summaryrefslogtreecommitdiffstats
path: root/generic
diff options
context:
space:
mode:
authordkf <donal.k.fellows@manchester.ac.uk>2005-10-17 21:24:36 (GMT)
committerdkf <donal.k.fellows@manchester.ac.uk>2005-10-17 21:24:36 (GMT)
commit0c7095d396b9e8589afec59832664f7ea98a362a (patch)
tree8513bf6d895e7a5115bee1b2567540fa259f6489 /generic
parent81302f53f5690c665eeada66bb56e2cd2668b4df (diff)
downloadtk-0c7095d396b9e8589afec59832664f7ea98a362a.zip
tk-0c7095d396b9e8589afec59832664f7ea98a362a.tar.gz
tk-0c7095d396b9e8589afec59832664f7ea98a362a.tar.bz2
Format for style and remove non-ANSI declarations
Diffstat (limited to 'generic')
-rw-r--r--generic/tkCanvArc.c807
1 files changed, 386 insertions, 421 deletions
diff --git a/generic/tkCanvArc.c b/generic/tkCanvArc.c
index 276a49a..39b5266 100644
--- a/generic/tkCanvArc.c
+++ b/generic/tkCanvArc.c
@@ -1,4 +1,4 @@
-/*
+/*
* tkCanvArc.c --
*
* This file implements arc items for canvas widgets.
@@ -6,16 +6,17 @@
* Copyright (c) 1992-1994 The Regents of the University of California.
* Copyright (c) 1994-1997 Sun Microsystems, Inc.
*
- * See the file "license.terms" for information on usage and redistribution
- * of this file, and for a DISCLAIMER OF ALL WARRANTIES.
+ * See the file "license.terms" for information on usage and redistribution of
+ * this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
- * RCS: @(#) $Id: tkCanvArc.c,v 1.12 2004/01/13 02:06:00 davygrvy Exp $
+ * RCS: @(#) $Id: tkCanvArc.c,v 1.13 2005/10/17 21:24:36 dkf Exp $
*/
#include <stdio.h>
#include "tkPort.h"
#include "tkInt.h"
#include "tkCanvas.h"
+
/*
* The structure below defines the record for each arc item.
*/
@@ -24,41 +25,42 @@ typedef enum {
PIESLICE_STYLE, CHORD_STYLE, ARC_STYLE
} Style;
-typedef struct ArcItem {
+typedef struct ArcItem {
Tk_Item header; /* Generic stuff that's the same for all
- * types. MUST BE FIRST IN STRUCTURE. */
+ * types. MUST BE FIRST IN STRUCTURE. */
Tk_Outline outline; /* Outline structure */
double bbox[4]; /* Coordinates (x1, y1, x2, y2) of bounding
* box for oval of which arc is a piece. */
double start; /* Angle at which arc begins, in degrees
* between 0 and 360. */
- double extent; /* Extent of arc (angular distance from
- * start to end of arc) in degrees between
- * -360 and 360. */
- double *outlinePtr; /* Points to (x,y) coordinates for points
- * that define one or two closed polygons
+ double extent; /* Extent of arc (angular distance from start
+ * to end of arc) in degrees between -360 and
+ * 360. */
+ double *outlinePtr; /* Points to (x,y) coordinates for points that
+ * define one or two closed polygons
* representing the portion of the outline
- * that isn't part of the arc (the V-shape
- * for a pie slice or a line-like segment
- * for a chord). Malloc'ed. */
- int numOutlinePoints; /* Number of points at outlinePtr. Zero
- * means no space allocated. */
+ * that isn't part of the arc (the V-shape for
+ * a pie slice or a line-like segment for a
+ * chord). Malloc'ed. */
+ int numOutlinePoints; /* Number of points at outlinePtr. Zero means
+ * no space allocated. */
Tk_TSOffset tsoffset;
XColor *fillColor; /* Color for filling arc (used for drawing
- * outline too when style is "arc"). NULL
+ * outline too when style is "arc"). NULL
* means don't fill arc. */
XColor *activeFillColor; /* Color for filling arc (used for drawing
* outline too when style is "arc" and state
- * is "active"). NULL means use fillColor. */
+ * is "active"). NULL means use fillColor. */
XColor *disabledFillColor; /* Color for filling arc (used for drawing
* outline too when style is "arc" and state
* is "disabled". NULL means use fillColor */
Pixmap fillStipple; /* Stipple bitmap for filling item. */
- Pixmap activeFillStipple; /* Stipple bitmap for filling item if state
- * is active. */
- Pixmap disabledFillStipple; /* Stipple bitmap for filling item if state
- * is disabled. */
- Style style; /* How to draw arc: arc, chord, or pieslice. */
+ Pixmap activeFillStipple; /* Stipple bitmap for filling item if state is
+ * active. */
+ Pixmap disabledFillStipple; /* Stipple bitmap for filling item if state is
+ * disabled. */
+ Style style; /* How to draw arc: arc, chord, or
+ * pieslice. */
GC fillGC; /* Graphics context for filling item. */
double center1[2]; /* Coordinates of center of arc outline at
* start (see ComputeArcOutline). */
@@ -67,8 +69,8 @@ typedef struct ArcItem {
} ArcItem;
/*
- * The definitions below define the sizes of the polygons used to
- * display outline information for various styles of arcs:
+ * The definitions below define the sizes of the polygons used to display
+ * outline information for various styles of arcs:
*/
#define CHORD_OUTLINE_PTS 7
@@ -79,14 +81,11 @@ typedef struct ArcItem {
* Information used for parsing configuration specs:
*/
-static int StyleParseProc _ANSI_ARGS_((
- ClientData clientData, Tcl_Interp *interp,
+static int StyleParseProc(ClientData clientData, Tcl_Interp *interp,
Tk_Window tkwin, CONST char *value,
- char *widgRec, int offset));
-static char * StylePrintProc _ANSI_ARGS_((
- ClientData clientData, Tk_Window tkwin,
- char *widgRec, int offset,
- Tcl_FreeProc **freeProcPtr));
+ char *widgRec, int offset);
+static char * StylePrintProc(ClientData clientData, Tk_Window tkwin,
+ char *widgRec, int offset, Tcl_FreeProc **freeProcPtr);
static Tk_CustomOption stateOption = {
(Tk_OptionParseProc *) TkStateParseProc,
@@ -193,47 +192,44 @@ static Tk_ConfigSpec configSpecs[] = {
* Prototypes for procedures defined in this file:
*/
-static void ComputeArcBbox _ANSI_ARGS_((Tk_Canvas canvas,
- ArcItem *arcPtr));
-static int ConfigureArc _ANSI_ARGS_((Tcl_Interp *interp,
+static void ComputeArcBbox(Tk_Canvas canvas, ArcItem *arcPtr);
+static int ConfigureArc(Tcl_Interp *interp,
Tk_Canvas canvas, Tk_Item *itemPtr, int objc,
- Tcl_Obj *CONST objv[], int flags));
-static int CreateArc _ANSI_ARGS_((Tcl_Interp *interp,
+ Tcl_Obj *CONST objv[], int flags);
+static int CreateArc(Tcl_Interp *interp,
Tk_Canvas canvas, struct Tk_Item *itemPtr,
- int objc, Tcl_Obj *CONST objv[]));
-static void DeleteArc _ANSI_ARGS_((Tk_Canvas canvas,
- Tk_Item *itemPtr, Display *display));
-static void DisplayArc _ANSI_ARGS_((Tk_Canvas canvas,
+ int objc, Tcl_Obj *CONST objv[]);
+static void DeleteArc(Tk_Canvas canvas,
+ Tk_Item *itemPtr, Display *display);
+static void DisplayArc(Tk_Canvas canvas,
Tk_Item *itemPtr, Display *display, Drawable dst,
- int x, int y, int width, int height));
-static int ArcCoords _ANSI_ARGS_((Tcl_Interp *interp,
- Tk_Canvas canvas, Tk_Item *itemPtr, int objc,
- Tcl_Obj *CONST objv[]));
-static int ArcToArea _ANSI_ARGS_((Tk_Canvas canvas,
- Tk_Item *itemPtr, double *rectPtr));
-static double ArcToPoint _ANSI_ARGS_((Tk_Canvas canvas,
