summaryrefslogtreecommitdiffstats
path: root/generic/tkText.h
Commit message (Expand)AuthorAgeFilesLines
* patch 3476698: Patch for failing test text-31.11jan.nijtmans2012-01-251-3/+4
|\
| * patch 3476698: Patch for failing test text-31.11jan.nijtmans2012-01-251-3/+4
* | Purge RCS Keywordsdgp2011-06-081-2/+0
|\ \ | |/
| * Purge RCS Keywords.dgp2011-06-081-2/+0
| |\
| | * Purge RCS Keywords.dgp2011-06-081-2/+0
| | * Apply (upgraded) version of [Patch 1469210].dkf2009-10-221-27/+29
| | * * generic/tkPanedWindow.c: Cleaned up some code flagged by adgp2006-10-171-2/+2
* | | [Bug 3129527]: Fix buffer overflow w/ GCC 4.5 and -D_FORTIFY_SOURCE=2. One mo...jan.nijtmans2011-03-281-1/+1
|\ \ \ | |/ /
| * | Apply (slight cleaner, tested) version of [Patch 1469210].dkf2009-10-221-7/+26
* | | Formattingnijtmans2010-04-231-10/+2
* | | Removed lame reliance on the leading letters of the names of segment types whendkf2010-03-111-1/+3
* | | Apply (slight cleaner, tested) version of [Patch 1469210].dkf2009-10-221-7/+26
* | | Implementation of TIP #197.dkf2008-12-061-2/+16
* | | Move 10 functions from tkText.h tonijtmans2008-12-041-33/+1
|/ /
* | merge stable branch onto HEADdgp2007-12-131-1/+1
* | fix typos in commentshobbs2007-12-131-4/+4
* | Cleaning up whitespace, comments, declarations. No functional changes.dkf2007-06-241-79/+77
* | various "const" additions, in line with TIP #27nijtmans2007-01-181-64/+64
* | fix for text dump -command callbacks which modify the text widgetvincentdarley2006-03-261-1/+2
* | * unix/tcl.m4 (Darwin): add 64bit support, check for Tiger copyfile(),das2005-11-271-96/+96
* | ANSIfy and reduce casting of NULL to promote readabilitydkf2005-11-171-748/+684
* | tip256 implementationvincentdarley2005-10-101-3/+17
* | fix to newline eliding in text widgetvincentdarley2005-02-141-4/+5
* | text widget 'peer' subcommand -- TIP#169 implementationvincentdarley2004-09-101-115/+240
* | text widget more extensive documentation, and two small code improvementsvincentdarley2003-12-151-1/+3
* | performance of lines containing 10000+ charactersvincentdarley2003-12-051-3/+4
* | correct handling of interpolated tabs using fractional pixel widthsvincentdarley2003-11-211-1/+7
* | fix two more old text widget bugsvincentdarley2003-11-151-2/+2
* | old tk text widget bugs fixedvincentdarley2003-11-121-6/+2
* | elide tag handling, once morevincentdarley2003-11-081-7/+10
* | better elide tag handlingvincentdarley2003-11-071-3/+24
* | TIP 155 implementationvincentdarley2003-10-311-20/+115
* | Private functions should be either static or prefixed with 'Tk' (thanks GPS!)dkf2003-09-291-2/+2
* | text widget cleanup fixvincentdarley2003-05-271-2/+7
* | tip 113 implementationvincentdarley2003-05-191-36/+68
|/
* ANSI unfriendly typedef for TkTextBTree repaired for C++ compilers.davygrvy2002-12-271-2/+2
* Applied companion patch for Tcl Patch 585105,dgp2002-08-051-16/+16
* * doc/text.n: TIP #104 implementation which generalizes thehobbs2002-06-211-20/+17
* * Updated callers of Tcl_SplitList and Tcl_Merge.dgp2002-01-251-2/+2
* * generic/tkText.c:hobbs2001-12-051-4/+4
* added TIP#26 text widget undo/redo functionalityhobbs2001-11-131-4/+51
* * doc/text.n:hobbs2000-01-061-6/+8
* * generic/tkStubInit.c:hobbs1999-12-141-16/+22
* backed out chenges made to tkInt.h and tkText.h and fixed the problem directl...surles1999-06-171-71/+100
* modified files to work with new windows Makefilessurles1999-06-161-23/+2
* * Merged 8.1 branch into the main trunkstanton1999-04-161-19/+33
* Replaced SCCS strings, fixed binary filesstanton1998-09-141-1/+1
* Initial revisionrjohnson1998-04-011-0/+848
8' href='#n1068'>1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
<html>
  <head>
    <title>
      HDF5 Draft Disk-Format Specification
    </title>
  </head>
  <body>
    <center><h1>HDF5: Disk Format Implementation</h1></center>

    <ol type=I>
      <li><a href="#BootBlock">
	  Disk Format Level 0 - File Signature and Boot Block</a>
      <li><a href="#ObjectDir">
	  Disk Format Level 1 - File Infrastructure</a>
	<ol type=A>
	  <li><a href="#Btrees">
	      Disk Format Level 1A - B-link Trees</a>
	  <li><a href="#SymbolTable">
	      Disk Format Level 1B - Symbol Table</a>
	  <li><a href="#SymbolTableEntry">
	      Disk Format Level 1C - Symbol Table Entry</a>
	  <li><a href="#LocalHeap">
	      Disk Format Level 1D - Local Heaps</a>
	  <li><a href="#GlobalHeap">
	      Disk Format Level 1E - Global Heap</a>
	  <li><a href="#FreeSpaceIndex">
	      Disk Format Level 1F - Free-Space Index</a>
	</ol>
      <li><a href="#DataObject">
	  Disk Format Level 2 - Data Objects</a>
	<ol type=A>
	  <li><a href="#ObjectHeader">
	      Disk Format Level 2a - Data Object Headers</a>
	    <ol type=1>
	      <li><a href="#NILMessage">                        <!-- 0x0000 -->
		  Name: NIL</a>
	      <li><a href="#SimpleDataSpace">                   <!-- 0x0001 -->
		  Name: Simple Data Space</a>
	      <li><a href="#DataSpaceMessage">                  <!-- 0x0002 -->
		  Name: Data-Space</a>
	      <li><a href="#DataTypeMessage">                   <!-- 0x0003 -->
		  Name: Data-Type</a>
	      <li><a href="#ReservedMessage_0004">              <!-- 0x0004 -->
		  Name: Reserved - not assigned yet</a>
	      <li><a href="#ReservedMessage_0005">              <!-- 0x0005 -->
		  Name: Reserved - not assigned yet</a>
	      <li><a href="#CompactDataStorageMessage">         <!-- 0x0006 -->
		  Name: Data Storage - Compact</a>
	      <li><a href="#ExternalFileListMessage">           <!-- 0x0007 -->
		  Name: Data Storage - External Data Files</a>
	      <li><a href="#LayoutMessage">                     <!-- 0x0008 -->
		  Name: Data Storage - Layout</a>
	      <li><a href="#ReservedMessage_0009">              <!-- 0x0009 -->
		  Name: Reserved - not assigned yet</a>
	      <li><a href="#ReservedMessage_000A">              <!-- 0x000a -->
		  Name: Reserved - not assigned yet</a>
	      <li><a href="#FilterMessage">                	<!-- 0x000b -->
		  Name: Data Storage - Filter Pipeline</a>
	      <li><a href="#AttributeMessage">                  <!-- 0x000c -->
		  Name: Attribute</a>
	      <li><a href="#NameMessage">                       <!-- 0x000d -->
		  Name: Object Name</a>
	      <li><a href="#ModifiedMessage">                   <!-- 0x000e -->
		  Name: Object Modification Date & Time</a>
	      <li><a href="#SharedMessage">                     <!-- 0x000f -->
		  Name: Shared Object Message</a>
	      <li><a href="#ContinuationMessage">               <!-- 0x0010 -->
		  Name: Object Header Continuation</a>
	      <li><a href="#SymbolTableMessage">                <!-- 0x0011 -->
		  Name: Symbol Table Message</a>
	    </ol>
	  <li><a href="#SharedObjectHeader">
	      Disk Format: Level 2b - Shared Data Object Headers</a>
	  <li><a href="#DataStorage">
	      Disk Format: Level 2c - Data Object Data Storage</a>
	</ol>
    </ol>


    <h2>Disk Format Implementation</h2>

    <P>The format of a HDF5 file on disk encompasses several
      key ideas of the current HDF4 & AIO file formats as well as
      addressing some short-comings therein.  The new format will be
      more self-describing than the HDF4 format and will be more
      uniformly applied to data objects in the file.
      

    <P>Three levels of information compose the file format.  The level
      0 contains basic information for identifying and
      "boot-strapping" the file.  Level 1 information is composed of
      the object directory (stored as a B-tree) and is used as the
      index for all the objects in the file.  The rest of the file is
      composed of data-objects at level 2, with each object
      partitioned into header (or "meta") information and data
      information.

    <p>The sizes of various fields in the following layout tables are
      determined by looking at the number of columns the field spans
      in the table.  There are three exceptions: (1) The size may be
      overridden by specifying a size in parentheses, (2) the size of
      addresses is determined by the <em>Size of Addresses</em> field
      in the boot block, and (3) the size of size fields is determined
      by the <em>Size of Sizes</em> field in the boot block.

    <h3><a name="BootBlock">
	Disk Format: Level 0 - File Signature and Boot Block</a></h3>

    <P>The boot block may begin at certain predefined offsets within
      the HDF5 file, allowing a block of unspecified content for
      users to place additional information at the beginning (and
      end) of the HDF5 file without limiting the HDF5 library's
      ability to manage the objects within the file itself.  This
      feature was designed to accommodate wrapping an HDF5 file in
      another file format or adding descriptive information to the
      file without requiring the modification of the actual file's
      information.  The boot-block is located by searching for the
      HDF5 file signature at byte offset 0, byte offset 512 and at
      successive locations in the file, each a multiple of two of
      the previous location, i.e.  0, 512, 1024, 2048, etc.

    <P>The boot-block is composed of a file signature, followed by
      boot block and object directory version numbers, information
      about the sizes of offset and length values used to describe
      items within the file, the size of each object directory page,
      and a symbol table entry for the root object in the file.

