/* * Copyright (c) 2013-14 Mikko Mononen memon@inside.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * The polygon rasterization is heavily based on stb_truetype rasterizer * by Sean Barrett - http://nothings.org/ * */ #ifndef NANOSVGRAST_H #define NANOSVGRAST_H #ifdef __cplusplus extern "C" { #endif #ifndef NANOSVG_SCOPE #define NANOSVG_SCOPE #endif #ifndef NANOSVG_malloc #define NANOSVG_malloc malloc #endif #ifndef NANOSVG_realloc #define NANOSVG_realloc realloc #endif #ifndef NANOSVG_free #define NANOSVG_free free #endif typedef struct NSVGrasterizer NSVGrasterizer; /* Example Usage: // Load SVG struct SNVGImage* image = nsvgParseFromFile("test.svg."); // Create rasterizer (can be used to render multiple images). struct NSVGrasterizer* rast = nsvgCreateRasterizer(); // Allocate memory for image unsigned char* img = malloc(w*h*4); // Rasterize nsvgRasterize(rast, image, 0,0,1, img, w, h, w*4); */ // Allocated rasterizer context. NANOSVG_SCOPE NSVGrasterizer* nsvgCreateRasterizer(void); // Rasterizes SVG image, returns RGBA image (non-premultiplied alpha) // r - pointer to rasterizer context // image - pointer to image to rasterize // tx,ty - image offset (applied after scaling) // scale - image scale // dst - pointer to destination image data, 4 bytes per pixel (RGBA) // w - width of the image to render // h - height of the image to render // stride - number of bytes per scaleline in the destination buffer NANOSVG_SCOPE void nsvgRasterize(NSVGrasterizer* r, NSVGimage* image, float tx, float ty, float scale, unsigned char* dst, int w, int h, int stride); // Deletes rasterizer context. NANOSVG_SCOPE void nsvgDeleteRasterizer(NSVGrasterizer*); #ifdef __cplusplus } #endif #endif // NANOSVGRAST_H #ifdef NANOSVGRAST_IMPLEMENTATION #include #define NSVG__SUBSAMPLES 5 #define NSVG__FIXSHIFT 10 #define NSVG__FIX (1 << NSVG__FIXSHIFT) #define NSVG__FIXMASK (NSVG__FIX-1) #define NSVG__MEMPAGE_SIZE 1024 typedef struct NSVGedge { float x0,y0, x1,y1; int dir; struct NSVGedge* next; } NSVGedge; typedef struct NSVGpoint { float x, y; float dx, dy; float len; float dmx, dmy; unsigned char flags; } NSVGpoint; typedef struct NSVGactiveEdge { int x,dx; float ey; int dir; struct NSVGactiveEdge *next; } NSVGactiveEdge; typedef struct NSVGmemPage { unsigned char mem[NSVG__MEMPAGE_SIZE]; int size; struct NSVGmemPage* next; } NSVGmemPage; typedef struct NSVGcachedPaint { char type; char spread; float xform[6]; unsigned int colors[256]; } NSVGcachedPaint; struct NSVGrasterizer { float px, py; float tessTol; float distTol; NSVGedge* edges; int nedges; int cedges; NSVGpoint* points; int npoints; int cpoints; NSVGpoint* points2; int npoints2; int cpoints2; NSVGactiveEdge* freelist; NSVGmemPage* pages; NSVGmemPage* curpage; unsigned char* scanline; int cscanline; unsigned char* bitmap; int width, height, stride; }; NANOSVG_SCOPE NSVGrasterizer* nsvgCreateRasterizer(void) { NSVGrasterizer* r = (NSVGrasterizer*)NANOSVG_malloc(sizeof(NSVGrasterizer)); if (r == NULL) goto error; memset(r, 0, sizeof(NSVGrasterizer)); r->tessTol = 0.25f; r->distTol = 0.01f; return r; error: nsvgDeleteRasterizer(r); return NULL; } NANOSVG_SCOPE void nsvgDeleteRasterizer(NSVGrasterizer* r) { NSVGmemPage* p; if (r == NULL) return; p = r->pages; while (p != NULL) { NSVGmemPage* next = p->next; NANOSVG_free(p); p = next; } if (r->edges) NANOSVG_free(r->edges); if (r->points) NANOSVG_free(r->points); if (r->points2) NANOSVG_free(r->points2); if (r->scanline) NANOSVG_free(r->scanline); NANOSVG_free(r); } static NSVGmemPage* nsvg__nextPage(NSVGrasterizer* r, NSVGmemPage* cur) { NSVGmemPage *newp; // If using existing chain, return the next page in chain if (cur != NULL && cur->next != NULL) { return cur->next; } // Alloc new page newp = (NSVGmemPage*)NANOSVG_malloc(sizeof(NSVGmemPage)); if (newp == NULL) return NULL; memset(newp, 0, sizeof(NSVGmemPage)); // Add to linked list if (cur != NULL) cur->next = newp; else r->pages = newp; return newp; } static void nsvg__resetPool(NSVGrasterizer* r) { NSVGmemPage* p = r->pages; while (p != NULL) { p->size = 0; p = p->next; } r->curpage = r->pages; } static unsigned char* nsvg__alloc(NSVGrasterizer* r, int size) { unsigned char* buf; if (size > NSVG__MEMPAGE_SIZE) return NULL; if (r->curpage == NULL || r->curpage->size+size > NSVG__MEMPAGE_SIZE) { r->curpage = nsvg__nextPage(r, r->curpage); } buf = &r->curpage->mem[r->curpage->size]; r->curpage->size += size; return buf; } static int nsvg__ptEquals(float x1, float y1, float x2, float y2, float tol) { float dx = x2 - x1; float dy = y2 - y1; return dx*dx + dy*dy < tol*tol; } static void nsvg__addPathPoint(NSVGrasterizer* r, float x, float y, int flags) { NSVGpoint* pt; if (r->npoints > 0) { pt = &r->points[r->npoints-1]; if (nsvg__ptEquals(pt->x,pt->y, x,y, r->distTol)) { pt->flags = (unsigned char)(pt->flags | flags); return; } } if (r->npoints+1 > r->cpoints) { r->cpoints = r->cpoints > 0 ? r->cpoints * 2 : 64; r->points = (NSVGpoint*)NANOSVG_realloc(r->points, sizeof(NSVGpoint) * r->cpoints); if (r->points == NULL) return; } pt = &r->points[r->npoints]; pt->x = x; pt->y = y; pt->flags = (unsigned char)flags; r->npoints++; } static void nsvg__appendPathPoint(NSVGrasterizer* r, NSVGpoint pt) { if (r->npoints+1 > r->cpoints) { r->cpoints = r->cpoints > 0 ? r->cpoints * 2 : 64; r->points = (NSVGpoint*)NANOSVG_realloc(r->points, sizeof(NSVGpoint) * r->cpoints); if (r->points == NULL) return; } r->points[r->npoints] = pt; r->npoints++; } static void nsvg__duplicatePoints(NSVGrasterizer* r) { if (r->npoints > r->cpoints2) { r->cpoints2 = r->npoints; r->points2 = (NSVGpoint*)NANOSVG_realloc(r->points2, sizeof(NSVGpoint) * r->cpoints2); if (r->points2 == NULL) return; } memcpy(r->points2, r->points, sizeof(NSVGpoint) * r->npoints); r->npoints2 = r->npoints; } static void nsvg__addEdge(NSVGrasterizer* r, float x0, float y0, float x1, float