- Tk_Item *itemPtr, double *coordPtr));
-static int ArcToPostscript _ANSI_ARGS_((Tcl_Interp *interp,
- Tk_Canvas canvas, Tk_Item *itemPtr, int prepass));
-static void ScaleArc _ANSI_ARGS_((Tk_Canvas canvas,
+ int x, int y, int width, int height);
+static int ArcCoords(Tcl_Interp *interp, Tk_Canvas canvas,
+ Tk_Item *itemPtr, int objc, Tcl_Obj *CONST objv[]);
+static int ArcToArea(Tk_Canvas canvas,
+ Tk_Item *itemPtr, double *rectPtr);
+static double ArcToPoint(Tk_Canvas canvas,
+ Tk_Item *itemPtr, double *coordPtr);
+static int ArcToPostscript(Tcl_Interp *interp,
+ Tk_Canvas canvas, Tk_Item *itemPtr, int prepass);
+static void ScaleArc(Tk_Canvas canvas,
Tk_Item *itemPtr, double originX, double originY,
- double scaleX, double scaleY));
-static void TranslateArc _ANSI_ARGS_((Tk_Canvas canvas,
- Tk_Item *itemPtr, double deltaX, double deltaY));
-static int AngleInRange _ANSI_ARGS_((double x, double y,
- double start, double extent));
-static void ComputeArcOutline _ANSI_ARGS_((Tk_Canvas canvas,
- ArcItem *arcPtr));
-static int HorizLineToArc _ANSI_ARGS_((double x1, double x2,
+ double scaleX, double scaleY);
+static void TranslateArc(Tk_Canvas canvas,
+ Tk_Item *itemPtr, double deltaX, double deltaY);
+static int AngleInRange(double x, double y,
+ double start, double extent);
+static void ComputeArcOutline(Tk_Canvas canvas, ArcItem *arcPtr);
+static int HorizLineToArc(double x1, double x2,
double y, double rx, double ry,
- double start, double extent));
-static int VertLineToArc _ANSI_ARGS_((double x, double y1,
+ double start, double extent);
+static int VertLineToArc(double x, double y1,
double y2, double rx, double ry,
- double start, double extent));
+ double start, double extent);
/*
- * The structures below defines the arc item types by means of procedures
- * that can be invoked by generic item code.
+ * The structures below defines the arc item types by means of procedures that
+ * can be invoked by generic item code.
*/
Tk_ItemType tkArcType = {
@@ -260,23 +256,20 @@ Tk_ItemType tkArcType = {
};
#ifndef PI
-# define PI 3.14159265358979323846
+#define PI 3.14159265358979323846
#endif
-
/*
*--------------------------------------------------------------
*
* CreateArc --
*
- * This procedure is invoked to create a new arc item in
- * a canvas.
+ * This procedure is invoked to create a new arc item in a canvas.
*
* Results:
- * A standard Tcl return value. If an error occurred in
- * creating the item, then an error message is left in
- * the interp's result; in this case itemPtr is
- * left uninitialized, so it can be safely freed by the
+ * A standard Tcl return value. If an error occurred in creating the
+ * item, then an error message is left in the interp's result; in this
+ * case itemPtr is left uninitialized, so it can be safely freed by the
* caller.
*
* Side effects:
@@ -286,13 +279,13 @@ Tk_ItemType tkArcType = {
*/
static int
-CreateArc(interp, canvas, itemPtr, objc, objv)
- Tcl_Interp *interp; /* Interpreter for error reporting. */
- Tk_Canvas canvas; /* Canvas to hold new item. */
- Tk_Item *itemPtr; /* Record to hold new item; header
- * has been initialized by caller. */
- int objc; /* Number of arguments in objv. */
- Tcl_Obj *CONST objv[]; /* Arguments describing arc. */
+CreateArc(
+ Tcl_Interp *interp, /* Interpreter for error reporting. */
+ Tk_Canvas canvas, /* Canvas to hold new item. */
+ Tk_Item *itemPtr, /* Record to hold new item; header has been
+ * initialized by caller. */
+ int objc, /* Number of arguments in objv. */
+ Tcl_Obj *CONST objv[]) /* Arguments describing arc. */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
int i;
@@ -302,8 +295,8 @@ CreateArc(interp, canvas, itemPtr, objc, objv)
}
/*
- * Carry out initialization that is needed in order to clean
- * up after errors during the the remainder of this procedure.
+ * Carry out initialization that is needed in order to clean up after
+ * errors during the the remainder of this procedure.
*/
Tk_CreateOutline(&(arcPtr->outline));
@@ -329,6 +322,7 @@ CreateArc(interp, canvas, itemPtr, objc, objv)
for (i = 1; i < objc; i++) {
char *arg = Tcl_GetString(objv[i]);
+
if ((arg[0] == '-') && (arg[1] >= 'a') && (arg[1] <= 'z')) {
break;
}
@@ -339,7 +333,8 @@ CreateArc(interp, canvas, itemPtr, objc, objv)
if (ConfigureArc(interp, canvas, itemPtr, objc-i, objv+i, 0) == TCL_OK) {
return TCL_OK;
}
- error:
+
+ error:
DeleteArc(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas)));
return TCL_ERROR;
}
@@ -349,9 +344,8 @@ CreateArc(interp, canvas, itemPtr, objc, objv)
*
* ArcCoords --
*
- * This procedure is invoked to process the "coords" widget
- * command on arcs. See the user documentation for details
- * on what it does.
+ * This procedure is invoked to process the "coords" widget command on
+ * arcs. See the user documentation for details on what it does.
*
* Results:
* Returns TCL_OK or TCL_ERROR, and sets the interp's result.
@@ -363,21 +357,20 @@ CreateArc(interp, canvas, itemPtr, objc, objv)
*/
static int
-ArcCoords(interp, canvas, itemPtr, objc, objv)
- Tcl_Interp *interp; /* Used for error reporting. */
- Tk_Canvas canvas; /* Canvas containing item. */
- Tk_Item *itemPtr; /* Item whose coordinates are to be
- * read or modified. */
- int objc; /* Number of coordinates supplied in
- * objv. */
- Tcl_Obj *CONST objv[]; /* Array of coordinates: x1, y1,
- * x2, y2, ... */
+ArcCoords(
+ Tcl_Interp *interp, /* Used for error reporting. */
+ Tk_Canvas canvas, /* Canvas containing item. */
+ Tk_Item *itemPtr, /* Item whose coordinates are to be read or
+ * modified. */
+ int objc, /* Number of coordinates supplied in objv. */
+ Tcl_Obj *CONST objv[]) /* Array of coordinates: x1, y1, x2, y2, ... */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
if (objc == 0) {
Tcl_Obj *obj = Tcl_NewObj();
Tcl_Obj *subobj = Tcl_NewDoubleObj(arcPtr->bbox[0]);
+
Tcl_ListObjAppendElement(interp, obj, subobj);
subobj = Tcl_NewDoubleObj(arcPtr->bbox[1]);
Tcl_ListObjAppendElement(interp, obj, subobj);
@@ -393,7 +386,7 @@ ArcCoords(interp, canvas, itemPtr, objc, objv)
return TCL_ERROR;
} else if (objc != 4) {
char buf[64 + TCL_INTEGER_SPACE];
-
+
sprintf(buf, "wrong # coordinates: expected 4, got %d", objc);
Tcl_SetResult(interp, buf, TCL_VOLATILE);
return TCL_ERROR;
@@ -412,7 +405,7 @@ ArcCoords(interp, canvas, itemPtr, objc, objv)
ComputeArcBbox(canvas, arcPtr);
} else {
char buf[64 + TCL_INTEGER_SPACE];
-
+
sprintf(buf, "wrong # coordinates: expected 0 or 4, got %d", objc);
Tcl_SetResult(interp, buf, TCL_VOLATILE);
return TCL_ERROR;
@@ -425,28 +418,28 @@ ArcCoords(interp, canvas, itemPtr, objc, objv)
*
* ConfigureArc --
*
- * This procedure is invoked to configure various aspects
- * of a arc item, such as its outline and fill colors.