    <p>
    <center>
      <table border align=center cellpadding=4 width="80%">
	<caption align=top>
	  <B>HDF5 Boot Block Layout</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>  

	<tr align=center>
	  <td colspan=4><br>HDF5 File Signature (8 bytes)<br><br></td>
	</tr>

	<tr align=center>
	  <td>Version # of Boot Block</td>
	  <td>Version # of Global Free-Space Storage</td>
	  <td>Version # of Object Directory</td>
	  <td>Reserved</td>
	</tr>

	<tr align=center>
	  <td>Version # of Shared Header Message Format</td>
	  <td>Size of Addresses</td>
	  <td>Size of Sizes</td>
	  <td>Reserved (zero)</td>
	</tr>

	<tr align=center>
	  <td colspan=2>Symbol Table Leaf Node K</td>
	  <td colspan=2>Symbol Table Internal Node K</td>
	</tr>

	<tr align=center>
	  <td colspan=4>File Consistency Flags</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Base Address</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Address of Global Free-Space Heap</td>
	</tr>

	<tr align=center>
	  <td colspan=4>End of File Address</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved Address</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Root Group Symbol Table Entry<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>File Signature</td>
	  <td>This field contains a constant value and can be used to
	    quickly identify a file as being an HDF5 file.  The
	    constant value is designed to allow easy identification of
	    an HDF5 file and to allow certain types of data corruption
	    to be detected.  The file signature of a HDF5 file always
	    contain the following values:

	    <br><br><center>
	      <table border align=center cellpadding=4 width="80%">
		<tr align=center>
		  <td>decimal</td>
                  <td width="8%">137</td>
		  <td width="8%">72</td>
		  <td width="8%">68</td>
		  <td width="8%">70</td>
		  <td width="8%">13</td>
		  <td width="8%">10</td>
		  <td width="8%">26</td>
		  <td width="8%">10</td>
		</tr>

		<tr align=center>
		  <td>hexadecimal</td>
		  <td width="8%">89</td>
		  <td width="8%">48</td>
		  <td width="8%">44</td>
		  <td width="8%">46</td>
		  <td width="8%">0d</td>
		  <td width="8%">0a</td>
		  <td width="8%">1a</td>
		  <td width="8%">0a</td>
		</tr>

		<tr align=center>
		  <td>ASCII C Notation</td>
		  <td width="8%">\211</td>
		  <td width="8%">H</td>
		  <td width="8%">D</td>
		  <td width="8%">F</td>
		  <td width="8%">\r</td>
		  <td width="8%">\n</td>
		  <td width="8%">\032</td>
		  <td width="8%">\n</td>
		</tr>
	      </table>
	    </center>
	    <br>

	    This signature both identifies the file as a HDF5 file
	    and provides for immediate detection of common
	    file-transfer problems. The first two bytes distinguish
	    HDF5 files on systems that expect the first two bytes to
	    identify the file type uniquely. The first byte is
	    chosen as a non-ASCII value to reduce the probability
	    that a text file may be misrecognized as a HDF5 file;
	    also, it catches bad file transfers that clear bit
	    7. Bytes two through four name the format. The CR-LF
	    sequence catches bad file transfers that alter newline
	    sequences. The control-Z character stops file display
	    under MS-DOS. The final line feed checks for the inverse
	    of the CR-LF translation problem.  (This is a direct
	    descendent of the PNG file signature.)</td>
	</tr>

	<tr valign=top>
	  <td>Version # of the Boot Block</td>
	  <td>This value is used to determine the format of the
	    information in the boot block.  When the format of the
	    information in the boot block is changed, the version #
	    is incremented to the next integer and can be used to
	    determine how the information in the boot block is
	    formatted.</td>
	</tr>

	<tr valign=top>
	  <td>Version # of the Global Free-Space Storage</td>
	  <td>This value is used to determine the format of the
	    information in the Global Free-Space Heap.  Currently,
	    this is implemented as a B-tree of length/offset pairs
	    to locate free space in the file, but future advances in
	    the file-format could change the method of finding
	    global free-space.  When the format of the information
	    is changed, the version # is incremented to the next
	    integer and can be used to determine how the information
	    is formatted.</td>
	</tr>

	<tr valign=top>
	  <td>Version # of the Object Directory</td>
	  <td>This value is used to determine the format of the
	    information in the Object Directory.  When the format of
	    the information in the Object Directory is changed, the
	    version # is incremented to the next integer and can be
	    used to determine how the information in the Object
	    Directory is formatted.</td>
	</tr>

	<tr valign=top>
	  <td>Version # of the Shared Header Message Format</td>
	  <td>This value is used to determine the format of the
	    information in a shared object header message, which is
	    stored in the global small-data heap.  Since the format
	    of the shared header messages differ from the private
	    header messages, a version # is used to identify changes
	    in the format.</td>
	</tr>

	<tr valign=top>
	  <td>Size of Addresses</td>
	  <td>This value contains the number of bytes used for
	    addresses in the file.  The values for the addresses of
	    objects in the file are relative to a base address,
	    usually the address of the boot block signature.  This
	    allows a wrapper to be added after the file is created
	    without invalidating the internal offset locations.</td>
	</tr>

	<tr valign=top>
	  <td>Size of Sizes</td>
	  <td>This value contains the number of bytes used to store
	    the size of an object.</td>
	</tr>

	<tr valign=top>
	  <td>Symbol Table Leaf Node K</td>
	  <td>Each leaf node of a symbol table B-tree will have at
	    least this many entries but not more than twice this
	    many.  If a symbol table has a single leaf node then it
	    may have fewer entries.</td>
	</tr>

	<tr valign=top>
	  <td>Symbol Table Internal Node K</td>
	  <td>Each internal node of a symbol table B-tree will have
	    at least K pointers to other nodes but not more than 2K
	    pointers.  If the symbol table has only one internal
	    node then it might have fewer than K pointers.</td>
	</tr>

	<tr valign=top>
	  <td>Bytes per B-Tree Page</td>
	  <td>This value contains the # of bytes used for symbol
	    pairs per page of the B-Trees used in the file.  All
	    B-Tree pages will have the same size per page.  <br>(For
	    32-bit file offsets, 340 objects is the maximum per 4KB
	    page, and for 64-bit file offset, 254 objects will fit
	    per 4KB page.  In general, the equation is: <br> &lt;#
	    of objects&gt; = FLOOR((&lt;page size&gt;-&lt;offset
	    size&gt;)/(&lt;Symbol size&gt;+&lt;offset size&gt;))-1 )</td>
	</tr>

	<tr valign=top>
	  <td>File Consistency Flags</td>
	  <td>This value contains flags to indicate information
	    about the consistency of the information contained
	    within the file.  Currently, the following bit flags are
	    defined: bit 0 set indicates that the file is opened for
	    write-access and bit 1 set indicates that the file has
	    been verified for consistency and is guaranteed to be
	    consistent with the format defined in this document.
	    Bits 2-31 are reserved for future use.  Bit 0 should be
	    set as the first action when a file is opened for write
	    access and should be cleared only as the final action
	    when closing a file.  Bit 1 should be cleared during
	    normal access to a file and only set after the file's
	    consistency is guaranteed by the library or a
	    consistency utility.</td>
	</tr>

	<tr valign=top>
	  <td>Base Address</td>
	  <td>This is the absolute file address of the first byte of
	    the hdf5 data within the file.  Unless otherwise noted,
	    all other file addresses are relative to this base
	    address.</td>
	</tr>

	<tr valign=top>
	  <td>Address of Global Free-Space Heap</td>
	  <td>This value contains the relative address of the B-Tree
	    used to manage the blocks of data which are unused in the
	    file currently.  The free-space heap is used to manage the
	    blocks of bytes at the file-level which become unused with
	    objects are moved within the file.</td>
	</tr>

	<tr valign=top>
	  <td>End of File Address</td>
	  <td>This is the relative file address of the first byte past
	    the end of all HDF5 data.  It is used to determine if a
	    file has been accidently truncated and as an address where
	    file memory allocation can occur if the free list is not
	    used.</td>
	</tr>

	<tr valign=top>
	  <td>Reserved Address</td>
	  <td>This address field is present for alignment purposes and 
	    is always set to the undefined address value (all bits
	    set).</td>
	</tr>

	<tr valign=top>
	  <td>Root Group Symbol Table Entry</td>
	  <td>This symbol-table entry (described later in this
	    document) refers to the entry point into the group
	    graph.  If the file contains a single object, then that
	    object can be the root object and no groups are used.</td>
	</tr>
      </table>
    </center>

    <h3><a name="Btrees">Disk Format: Level 1A - B-link Trees</a></h3>

    <p>B-link trees allow flexible storage for objects which tend to grow
      in ways that cause the object to be stored discontiguously.  B-trees
      are described in various algorithms books including "Introduction to
      Algorithms" by Thomas H. Cormen, Charles E. Leiserson, and Ronald
      L. Rivest.  The B-link tree, in which the sibling nodes at a
      particular level in the tree are stored in a doubly-linked list,
      is described in the "Efficient Locking for Concurrent Operations
      on B-trees" paper by Phillip Lehman and S. Bing Yao as published
      in the <em>ACM Transactions on Database Systems</em>, Vol. 6,
      No. 4, December 1981.

    <p>The B-link trees implemented by the file format contain one more
      key than the number of children.  In other words, each child
      pointer out of a B-tree node has a left key and a right key.
      The pointers out of internal nodes point to sub-trees while
      the pointers out of leaf nodes point to other file data types.
      Notwithstanding that difference, internal nodes and leaf nodes
      are identical.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>B-tree Nodes</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>

	<tr align=center>
	  <td colspan=4>Node Signature</td>

	<tr align=center>
	  <td>Node Type</td>
	  <td>Node Level</td>
	  <td colspan=2>Entries Used</td>

	<tr align=center>
	  <td colspan=4>Address of Left Sibling</td>

	<tr align=center>
	  <td colspan=4>Address of Right Sibling</td>

	<tr align=center>
	  <td colspan=4>Key 0 (variable size)</td>

	<tr align=center>
	  <td colspan=4>Address of Child 0</td>

	<tr align=center>
	  <td colspan=4>Key 1 (variable size)</td>

	<tr align=center>
	  <td colspan=4>Address of Child 1</td>

	<tr align=center>
	  <td colspan=4>...</td>

	<tr align=center>
	  <td colspan=4>Key 2<em>K</em> (variable size)</td>

	<tr align=center>
	  <td colspan=4>Address of Child 2<em>K</em></td>

	<tr align=center>
	  <td colspan=4>Key 2<em>K</em>+1 (variable size)</td>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Node Signature</td>
	  <td>The value ASCII 'TREE' is used to indicate the
	    beginning of a B-link tree node.  This gives file
	    consistency checking utilities a better chance of
	    reconstructing a damaged file.</td>
	</tr>

	<tr valign=top>
	  <td>Node Type</td>
	  <td>Each B-link tree points to a particular type of data.
	    This field indicates the type of data as well as
	    implying the maximum degree <em>K</em> of the tree and
	    the size of each Key field.
	    <br>
	    <dl compact>
	      <dt>0
	      <dd>This tree points to symbol table nodes.
	      <dt>1
	      <dd>This tree points to a (partial) linear address space.
	    </dl>
	  </td>
	</tr>

	<tr valign=top>
	  <td>Node Level</td>
	  <td>The node level indicates the level at which this node
	    appears in the tree (leaf nodes are at level zero).  Not
	    only does the level indicate whether child pointers
	    point to sub-trees or to data, but it can also be used
	    to help file consistency checking utilities reconstruct
	    damanged trees.</td>
	</tr>

	<tr valign=top>
	  <td>Entries Used</td>
	  <td>This determines the number of children to which this
	    node points.  All nodes of a particular type of tree
	    have the same maximum degree, but most nodes will point
	    to less than that number of children.  The valid child
	    pointers and keys appear at the beginning of the node
	    and the unused pointers and keys appear at the end of
	    the node.  The unused pointers and keys have undefined
	    values.</td>
	</tr>

	<tr valign=top>
	  <td>Address of Left Sibling</td>
	  <td>This is the file address of the left sibling of the
	    current node relative to the boot block.  If the current
	    node is the left-most node at this level then this field
	    is the undefined address (all bits set).</td>
	</tr>

