArcToArea(canvas, itemPtr, rectPtr) } /* - * Now that we've located the extreme points, loop through them all - * to see which are inside the rectangle. + * Now that we've located the extreme points, loop through them all to see + * which are inside the rectangle. */ inside = (points[0] > tRect[0]) && (points[0] < tRect[2]) @@ -1304,17 +1286,17 @@ ArcToArea(canvas, itemPtr, rectPtr) } /* - * So far, oval appears to be outside rectangle, but can't yet tell - * for sure. Next, test each of the four sides of the rectangle - * against the bounding region for the arc. If any intersections - * are found, then return "overlapping". First, test against the - * polygon(s) forming the sides of a chord or pie-slice. + * So far, oval appears to be outside rectangle, but can't yet tell for + * sure. Next, test each of the four sides of the rectangle against the + * bounding region for the arc. If any intersections are found, then + * return "overlapping". First, test against the polygon(s) forming the + * sides of a chord or pie-slice. */ if (arcPtr->style == PIESLICE_STYLE) { if (width >= 1.0) { if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS, - rectPtr) != -1) { + rectPtr) != -1) { return 0; } if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS, @@ -1342,9 +1324,9 @@ ArcToArea(canvas, itemPtr, rectPtr) } /* - * Next check for overlap between each of the four sides and the - * outer perimiter of the arc. If the arc isn't filled, then also - * check the inner perimeter of the arc. + * Next check for overlap between each of the four sides and the outer + * perimiter of the arc. If the arc isn't filled, then also check the + * inner perimeter of the arc. */ if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start, @@ -1373,11 +1355,11 @@ ArcToArea(canvas, itemPtr, rectPtr) } /* - * The arc still appears to be totally disjoint from the rectangle, - * but it's also possible that the rectangle is totally inside the arc. - * Do one last check, which is to check one point of the rectangle - * to see if it's inside the arc. If it is, we've got overlap. If - * it isn't, the arc's really outside the rectangle. + * The arc still appears to be totally disjoint from the rectangle, but + * it's also possible that the rectangle is totally inside the arc. Do one + * last check, which is to check one point of the rectangle to see if it's + * inside the arc. If it is, we've got overlap. If it isn't, the arc's + * really outside the rectangle. */ if (ArcToPoint(canvas, itemPtr, rectPtr) == 0.0) { @@ -1397,9 +1379,8 @@ ArcToArea(canvas, itemPtr, rectPtr) * None. * * Side effects: - * The arc referred to by itemPtr is rescaled so that the - * following transformation is applied to all point - * coordinates: + * The arc referred to by itemPtr is rescaled so that the following + * transformation is applied to all point coordinates: * x' = originX + scaleX*(x-originX) * y' = originY + scaleY*(y-originY) * @@ -1407,12 +1388,13 @@ ArcToArea(canvas, itemPtr, rectPtr) */ static void -ScaleArc(canvas, itemPtr, originX, originY, scaleX, scaleY) - Tk_Canvas canvas; /* Canvas containing arc. */ - Tk_Item *itemPtr; /* Arc to be scaled. */ - double originX, originY; /* Origin about which to scale rect. */ - double scaleX; /* Amount to scale in X direction. */ - double scaleY; /* Amount to scale in Y direction. */ +ScaleArc( + Tk_Canvas canvas, /* Canvas containing arc. */ + Tk_Item *itemPtr, /* Arc to be scaled. */ + double originX, /* Origin about which to scale rect. */ + double originY, + double scaleX, /* Amount to scale in X direction. */ + double scaleY) /* Amount to scale in Y direction. */ { ArcItem *arcPtr = (ArcItem *) itemPtr; @@ -1434,19 +1416,18 @@ ScaleArc(canvas, itemPtr, originX, originY, scaleX, scaleY) * None. * * Side effects: - * The position of the arc is offset by (xDelta, yDelta), and - * the bounding box is updated in the generic part of the item - * structure. + * The position of the arc is offset by (xDelta, yDelta), and the + * bounding box is updated in the generic part of the item structure. * *-------------------------------------------------------------- */ static void -TranslateArc(canvas, itemPtr, deltaX, deltaY) - Tk_Canvas canvas; /* Canvas containing