+ * This procedure is invoked to configure various aspects of a arc item,
+ * such as its outline and fill colors.
*
* Results:
- * A standard Tcl result code. If an error occurs, then
- * an error message is left in the interp's result.
+ * A standard Tcl result code. If an error occurs, then an error message
+ * is left in the interp's result.
*
* Side effects:
- * Configuration information, such as colors and stipple
- * patterns, may be set for itemPtr.
+ * Configuration information, such as colors and stipple patterns, may be
+ * set for itemPtr.
*
*--------------------------------------------------------------
*/
static int
-ConfigureArc(interp, canvas, itemPtr, objc, objv, flags)
- Tcl_Interp *interp; /* Used for error reporting. */
- Tk_Canvas canvas; /* Canvas containing itemPtr. */
- Tk_Item *itemPtr; /* Arc item to reconfigure. */
- int objc; /* Number of elements in objv. */
- Tcl_Obj *CONST objv[]; /* Arguments describing things to configure. */
- int flags; /* Flags to pass to Tk_ConfigureWidget. */
+ConfigureArc(
+ Tcl_Interp *interp, /* Used for error reporting. */
+ Tk_Canvas canvas, /* Canvas containing itemPtr. */
+ Tk_Item *itemPtr, /* Arc item to reconfigure. */
+ int objc, /* Number of elements in objv. */
+ Tcl_Obj *CONST objv[], /* Arguments describing things to configure. */
+ int flags) /* Flags to pass to Tk_ConfigureWidget. */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
XGCValues gcValues;
@@ -468,8 +461,8 @@ ConfigureArc(interp, canvas, itemPtr, objc, objv, flags)
state = itemPtr->state;
/*
- * A few of the options require additional processing, such as
- * style and graphics contexts.
+ * A few of the options require additional processing, such as style and
+ * graphics contexts.
*/
if (arcPtr->outline.activeWidth > arcPtr->outline.width ||
@@ -508,8 +501,7 @@ ConfigureArc(interp, canvas, itemPtr, objc, objv, flags)
i = (int) (arcPtr->extent/360.0);
arcPtr->extent -= i*360.0;
- mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr,
- &(arcPtr->outline));
+ mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr, &(arcPtr->outline));
if (mask) {
gcValues.cap_style = CapButt;
mask |= GCCapStyle;
@@ -598,8 +590,8 @@ ConfigureArc(interp, canvas, itemPtr, objc, objv, flags)
*
* DeleteArc --
*
- * This procedure is called to clean up the data structure
- * associated with a arc item.
+ * This procedure is called to clean up the data structure associated
+ * with a arc item.
*
* Results:
* None.
@@ -611,11 +603,10 @@ ConfigureArc(interp, canvas, itemPtr, objc, objv, flags)
*/
static void
-DeleteArc(canvas, itemPtr, display)
- Tk_Canvas canvas; /* Info about overall canvas. */
- Tk_Item *itemPtr; /* Item that is being deleted. */
- Display *display; /* Display containing window for
- * canvas. */
+DeleteArc(
+ Tk_Canvas canvas, /* Info about overall canvas. */
+ Tk_Item *itemPtr, /* Item that is being deleted. */
+ Display *display) /* Display containing window for canvas. */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
@@ -651,31 +642,29 @@ DeleteArc(canvas, itemPtr, display)
*
* ComputeArcBbox --
*
- * This procedure is invoked to compute the bounding box of
- * all the pixels that may be drawn as part of an arc.
+ * This procedure is invoked to compute the bounding box of all the
+ * pixels that may be drawn as part of an arc.
*
* Results:
* None.
*
* Side effects:
- * The fields x1, y1, x2, and y2 are updated in the header
- * for itemPtr.
+ * The fields x1, y1, x2, and y2 are updated in the header for itemPtr.
*
*--------------------------------------------------------------
*/
/* ARGSUSED */
static void
-ComputeArcBbox(canvas, arcPtr)
- Tk_Canvas canvas; /* Canvas that contains item. */
- ArcItem *arcPtr; /* Item whose bbox is to be
- * recomputed. */
+ComputeArcBbox(
+ Tk_Canvas canvas, /* Canvas that contains item. */
+ ArcItem *arcPtr) /* Item whose bbox is to be recomputed. */
{
double tmp, center[2], point[2];
double width;
Tk_State state = arcPtr->header.state;
- if(state == TK_STATE_NULL) {
+ if (state == TK_STATE_NULL) {
state = ((TkCanvas *)canvas)->canvas_state;
}
@@ -702,14 +691,14 @@ ComputeArcBbox(canvas, arcPtr)
*/
if (arcPtr->bbox[1] > arcPtr->bbox[3]) {
- double tmp;
- tmp = arcPtr->bbox[3];
+ double tmp = arcPtr->bbox[3];
+
arcPtr->bbox[3] = arcPtr->bbox[1];
arcPtr->bbox[1] = tmp;
}
if (arcPtr->bbox[0] > arcPtr->bbox[2]) {
- double tmp;
- tmp = arcPtr->bbox[2];
+ double tmp = arcPtr->bbox[2];
+
arcPtr->bbox[2] = arcPtr->bbox[0];
arcPtr->bbox[0] = tmp;
}
@@ -717,10 +706,10 @@ ComputeArcBbox(canvas, arcPtr)
ComputeArcOutline(canvas,arcPtr);
/*
- * To compute the bounding box, start with the the bbox formed
- * by the two endpoints of the arc. Then add in the center of
- * the arc's oval (if relevant) and the 3-o'clock, 6-o'clock,
- * 9-o'clock, and 12-o'clock positions, if they are relevant.
+ * To compute the bounding box, start with the the bbox formed by the two
+ * endpoints of the arc. Then add in the center of the arc's oval (if
+ * relevant) and the 3-o'clock, 6-o'clock, 9-o'clock, and 12-o'clock
+ * positions, if they are relevant.
*/
arcPtr->header.x1 = arcPtr->header.x2 = (int) arcPtr->center1[0];
@@ -770,8 +759,8 @@ ComputeArcBbox(canvas, arcPtr)
}
/*
- * Lastly, expand by the width of the arc (if the arc's outline is
- * being drawn) and add one extra pixel just for safety.
+ * Lastly, expand by the width of the arc (if the arc's outline is being
+ * drawn) and add one extra pixel just for safety.
*/
if (arcPtr->outline.gc == None) {
@@ -790,28 +779,26 @@ ComputeArcBbox(canvas, arcPtr)
*
* DisplayArc --
*
- * This procedure is invoked to draw an arc item in a given
- * drawable.
+ * This procedure is invoked to draw an arc item in a given drawable.
*
* Results:
* None.
*
* Side effects:
- * ItemPtr is drawn in drawable using the transformation
- * information in canvas.
+ * ItemPtr is drawn in drawable using the transformation information in
+ * canvas.