	<tr valign=top>
	  <td>Address of Right Sibling</td>
	  <td>This is the file address of the right sibling of the
	    current node relative to the boot block.  If the current
	    node is the right-most node at this level then this
	    field is the undefined address (all bits set).</td>
	</tr>

	<tr valign=top>
	  <td>Keys and Child Pointers</td>
	  <td>Each tree has 2<em>K</em>+1 keys with 2<em>K</em>
	    child pointers interleaved between the keys.  The number
	    of keys and child pointers actually containing valid
	    values is determined by the `Entries Used' field.  If
	    that field is <em>N</em> then the B-link tree contains
	    <em>N</em> child pointers and <em>N</em>+1 keys.</td>
	</tr>

	<tr valign=top>
	  <td>Key</td>
	  <td>The format and size of the key values is determined by
	    the type of data to which this tree points.  The keys are
	    ordered and are boundaries for the contents of the child
	    pointer.  That is, the key values represented by child
	    <em>N</em> fall between Key <em>N</em> and Key
	    <em>N</em>+1. Whether the interval is open or closed on
	    each end is determined by the type of data to which the
	    tree points.</td>
	</tr>

	<tr valign=top>
	  <td>Address of Children</td>
	  <td>The tree node contains file addresses of subtrees or
	    data depending on the node level (0 implies data
	    addresses).</td>
	</tr>
      </table>
    </center>

    <h3><a name="SymbolTable">Disk Format: Level 1B - Symbol Table</a></h3>

    <p>A symbol table is a group internal to the file that allows
      arbitrary nesting of objects (including other symbol
      tables). A symbol table maps a set of names to a set of file
      address relative to the file boot block.  Certain meta data
      for an object to which the symbol table points can be cached
      in the symbol table in addition to (or in place of?) the
      object header.

    <p>An HDF5 object name space can be stored hierarchically by
      partitioning the name into components and storing each
      component in a symbol table.  The symbol table entry for a
      non-ultimate component points to the symbol table containing
      the next component.  The symbol table entry for the last
      component points to the object being named.

    <p>A symbol table is a collection of symbol table nodes pointed
      to by a B-link tree.  Each symbol table node contains entries
      for one or more symbols.  If an attempt is made to add a
      symbol to an already full symbol table node containing
      2<em>K</em> entries, then the node is split and one node
      contains <em>K</em> symbols and the other contains
      <em>K</em>+1 symbols.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>Symbol Table Node</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>

	<tr align=center>
	  <td colspan=4>Node Signature</td>

	<tr align=center>
	  <td>Version Number</td>
	  <td>Reserved for Future Use</td>
	  <td colspan=2>Number of Symbols</td>

	<tr align=center>
	  <td colspan=4><br><br>Symbol Table Entries<br><br><br></td>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Node Signature</td>
	  <td>The value ASCII 'SNOD' is used to indicate the
	    beginning of a symbol table node.  This gives file
	    consistency checking utilities a better chance of
	    reconstructing a damaged file.</td>
	</tr>

	<tr valign=top>
	  <td>Version Number</td>
	  <td>The version number for the symbol table node.  This
	    document describes version 1.</td>
	</tr>

	<tr valign=top>
	  <td>Number of Symbols</td>
	  <td>Although all symbol table nodes have the same length,
	    most contain fewer than the maximum possible number of
	    symbol entries.  This field indicates how many entries
	    contain valid data.  The valid entries are packed at the
	    beginning of the symbol table node while the remaining
	    entries contain undefined values.</td>
	</tr>

	<tr valign=top>
	  <td>Symbol Table Entries</td>
	  <td>Each symbol has an entry in the symbol table node.
	    The format of the entry is described below.</td>
	</tr>
      </table>
    </center>

    <h3><a name="SymbolTableEntry">
	Disk Format: Level 1C - Symbol-Table Entry </a></h3>

    <p>Each symbol table entry in a symbol table node is designed to allow
      for very fast browsing of commonly stored scientific objects.
      Toward that design goal, the format of the symbol-table entries
      includes space for caching certain constant meta data from the
      object header.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>Symbol Table Entry</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td colspan=4>Name Offset (&lt;size&gt; bytes)</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Object Header Address</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Symbol-Type</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br><br>Scratch-pad Space (16 bytes)<br><br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Name Offset</td>
	  <td>This is the byte offset into the symbol table local
	    heap for the name of the symbol. The name is null
	    terminated.</td>
	</tr>

	<tr valign=top>
	  <td>Object Header Address</td>
	  <td>Every object has an object header which serves as a
	    permanent home for the object's meta data.  In addition
	    to appearing in the object header, the meta data can be
	    cached in the scratch-pad space.</td>
	</tr>

	<tr valign=top>
	  <td>Symbol-Type</td>
	  <td>The symbol type is determined from the object header.
	    It also determines the format for the scratch-pad space.
	    The value zero indicates that no object header meta data
	    is cached in the symbol table entry.
	    <br>
	    <dl compact>
	      <dt>0
	      <dd>No data is cached by the symbol table entry.  This
		is guaranteed to be the case when an object header
		has a link count greater than one.

	      <dt>1
	      <dd>Symbol table meta data is cached in the symbol
		table entry.  This implies that the symbol table
		entry refers to another symbol table.

	      <dt>2
	      <dd>The entry is a symbolic link.  The first four bytes
		of the scratch pad space are the offset into the local
		heap for the link value.  The object header address
		will be undefined.

	      <dt><em>N</em>
	      <dd>Other cache values can be defined later and
	      libraries that don't understand the new values will
	      still work properly.
	    </dl>
	  </td>
	</tr>

	<tr valign=top>
	  <td>Reserved</td>
	  <td>These for bytes are present so that the scratch pad
	    space is aligned on an eight-byte boundary.  They are
	    always set to zero.</td>
	</tr>

	<tr valign=top>
	  <td>Scratch-Pad Space</td>
	  <td>This space is used for different purposes, depending
	    on the value of the Symbol Type field. Any meta-data
	    about a dataset object represented in the scratch-pad
	    space is duplicated in the object header for that
	    dataset.  Furthermore, no data is cached in the symbol
	    table entry scratch-pad space if the object header for
	    the symbol table entry has a link count greater than
	    one.</td>
	</tr>
      </table>
    </center>

    <p>The symbol table entry scratch-pad space is formatted
      according to the value of the Symbol Type field.  If the
      Symbol Type field has the value zero then no information is
      stored in the scratch pad space.

    <p>If the Symbol Type field is one, then the scratch pad space
      contains cached meta data for another symbol table with the format:

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>Symbol Table Scratch-Pad Format</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>

	<tr align=center>
	  <td colspan=4>Address of B-tree</td>

	<tr align=center>
	  <td colspan=4>Address of Name Heap</td>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Address of B-tree</td>
	  <td>This is the file address for the symbol table's
	    B-tree.</td>
	</tr>

	<tr valign=top>
	  <td>Address of Name Heap</td>
	  <td>This is the file address for the symbol table's local
	    heap that stores the symbol names.</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>Symbolic Link Scratch-Pad Format</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td colspan=4>Offset to Link Value</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Offset to Link Value</td>
	  <td>The value of a symbolic link (that is, the name of the
	    thing to which it points) is stored in the local heap.
	    This field is the 4-byte offset into the local heap for
	    the start of the link value, which is null terminated.</td>
	</tr>
      </table>
    </center>

    <h3><a name="LocalHeap">Disk Format: Level 1D - Local Heaps</a></h3>

    <p>A heap is a collection of small heap objects.  Objects can be
      inserted and removed from the heap at any time and the address
      of a heap doesn't change once the heap is created. Note: this
      is the "local" version of the heap mostly intended for the
      storage of names in a symbol table. The storage of small
      objects in a global heap is described below.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Local Heaps</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td colspan=4>Heap Signature</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved (zero)</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Data Segment Size</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Offset to Head of Free-list (&lt;size&gt; bytes)</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Address of Data Segment</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Heap Signature</td>
	  <td>The valid ASCII 'HEAP' is used to indicate the
	    beginning of a heap.  This gives file consistency
	    checking utilities a better chance of reconstructing a
	    damaged file.</td>
	</tr>

	<tr valign=top>
	  <td>Data Segment Size</td>
	  <td>The total amount of disk memory allocated for the heap
	    data.  This may be larger than the amount of space
	    required by the object stored in the heap.  The extra
	    unused space holds a linked list of free blocks.</td>
	</tr>

	<tr valign=top>
	  <td>Offset to Head of Free-list</td>
	  <td>This is the offset within the heap data segment of the
	    first free block (or all 0xff bytes if there is no free
	    block).  The free block contains &lt;size&gt; bytes that
	    are the offset of the next free chunk (or all 0xff bytes
	    if this is the last free chunk) followed by &lt;size&gt;
	    bytes that store the size of this free chunk.</td>
	</tr>

	<tr valign=top>
	  <td>Address of Data Segment</td>
	  <td>The data segment originally starts immediately after
	    the heap header, but if the data segment must grow as a
	    result of adding more objects, then the data segment may
	    be relocated to another part of the file.</td>
	</tr>
      </table>
    </center>

    <p>Objects within the heap should be aligned on an 8-byte boundary.

    <h3><a name="GlobalHeap">Disk Format: Level 1E - Global Heap</a></h3>

    <p>Each HDF5 file has a global heap which stores various types of
      information which is typically shared between datasets.  The
      global heap was designed to satisfy these goals:

    <ol type="A">
      <li>Repeated access to a heap object must be efficient without
	resulting in repeated file I/O requests. Since global heap
	objects will typically be shared among several datasets it's
	probable that the object will be accessed repeatedly.

	<br><br>
      <li>Collections of related global heap objects should result in
	fewer and larger I/O requests.  For instance, a dataset of
	void pointers will have a global heap object for each
	pointer.  Reading the entire set of void pointer objects
	should result in a few large I/O requests instead of one small
	I/O request for each object.