item. */ - Tk_Item *itemPtr; /* Item that is being moved. */ - double deltaX, deltaY; /* Amount by which item is to be - * moved. */ +TranslateArc( + Tk_Canvas canvas, /* Canvas containing item. */ + Tk_Item *itemPtr, /* Item that is being moved. */ + double deltaX, /* Amount by which item is to be moved. */ + double deltaY) { ArcItem *arcPtr = (ArcItem *) itemPtr; @@ -1462,26 +1443,25 @@ TranslateArc(canvas, itemPtr, deltaX, deltaY) * * ComputeArcOutline -- * - * This procedure creates a polygon describing everything in - * the outline for an arc except what's in the curved part. - * For a "pie slice" arc this is a V-shaped chunk, and for - * a "chord" arc this is a linear chunk (with cutaway corners). - * For "arc" arcs, this stuff isn't relevant. + * This procedure creates a polygon describing everything in the outline + * for an arc except what's in the curved part. For a "pie slice" arc + * this is a V-shaped chunk, and for a "chord" arc this is a linear chunk + * (with cutaway corners). For "arc" arcs, this stuff isn't relevant. * * Results: * None. * * Side effects: - * The information at arcPtr->outlinePtr gets modified, and - * storage for arcPtr->outlinePtr may be allocated or freed. + * The information at arcPtr->outlinePtr gets modified, and storage for + * arcPtr->outlinePtr may be allocated or freed. * *-------------------------------------------------------------- */ static void -ComputeArcOutline(canvas,arcPtr) - Tk_Canvas canvas; /* Information about overall canvas. */ - ArcItem *arcPtr; /* Information about arc. */ +ComputeArcOutline( + Tk_Canvas canvas, /* Information about overall canvas. */ + ArcItem *arcPtr) /* Information about arc. */ { double sin1, cos1, sin2, cos2, angle, width, halfWidth; double boxWidth, boxHeight; @@ -1489,10 +1469,9 @@ ComputeArcOutline(canvas,arcPtr) double *outlinePtr; Tk_State state = arcPtr->header.state; - /* - * Make sure that the outlinePtr array is large enough to hold - * either a chord or pie-slice outline. + * Make sure that the outlinePtr array is large enough to hold either a + * chord or pie-slice outline. */ if (arcPtr->numOutlinePoints == 0) { @@ -1502,14 +1481,13 @@ ComputeArcOutline(canvas,arcPtr) } outlinePtr = arcPtr->outlinePtr; - if(state == TK_STATE_NULL) { + if (state == TK_STATE_NULL) { state = ((TkCanvas *)canvas)->canvas_state; } /* - * First compute the two points that lie at the centers of - * the ends of the curved arc segment, which are marked with - * X's in the figure below: + * First compute the two points that lie at the centers of the ends of the + * curved arc segment, which are marked with X's in the figure below: * * * * * * @@ -1519,13 +1497,13 @@ ComputeArcOutline(canvas,arcPtr) * * * * * * X * * X * - * The code is tricky because the arc can be ovular in shape. - * It computes the position for a unit circle, and then - * scales to fit the shape of the arc's bounding box. + * The code is tricky because the arc can be ovular in shape. It computes + * the position for a unit circle, and then scales to fit the shape of the + * arc's bounding box. * - * Also, watch out because angles go counter-clockwise like you - * might expect, but the y-coordinate system is inverted. To - * handle this, just negate the angles in all the computations. + * Also, watch out because angles go counter-clockwise like you might + * expect, but the y-coordinate system is inverted. To handle this, just + * negate the angles in all the computations. */ boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0]; @@ -1544,8 +1522,8 @@ ComputeArcOutline(canvas,arcPtr) arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0; /* - * Next compute the "outermost corners" of the arc, which are - * marked with X's in the figure below: + * Next compute the "outermost corners" of the arc, which are marked with + * X's in the figure below: * * * * * * * * @@ -1554,12 +1532,11 @@ ComputeArcOutline(canvas,arcPtr) * X * * X * * * * - * The code below is tricky because it has to handle eccentricity - * in the shape of the oval. The key in the code below is to - * realize that the slope of the line from arcPtr->center1 to corner1 - * is (boxWidth*sin1)/(boxHeight*cos1), and similarly for arcPtr->center2 - * and corner2. These formulas can be computed from the formula for - * the oval. + * The code below is tricky because it has to handle eccentricity in the + * shape of the oval. The key in the code below is to realize that the + * slope of the line from arcPtr->center1 to corner1 is (boxWidth*sin1) + * divided by (boxHeight*cos1), and similarly for arcPtr->center2 and + * corner2. These formulas can be computed from the formula for the oval. */ width = arcPtr->outline.width; @@ -1567,7 +1544,7 @@ ComputeArcOutline(canvas,arcPtr) if (arcPtr->outline.activeWidth>arcPtr->outline.width) { width = arcPtr->outline.activeWidth; } - } else if (state==TK_STATE_DISABLED) { + } else if (state == TK_STATE_DISABLED) { if (arcPtr->outline.disabledWidth>arcPtr->outline.width) { width = arcPtr->outline.disabledWidth; } @@ -1590,10 +1567,10 @@ ComputeArcOutline(canvas,arcPtr) corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth; /* - * For a chord outline, generate a six-sided polygon with three - * points for each end of the chord. The first and third points - * for each end are butt points generated on either side of the - * center point. The second point is the corner point. + * For a chord outline, generate a six-sided polygon with three points for + * each end of the chord. The first and third points for each end are butt + * points generated on either side of the center point. The second point + * is the corner point. */ if (arcPtr->style == CHORD_STYLE) { @@ -1613,10 +1590,9 @@ ComputeArcOutline(canvas,arcPtr) - arcPtr->center1[1]; } else if (arcPtr->style == PIESLICE_STYLE) { /* - * For pie slices, generate two polygons, one for each side - * of the pie slice. The first arm has a shape like this, - * where the center of the oval is X, arcPtr->center1 is at Y, and - * corner1 is at Z: + * For pie slices, generate two polygons, one for each side of the pie + * slice. The first arm has a shape like this, where the center of the + * oval is X, arcPtr->center1 is at Y, and corner1 is at Z: * * _____________________ * | \ @@ -1624,7 +1600,6 @@ ComputeArcOutline(canvas,arcPtr) * X Y Z * | / * |_____________________/ - * */ TkGetButtPoints(arcPtr->center1, vertex, width, 0, @@ -1641,7 +1616,6 @@ ComputeArcOutline(canvas,arcPtr) /* * The second arm has a shape like this: * - * * ______________________ * / \ * / \ @@ -1650,10 +1624,10 @@ ComputeArcOutline(canvas,arcPtr) * \______________________/ * * Similar to above X is the center of the oval/circle, Y is - * arcPtr->center2, and Z is corner2. The extra jog out to the left - * of X is needed in or to produce a butted joint with the - * first arm; the corner to the right of X is one of the - * first two points of the first arm, depending on extent. + * arcPtr->center2, and Z is corner2. The extra jog out to the left of + * X is needed in or to produce a butted joint with the first arm; the + * corner to the right of X is one of the first two points of the + * first arm, depending on extent. */ TkGetButtPoints(arcPtr->center2, vertex, width, 0, @@ -1682,15 +1656,13 @@ ComputeArcOutline(canvas,arcPtr) * * HorizLineToArc -- * - * Determines whether a horizontal line segment intersects - * a given arc. + * Determines whether a horizontal line segment intersects a given arc. * * Results: - * The return value is 1 if the given line intersects the - * infinitely-thin arc section defined by rx, ry, start, - * and extent, and 0 otherwise. Only the perimeter of the - * arc is checked: interior areas (e.g. pie-slice or chord) - * are not checked. + * The return value is 1 if the given line intersects the infinitely-thin + * arc section defined by rx, ry, start, and extent, and 0 otherwise. + * Only the perimeter of the arc is checked: interior areas (e.g. chord + * or pie-slice) are not checked. * * Side effects: * None. @@ -1699,25 +1671,24 @@ ComputeArcOutline(canvas,arcPtr) */ static int -HorizLineToArc(x1, x2, y, rx, ry, start, extent) - double x1, x2; /* X-coords of endpoints of line segment. - * X1 must be <= x2. */ - double y; /* Y-coordinate of line segment. */ - double rx, ry; /* These x- and y-radii define an oval +HorizLineToArc( + double x1, double x2, /* X-coords of endpoints of line segment. X1 + * must be <= x2. */ + double y, /* Y-coordinate of line segment. */ + double rx, double ry, /* These x- and y-radii define an oval * centered at the origin. */ - double start, extent; /* Angles that define extent of arc, in - * the standard fashion for this module. */ + double start, double extent)/* Angles that define extent of arc, in the + * standard fashion for this module. */ { - double tmp; + double tmp, x; double tx, ty; /* Coordinates of intersection point in * transformed coordinate system. */ - double x; /* - * Compute the x-coordinate of one possible intersection point - * between the arc and the line. Use a transformed coordinate - * system where the oval is a unit circle centered at the origin. - * Then scale back to get actual x-coordinate. + * Compute the x-coordinate of one possible intersection point between the + * arc and the line. Use a transformed coordinate system where the oval is + * a unit circle centered at the origin. Then scale back to get actual + * x-coordinate. */ ty = y/ry; @@ -1746,15 +1717,13 @@ HorizLineToArc(x1, x2, y, rx, ry, start, extent) * * VertLineToArc -- * - * Determines whether a vertical line segment intersects - * a given arc. + * Determines whether a vertical line segment intersects a given arc. * * Results: - * The return value is 1 if the given line intersects the - * infinitely-thin arc section defined by rx, ry, start, - * and extent, and 0 otherwise. Only the perimeter of the - * arc is checked: interior areas (e.g. pie-slice or chord) - * are not checked. + * The return value is 1 if the given line intersects the infinitely-thin + * arc section defined by rx, ry, start, and extent, and 0 otherwise. + * Only the perimeter of the arc is checked: interior areas (e.g. chord + * or pie-slice) are not checked. * * Side effects: * None. @@ -1763,25 +1732,24 @@ HorizLineToArc(x1, x2, y, rx, ry, start, extent) */ static int -VertLineToArc(x, y1, y2, rx, ry, start, extent) - double x; /* X-coordinate of line segment. */ - double y1, y2; /* Y-coords of endpoints of line segment. - * Y1 must be <= y2. */ - double rx, ry; /* These x- and y-radii define an oval +VertLineToArc( + double x, /* X-coordinate of line segment. */ + double y1, double y2, /* Y-coords of endpoints of line segment. Y1 + * must be <= y2. */ + double rx, double ry, /* These x- and y-radii define an oval * centered at the origin. */ - double start, extent; /* Angles that define extent of arc, in - * the standard fashion for this module. */ + double start, double extent)/* Angles that define extent of arc, in the + * standard fashion for this module. */ { - double tmp; + double tmp, y; double tx, ty; /* Coordinates of intersection point in * transformed coordinate system. */ - double y; /* - * Compute the y-coordinate of one possible intersection point - * between the arc and the line. Use a transformed coordinate - * system where the oval is a unit circle centered at the origin. - * Then scale back to get actual y-coordinate. + * Compute the y-coordinate of one possible intersection point between the + * arc and the line. Use a transformed coordinate system where the oval is + * a unit circle centered at the origin. Then scale back to get actual + * y-coordinate. */ tx = x/rx; @@ -1810,15 +1778,14 @@ VertLineToArc(x, y1, y2, rx, ry, start, extent) * * AngleInRange -- * - * Determine whether the angle from the origin to a given - * point is within a given range. + * Determine whether the angle from the origin to a given point is within + * a given range. * * Results: - * The return value is 1 if the angle from (0,0) to (x,y) - * is in the range given by start and extent, where angles - * are interpreted in the standard way for ovals (meaning - * backwards from normal interpretation). Otherwise the - * return value is 0. + * The return value is 1 if the angle from (0,0) to (x,y) is in the range + * given by start and extent, where angles are interpreted in the + * standard way for ovals (meaning backwards from normal interpretation). + * Otherwise the return value is 0. * * Side effects: * None. @@ -1827,11 +1794,11 @@ VertLineToArc(x, y1, y2, rx, ry, start, extent) */ static int -AngleInRange(x, y, start, extent) - double x, y; /* Coordinate of point; angle