*
*--------------------------------------------------------------
*/
static void
-DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
- Tk_Canvas canvas; /* Canvas that contains item. */
- Tk_Item *itemPtr; /* Item to be displayed. */
- Display *display; /* Display on which to draw item. */
- Drawable drawable; /* Pixmap or window in which to draw
- * item. */
- int x, y, width, height; /* Describes region of canvas that
- * must be redisplayed (not used). */
+DisplayArc(
+ Tk_Canvas canvas, /* Canvas that contains item. */
+ Tk_Item *itemPtr, /* Item to be displayed. */
+ Display *display, /* Display on which to draw item. */
+ Drawable drawable, /* Pixmap or window in which to draw item. */
+ int x, int y, /* Describes region of canvas that must be */
+ int width, int height) /* redisplayed (not used). */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
short x1, y1, x2, y2;
@@ -820,7 +807,7 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
Tk_State state = itemPtr->state;
Pixmap stipple;
- if(state == TK_STATE_NULL) {
+ if (state == TK_STATE_NULL) {
state = ((TkCanvas *)canvas)->canvas_state;
}
lineWidth = arcPtr->outline.width;
@@ -839,7 +826,7 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
if (arcPtr->activeFillStipple != None) {
stipple = arcPtr->activeFillStipple;
}
- } else if (state==TK_STATE_DISABLED) {
+ } else if (state == TK_STATE_DISABLED) {
if (arcPtr->outline.disabledWidth > 0) {
lineWidth = arcPtr->outline.disabledWidth;
}
@@ -852,8 +839,8 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
}
/*
- * Compute the screen coordinates of the bounding box for the item,
- * plus integer values for the angles.
+ * Compute the screen coordinates of the bounding box for the item, plus
+ * integer values for the angles.
*/
Tk_CanvasDrawableCoords(canvas, arcPtr->bbox[0], arcPtr->bbox[1],
@@ -870,16 +857,18 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
extent = (int) ((64*arcPtr->extent) + 0.5);
/*
- * Display filled arc first (if wanted), then outline. If the extent
- * is zero then don't invoke XFillArc or XDrawArc, since this causes
- * some window servers to crash and should be a no-op anyway.
+ * Display filled arc first (if wanted), then outline. If the extent is
+ * zero then don't invoke XFillArc or XDrawArc, since this causes some
+ * window servers to crash and should be a no-op anyway.
*/
if ((arcPtr->fillGC != None) && (extent != 0)) {
if (stipple != None) {
- int w=0; int h=0;
+ int w = 0;
+ int h = 0;
Tk_TSOffset *tsoffset = &arcPtr->tsoffset;
int flags = tsoffset->flags;
+
if (flags & (TK_OFFSET_CENTER|TK_OFFSET_MIDDLE)) {
Tk_SizeOfBitmap(display, stipple, &w, &h);
if (flags & TK_OFFSET_CENTER) {
@@ -916,10 +905,10 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
}
/*
- * If the outline width is very thin, don't use polygons to draw
- * the linear parts of the outline (this often results in nothing
- * being displayed); just draw lines instead. The same is done if
- * the outline is dashed, because then polygons don't work.
+ * If the outline width is very thin, don't use polygons to draw the
+ * linear parts of the outline (this often results in nothing being
+ * displayed); just draw lines instead. The same is done if the
+ * outline is dashed, because then polygons don't work.
*/
if (lineWidth < 1.5 || dashnumber != 0) {
@@ -950,8 +939,8 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
TkFillPolygon(canvas, arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
display, drawable, arcPtr->outline.gc, None);
TkFillPolygon(canvas, arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
- PIE_OUTLINE2_PTS, display, drawable, arcPtr->outline.gc,
- None);
+ PIE_OUTLINE2_PTS, display, drawable,
+ arcPtr->outline.gc, None);
}
}
@@ -964,17 +953,16 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
*
* ArcToPoint --
*
- * Computes the distance from a given point to a given
- * arc, in canvas units.
+ * Computes the distance from a given point to a given arc, in canvas
+ * units.
*
* Results:
- * The return value is 0 if the point whose x and y coordinates
- * are coordPtr[0] and coordPtr[1] is inside the arc. If the
- * point isn't inside the arc then the return value is the
- * distance from the point to the arc. If itemPtr is filled,
- * then anywhere in the interior is considered "inside"; if
- * itemPtr isn't filled, then "inside" means only the area
- * occupied by the outline.
+ * The return value is 0 if the point whose x and y coordinates are
+ * coordPtr[0] and coordPtr[1] is inside the arc. If the point isn't
+ * inside the arc then the return value is the distance from the point to
+ * the arc. If itemPtr is filled, then anywhere in the interior is
+ * considered "inside"; if itemPtr isn't filled, then "inside" means only
+ * the area occupied by the outline.
*
* Side effects:
* None.
@@ -984,10 +972,10 @@ DisplayArc(canvas, itemPtr, display, drawable, x, y, width, height)
/* ARGSUSED */
static double
-ArcToPoint(canvas, itemPtr, pointPtr)
- Tk_Canvas canvas; /* Canvas containing item. */
- Tk_Item *itemPtr; /* Item to check against point. */
- double *pointPtr; /* Pointer to x and y coordinates. */
+ArcToPoint(
+ Tk_Canvas canvas, /* Canvas containing item. */
+ Tk_Item *itemPtr, /* Item to check against point. */
+ double *pointPtr) /* Pointer to x and y coordinates. */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
double vertex[2], pointAngle, diff, dist, newDist;
@@ -995,7 +983,7 @@ ArcToPoint(canvas, itemPtr, pointPtr)
int filled, angleInRange;
Tk_State state = itemPtr->state;
- if(state == TK_STATE_NULL) {
+ if (state == TK_STATE_NULL) {
state = ((TkCanvas *)canvas)->canvas_state;
}
@@ -1011,10 +999,9 @@ ArcToPoint(canvas, itemPtr, pointPtr)
}
/*
- * See if the point is within the angular range of the arc.
- * Remember, X angles are backwards from the way we'd normally
- * think of them. Also, compensate for any eccentricity of
- * the oval.
+ * See if the point is within the angular range of the arc. Remember, X
+ * angles are backwards from the way we'd normally think of them. Also,
+ * compensate for any eccentricity of the oval.
*/
vertex[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
@@ -1041,14 +1028,13 @@ ArcToPoint(canvas, itemPtr, pointPtr)
((arcPtr->extent < 0) && ((diff - 360.0) >= arcPtr->extent));
/*
- * Now perform different tests depending on what kind of arc
- * we're dealing with.
+ * Now perform different tests depending on what kind of arc we're dealing
+ * with.
*/
if (arcPtr->style == ARC_STYLE) {
if (angleInRange) {
- return TkOvalToPoint(arcPtr->bbox, width,
- 0, pointPtr);
+ return TkOvalToPoint(arcPtr->bbox, width, 0, pointPtr);
}
dist = hypot(pointPtr[0] - arcPtr->center1[0],
pointPtr[1] - arcPtr->center1[1]);
@@ -1074,7 +1060,7 @@ ArcToPoint(canvas, itemPtr, pointPtr)
dist = TkPolygonToPoint(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
pointPtr);
newDist = TkPolygonToPoint(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
- PIE_OUTLINE2_PTS, pointPtr);
+ PIE_OUTLINE2_PTS, pointPtr);
} else {
dist = TkLineToPoint(vertex, arcPtr->center1, pointPtr);
newDist = TkLineToPoint(vertex, arcPtr->center2, pointPtr);
@@ -1092,17 +1078,16 @@ ArcToPoint(canvas, itemPtr, pointPtr)
}
/*
- * This is a chord-style arc. We have to deal specially with the
- * triangular piece that represents the difference between a
- * chord-style arc and a pie-slice arc (for small angles this piece
- * is excluded here where it would be included for pie slices;
- * for large angles the piece is included here but would be
- * excluded for pie slices).
+ * This is a chord-style arc. We have to deal specially with the
+ * triangular piece that represents the difference between a chord-style
+ * arc and a pie-slice arc (for small angles this piece is excluded here
+ * where it would be included for pie slices; for large angles the piece
+ * is included here but would be excluded for pie slices).
*/
if (width > 1.0) {
dist = TkPolygonToPoint(arcPtr->outlinePtr, CHORD_OUTLINE_PTS,
- pointPtr);
+ pointPtr);
} else {
dist = TkLineToPoint(arcPtr->center1, arcPtr->center2, pointPtr);
}
@@ -1136,14 +1121,13 @@ ArcToPoint(canvas, itemPtr, pointPtr)
*
* ArcToArea --
*
- * This procedure is called to determine whether an item
- * lies entirely inside, entirely outside, or overlapping
- * a given area.