	<br><br>
      <li>It should be possible to remove objects from the global heap
	and the resulting file hole should be eligible to be reclaimed
	for other uses.
	<br><br>
    </ol>

    <p>The implementation of the heap makes use of the memory
      management already available at the file level and combines that
      with a new top-level object called a <em>collection</em> to
      achieve Goal B. The global heap is the set of all collections.
      Each global heap object belongs to exactly one collection and
      each collection contains one or more global heap objects. For
      the purposes of disk I/O and caching, a collection is treated as
      an atomic object.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>Global Heap Collection</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td colspan=4>Magic Number</td>
	</tr>
	  
	<tr align=center>
	  <td>Version</td>
	  <td colspan=3>Reserved</td>
	</td>
	  
	<tr align=center>
	  <td colspan=4>Collection Size</td>
	</tr>
	  
	<tr align=center>
	  <td colspan=4><br>Object 1<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Object 2<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>...<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Object <em>N</em><br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Object 0 (free space)<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Magic Number</td>
	  <td>The magic number for global heap collections are the
	    four bytes `G', `C', `O', `L'.</td>
	</tr>
	  
	<tr valign=top>
	  <td>Version</td>
	  <td>Each collection has its own version number so that new
	    collections can be added to old files.  This document
	    describes version zero of the collections.
	</tr>

	<tr valign=top>
	  <td>Collection Data Size</td>
	  <td>This is the size in bytes of the entire collection
	    including this field.  The default (and minimum)
	    collection size is 4096 bytes which is a typical file
	    system block size and which allows for 170 16-byte heap
	    objects plus their overhead.</td>
	</tr>

	<tr valign=top>
	  <td>Object <em>i</em> for positive <em>i</em></td> <td>The
	    objects are stored in any order with no intervening unused
	    space.</td>
	</tr>

	<tr valign=top>
	  <td>Object 0</td>
	  <td>Object zero, when present, represents the free space in
	    the collection.  Free space always appears at the end of
	    the collection.  If the free space is too small to store
	    the header for object zero (described below) then the
	    header is implied.
      </table>
    </center>
    
    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>Global Heap Object</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>
	  
	<tr align=center>
	  <td colspan=2>Object ID</td>
	  <td colspan=2>Reference Count</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Object Total Size</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Object Data<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Object ID</td>
	  <td>Each object has a unique identification number within a
	    collection.  The identification numbers are chosen so that
	    new objects have the smallest value possible with the
	    exception that the identifier `0' always refers to the
	    object which represents all free space within the
	    collection.</td>
	</tr>

	<tr valign=top>
	  <td>Reference Count</td>
	  <td>All heap objects have a reference count field.  An
	    object which is referenced from some other part of the
	    file will have a positive reference count. The reference
	    count for Object zero is always zero.</td>
	</tr>

	<tr valign=top>
	  <td>Reserved</td>
	  <td>Zero padding to align next field on an 8-byte
	    boundary.</td>
	</tr>

	<tr valign=top>
	  <td>Object Total Size</td>
	  <td>This is the total size in bytes of the object.  It
	    includes all fields listed in this table.</td>
	</tr>

	<tr valign=top>
	  <td>Object Data</td>
	  <td>The object data is treated as a one-dimensional array
	    of bytes to be interpreted by the caller.</td>
	</tr>
      </table>
    </center>

    <h3><a name="FreeSpaceIndex">Disk Format: Level 1F - Free-Space
	Index (NOT FULLY DEFINED)</a></h3>

    <p>The Free-Space Index is a collection of blocks of data,
      dispersed throughout the file, which are currently not used by
      any file objects.  The blocks of data are indexed by a B-tree of
      their length within the file.

    <p>Each B-Tree page is composed of the following entries and
      B-tree management information, organized as follows:

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=bottom>
	  <B>HDF5 Free-Space Heap Page</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>

	<tr align=center>
	  <td colspan=4>Free-Space Heap Signature</td>
	<tr align=center>
	  <td colspan=4>B-Tree Left-Link Offset</td>
	<tr align=center>
	  <td colspan=4><br>Length of Free-Block #1<br> <br></td>
	<tr align=center>
	  <td colspan=4><br>Offset of Free-Block #1<br> <br></td>
	<tr align=center>
	  <td colspan=4>.<br>.<br>.<br></td>
	<tr align=center>
	  <td colspan=4><br>Length of Free-Block #n<br> <br></td>
	<tr align=center>
	  <td colspan=4><br>Offset of Free-Block #n<br> <br></td>
	<tr align=center>
	  <td colspan=4>"High" Offset</td>
	<tr align=center>
	  <td colspan=4>Right-Link Offset</td>
      </table>
    </center>

    <p>
    <dl>
      <dt> The elements of the free-space heap page are described below:
      <dd>
	<dl>
	  <dt>Free-Space Heap Signature: (4 bytes)
	  <dd>The value ASCII: 'FREE' is used to indicate the
	    beginning of a free-space heap B-Tree page.  This gives
	    file consistency checking utilities a better chance of
	    reconstructing a damaged file.

	  <dt>B-Tree Left-Link Offset: (&lt;offset&gt; bytes)
	  <dd>This value is used to indicate the offset of all offsets
	    in the B-link-tree which are smaller than the value of the
	    offset in entry #1.  This value is also used to indicate a
	    leaf node in the B-link-tree by being set to all ones.

	  <dt>Length of Free-Block #n: (&lt;length&gt; bytes)
	  <dd>This value indicates the length of an un-used block in
	    the file.

	  <dt>Offset of Free-Block #n: (&lt;offset&gt; bytes)
	  <dd>This value indicates the offset in the file of an
	    un-used block in the file.

	  <dt>"High" Offset: (4-bytes)
	  <dd>This offset is used as the upper bound on offsets
	    contained within a page when the page has been split.

	  <dt>Right-link Offset: (&lt;offset&gt; bytes)
	  <dd>This value is used to indicate the offset of the next
	    child to the right of the parent of this object directory
	    page.  When there is no node to the right, this value is
	    all zeros.
	</dl>
    </dl>

    <p>The algorithms for searching and inserting objects in the
      B-tree pages are described fully in the Lehman & Yao paper,
      which should be read to provide a full description of the
      B-Tree's usage.

    <h3><a name="DataObject">Disk Format: Level 2 - Data Objects </a></h3>

    <p>Data objects contain the real information in the file.  These
      objects compose the scientific data and other information which
      are generally thought of as "data" by the end-user.  All the
      other information in the file is provided as a framework for
      these data objects.

    <p>A data object is composed of header information and data
      information.  The header information contains the information
      needed to interpret the data information for the data object as
      well as additional "meta-data" or pointers to additional
      "meta-data" used to describe or annotate each data object.

    <h3><a name="ObjectHeader">
	Disk Format: Level 2a - Data Object Headers</a></h3>

    <p>The header information of an object is designed to encompass
      all the information about an object which would be desired to be
      known, except for the data itself.  This information includes
      the dimensionality, number-type, information about how the data
      is stored on disk (in external files, compressed, broken up in
      blocks, etc.), as well as other information used by the library
      to speed up access to the data objects or maintain a file's
      integrity.  The header of each object is not necessarily located
      immediately prior to the object's data in the file and in fact
      may be located in any position in the file.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>Object Headers</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td colspan=1 width="25%">Version # of Object Header</td>
	  <td colspan=1 width="25%">Reserved</td>
	  <td colspan=2 width="50%">Number of Header Messages</td>
	</tr>
	<tr align=center>
	  <td colspan=4>Object Reference Count</td>
	</tr>
	<tr align=center>
	  <td colspan=4><br>Total Object-Header Size<br><br></td>
	</tr>
	<tr align=center>
	  <td colspan=2>Header Message Type #1</td>
	  <td colspan=2>Size of Header Message Data #1</td>
	</tr>
	<tr align=center>
	  <td>Flags</td>
	  <td colspan=3>Reserved</td>
	</tr>
	<tr align=center>
	  <td colspan=4><br>Header Message Data #1<br><br></td>
	</tr>
	<tr align=center>
	  <td colspan=4>.<br>.<br>.<br></td>
	</tr>
	<tr align=center>
	  <td colspan=2>Header Message Type #n</td>
	  <td colspan=2>Size of Header Message Data #n</td>
	</tr>
	<tr align=center>
	  <td>Flags</td>
	  <td colspan=3>Reserved</td>
	</tr>
	<tr align=center>
	  <td colspan=4><br>Header Message Data #n<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Version # of the object header</td>
	  <td>This value is used to determine the format of the
	    information in the object header.  When the format of the
	    information in the object header is changed, the version #
	    is incremented and can be used to determine how the
	    information in the object header is formatted.</td>
	</tr>

	<tr valign=top>
	  <td>Reserved</td>
	  <td>Always set to zero.</td>
	</tr>

	<tr valign=top>
	  <td>Number of header messages</td>
	  <td>This value determines the number of messages listed in
	    this object header.  This provides a fast way for software
	    to prepare storage for the messages in the header.</td>
	</tr>

	<tr valign=top>
	  <td>Object Reference Count</td>
	  <td>This value specifies the number of references to this
	    object within the current file.  References to the
	    data-object from external files are not tracked.</td>
	</tr>

	<tr valign=top>
	  <td>Total Object-Header Size</td>
	  <td>This value specifies the total number of bytes of header
	    message data following this length field for the current
	    message as well as any continuation data located elsewhere
	    in the file.</td>
	</tr>

	<tr valign=top>
	  <td>Header Message Type</td>
	  <td>The header message type specifies the type of
	    information included in the header message data following
	    the type along with a small amount of other information.
	    Bit 15 of the message type is set if the message is
	    constant (constant messages cannot be changed since they
	    may be cached in symbol table entries throughout the
	    file).  The header message types for the pre-defined
	    header messages will be included in further discussion
	    below.</td>
	</tr>

	<tr valign=top>
	  <td>Size of Header Message Data</td>
	  <td>This value specifies the number of bytes of header
	    message data following the header message type and length
	    information for the current message. The size includes
	    padding bytes to make the message a multiple of eight
	    bytes.</td>
	</tr>

	<tr valign=top>
	  <td>Flags</td>
	  <td>This is a bit field with the following definition:
	    <dl>
	      <dt><code>0</code>
	      <dd>If set, the message data is constant.  This is used
		for messages like the data type message of a dataset.
	      <dt><code>1</code>
	      <dd>If set, the message is stored in the global heap and
		the Header Message Data field contains a Shared Object
		message.  and the Size of Header Message Data field
		contains the size of that Shared Object message.
	      <dt><code>2-7</code>
	      <dd>Reserved
	    </dl>
	  </td>

	<tr valign=top>
	  <td>Header Message Data</td>
	  <td>The format and length of this field is determined by the
	    header message type and size respectively.  Some header
	    message types do not require any data and this information
	    can be eliminated by setting the length of the message to
	    zero. The data is padded with enough zeros to make the
	    size a multiple of eight.</td>
	</tr>
      </table>
    </center>

    <p>The header message types and the message data associated with
      them compose the critical "meta-data" about each object.  Some
      header messages are required for each object while others are
      optional.  Some optional header messages may also be repeated
      several times in the header itself, the requirements and number
      of times allowed in the header will be noted in each header
      message description below.

    <P>The following is a list of currently defined header messages:

    <hr>
    <h3><a name="NILMessage">Name: NIL</a></h3>
    <b>Type: </b>0x0000<br>
    <b>Length:</b> varies<br>
    <b>Status:</b> Optional, may be repeated.<br>
    <b>Purpose and Description:</b> The NIL message is used to
    indicate a message 
    which is to be ignored when reading the header messages for a data object.
    [Probably one which has been deleted for some reason.]<br>
    <b>Format of Data:</b> Unspecified.<br>
    <b>Examples:</b> None.