measured - * from origin to here, relative to x-axis. */ - double start; /* First angle, degrees, >=0, <=360. */ - double extent; /* Size of arc in degrees >=-360, <=360. */ +AngleInRange( + double x, double y, /* Coordinate of point; angle measured from + * origin to here, relative to x-axis. */ + double start, /* First angle, degrees, >=0, <=360. */ + double extent) /* Size of arc in degrees >=-360, <=360. */ { double diff; @@ -1857,15 +1824,13 @@ AngleInRange(x, y, start, extent) * * ArcToPostscript -- * - * This procedure is called to generate Postscript for - * arc items. + * This procedure is called to generate Postscript for arc items. * * Results: - * The return value is a standard Tcl result. If an error - * occurs in generating Postscript then an error message is - * left in the interp's result, replacing whatever used - * to be there. If no error occurs, then Postscript for the - * item is appended to the result. + * The return value is a standard Tcl result. If an error occurs in + * generating Postscript then an error message is left in the interp's + * result, replacing whatever used to be there. If no error occurs, then + * Postscript for the item is appended to the result. * * Side effects: * None. @@ -1874,15 +1839,13 @@ AngleInRange(x, y, start, extent) */ static int -ArcToPostscript(interp, canvas, itemPtr, prepass) - Tcl_Interp *interp; /* Leave Postscript or error message - * here. */ - Tk_Canvas canvas; /* Information about overall canvas. */ - Tk_Item *itemPtr; /* Item for which Postscript is - * wanted. */ - int prepass; /* 1 means this is a prepass to - * collect font information; 0 means - * final Postscript is being created. */ +ArcToPostscript( + Tcl_Interp *interp, /* Leave Postscript or error message here. */ + Tk_Canvas canvas, /* Information about overall canvas. */ + Tk_Item *itemPtr, /* Item for which Postscript is wanted. */ + int prepass) /* 1 means this is a prepass to collect font + * information; 0 means final Postscript is + * being created. */ { ArcItem *arcPtr = (ArcItem *) itemPtr; char buffer[400]; @@ -1902,7 +1865,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass) ang2 = arcPtr->start; } - if(state == TK_STATE_NULL) { + if (state == TK_STATE_NULL) { state = ((TkCanvas *)canvas)->canvas_state; } color = arcPtr->outline.color; @@ -1922,7 +1885,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass) if (arcPtr->activeFillStipple!=None) { fillStipple = arcPtr->activeFillStipple; } - } else if (state==TK_STATE_DISABLED) { + } else if (state == TK_STATE_DISABLED) { if (arcPtr->outline.disabledColor!=NULL) { color = arcPtr->outline.disabledColor; } @@ -1938,8 +1901,8 @@ ArcToPostscript(interp, canvas, itemPtr, prepass) } /* - * If the arc is filled, output Postscript for the interior region - * of the arc. + * If the arc is filled, output Postscript for the interior region of the + * arc. */ if (arcPtr->fillGC != None) { @@ -1958,11 +1921,10 @@ ArcToPostscript(interp, canvas, itemPtr, prepass) Tcl_AppendResult(interp, buffer, (char *) NULL); if (Tk_CanvasPsColor(interp, canvas, fillColor) != TCL_OK) { return TCL_ERROR; - }; + } if (fillStipple != None) { Tcl_AppendResult(interp, "clip ", (char *) NULL); - if (Tk_CanvasPsStipple(interp, canvas, fillStipple) - != TCL_OK) { + if (Tk_CanvasPsStipple(interp, canvas, fillStipple) != TCL_OK) { return TCL_ERROR; } if (arcPtr->outline.gc != None) { @@ -1985,8 +1947,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass) sprintf(buffer, "0 0 1 %.15g %.15g", ang1, ang2); Tcl_AppendResult(interp, buffer, " arc\nsetmatrix\n0 setlinecap\n", (char *) NULL); - if (Tk_CanvasPsOutline(canvas, itemPtr, - &(arcPtr->outline)) != TCL_OK) { + if (Tk_CanvasPsOutline(canvas, itemPtr, &(arcPtr->outline)) != TCL_OK){ return TCL_ERROR; } if (arcPtr->style != ARC_STYLE) { @@ -2003,8 +1964,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass) } if (stipple != None) { Tcl_AppendResult(interp, "clip ", (char *) NULL); - if (Tk_CanvasPsStipple(interp, canvas, - stipple) != TCL_OK) { + if (Tk_CanvasPsStipple(interp, canvas, stipple) != TCL_OK){ return TCL_ERROR; } } else { @@ -2021,8 +1981,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass) } if (stipple != None) { Tcl_AppendResult(interp, "clip ", (char *) NULL); - if (Tk_CanvasPsStipple(interp, canvas, - stipple) != TCL_OK) { + if (Tk_CanvasPsStipple(interp, canvas, stipple) != TCL_OK) { return TCL_ERROR; } } else { @@ -2039,34 +1998,34 @@ ArcToPostscript(interp, canvas, itemPtr, prepass) * * StyleParseProc -- * - * This procedure is invoked during option processing to handle - * the "-style" option. + * This procedure is invoked during option processing to handle the + * "-style" option. * * Results: * A standard Tcl return value. * * Side effects: - * The state for a given item gets replaced by the state - * indicated in the value argument. + * The state for a given item gets replaced by the state indicated in the + * value argument. * *-------------------------------------------------------------- */ static int -StyleParseProc(clientData, interp, tkwin, value, widgRec, offset) - ClientData clientData; /* some flags.*/ - Tcl_Interp *interp; /* Used for reporting errors. */ - Tk_Window tkwin; /* Window containing canvas widget. */ - CONST char *value; /* Value of option. */ - char *widgRec; /* Pointer to record for item. */ - int offset; /* Offset into item. */ +StyleParseProc( + ClientData clientData, /* some flags.*/ + Tcl_Interp *interp, /* Used for reporting errors. */ + Tk_Window tkwin, /* Window containing canvas widget. */ + CONST char *value, /* Value of option. */ + char *widgRec, /* Pointer to record for item. */ + int offset) /* Offset into item. */ { int c; size_t length; register Style *stylePtr = (Style *) (widgRec + offset); - if(value == NULL || *value == 0) { + if (value == NULL || *value == 0) { *stylePtr = PIESLICE_STYLE; return TCL_OK; } @@ -2087,9 +2046,8 @@ StyleParseProc(clientData, interp, tkwin, value, widgRec, offset) return TCL_OK; } - Tcl_AppendResult(interp, "bad -style option \"", - value, "\": must be arc, chord, or pieslice", - (char *) NULL); + Tcl_AppendResult(interp, "bad -style option \"", value, + "\": must be arc, chord, or pieslice", (char *) NULL); *stylePtr = PIESLICE_STYLE; return TCL_ERROR; } @@ -2099,16 +2057,15 @@ StyleParseProc(clientData, interp, tkwin, value, widgRec, offset) * * StylePrintProc -- * - * This procedure is invoked by the Tk configuration code - * to produce a printable string for the "-style" - * configuration option. + * This procedure is invoked by the Tk configuration code to produce a + * printable string for the "-style" configuration option. * * Results: - * The return value is a string describing the state for - * the item referred to by "widgRec". In addition, *freeProcPtr - * is filled in with the address of a procedure to call to free - * the result string when it's no longer needed (or NULL to - * indicate that the string doesn't need to be freed). + * The return value is a string describing the state for the item + * referred to by "widgRec". In addition, *freeProcPtr is filled in with + * the address of a procedure to call to free the result string when it's + * no longer needed (or NULL to indicate that the string doesn't need to + * be freed). * * Side effects: * None. @@ -2117,22 +2074,30 @@ StyleParseProc(clientData, interp, tkwin, value, widgRec, offset) */ static char * -StylePrintProc(clientData, tkwin, widgRec, offset, freeProcPtr) - ClientData clientData; /* Ignored. */ - Tk_Window tkwin; /* Ignored. */ - char *widgRec; /* Pointer to record for item. */ - int offset; /* Offset into item. */ - Tcl_FreeProc **freeProcPtr; /* Pointer to variable to fill in with - * information about how to reclaim - * storage for return string. */ +StylePrintProc( + ClientData clientData, /* Ignored. */ + Tk_Window tkwin, /* Ignored. */ + char *widgRec, /* Pointer to record for item. */ + int offset, /* Offset into item. */ + Tcl_FreeProc **freeProcPtr) /* Pointer to variable to fill in with + * information about how to reclaim storage + * for return string. */ { register Style *stylePtr = (Style *) (widgRec + offset); - if (*stylePtr==ARC_STYLE) { + if (*stylePtr == ARC_STYLE) { return "arc"; - } else if (*stylePtr==CHORD_STYLE) { + } else if (*stylePtr == CHORD_STYLE) { return "chord"; } else { return "pieslice"; } } + +/* + * Local Variables: + * mode: c + * c-basic-offset: 4 + * fill-column: 78 + * End: + */ |