+ * This procedure is called to determine whether an item lies entirely
+ * inside, entirely outside, or overlapping a given area.
*
* Results:
- * -1 is returned if the item is entirely outside the area
- * given by rectPtr, 0 if it overlaps, and 1 if it is entirely
- * inside the given area.
+ * -1 is returned if the item is entirely outside the area given by
+ * rectPtr, 0 if it overlaps, and 1 if it is entirely inside the given
+ * area.
*
* Side effects:
* None.
@@ -1153,26 +1137,25 @@ ArcToPoint(canvas, itemPtr, pointPtr)
/* ARGSUSED */
static int
-ArcToArea(canvas, itemPtr, rectPtr)
- Tk_Canvas canvas; /* Canvas containing item. */
- Tk_Item *itemPtr; /* Item to check against arc. */
- double *rectPtr; /* Pointer to array of four coordinates
- * (x1, y1, x2, y2) describing rectangular
- * area. */
+ArcToArea(
+ Tk_Canvas canvas, /* Canvas containing item. */
+ Tk_Item *itemPtr, /* Item to check against arc. */
+ double *rectPtr) /* Pointer to array of four coordinates (x1,
+ * y1, x2, y2) describing rectangular area. */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
- double rx, ry; /* Radii for transformed oval: these define
- * an oval centered at the origin. */
- double tRect[4]; /* Transformed version of x1, y1, x2, y2,
- * for coord. system where arc is centered
- * on the origin. */
+ double rx, ry; /* Radii for transformed oval: these define an
+ * oval centered at the origin. */
+ double tRect[4]; /* Transformed version of x1, y1, x2, y2, for
+ * coord. system where arc is centered on the
+ * origin. */
double center[2], width, angle, tmp;
double points[20], *pointPtr;
int numPoints, filled;
int inside; /* Non-zero means every test so far suggests
- * that arc is inside rectangle. 0 means
- * every test so far shows arc to be outside
- * of rectangle. */
+ * that arc is inside rectangle. 0 means every
+ * test so far shows arc to be outside of
+ * rectangle. */
int newInside;
Tk_State state = itemPtr->state;
@@ -1184,7 +1167,7 @@ ArcToArea(canvas, itemPtr, rectPtr)
if (arcPtr->outline.activeWidth>width) {
width = (double) arcPtr->outline.activeWidth;
}
- } else if (state==TK_STATE_DISABLED) {
+ } else if (state == TK_STATE_DISABLED) {
if (arcPtr->outline.disabledWidth>0) {
width = (double) arcPtr->outline.disabledWidth;
}
@@ -1200,8 +1183,8 @@ ArcToArea(canvas, itemPtr, rectPtr)
}
/*
- * Transform both the arc and the rectangle so that the arc's oval
- * is centered on the origin.
+ * Transform both the arc and the rectangle so that the arc's oval is
+ * centered on the origin.
*/
center[0] = (arcPtr->bbox[0] + arcPtr->bbox[2])/2.0;
@@ -1214,17 +1197,16 @@ ArcToArea(canvas, itemPtr, rectPtr)
ry = arcPtr->bbox[3] - center[1] + width/2.0;
/*
- * Find the extreme points of the arc and see whether these are all
- * inside the rectangle (in which case we're done), partly in and
- * partly out (in which case we're done), or all outside (in which
- * case we have more work to do). The extreme points include the
- * following, which are checked in order:
+ * Find the extreme points of the arc and see whether these are all inside
+ * the rectangle (in which case we're done), partly in and partly out (in
+ * which case we're done), or all outside (in which case we have more work
+ * to do). The extreme points include the following, which are checked in
+ * order:
*
- * 1. The outside points of the arc, corresponding to start and
- * extent.
+ * 1. The outside points of the arc, corresponding to start and extent.
* 2. The center of the arc (but only in pie-slice mode).
- * 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc
- * includes those angles).
+ * 3. The 12, 3, 6, and 9-o'clock positions (but only if the arc includes
+ * those angles).
*/
pointPtr = points;
@@ -1285,8 +1267,8 @@ ArcToArea(canvas, itemPtr, rectPtr)
}
/*
- * Now that we've located the extreme points, loop through them all
- * to see which are inside the rectangle.
+ * Now that we've located the extreme points, loop through them all to see
+ * which are inside the rectangle.
*/
inside = (points[0] > tRect[0]) && (points[0] < tRect[2])
@@ -1304,17 +1286,17 @@ ArcToArea(canvas, itemPtr, rectPtr)
}
/*
- * So far, oval appears to be outside rectangle, but can't yet tell
- * for sure. Next, test each of the four sides of the rectangle
- * against the bounding region for the arc. If any intersections
- * are found, then return "overlapping". First, test against the
- * polygon(s) forming the sides of a chord or pie-slice.
+ * So far, oval appears to be outside rectangle, but can't yet tell for
+ * sure. Next, test each of the four sides of the rectangle against the
+ * bounding region for the arc. If any intersections are found, then
+ * return "overlapping". First, test against the polygon(s) forming the
+ * sides of a chord or pie-slice.
*/
if (arcPtr->style == PIESLICE_STYLE) {
if (width >= 1.0) {
if (TkPolygonToArea(arcPtr->outlinePtr, PIE_OUTLINE1_PTS,
- rectPtr) != -1) {
+ rectPtr) != -1) {
return 0;
}
if (TkPolygonToArea(arcPtr->outlinePtr + 2*PIE_OUTLINE1_PTS,
@@ -1342,9 +1324,9 @@ ArcToArea(canvas, itemPtr, rectPtr)
}
/*
- * Next check for overlap between each of the four sides and the
- * outer perimiter of the arc. If the arc isn't filled, then also
- * check the inner perimeter of the arc.
+ * Next check for overlap between each of the four sides and the outer
+ * perimiter of the arc. If the arc isn't filled, then also check the
+ * inner perimeter of the arc.
*/
if (HorizLineToArc(tRect[0], tRect[2], tRect[1], rx, ry, arcPtr->start,
@@ -1373,11 +1355,11 @@ ArcToArea(canvas, itemPtr, rectPtr)
}
/*
- * The arc still appears to be totally disjoint from the rectangle,
- * but it's also possible that the rectangle is totally inside the arc.
- * Do one last check, which is to check one point of the rectangle
- * to see if it's inside the arc. If it is, we've got overlap. If
- * it isn't, the arc's really outside the rectangle.
+ * The arc still appears to be totally disjoint from the rectangle, but
+ * it's also possible that the rectangle is totally inside the arc. Do one
+ * last check, which is to check one point of the rectangle to see if it's
+ * inside the arc. If it is, we've got overlap. If it isn't, the arc's
+ * really outside the rectangle.
*/
if (ArcToPoint(canvas, itemPtr, rectPtr) == 0.0) {
@@ -1397,9 +1379,8 @@ ArcToArea(canvas, itemPtr, rectPtr)
* None.
*
* Side effects:
- * The arc referred to by itemPtr is rescaled so that the
- * following transformation is applied to all point
- * coordinates:
+ * The arc referred to by itemPtr is rescaled so that the following
+ * transformation is applied to all point coordinates:
* x' = originX + scaleX*(x-originX)
* y' = originY + scaleY*(y-originY)
*
@@ -1407,12 +1388,13 @@ ArcToArea(canvas, itemPtr, rectPtr)
*/
static void
-ScaleArc(canvas, itemPtr, originX, originY, scaleX, scaleY)
- Tk_Canvas canvas; /* Canvas containing arc. */
- Tk_Item *itemPtr; /* Arc to be scaled. */
- double originX, originY; /* Origin about which to scale rect. */
- double scaleX; /* Amount to scale in X direction. */
- double scaleY; /* Amount to scale in Y direction. */
+ScaleArc(
+ Tk_Canvas canvas, /* Canvas containing arc. */
+ Tk_Item *itemPtr, /* Arc to be scaled. */
+ double originX, /* Origin about which to scale rect. */
+ double originY,
+ double scaleX, /* Amount to scale in X direction. */
+ double scaleY) /* Amount to scale in Y direction. */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
@@ -1434,19 +1416,18 @@ ScaleArc(canvas, itemPtr, originX, originY, scaleX, scaleY)
* None.