    <hr>
    <h3><a name="SimpleDataSpace">Name: Simple Data Space</a></h3>

    <b>Type: </b>0x0001<br>
    <b>Length:</b> varies<br>
    <b>Status:</b> One of the <em>Simple Data Space</em> or
    <em>Data-Space</em> messages is required (but not both) and may
    not be repeated.<br>

    <p>The <em>Simple Dimensionality</em> message describes the number
      of dimensions and size of each dimension that the data object
      has.  This message is only used for datasets which have a
      simple, rectilinear grid layout, datasets requiring a more
      complex layout (irregularly or unstructured grids, etc) must use
      the <em>Data-Space</em> message for expressing the space the
      dataset inhabits.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Simple Data Space Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td>Version</td>
	  <td>Dimensionality</td>
	  <td>Flags</td>
	  <td>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Dimension Size #1 (&lt;size&gt; bytes)</td>
	<tr align=center>
	  <td colspan=4>.<br>.<br>.<br></td>
	<tr align=center>
	  <td colspan=4>Dimension Size #n (&lt;size&gt; bytes)</td>
	<tr align=center>
	  <td colspan=4>Dimension Maximum #1 (&lt;size&gt; bytes)</td>
	<tr align=center>
	  <td colspan=4>.<br>.<br>.<br></td>
	<tr align=center>
	  <td colspan=4>Dimension Maximum #n (&lt;size&gt; bytes)</td>
	<tr align=center>
	  <td colspan=4>Permutation Index #1</td>
	<tr align=center>
	  <td colspan=4>.<br>.<br>.<br></td>
	<tr align=center>
	  <td colspan=4>Permutation Index #n</td>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Dimensionality</td>
	  <td>This value is the number of dimensions that the data
	    object has.</td>
	</tr>

	<tr valign=top>
	  <td>Flags</td>
	  <td>This field is used to store flags to indicate the
	    presence of parts of this message.  Bit 0 (the least
	    significant bit) is used to indicate that maximum
	    dimensions are present.  Bit 1 is used to indicate that
	    permutation indices are present for each dimension.</td>
	</tr>

	<tr valign=top>
	  <td>Dimension Size #n (&lt;size&gt; bytes)</td>
	  <td>This value is the current size of the dimension of the
	    data as stored in the file.  The first dimension stored in
	    the list of dimensions is the slowest changing dimension
	    and the last dimension stored is the fastest changing
	    dimension.</td>
	</tr>

	<tr valign=top>
	  <td>Dimension Maximum #n (&lt;size&gt; bytes)</td>
	  <td>This value is the maximum size of the dimension of the
	    data as stored in the file.  This value may be the special
	    value &lt;UNLIMITED&gt; (all bits set) which indicates
	    that the data may expand along this dimension
	    indefinitely.  If these values are not stored, the maximum
	    value of each dimension is assumed to be the same as the
	    current size value.</td>
	</tr>

	<tr valign=top>
	  <td>Permutation Index #n (4 bytes)</td>
	  <td>This value is the index permutation used to map
	    each dimension from the canonical representation to an
	    alternate axis for each dimension.  If these values are
	    not stored, the first dimension stored in the list of
	    dimensions is the slowest changing dimension and the last
	    dimension stored is the fastest changing dimension.</td>
	</tr>
      </table>
    </center>

    <h4>Examples</h4>
    <dl>
      <dt> Example #1 
      <dd>A sample 640 horizontally by 480 vertically raster image
	dimension header.  The number of dimensions would be set to 2
	and the first dimension's size and maximum would both be set
	to 480.  The second dimension's size and maximum would both be
	set to 640
.
      <dt>Example #2 
      <dd>A sample 4 dimensional scientific dataset which is composed
	of 30x24x3 slabs of data being written out in an unlimited
	series every several minutes as timestep data (currently there
	are five slabs).  The number of dimensions is 4.  The first
	dimension size is 5 and it's maximum is &lt;UNLIMITED&gt;. The
	second through fourth dimensions' size and maximum value are
	set to 3, 24, and 30 respectively.

      <dt>Example #3 
      <dd>A sample unlimited length text string, currently of length
	83. The number of dimensions is 1, the size of the first
	dimension is 83 and the maximum of the first dimension is set
	to &lt;UNLIMITED&gt;, allowing further text data to be
	appended to the string or possibly the string to be replaced
	with another string of a different size.  (This could also be
	stored as a scalar dataset with number-type set to "string")
    </dl>

    <hr>
    <h3><a name="DataSpaceMessage">Name: Data-Space (Fiber Bundle?)</a></h3>
    <b>Type: </b>0x0002<br>
    <b>Length:</b> varies<br>

    <b>Status:</b> One of the <em>Simple Dimensionality</em> or
    <em>Data-Space</em> messages is required (but not both) and may
    not be repeated.<br> <b>Purpose and Description:</b> The
    <em>Data-Space</em> message describes space that the dataset is
    mapped onto in a more comprehensive way than the <em>Simple
    Dimensionality</em> message is capable of handling.  The
    data-space of a dataset encompasses the type of coordinate system
    used to locate the dataset's elements as well as the structure and
    regularity of the coordinate system.  The data-space also
    describes the number of dimensions which the dataset inhabits as
    well as a possible higher dimensional space in which the dataset
    is located within.

    <br>
    <b>Format of Data:</b>

    <center>
      <table border cellpadding=4 width="80%">
	<caption align=bottom>
	  <B>HDF5 Data-Space Message Layout</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>

	<tr align=center>
	  <td colspan=4>Mesh Type</td>
	<tr align=center>
	  <td colspan=4>Logical Dimensionality</td>
      </table>
    </center>

    <p>
    <dl>
      <dt>The elements of the dimensionality message are described below: 
      <dd>
	<dl>
	  <dt>Mesh Type: (unsigned 32-bit integer)
	  <dd>This value indicates whether the grid is
	    polar/spherical/cartesion, 
	    structured/unstructured and regular/irregular. <br>
	    The mesh type value is broken up as follows: <br>

	    <P>
	    <center>
	      <table border cellpadding=4 width="80%">
		<caption align=bottom>
		  <B>HDF5 Mesh-Type Layout</B>
		</caption>

		<tr align=center>
		  <th width="25%">byte</th>
		  <th width="25%">byte</th>
		  <th width="25%">byte</th>
		  <th width="25%">byte</th>

		<tr align=center>
		  <td colspan=1>Mesh Embedding</td>
		  <td colspan=1>Coordinate System</td>
		  <td colspan=1>Structure</td>
		  <td colspan=1>Regularity</td>
	      </table>
	    </center>
	    The following are the definitions of mesh-type bytes:
	    <dl>
	      <dt>Mesh Embedding
	      <dd>This value indicates whether the dataset data-space
		is located within 
		another dataspace or not:
		<dl> <dl>
		    <dt>&lt;STANDALONE&gt;
		    <dd>The dataset mesh is self-contained and is not
		      embedded in another mesh. 
		    <dt>&lt;EMBEDDED&gt;
		    <dd>The dataset's data-space is located within
		      another data-space, as 
		      described in information below.
		  </dl> </dl>
	      <dt>Coordinate System
	      <dd>This value defines the type of coordinate system
		used for the mesh: 
		<dl> <dl>
		    <dt>&lt;POLAR&gt;
		    <dd>The last two dimensions are in polar
		      coordinates, higher dimensions are 
		      cartesian.
		    <dt>&lt;SPHERICAL&gt;
		    <dd>The last three dimensions are in spherical
		      coordinates, higher dimensions 
		      are cartesian.
		    <dt>&lt;CARTESIAN&gt;
		    <dd>All dimensions are in cartesian coordinates.
		  </dl> </dl>
	      <dt>Structure
	      <dd>This value defines the locations of the grid-points
		on the axes: 
		<dl> <dl>
		    <dt>&lt;STRUCTURED&gt;
		    <dd>All grid-points are on integral, sequential
		      locations, starting from 0. 
		    <dt>&lt;UNSTRUCTURED&gt;
		    <dd>Grid-points locations in each dimension are
		      explicitly defined and 
		      may be of any numeric data-type.
		  </dl> </dl>
	      <dt>Regularity
	      <dd>This value defines the locations of the dataset
		points on the grid: 
		<dl> <dl>
		    <dt>&lt;REGULAR&gt;
		    <dd>All dataset elements are located at the
		      grid-points defined. 
		    <dt>&lt;IRREGULAR&gt;
		    <dd>Each dataset element has a particular
		      grid-location defined. 
		  </dl> </dl>
	    </dl>
	    <p>The following grid combinations are currently allowed:
	    <dl> <dl>
		<dt>&lt;POLAR-STRUCTURED-REGULAR&gt;
		<dt>&lt;SPHERICAL-STRUCTURED-REGULAR&gt;
		<dt>&lt;CARTESIAN-STRUCTURED-REGULAR&gt;
		<dt>&lt;POLAR-UNSTRUCTURED-REGULAR&gt;
		<dt>&lt;SPHERICAL-UNSTRUCTURED-REGULAR&gt;
		<dt>&lt;CARTESIAN-UNSTRUCTURED-REGULAR&gt;
		<dt>&lt;CARTESIAN-UNSTRUCTURED-IRREGULAR&gt;
	      </dl> </dl>
	    All of the above grid types can be embedded within another
	    data-space.
	    <br> <br>
	  <dt>Logical Dimensionality: (unsigned 32-bit integer)
	  <dd>This value is the number of dimensions that the dataset occupies.

	    <P>
	    <center>
	      <table border cellpadding=4 width="80%">
		<caption align=bottom>
		  <B>HDF5 Data-Space Embedded Dimensionality Information</B>
		</caption>

		<tr align=center>
		  <th width="25%">byte</th>
		  <th width="25%">byte</th>
		  <th width="25%">byte</th>
		  <th width="25%">byte</th>

		<tr align=center>
		  <td colspan=4>Embedded Dimensionality</td>
		<tr align=center>
		  <td colspan=4>Embedded Dimension Size #1</td>
		<tr align=center>
		  <td colspan=4>.<br>.<br>.<br></td>
		<tr align=center>
		  <td colspan=4>Embedded Dimension Size #n</td>
		<tr align=center>
		  <td colspan=4>Embedded Origin Location #1</td>
		<tr align=center>
		  <td colspan=4>.<br>.<br>.<br></td>
		<tr align=center>
		  <td colspan=4>Embedded Origin Location #n</td>
	      </table>
	    </center>

	  <dt>Embedded Dimensionality: (unsigned 32-bit integer)
	  <dd>This value is the number of dimensions of the space the
	    dataset is located 
	    within.  i.e. a planar dataset located within a 3-D space,
	    or a 3-D dataset 
	    which is a subset of another 3-D space, etc.
	  <dt>Embedded Dimension Size: (unsigned 32-bit integer)
	  <dd>These values are the sizes of the dimensions of the
	    embedded data-space 
	    that the dataset is located within.
	  <dt>Embedded Origin Location: (unsigned 32-bit integer)
	  <dd>These values comprise the location of the dataset's
	    origin within the embedded data-space. 
	</dl>
    </dl>
    [Comment: need some way to handle different orientations of the
    dataset data-space 
    within the embedded data-space]<br>

    <P>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=bottom>
	  <B>HDF5 Data-Space Structured/Regular Grid Information</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>

	<tr align=center>
	  <td colspan=4>Logical Dimension Size #1</td>
	<tr align=center>
	  <td colspan=4>Logical Dimension Maximum #1</td>
	<tr align=center>
	  <td colspan=4>.<br>.<br>.<br></td>
	<tr align=center>
	  <td colspan=4>Logical Dimension Size #n</td>
	<tr align=center>
	  <td colspan=4>Logical Dimension Maximum #n</td>
      </table>
    </center>

    <p>
    <dl>
      <dt>The elements of the dimensionality message are described below: 
      <dd>
	<dl>
	  <dt>Logical Dimension Size #n: (unsigned 32-bit integer)
	  <dd>This value is the current size of the dimension of the
	    data as stored in 
	    the file.  The first dimension stored in the list of
	    dimensions is the slowest 
	    changing dimension and the last dimension stored is the
	    fastest changing 
	    dimension. 
	  <dt>Logical Dimension Maximum #n: (unsigned 32-bit integer)
	  <dd>This value is the maximum size of the dimension of the
	    data as stored in 
	    the file.  This value may be the special value
	    &lt;UNLIMITED&gt; which 
	    indicates that the data may expand along this dimension
	    indefinitely. 
	</dl>
    </dl>
    <P>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=bottom>
	  <B>HDF5 Data-Space Structured/Irregular Grid Information</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>

	<tr align=center>
	  <td colspan=4># of Grid Points in Dimension #1</td>
	<tr align=center>
	  <td colspan=4>.<br>.<br>.<br></td>
	<tr align=center>
	  <td colspan=4># of Grid Points in Dimension #n</td>
	<tr align=center>
	  <td colspan=4>Data-Type of Grid Point Locations</td>
	<tr align=center>
	  <td colspan=4>Location of Grid Points in Dimension #1</td>
	<tr align=center>
	  <td colspan=4>.<br>.<br>.<br></td>
	<tr align=center>
	  <td colspan=4>Location of Grid Points in Dimension #n</td>
      </table>
    </center>

    <P>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=bottom>
	  <B>HDF5 Data-Space Unstructured Grid Information</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>

	<tr align=center>
	  <td colspan=4># of Grid Points</td>
	<tr align=center>
	  <td colspan=4>Data-Type of Grid Point Locations</td>
	<tr align=center>
	  <td colspan=4>Grid Point Locations<br>.<br>.<br></td>
      </table>
    </center>

    <h4><a name="DataSpaceExample">Examples:</a></h4>
    Need some good examples, this is complex!


    <hr>
    <h3><a name="DataTypeMessage">Name: Data Type</a></h3>

    <b>Type:</b> 0x0003<br>
    <b>Length:</b> variable<br>
    <b>Status:</b> One required per dataset<br>

    <p>The data type message defines the data type for each data point
      of a dataset.  A data type can describe an atomic type like a
      fixed- or floating-point type or a compound type like a C
      struct.  A data type does not, however, describe how data points
      are combined to produce a dataset. Data types are stored on disk
      as a data type message, which is a list of data type classes and
      their associated properties.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Data Type Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td>Type Class and Version</td>
	  <td colspan=3>Class Bit Field</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Size in Bytes (4 bytes)</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br><br>Properties<br><br><br></td>
	</tr>
      </table>
    </center>

    <p>The Class Bit Field and Properties fields vary depending
      on the Type Class, which is the low-order four bits of the Type
      Class and Version field (the high-order four byte are the
      version which should be set to the value one).  The type class
      is one of: 0 (fixed-point number), 1 (floating-point number), 2
      (date and time), 3 (text string), 4 (bit field), 5 (opaque), 6
      (compound).  The Class Bit Field is zero and the size of the
      Properties field is zero except for the cases noted here.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Bit Field for Fixed-Point Numbers (Class 0)</b>
	</caption>

	<tr align=center>
	  <th width="10%">Bits</th>
	  <th width="90%">Meaning</th>
	</tr>

	<tr>
	  <td>0</td>
	  <td><b>Byte Order.</b> If zero, byte order is little-endian;
	    otherwise, byte order is big endian.</td>
	</tr>

	<tr>
	  <td>1, 2</td>
	  <td><b>Padding type.</b>  Bit 1 is the lo_pad type and bit 2
	    is the hi_pad type.  If a datum has unused bits at either
	    end, then the lo_pad or hi_pad bit is copied to those
	    locations.</td>
	</tr>

	<tr>
	  <td>3</td>
	  <td><b>Signed.</b> If this bit is set then the fixed-point
	    number is in 2's complement form.</td>
	</tr>

	<tr>
	  <td>4-23</td>
	  <td>Reserved (zero).</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Properties for Fixed-Point Numbers (Class 0)</b>
	</caption>

	<tr align=center>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	</tr>

	<tr align=center>
	  <td colspan=2>Bit Offset</td>
	  <td colspan=2>Bit Precision</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Bit Field for Floating-Point Numbers (Class 1)</b>
	</caption>

	<tr align=center>
	  <th width="10%">Bits</th>
	  <th width="90%">Meaning</th>
	</tr>

	<tr>
	  <td>0</td>
	  <td><b>Byte Order.</b> If zero, byte order is little-endian;
	    otherwise, byte order is big endian.</td>
	</tr>

	<tr>
	  <td>1, 2, 3</td>
	  <td><b>Padding type.</b>  Bit 1 is the low bits pad type, bit 2
	    is the high bits pad type, and bit 3 is the internal bits
	    pad type.  If a datum has unused bits at either or between
	    the sign bit, exponent, or mantissa, then the value of bit
	    1, 2, or 3 is copied to those locations.</td>
	</tr>

	<tr>
	  <td>4-5</td>
	  <td><b>Normalization.</b> The value can be 0 if there is no
	    normalization, 1 if the most significant bit of the
	    mantissa is always set (except for 0.0), and 2 if the most
	    signficant bit of the mantissa is not stored but is
	    implied to be set. The value 3 is reserved and will not
	    appear in this field.</td>
	</tr>

	<tr>
	  <td>6-7</td>
	  <td>Reserved (zero).</td>
	</tr>

	<tr>
	  <td>8-15</td>
	  <td><b>Sign.</b> This is the bit position of the sign
	    bit.</td>
	</tr>

	<tr>
	  <td>16-23</td>
	  <td>Reserved (zero).</td>
	</tr>

      </table>
    </center>

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Properties for Floating-Point Numbers (Class 1)</b>
	</caption>

	<tr align=center>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	</tr>

	<tr align=center>
	  <td colspan=2>Bit Offset</td>
	  <td colspan=2>Bit Precision</td>
	</tr>

	<tr align=center>
	  <td>Exponent Location</td>
	  <td>Exponent Size in Bits</td>
	  <td>Mantissa Location</td>
	  <td>Mantissa Size in Bits</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Exponent Bias</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Bit Field for Compound Types (Class 6)</b>
	</caption>

	<tr align=center>
	  <th width="10%">Bits</th>
	  <th width="90%">Meaning</th>
	</tr>

	<tr>
	  <td>0-15</td>
	  <td><b>Number of Members.</b> This field contains the number
	    of members defined for the compound data type.  The member
	    definitions are listed in the Properties field of the data
	    type message.
	</tr>

	<tr>
	  <td>15-23</td>
	  <td>Reserved (zero).</td>
	</tr>
      </table>
    </center>

    <p>The Properties field of a compound data type is a list of the
      member definitions of the compound data type.  The member
      definitions appear one after another with no intervening bytes.
      The member types are described with a recursive data type
      message.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Properties for Compound Types (Class 6)</b>
	</caption>

	<tr align=center>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	  <th width="25%">Byte</th>
	</tr>

	<tr align=center>
	  <td colspan=4><br><br>Name (null terminated, multiple of
	    eight bytes)<br><br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4>Byte Offset of Member in Compound Instance</td>
	</tr>

	<tr align=center>
	  <td>Dimensionality</td>
	  <td colspan=3>reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Dimension Permutation</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Size of Dimension 0 (required)</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Size of Dimension 1 (required)</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Size of Dimension 2 (required)</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Size of Dimension 3 (required)</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br><br>Member Type Message<br><br><br></td>
	</tr>

      </table>
    </center>

    <p>Data type examples are <a href="Datatypes.html">here</a>.


    <hr>
    <h3><a name="ReservedMessage_0004">Name: Reserved - Not Assigned
	Yet</a></h3> 
    <b>Type:</b> 0x0004<BR>
    <b>Length:</b> N/A<BR>
    <b>Status:</b> N/A<BR>


    <hr>
    <h3><a name="ReservedMessage_0005">Name: Reserved - Not Assigned
	Yet</a></h3>
    <b>Type:</b> 0x0005<br>
    <b>Length:</b> N/A<br>
    <b>Status:</b> N/A<br>



    <hr>
    <h3><a name="CompactDataStorageMessage">Name: Data Storage - Compact</a></h3>

    <b>Type:</b> 0x0006<br>
    <b>Length:</b> varies<br>
    <b>Status:</b> Optional, may not be repeated.<br>

    <p>This message indicates that the data for the data object is
      stored within the current HDF file by including the actual 
      data within the header data for this message.  The data is
      stored internally in 
      the "normal" format, i.e. in one chunk, un-compressed, etc.

    <P>Note that one and only one of the "Data Storage" headers can be
      stored for each data object.

    <P><b>Format of Data:</b>  The message data is actually composed
      of dataset data, so the format will be determined by the dataset
      format.

    <h4><a name="CompactDataStorageExample">Examples:</a></h4>
    [very straightforward]

    <hr>
    <h3><a name="ExternalFileListMessage">Name: Data Storage -
	External Data Files</a></h3>
    <b>Type:</b> 0x0007<BR>
    <b>Length:</b> varies<BR>
    <b>Status:</b> Optional, may not be repeated.<BR>

    <p><b>Purpose and Description:</b> The external object message
      indicates that the data for an object is stored outside the HDF5
      file.  The filename of the object is stored as a Universal
      Resource Location (URL) of the actual filename containing the
      data. An external file list record also contains the byte offset
      of the start of the data within the file and the amount of space
      reserved in the file for that data.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>External File List Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td>Version</td>
	  <td colspan=3>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=2>Allocated Slots</td>
	  <td colspan=2>Used Slots</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Heap Address<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Slot Definitions...<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Heap Address</td>
	  <td>This is the address of a local name heap which contains
	    the names for the external files. The name at offset zero
	    in the heap is always the empty string.</td>
	</tr>

	<tr valign=top>
	  <td>Allocated Slots</td>
	  <td>The total number of slots allocated in the message.  Its
	    value must be at least as large as the value contained in
	    the Used Slots field.</td>
	</tr>

	<tr valign=top>
	  <td>Used Slots</td>
	  <td>The number of initial slots which contain valid
	    information.  The remaining slots are zero filled.</td>
	</tr>

	<tr valign=top>
	  <td>Reserved</td>
	  <td>This field is reserved for future use.</td>
	</tr>

	<tr valign=top>
	  <td>Slot Definitions</td>
	  <td>The slot definitions are stored in order according to
	    the array addresses they represent. If more slots have
	    been allocated than what has been used then the defined
	    slots are all at the beginning of the list.</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>External File List Slot</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Name Offset (&lt;size&gt; bytes)<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>File Offset (&lt;size&gt; bytes)<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Size<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Name Offset (&lt;size&gt; bytes)</td>
	  <td>The byte offset within the local name heap for the name
	    of the file.  File names are stored as a URL which has a
	    protocol name, a host name, a port number, and a file
	    name:
	    <code><em>protocol</em>:<em>port</em>//<em>host</em>/<em>file</em></code>.
	    If the protocol is omitted then "file:" is assumed.  If
	    the port number is omitted then a default port for that
	    protocol is used.  If both the protocol and the port
	    number are omitted then the colon can also be omitted. If
	    the double slash and host name are omitted then
	    "localhost" is assumed.  The file name is the only
	    mandatory part, and if the leading slash is missing then
	    it is relative to the application's current working
	    directory (the use of relative names is not
	    recommended).</td>
	</tr>

	<tr valign=top>
	  <td>File Offset (&lt;size&gt; bytes)</td>
	  <td>This is the byte offset to the start of the data in the
	    specified file. For files that contain data for a single
	    dataset this will usually be zero.</td>
	</tr>

	<tr valign=top>
	  <td>Size</td>
	  <td>This is the total number of bytes reserved in the
	    specified file for raw data storage.  For a file that
	    contains exactly one complete dataset which is not
	    extendable, the size will usually be the exact size of the
	    dataset.  However, by making the size larger one allows
	    HDF5 to extend the dataset. The size can be set to a value
	    larger than the entire file since HDF5 will read zeros
	    past the end of the file without failing.</td>
	</tr>
      </table>
    </center>


    <hr>
    <h3><a name="LayoutMessage">Name: Data Storage - Layout</a></h3>

    <b>Type:</b> 0x0008<BR>
    <b>Length:</b> varies<BR>
    <b>Status:</b> Required for datasets, may not be repeated.