*
* Side effects:
- * The position of the arc is offset by (xDelta, yDelta), and
- * the bounding box is updated in the generic part of the item
- * structure.
+ * The position of the arc is offset by (xDelta, yDelta), and the
+ * bounding box is updated in the generic part of the item structure.
*
*--------------------------------------------------------------
*/
static void
-TranslateArc(canvas, itemPtr, deltaX, deltaY)
- Tk_Canvas canvas; /* Canvas containing item. */
- Tk_Item *itemPtr; /* Item that is being moved. */
- double deltaX, deltaY; /* Amount by which item is to be
- * moved. */
+TranslateArc(
+ Tk_Canvas canvas, /* Canvas containing item. */
+ Tk_Item *itemPtr, /* Item that is being moved. */
+ double deltaX, /* Amount by which item is to be moved. */
+ double deltaY)
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
@@ -1462,26 +1443,25 @@ TranslateArc(canvas, itemPtr, deltaX, deltaY)
*
* ComputeArcOutline --
*
- * This procedure creates a polygon describing everything in
- * the outline for an arc except what's in the curved part.
- * For a "pie slice" arc this is a V-shaped chunk, and for
- * a "chord" arc this is a linear chunk (with cutaway corners).
- * For "arc" arcs, this stuff isn't relevant.
+ * This procedure creates a polygon describing everything in the outline
+ * for an arc except what's in the curved part. For a "pie slice" arc
+ * this is a V-shaped chunk, and for a "chord" arc this is a linear chunk
+ * (with cutaway corners). For "arc" arcs, this stuff isn't relevant.
*
* Results:
* None.
*
* Side effects:
- * The information at arcPtr->outlinePtr gets modified, and
- * storage for arcPtr->outlinePtr may be allocated or freed.
+ * The information at arcPtr->outlinePtr gets modified, and storage for
+ * arcPtr->outlinePtr may be allocated or freed.
*
*--------------------------------------------------------------
*/
static void
-ComputeArcOutline(canvas,arcPtr)
- Tk_Canvas canvas; /* Information about overall canvas. */
- ArcItem *arcPtr; /* Information about arc. */
+ComputeArcOutline(
+ Tk_Canvas canvas, /* Information about overall canvas. */
+ ArcItem *arcPtr) /* Information about arc. */
{
double sin1, cos1, sin2, cos2, angle, width, halfWidth;
double boxWidth, boxHeight;
@@ -1489,10 +1469,9 @@ ComputeArcOutline(canvas,arcPtr)
double *outlinePtr;
Tk_State state = arcPtr->header.state;
-
/*
- * Make sure that the outlinePtr array is large enough to hold
- * either a chord or pie-slice outline.
+ * Make sure that the outlinePtr array is large enough to hold either a
+ * chord or pie-slice outline.
*/
if (arcPtr->numOutlinePoints == 0) {
@@ -1502,14 +1481,13 @@ ComputeArcOutline(canvas,arcPtr)
}
outlinePtr = arcPtr->outlinePtr;
- if(state == TK_STATE_NULL) {
+ if (state == TK_STATE_NULL) {
state = ((TkCanvas *)canvas)->canvas_state;
}
/*
- * First compute the two points that lie at the centers of
- * the ends of the curved arc segment, which are marked with
- * X's in the figure below:
+ * First compute the two points that lie at the centers of the ends of the
+ * curved arc segment, which are marked with X's in the figure below:
*
*
* * * *
@@ -1519,13 +1497,13 @@ ComputeArcOutline(canvas,arcPtr)
* * * * *
* X * * X
*
- * The code is tricky because the arc can be ovular in shape.
- * It computes the position for a unit circle, and then
- * scales to fit the shape of the arc's bounding box.
+ * The code is tricky because the arc can be ovular in shape. It computes
+ * the position for a unit circle, and then scales to fit the shape of the
+ * arc's bounding box.
*
- * Also, watch out because angles go counter-clockwise like you
- * might expect, but the y-coordinate system is inverted. To
- * handle this, just negate the angles in all the computations.
+ * Also, watch out because angles go counter-clockwise like you might
+ * expect, but the y-coordinate system is inverted. To handle this, just
+ * negate the angles in all the computations.
*/
boxWidth = arcPtr->bbox[2] - arcPtr->bbox[0];
@@ -1544,8 +1522,8 @@ ComputeArcOutline(canvas,arcPtr)
arcPtr->center2[1] = vertex[1] + sin2*boxHeight/2.0;
/*
- * Next compute the "outermost corners" of the arc, which are
- * marked with X's in the figure below:
+ * Next compute the "outermost corners" of the arc, which are marked with
+ * X's in the figure below:
*
* * * *
* * *
@@ -1554,12 +1532,11 @@ ComputeArcOutline(canvas,arcPtr)
* X * * X
* * *
*
- * The code below is tricky because it has to handle eccentricity
- * in the shape of the oval. The key in the code below is to
- * realize that the slope of the line from arcPtr->center1 to corner1
- * is (boxWidth*sin1)/(boxHeight*cos1), and similarly for arcPtr->center2
- * and corner2. These formulas can be computed from the formula for
- * the oval.
+ * The code below is tricky because it has to handle eccentricity in the
+ * shape of the oval. The key in the code below is to realize that the
+ * slope of the line from arcPtr->center1 to corner1 is (boxWidth*sin1)
+ * divided by (boxHeight*cos1), and similarly for arcPtr->center2 and
+ * corner2. These formulas can be computed from the formula for the oval.
*/
width = arcPtr->outline.width;
@@ -1567,7 +1544,7 @@ ComputeArcOutline(canvas,arcPtr)
if (arcPtr->outline.activeWidth>arcPtr->outline.width) {
width = arcPtr->outline.activeWidth;
}
- } else if (state==TK_STATE_DISABLED) {
+ } else if (state == TK_STATE_DISABLED) {
if (arcPtr->outline.disabledWidth>arcPtr->outline.width) {
width = arcPtr->outline.disabledWidth;
}
@@ -1590,10 +1567,10 @@ ComputeArcOutline(canvas,arcPtr)
corner2[1] = arcPtr->center2[1] + sin(angle)*halfWidth;
/*
- * For a chord outline, generate a six-sided polygon with three
- * points for each end of the chord. The first and third points
- * for each end are butt points generated on either side of the
- * center point. The second point is the corner point.
+ * For a chord outline, generate a six-sided polygon with three points for
+ * each end of the chord. The first and third points for each end are butt
+ * points generated on either side of the center point. The second point
+ * is the corner point.
*/
if (arcPtr->style == CHORD_STYLE) {
@@ -1613,10 +1590,9 @@ ComputeArcOutline(canvas,arcPtr)
- arcPtr->center1[1];
} else if (arcPtr->style == PIESLICE_STYLE) {
/*
- * For pie slices, generate two polygons, one for each side
- * of the pie slice. The first arm has a shape like this,
- * where the center of the oval is X, arcPtr->center1 is at Y, and
- * corner1 is at Z:
+ * For pie slices, generate two polygons, one for each side of the pie
+ * slice. The first arm has a shape like this, where the center of the
+ * oval is X, arcPtr->center1 is at Y, and corner1 is at Z:
*
* _____________________
* | \
@@ -1624,7 +1600,6 @@ ComputeArcOutline(canvas,arcPtr)
* X Y Z
* | /
* |_____________________/
- *
*/
TkGetButtPoints(arcPtr->center1, vertex, width, 0,
@@ -1641,7 +1616,6 @@ ComputeArcOutline(canvas,arcPtr)
/*
* The second arm has a shape like this:
*
- *
* ______________________
* / \
* / \
@@ -1650,10 +1624,10 @@ ComputeArcOutline(canvas,arcPtr)
* \______________________/
*
* Similar to above X is the center of the oval/circle, Y is
- * arcPtr->center2, and Z is corner2. The extra jog out to the left
- * of X is needed in or to produce a butted joint with the
- * first arm; the corner to the right of X is one of the
- * first two points of the first arm, depending on extent.