    <p><b>Purpose and Description:</b> Data layout describes how the
      elements of a multi-dimensional array are arranged in the linear
      address space of the file. Two types of data layout are
      supported:

    <ol>
      <li>The array can be stored in one contiguous area of the file.
	The layout requires that the size of the array be constant and
	does not permit chunking, compression, checksums, encryption,
	etc.  The message stores the total size of the array and the
	offset of an element from the beginning of the storage area is
	computed as in C.

      <li>The array domain can be regularly decomposed into chunks and
	each chunk is allocated separately.  This layout supports
	arbitrary element traversals, compression, encryption, and
	checksums, and the chunks can be distributed across external
	raw data files (these features are described in other
	messages).  The message stores the size of a chunk instead of
	the size of the entire array; the size of the entire array can
	be calculated by traversing the B-tree that stores the chunk
	addresses.
    </ol>

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <B>Data Layout Message</B>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td>Version</td>
	  <td>Dimensionality</td>
	  <td>Layout Class</td>
	  <td>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Address<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4>Dimension 0 (4-bytes)</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Dimension 1 (4-bytes)</td>
	</tr>
	
	<tr align=center>
	  <td colspan=4>...</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Version</td>
	  <td>A version number for the layout message. This
	    documentation describes version one.</td>
	</tr>

	<tr valign=top>
	  <td>Dimensionality</td>
	  <td>An array has a fixed dimensionality.  This field
	    specifies the number of dimension size fields later in the
	    message.</td>
	</tr>

	<tr valign=top>
	  <td>Layout Class</td>
	  <td>The layout class specifies how the other fields of the
	    layout message are to be interpreted.  A value of one
	    indicates contiguous storage while a value of two
	    indicates chunked storage.  Other values will be defined
	    in the future.</td>
	</tr>

	<tr valign=top>
	  <td>Address</td>
	  <td>For contiguous storage, this is the address of the first
	    byte of storage.  For chunked storage this is the address
	    of the B-tree that is used to look up the addresses of the
	    chunks.</td>
	</tr>

	<tr valign=top>
	  <td>Dimensions</td>
	  <td>For contiguous storage the dimensions define the entire
	    size of the array while for chunked storage they define
	    the size of a single chunk.</td>
	</tr>
      </table>
    </center>


    <hr>
    <h3><a name="ReservedMessage_0009">Name: Reserved - Not Assigned Yet</a></h3>
    <b>Type:</b> 0x0009<BR>
    <b>Length:</b> N/A<BR>
    <b>Status:</b> N/A<BR>
    <b>Purpose and Description:</b> N/A<BR>
    <b>Format of Data:</b> N/A

    <hr>
    <h3><a name="ReservedMessage_000A">Name: Reserved - Not Assigned Yet</a></h3>
    <b>Type:</b> 0x000A<BR>
    <b>Length:</b> N/A<BR>
    <b>Status:</b> N/A<BR>
    <b>Purpose and Description:</b> N/A<BR>
    <b>Format of Data:</b> N/A

    <hr>
    <h3><a name="FilterMessage">Name: Data Storage - Filter Pipeline</a></h3>
    <b>Type:</b> 0x000B<BR>
    <b>Length:</b> varies<BR>
    <b>Status:</b> Optional, may not be repeated.

    <p><b>Purpose and Description:</b> This message describes the
      filter pipeline which should be applied to the data stream by
      providing filter identification numbers, flags, a name, an
      client data.

    <p>
    <center>
      <table border align=center cellpadding=4 witdh="80%">
	<caption align=top>
	  <b>Filter Pipeline Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>  

	<tr align=center>
	  <td>Version</td>
	  <td>Number of Filters</td>
	  <td colspan=2>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Filter List<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Version</td>
	  <td>The version number for this message.  This document
	    describes version one.</td>
	</tr>

	<tr valign=top>
	  <td>Number of Filters</td>
	  <td>The total number of filters described by this
	    message. The maximum possible number of filters in a
	    message is 32.</td>
	</tr>

	<tr valign=top>
	  <td>Filter List</td>
	  <td>A description of each filter.  A filter description
	    appears in the next table.</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table border align=center cellpadding=4 witdh="80%">
	<caption align=top>
	  <b>Filter Pipeline Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>  

	<tr align=center>
	  <td colspan=2>Filter Identification</td>
	  <td colspan=2>Name Length</td>
	</tr>

	<tr align=center>
	  <td colspan=2>Flags</td>
	  <td colspan=2>Client Data Number of Values</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Name<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Client Data<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4>Padding</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Filter Identification</td>
	  <td>This is a unique (except in the case of testing)
	    identifier for the filter.  Values from zero through 255
	    are reserved for filters defined by the NCSA HDF5
	    library. Values 256 through 511 have been set aside for
	    use when developing/testing new filters.  The remaining
	    values are allocated to specific filters by contacting the 
	    <a href="mailto:hdf5dev@ncsa.uiuc.edu">HDF5 Development
	    Team</a>.</td>
	</tr>

	<tr valign=top>
	  <td>Name Length</td>
	  <td>Each filter has an optional null-terminated ASCII name
	    and this field holds the length of the name including the
	    null termination padded with nulls to be a multiple of
	    eight. If the filter has no name then a value of zero is
	    stored in this field.</td>
	</tr>

	<tr valign=top>
	  <td>Flags</td>
	  <td>The flags indicate certain properties for a filter.  The 
	    bit values defined so far are:

	    <dl>
	      <dt><code>bit 1</code>
	      <dd>If set then the filter is an optional filter.
		During output, if an optional filter fails it will be
		silently removed from the pipeline.
	    </dl>
	</tr>

	<tr valign=top>
	  <td>Client Data Number of Values</td>
	  <td>Each filter can store a few integer values to control
	    how the filter operates.  The number of entries in the
	    Client Data array is stored in this field.</td>
	</tr>

	<tr valign=top>
	  <td>Name</td>
	  <td>If the Name Length field is non-zero then it will
	    contain the size of this field, a multiple of eight.  This 
	    field contains a null-terminated, ASCII character
	    string to serve as a comment/name for the filter.</td>
	</tr>

	<tr valign=top>
	  <td>Client Data</td>
	  <td>This is an array of four-byte integers which will be
	    passed to the filter function.  The Client Data Number of
	    Values determines the number of elements in the
	    array.</td>
	</tr>

	<tr valign=top>
	  <td>Padding</td>
	  <td>Four bytes of zeros are added to the message at this
	    point if the Client Data Number of Values field contains
	    an odd number.</td>
	</tr>
      </table>
    </center>

    <hr>
    <h3><a name="AttributeMessage">Name: Attribute</a></h3>
    <b>Type:</b> 0x000C<BR>
    <b>Length:</b> varies<BR>
    <b>Status:</b> Optional, may be repeated.<BR>
    
    <p><b>Purpose and Description:</b>  The <em>Attribute</em>
      message is used to list objects in the HDF file which are used
      as attributes, or "meta-data" about the current object.  An
      attribute is a small dataset; it has a name, a data type, a data
      space, and raw data.  Since attributes are stored in the object
      header they must be relatively small (<64kb) and can be
      associated with any type of object which has an object header
      (groups, datasets, named types and spaces, etc.).

    <p>
    <center>
      <table border align=center cellpadding=4 width="80%">
	<caption align=top>
	  <b>Attribute Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td>Version</td>
	  <td>Reserved</td>
	  <td colspan=2>Name Size</td>
	</tr>

	<tr align=center>
	  <td colspan=2>Type Size</td>
	  <td colspan=2>Space Size</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Name<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Type<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Space<br><br></td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Data<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Version</td>
	  <td>Version number for the message.  This document describes 
	    version 1 of attribute messages.</td>
	</tr>

	<tr valign=top>
	  <td>Name Size</td>
	  <td>The length of the attribute name in bytes including the
	    null terminator.  Note that the Name field below may
	    contain additional padding not represented by this
	    field.</td>
	</tr>

	<tr valign=top>
	  <td>Type Size</td>
	  <td>The length of the data type description in the Type
	    field below.  Note that the Type field may contain
	    additional padding not represented by this field.</td>
	</tr>

	<tr valign=top>
	  <td>Space Size</td>
	  <td>The length of the data space description in the Space
	    field below.  Note that the Space field may contain
	    additional padding not represented by this field.</td>
	</tr>

	<tr valign=top>
	  <td>Reserved</td>
	  <td>This field is reserved for later use and is set to
	    zero.</td>
	</tr>

	<tr valign=top>
	  <td>Name</td>
	  <td>The null-terminated attribute name.  This field is
	    padded with additional null characters to make it a
	    multiple of eight bytes.</td>
	</tr>

	<tr valign=top>
	  <td>Type</td>
	  <td>The data type description follows the same format as
	    described for the data type object header message.  This
	    field is padded with additional zero bytes to make it a
	    multiple of eight bytes.</td>
	</tr>

	<tr valign=top>
	  <td>Space</td>
	  <td>The data space description follows the same format as
	    described for the data space object header message.  This
	    field is padded with additional zero bytes to make it a
	    multiple of eight bytes.</td>
	</tr>

	<tr valign=top>
	  <td>Data</td>
	  <td>The raw data for the attribute.  The size is determined
	    from the data type and data space descriptions.  This
	    field is <em>not</em> padded with additional zero
	    bytes.</td>
	</tr>
      </table>
    </center>
    
    <hr>
    <h3><a name="NameMessage">Name: Object Name</a></h3>

    <p><b>Type:</b> 0x000D<br>
      <b>Length:</b> varies<br>
      <b>Status:</b> Optional, may not be repeated.

    <p><b>Purpose and Description:</b> The object name or comment is
      designed to be a short description of an object.  An object name
      is a sequence of non-zero ('\0') ASCII characters with no other
      formatting included by the library.

    <p>
    <center>
      <table border align=center cellpadding=4 width="80%">
	<caption align=top>
	  <b>Name Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Name<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Name</td>
	  <td>A null terminated ASCII character string.</td>
	</tr>
      </table>
    </center>
    
    <hr>
    <h3><a name="ModifiedMessage">Name: Object Modification Date &amp;
	Time</a></h3>

    <p><b>Type:</b> 0x000E<br>
      <b>Length:</b> fixed<br>
      <b>Status:</b> Optional, may not be repeated.

    <p><b>Purpose and Description:</b>  The object modification date
      and time is a timestamp which indicates (using ISO-8601 date and
      time format) the last modification of an object.  The time is
      updated when any object header message changes according to the
      system clock where the change was posted.

    <p>
    <center>
      <table border align=center cellpadding=4 width="80%">
	<caption align=top>
	  <b>Modification Time Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	  <th width="25%">byte</th>
	</tr>

	<tr align=center>
	  <td colspan=4>Year</td>
	</tr>

	<tr align=center>
	  <td colspan=2>Month</td>
	  <td colspan=2>Day of Month</td>
	</tr>

	<tr align=center>
	  <td colspan=2>Hour</td>
	  <td colspan=2>Minute</td>
	</tr>

	<tr align=center>
	  <td colspan=2>Second</td>
	  <td colspan=2>Reserved</td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Year</td>
	  <td>The four-digit year as an ASCII string. For example,
	    "1998".  All fields of this message should be interpreted
	    as coordinated universal time (UTC)</td>
	</tr>

	<tr valign=top>
	  <td>Month</td>
	  <td>The month number as a two digit ASCII string where
	    January is "01" and December is "12".</td>
	</tr>

	<tr valign=top>
	  <td>Day of Month</td>
	  <td>The day number within the month as a two digit ASCII
	    string. The first day of the month is "01".</td>
	</tr>

	<tr valign=top>
	  <td>Hour</td>
	  <td>The hour of the day as a two digit ASCII string where
	    midnight is "00" and 11:00pm is "23".</td>
	</tr>

	<tr valign=top>
	  <td>Minute</td>
	  <td>The minute of the hour as a two digit ASCII string where
	    the first minute of the hour is "00" and the last is
	    "59".</td>
	</tr>

	<tr valign=top>
	  <td>Second</td>
	  <td>The second of the minute as a two digit ASCII string
	    where the first second of the minute is "00" and the last
	    is "59".</td>
	</tr>

	<tr valign=top>
	  <td>Reserved</td>
	  <td>This field is reserved and should always be zero.</td>
	</tr>
      </table>
    </center>
    
    <hr>
    <h3><a name="SharedMessage">Name: Shared Object Message</a></h3>
    <b>Type:</b> 0x000F<br>
    <b>Length:</b> 4 Bytes<br>
    <b>Status:</b> Optional, may be repeated.

    <p>A constant message can be shared among several object headers
      by writing that message in the global heap and having the object
      headers all point to it.  The pointing is accomplished with a
      Shared Object message which is understood directly by the object
      header layer of the library. It is also possible to have a
      message of one object header point to a message in some other
      object header, but care must be exercised to prevent cycles.

    <p>If a message is shared, then the message appears in the global
      heap and its message ID appears in the Header Message Type
      field of the object header.  Also, the Flags field in the object
      header for that message will have bit two set (the
      <code>H5O_FLAG_SHARED</code> bit).  The message body in the
      object header will be that of a Shared Object message defined
      here and not that of the pointed-to message.

    <p>
    <center>
      <table border cellpadding=4 width="80%">
	<caption align=top>
	  <b>Shared Message Message</b>
	</caption>

	<tr align=center>
	  <th width="25%">byte</td>
	  <th width="25%">byte</td>
	  <th width="25%">byte</td>
	  <th width="25%">byte</td>
	</tr>

	<tr align=center>
	  <td>Version</td>
	  <td>Flags</td>
	  <td colspan=2>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4>Reserved</td>
	</tr>

	<tr align=center>
	  <td colspan=4><br>Pointer<br><br></td>
	</tr>
      </table>
    </center>

    <p>
    <center>
      <table align=center width="80%">
	<tr>
	  <th width="30%">Field Name</th>
	  <th width="70%">Description</th>
	</tr>

	<tr valign=top>
	  <td>Version</td>
	  <td>The version number for the message.  This document
	    describes version one of shared messages.</td>
	</tr>

	<tr valign=top>
	  <td>Flags</td>
	  <td>The Shared Message message points to a message which is
	    shared among multiple object headers.  The Flags field
	    describes the type of sharing:

	    <dl>
	      <dt><code>Bit 0</code>
	      <dd>If this bit is clear then the actual message is the
		first message in some other object header; otherwise
		the actual message is stored in the global heap.

	      <dt><code>Bits 2-7</code>
	      <dd>Reserved (always zero)
	    </dl>
	</tr>

	<tr valign=top>
	  <td>Pointer</td>
	  <td>This field points to the actual message.  The format of
	    the pointer depends on the value of the Flags field.  If
	    the actual message is in the global heap then the pointer
	    is the file address of the global heap collection that
	    holds the message, and a four-byte index into that
	    collection.  Otherwise the pointer is a symbol table entry 
	    that points to some other object header.</td>
	</tr>
      </table>
    </center>


<hr>
<h3><a name="ContinuationMessage">Name: Object Header Continuation</a></h3>
<b>Type:</b> 0x0010<BR>
<b>Length:</b> fixed<BR>
<b>Status:</b> Optional, may be repeated.<BR>
<b>Purpose and Description:</b>  The object header continuation is the location
in the file of more header messages for the current data object.  This can be
used when header blocks are large, or likely to change over time.<BR>
<b>Format of Data:</b><p>
    The object header continuation is formatted as follows (assuming a 4-byte
length &amp; offset are being used in the current file):

<P>
<center>
<table border cellpadding=4 width=60%>
<caption align=bottom>
<B>HDF5 Object Header Continuation Message Layout</B>
</caption>

<tr align=center>
<th width=25%>byte</th>
<th width=25%>byte</th>
<th width=25%>byte</th>
<th width=25%>byte</th>

<tr align=center>
<td colspan=4>Header Continuation Offset</td>
<tr align=center>
<td colspan=4>Header Continuation Length</td>
</table>
</center>

<P>
<dl>
<dt>The elements of the Header Continuation Message are described below:
<dd>
<dl>
<dt>Header Continuation Offset: (&lt;offset&gt; bytes)
<dd>This value is the offset in bytes from the beginning of the file where the
header continuation information is located.
<dt>Header Continuation Length: (&lt;length&gt; bytes)
<dd>This value is the length in bytes of the header continuation information in
the file.
</dl>
</dl>

<h4><a name="ContinuationExample">Examples:</a></h4>
    [straightforward]

<hr>
<h3><a name="SymbolTableMessage">Name: Symbol Table Message</a></h3>
<b>Type:</b> 0x0011<BR>
<b>Length:</b> fixed<BR>
<b>Status:</b> Required for symbol tables, may not be repeated.<BR>
<b>Purpose and Description:</b> Each symbol table has a B-tree and a
name heap which are pointed to by this message.<BR>
<b>Format of data:</b>
<p>The symbol table message is formatted as follows:

<p>
<center>
<table border cellpadding=4 width="80%">
<caption align=bottom>
<b>HDF5 Object Header Symbol Table Message Layout</b>
</caption>

<tr align=center>
<th width="25%">byte</th>
<th width="25%">byte</th>
<th width="25%">byte</th>
<th width="25%">byte</th>

<tr align=center>
<td colspan=4>B-Tree Address</td>

<tr align=center>
<td colspan=4>Heap Address</td>
</table>
</center>

<P>
<dl>
<dt>The elements of the Symbol Table Message are described below:
<dd>
<dl>
<dt>B-tree Address (&lt;offset&gt; bytes)
<dd>This value is the offset in bytes from the beginning of the file
where the B-tree is located.
<dt>Heap Address (&lt;offset&gt; bytes)
<dd>This value is the offset in bytes from the beginning of the file
where the symbol table name heap is located.
</dl>
</dl>

<h3><a name="SharedObjectHeader">Disk Format: Level 2b - Shared Data Object Headers</a></h3>
<P>In order to share header messages between several dataset objects, object
header messages may be placed into the global small-data heap.  Since these
messages require additional information beyond the basic object header message
information, the format of the shared message is detailed below.

<BR> <BR>
<center>
<table border cellpadding=4 width=60%>
<caption align=bottom>
<B>HDF5 Shared Object Header Message</B>
</caption>

<tr align=center>
<th width=25%>byte</th>
<th width=25%>byte</th>
<th width=25%>byte</th>
<th width=25%>byte</th>

<tr align=center>
<td colspan=4>Reference Count of Shared Header Message</td>
<tr align=center>
<td colspan=4><br> Shared Object Header Message<br> <br></td>
</table>
</center>

<p>
<dl>
<dt> The elements of the shared object header message are described below:
<dd>
<dl>
<dt>Reference Count of Shared Header Message: (32-bit unsigned integer)
<dd>This value is used to keep a count of the number of dataset objects which
refer to this message from their dataset headers.  When this count reaches zero,
the shared message header may be removed from the global small-data heap.
<dt>Shared Object Header Message: (various lengths)
<dd>The data stored for the shared object header message is formatted in the
same way as the private object header messages described in the object header
description earlier in this document and begins with the header message Type.
</dl>
</dl>


<h3><a name="DataStorage">Disk Format: Level 2c - Data Object Data Storage</a></h3>
<P>The data information for an object is stored separately from the header
information in the file and may not actually be located in the HDF5 file
itself if the header indicates that the data is stored externally.  The
information for each record in the object is stored according to the
dimensionality of the object (indicated in the dimensionality header message).
Multi-dimensional data is stored in C order [same as current scheme], i.e. the
"last" dimension changes fastest.
<P>Data whose elements are composed of simple number-types are stored in
native-endian IEEE format, unless they are specifically defined as being stored
in a different machine format with the architecture-type information from the
number-type header message.  This means that each architecture will need to
[potentially] byte-swap data values into the internal representation for that
particular machine.
<P> Data with a "variable" sized number-type is stored in an data heap
internal to the HDF file [which should not be user-modifiable].
<P>Data whose elements are composed of pointer number-types are stored in several
different ways depending on the particular pointer type involved. Simple
pointers are just stored as the dataset offset of the object being pointed to with the
size of the pointer being the same number of bytes as offsets in the file.
Partial-object pointers are stored as a heap-ID which points to the following
information within the file-heap: an offset of the object pointed to, number-type
information (same format as header message), dimensionality information (same
format as header message), sub-set start and end information (i.e. a coordinate
location for each), and field start and end names (i.e.  a [pointer to the]
string indicating the first field included and a [pointer to the] string name
for the last field).  
Browse pointers are stored as an heap-ID (for the name in the file-heap)
followed by a offset of the data object being referenced.
<P>Data of a compound data-type is stored as a contiguous stream of the items
in the structure, with each item formatted according to it's
data-type.

<hr>
<address><a href="mailto:koziol@ncsa.uiuc.edu">Quincey Koziol</a></address>
<address><a href="mailto:matzke@llnl.gov">Robb Matzke</a></address>
<!-- hhmts start -->
Last modified: Tue Aug  4 10:04:40 EDT 1998
<!-- hhmts end -->
</body>
</html>