+ * arcPtr->center2, and Z is corner2. The extra jog out to the left of
+ * X is needed in or to produce a butted joint with the first arm; the
+ * corner to the right of X is one of the first two points of the
+ * first arm, depending on extent.
*/
TkGetButtPoints(arcPtr->center2, vertex, width, 0,
@@ -1682,15 +1656,13 @@ ComputeArcOutline(canvas,arcPtr)
*
* HorizLineToArc --
*
- * Determines whether a horizontal line segment intersects
- * a given arc.
+ * Determines whether a horizontal line segment intersects a given arc.
*
* Results:
- * The return value is 1 if the given line intersects the
- * infinitely-thin arc section defined by rx, ry, start,
- * and extent, and 0 otherwise. Only the perimeter of the
- * arc is checked: interior areas (e.g. pie-slice or chord)
- * are not checked.
+ * The return value is 1 if the given line intersects the infinitely-thin
+ * arc section defined by rx, ry, start, and extent, and 0 otherwise.
+ * Only the perimeter of the arc is checked: interior areas (e.g. chord
+ * or pie-slice) are not checked.
*
* Side effects:
* None.
@@ -1699,25 +1671,24 @@ ComputeArcOutline(canvas,arcPtr)
*/
static int
-HorizLineToArc(x1, x2, y, rx, ry, start, extent)
- double x1, x2; /* X-coords of endpoints of line segment.
- * X1 must be <= x2. */
- double y; /* Y-coordinate of line segment. */
- double rx, ry; /* These x- and y-radii define an oval
+HorizLineToArc(
+ double x1, double x2, /* X-coords of endpoints of line segment. X1
+ * must be <= x2. */
+ double y, /* Y-coordinate of line segment. */
+ double rx, double ry, /* These x- and y-radii define an oval
* centered at the origin. */
- double start, extent; /* Angles that define extent of arc, in
- * the standard fashion for this module. */
+ double start, double extent)/* Angles that define extent of arc, in the
+ * standard fashion for this module. */
{
- double tmp;
+ double tmp, x;
double tx, ty; /* Coordinates of intersection point in
* transformed coordinate system. */
- double x;
/*
- * Compute the x-coordinate of one possible intersection point
- * between the arc and the line. Use a transformed coordinate
- * system where the oval is a unit circle centered at the origin.
- * Then scale back to get actual x-coordinate.
+ * Compute the x-coordinate of one possible intersection point between the
+ * arc and the line. Use a transformed coordinate system where the oval is
+ * a unit circle centered at the origin. Then scale back to get actual
+ * x-coordinate.
*/
ty = y/ry;
@@ -1746,15 +1717,13 @@ HorizLineToArc(x1, x2, y, rx, ry, start, extent)
*
* VertLineToArc --
*
- * Determines whether a vertical line segment intersects
- * a given arc.
+ * Determines whether a vertical line segment intersects a given arc.
*
* Results:
- * The return value is 1 if the given line intersects the
- * infinitely-thin arc section defined by rx, ry, start,
- * and extent, and 0 otherwise. Only the perimeter of the
- * arc is checked: interior areas (e.g. pie-slice or chord)
- * are not checked.
+ * The return value is 1 if the given line intersects the infinitely-thin
+ * arc section defined by rx, ry, start, and extent, and 0 otherwise.
+ * Only the perimeter of the arc is checked: interior areas (e.g. chord
+ * or pie-slice) are not checked.
*
* Side effects:
* None.
@@ -1763,25 +1732,24 @@ HorizLineToArc(x1, x2, y, rx, ry, start, extent)
*/
static int
-VertLineToArc(x, y1, y2, rx, ry, start, extent)
- double x; /* X-coordinate of line segment. */
- double y1, y2; /* Y-coords of endpoints of line segment.
- * Y1 must be <= y2. */
- double rx, ry; /* These x- and y-radii define an oval
+VertLineToArc(
+ double x, /* X-coordinate of line segment. */
+ double y1, double y2, /* Y-coords of endpoints of line segment. Y1
+ * must be <= y2. */
+ double rx, double ry, /* These x- and y-radii define an oval
* centered at the origin. */
- double start, extent; /* Angles that define extent of arc, in
- * the standard fashion for this module. */
+ double start, double extent)/* Angles that define extent of arc, in the
+ * standard fashion for this module. */
{
- double tmp;
+ double tmp, y;
double tx, ty; /* Coordinates of intersection point in
* transformed coordinate system. */
- double y;
/*
- * Compute the y-coordinate of one possible intersection point
- * between the arc and the line. Use a transformed coordinate
- * system where the oval is a unit circle centered at the origin.
- * Then scale back to get actual y-coordinate.
+ * Compute the y-coordinate of one possible intersection point between the
+ * arc and the line. Use a transformed coordinate system where the oval is
+ * a unit circle centered at the origin. Then scale back to get actual
+ * y-coordinate.
*/
tx = x/rx;
@@ -1810,15 +1778,14 @@ VertLineToArc(x, y1, y2, rx, ry, start, extent)
*
* AngleInRange --
*
- * Determine whether the angle from the origin to a given
- * point is within a given range.
+ * Determine whether the angle from the origin to a given point is within
+ * a given range.
*
* Results:
- * The return value is 1 if the angle from (0,0) to (x,y)
- * is in the range given by start and extent, where angles
- * are interpreted in the standard way for ovals (meaning
- * backwards from normal interpretation). Otherwise the
- * return value is 0.
+ * The return value is 1 if the angle from (0,0) to (x,y) is in the range
+ * given by start and extent, where angles are interpreted in the
+ * standard way for ovals (meaning backwards from normal interpretation).
+ * Otherwise the return value is 0.
*
* Side effects:
* None.
@@ -1827,11 +1794,11 @@ VertLineToArc(x, y1, y2, rx, ry, start, extent)
*/
static int
-AngleInRange(x, y, start, extent)
- double x, y; /* Coordinate of point; angle measured
- * from origin to here, relative to x-axis. */
- double start; /* First angle, degrees, >=0, <=360. */
- double extent; /* Size of arc in degrees >=-360, <=360. */
+AngleInRange(
+ double x, double y, /* Coordinate of point; angle measured from
+ * origin to here, relative to x-axis. */
+ double start, /* First angle, degrees, >=0, <=360. */
+ double extent) /* Size of arc in degrees >=-360, <=360. */
{
double diff;
@@ -1857,15 +1824,13 @@ AngleInRange(x, y, start, extent)
*
* ArcToPostscript --
*
- * This procedure is called to generate Postscript for
- * arc items.
+ * This procedure is called to generate Postscript for arc items.
*
* Results:
- * The return value is a standard Tcl result. If an error
- * occurs in generating Postscript then an error message is
- * left in the interp's result, replacing whatever used
- * to be there. If no error occurs, then Postscript for the
- * item is appended to the result.
+ * The return value is a standard Tcl result. If an error occurs in
+ * generating Postscript then an error message is left in the interp's
+ * result, replacing whatever used to be there. If no error occurs, then
+ * Postscript for the item is appended to the result.
*
* Side effects:
* None.
@@ -1874,15 +1839,13 @@ AngleInRange(x, y, start, extent)
*/
static int
-ArcToPostscript(interp, canvas, itemPtr, prepass)
- Tcl_Interp *interp; /* Leave Postscript or error message
- * here. */
- Tk_Canvas canvas; /* Information about overall canvas. */
- Tk_Item *itemPtr; /* Item for which Postscript is
- * wanted. */
- int prepass; /* 1 means this is a prepass to
- * collect font information; 0 means
- * final Postscript is being created. */
+ArcToPostscript(
+ Tcl_Interp *interp, /* Leave Postscript or error message here. */
+ Tk_Canvas canvas, /* Information about overall canvas. */
+ Tk_Item *itemPtr, /* Item for which Postscript is wanted. */
+ int prepass) /* 1 means this is a prepass to collect font
+ * information; 0 means final Postscript is
+ * being created. */
{
ArcItem *arcPtr = (ArcItem *) itemPtr;
char buffer[400];
@@ -1902,7 +1865,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass)
ang2 = arcPtr->start;
}
- if(state == TK_STATE_NULL) {
+ if (state == TK_STATE_NULL) {
state = ((TkCanvas *)canvas)->canvas_state;
}
color = arcPtr->outline.color;
@@ -1922,7 +1885,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass)
if (arcPtr->activeFillStipple!=None) {
fillStipple = arcPtr->activeFillStipple;
}
- } else if (state==TK_STATE_DISABLED) {
+ } else if (state == TK_STATE_DISABLED) {
if (arcPtr->outline.disabledColor!=NULL) {
color = arcPtr->outline.disabledColor;
}
@@ -1938,8 +1901,8 @@ ArcToPostscript(interp, canvas, itemPtr, prepass)
}
/*
- * If the arc is filled, output Postscript for the interior region
- * of the arc.
+ * If the arc is filled, output Postscript for the interior region of the
+ * arc.
*/
if (arcPtr->fillGC != None) {
@@ -1958,11 +1921,10 @@ ArcToPostscript(interp, canvas, itemPtr, prepass)
Tcl_AppendResult(interp, buffer, (char *) NULL);
if (Tk_CanvasPsColor(interp, canvas, fillColor) != TCL_OK) {
return TCL_ERROR;
- };
+ }
if (fillStipple != None) {
Tcl_AppendResult(interp, "clip ", (char *) NULL);
- if (Tk_CanvasPsStipple(interp, canvas, fillStipple)
- != TCL_OK) {
+ if (Tk_CanvasPsStipple(interp, canvas, fillStipple) != TCL_OK) {
return TCL_ERROR;
}
if (arcPtr->outline.gc != None) {
@@ -1985,8 +1947,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass)
sprintf(buffer, "0 0 1 %.15g %.15g", ang1, ang2);
Tcl_AppendResult(interp, buffer,
" arc\nsetmatrix\n0 setlinecap\n", (char *) NULL);
- if (Tk_CanvasPsOutline(canvas, itemPtr,
- &(arcPtr->outline)) != TCL_OK) {
+ if (Tk_CanvasPsOutline(canvas, itemPtr, &(arcPtr->outline)) != TCL_OK){
return TCL_ERROR;
}
if (arcPtr->style != ARC_STYLE) {
@@ -2003,8 +1964,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass)
}
if (stipple != None) {
Tcl_AppendResult(interp, "clip ", (char *) NULL);
- if (Tk_CanvasPsStipple(interp, canvas,
- stipple) != TCL_OK) {
+ if (Tk_CanvasPsStipple(interp, canvas, stipple) != TCL_OK){
return TCL_ERROR;
}
} else {
@@ -2021,8 +1981,7 @@ ArcToPostscript(interp, canvas, itemPtr, prepass)
}
if (stipple != None) {
Tcl_AppendResult(interp, "clip ", (char *) NULL);
- if (Tk_CanvasPsStipple(interp, canvas,
- stipple) != TCL_OK) {
+ if (Tk_CanvasPsStipple(interp, canvas, stipple) != TCL_OK) {
return TCL_ERROR;
}
} else {
@@ -2039,34 +1998,34 @@ ArcToPostscript(interp, canvas, itemPtr, prepass)
*
* StyleParseProc --
*
- * This procedure is invoked during option processing to handle
- * the "-style" option.
+ * This procedure is invoked during option processing to handle the
+ * "-style" option.
*
* Results:
* A standard Tcl return value.
*
* Side effects:
- * The state for a given item gets replaced by the state
- * indicated in the value argument.
+ * The state for a given item gets replaced by the state indicated in the
+ * value argument.
*
*--------------------------------------------------------------
*/
static int
-StyleParseProc(clientData, interp, tkwin, value, widgRec, offset)
- ClientData clientData; /* some flags.*/
- Tcl_Interp *interp; /* Used for reporting errors. */
- Tk_Window tkwin; /* Window containing canvas widget. */
- CONST char *value; /* Value of option. */
- char *widgRec; /* Pointer to record for item. */
- int offset; /* Offset into item. */
+StyleParseProc(
+ ClientData clientData, /* some flags.*/
+ Tcl_Interp *interp, /* Used for reporting errors. */
+ Tk_Window tkwin, /* Window containing canvas widget. */
+ CONST char *value, /* Value of option. */
+ char *widgRec, /* Pointer to record for item. */
+ int offset) /* Offset into item. */
{
int c;
size_t length;
register Style *stylePtr = (Style *) (widgRec + offset);
- if(value == NULL || *value == 0) {
+ if (value == NULL || *value == 0) {
*stylePtr = PIESLICE_STYLE;
return TCL_OK;
}
@@ -2087,9 +2046,8 @@ StyleParseProc(clientData, interp, tkwin, value, widgRec, offset)
return TCL_OK;
}
- Tcl_AppendResult(interp, "bad -style option \"",
- value, "\": must be arc, chord, or pieslice",
- (char *) NULL);
+ Tcl_AppendResult(interp, "bad -style option \"", value,
+ "\": must be arc, chord, or pieslice", (char *) NULL);
*stylePtr = PIESLICE_STYLE;
return TCL_ERROR;
}
@@ -2099,16 +2057,15 @@ StyleParseProc(clientData, interp, tkwin, value, widgRec, offset)
*
* StylePrintProc --
*
- * This procedure is invoked by the Tk configuration code
- * to produce a printable string for the "-style"
- * configuration option.
+ * This procedure is invoked by the Tk configuration code to produce a
+ * printable string for the "-style" configuration option.
*
* Results:
- * The return value is a string describing the state for
- * the item referred to by "widgRec". In addition, *freeProcPtr
- * is filled in with the address of a procedure to call to free
- * the result string when it's no longer needed (or NULL to
- * indicate that the string doesn't need to be freed).
+ * The return value is a string describing the state for the item
+ * referred to by "widgRec". In addition, *freeProcPtr is filled in with
+ * the address of a procedure to call to free the result string when it's
+ * no longer needed (or NULL to indicate that the string doesn't need to
+ * be freed).
*
* Side effects:
* None.
@@ -2117,22 +2074,30 @@ StyleParseProc(clientData, interp, tkwin, value, widgRec, offset)
*/
static char *
-StylePrintProc(clientData, tkwin, widgRec, offset, freeProcPtr)
- ClientData clientData; /* Ignored. */
- Tk_Window tkwin; /* Ignored. */
- char *widgRec; /* Pointer to record for item. */
- int offset; /* Offset into item. */
- Tcl_FreeProc **freeProcPtr; /* Pointer to variable to fill in with
- * information about how to reclaim
- * storage for return string. */
+StylePrintProc(
+ ClientData clientData, /* Ignored. */
+ Tk_Window tkwin, /* Ignored. */
+ char *widgRec, /* Pointer to record for item. */
+ int offset, /* Offset into item. */
+ Tcl_FreeProc **freeProcPtr) /* Pointer to variable to fill in with
+ * information about how to reclaim storage
+ * for return string. */
{
register Style *stylePtr = (Style *) (widgRec + offset);
- if (*stylePtr==ARC_STYLE) {
+ if (*stylePtr == ARC_STYLE) {
return "arc";
- } else if (*stylePtr==CHORD_STYLE) {
+ } else if (*stylePtr == CHORD_STYLE) {
return "chord";
} else {
return "pieslice";
}
}
+
+/*
+ * Local Variables:
+ * mode: c
+ * c-basic-offset: 4
+ * fill-column: 78
+ * End:
+ */