y1) { NSVGedge* e; // Skip horizontal edges if (y0 == y1) return; if (r->nedges+1 > r->cedges) { r->cedges = r->cedges > 0 ? r->cedges * 2 : 64; r->edges = (NSVGedge*)NANOSVG_realloc(r->edges, sizeof(NSVGedge) * r->cedges); if (r->edges == NULL) return; } e = &r->edges[r->nedges]; r->nedges++; if (y0 < y1) { e->x0 = x0; e->y0 = y0; e->x1 = x1; e->y1 = y1; e->dir = 1; } else { e->x0 = x1; e->y0 = y1; e->x1 = x0; e->y1 = y0; e->dir = -1; } } static float nsvg__normalize(float *x, float* y) { float d = sqrtf((*x)*(*x) + (*y)*(*y)); if (d > 1e-6f) { float id = 1.0f / d; *x *= id; *y *= id; } return d; } static float nsvg__absf(float x) { return x < 0 ? -x : x; } static void nsvg__flattenCubicBez(NSVGrasterizer* r, float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4, int level, int type) { float x12,y12,x23,y23,x34,y34,x123,y123,x234,y234,x1234,y1234; float dx,dy,d2,d3; if (level > 10) return; x12 = (x1+x2)*0.5f; y12 = (y1+y2)*0.5f; x23 = (x2+x3)*0.5f; y23 = (y2+y3)*0.5f; x34 = (x3+x4)*0.5f; y34 = (y3+y4)*0.5f; x123 = (x12+x23)*0.5f; y123 = (y12+y23)*0.5f; dx = x4 - x1; dy = y4 - y1; d2 = nsvg__absf(((x2 - x4) * dy - (y2 - y4) * dx)); d3 = nsvg__absf(((x3 - x4) * dy - (y3 - y4) * dx)); if ((d2 + d3)*(d2 + d3) < r->tessTol * (dx*dx + dy*dy)) { nsvg__addPathPoint(r, x4, y4, type); return; } x234 = (x23+x34)*0.5f; y234 = (y23+y34)*0.5f; x1234 = (x123+x234)*0.5f; y1234 = (y123+y234)*0.5f; nsvg__flattenCubicBez(r, x1,y1, x12,y12, x123,y123, x1234,y1234, level+1, 0); nsvg__flattenCubicBez(r, x1234,y1234, x234,y234, x34,y34, x4,y4, level+1, type); } static void nsvg__flattenShape(NSVGrasterizer* r, NSVGshape* shape, float scale) { int i, j; NSVGpath* path; for (path = shape->paths; path != NULL; path = path->next) { r->npoints = 0; // Flatten path nsvg__addPathPoint(r, path->pts[0]*scale, path->pts[1]*scale, 0); for (i = 0; i < path->npts-1; i += 3) { float* p = &path->pts[i*2]; nsvg__flattenCubicBez(r, p[0]*scale,p[1]*scale, p[2]*scale,p[3]*scale, p[4]*scale,p[5]*scale, p[6]*scale,p[7]*scale, 0, 0); } // Close path nsvg__addPathPoint(r, path->pts[0]*scale, path->pts[1]*scale, 0); // Build edges for (i = 0, j = r->npoints-1; i < r->npoints; j = i++) nsvg__addEdge(r, r->points[j].x, r->points[j].y, r->points[i].x, r->points[i].y); } } enum NSVGpointFlags { NSVG_PT_CORNER = 0x01, NSVG_PT_BEVEL = 0x02, NSVG_PT_LEFT = 0x04 }; static void nsvg__initClosed(NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth) { float w = lineWidth * 0.5f; float dx = p1->x - p0->x; float dy = p1->y - p0->y; float len = nsvg__normalize(&dx, &dy); float px = p0->x + dx*len*0.5f, py = p0->y + dy*len*0.5f; float dlx = dy, dly = -dx; float lx = px - dlx*w, ly = py - dly*w; float rx = px + dlx*w, ry = py + dly*w; left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static void nsvg__buttCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int connect) { float w = lineWidth * 0.5f; float px = p->x, py = p->y; float dlx = dy, dly = -dx; float lx = px - dlx*w, ly = py - dly*w; float rx = px + dlx*w, ry = py + dly*w; nsvg__addEdge(r, lx, ly, rx, ry); if (connect) { nsvg__addEdge(r, left->x, left->y, lx, ly); nsvg__addEdge(r, rx, ry, right->x, right->y); } left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static void nsvg__squareCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int connect) { float w = lineWidth * 0.5f; float px = p->x - dx*w, py = p->y - dy*w; float dlx = dy, dly = -dx; float lx = px - dlx*w, ly = py - dly*w; float rx = px + dlx*w, ry = py + dly*w; nsvg__addEdge(r, lx, ly, rx, ry); if (connect) { nsvg__addEdge(r, left->x, left->y, lx, ly); nsvg__addEdge(r, rx, ry, right->x, right->y); } left->x = lx; left->y = ly; right->x = rx; right->y = ry; } #ifndef NSVG_PI #define NSVG_PI (3.14159265358979323846264338327f) #endif static void nsvg__roundCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int ncap, int connect) { int i; float w = lineWidth * 0.5f; float px = p->x, py = p->y; float dlx = dy, dly = -dx; float lx = 0, ly = 0, rx = 0, ry = 0, prevx = 0, prevy = 0; for (i = 0; i < ncap; i++) { float a = (float)i/(float)(ncap-1)*NSVG_PI; float ax = cosf(a) * w, ay = sinf(a) * w; float x = px - dlx*ax - dx*ay; float y = py - dly*ax - dy*ay; if (i > 0) nsvg__addEdge(r, prevx, prevy, x, y); prevx = x; prevy = y; if (i == 0) { lx = x; ly = y; } else if (i == ncap-1) { rx = x; ry = y; } } if (connect) { nsvg__addEdge(r, left->x, left->y, lx, ly); nsvg__addEdge(r, rx, ry, right->x, right->y); } left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static void nsvg__bevelJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth) { float w = lineWidth * 0.5f; float dlx0 = p0->dy, dly0 = -p0->dx; float dlx1 = p1->dy, dly1 = -p1->dx; float lx0 = p1->x - (dlx0 * w), ly0 = p1->y - (dly0 * w); float rx0 = p1->x + (dlx0 * w), ry0 = p1->y + (dly0 * w); float lx1 = p1->x - (dlx1 * w), ly1 = p1->y - (dly1 * w); float rx1 = p1->x + (dlx1 * w), ry1 = p1->y + (dly1 * w); nsvg__addEdge(r, lx0, ly0, left->x, left->y); nsvg__addEdge(r, lx1, ly1, lx0, ly0); nsvg__addEdge(r, right->x, right->y, rx0, ry0); nsvg__addEdge(r, rx0, ry0, rx1, ry1); left->x = lx1; left->y = ly1; right->x = rx1; right->y = ry1; } static void nsvg__miterJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth) { float w = lineWidth * 0.5f; float dlx0 = p0->dy, dly0 = -p0->dx; float dlx1 = p1->dy, dly1 = -p1->dx; float lx0, rx0, lx1, rx1; float ly0, ry0, ly1, ry1; if (p1->flags & NSVG_PT_LEFT) { lx0 = lx1 = p1->x - p1->dmx * w; ly0 = ly1 = p1->y - p1->dmy * w; nsvg__addEdge(r, lx1, ly1, left->x, left->y); rx0 = p1->x + (dlx0 * w); ry0 = p1->y + (dly0 * w); rx1 = p1->x + (dlx1 * w); ry1 = p1->y + (dly1 * w); nsvg__addEdge(r, right->x, right->y, rx0, ry0); nsvg__addEdge(r, rx0, ry0, rx1, ry1); } else { lx0 = p1->x - (dlx0 * w); ly0 = p1->y - (dly0 * w); lx1 = p1->x - (dlx1 * w); ly1 = p1->y - (dly1 * w); nsvg__addEdge(r, lx0, ly0, left->x, left->y); nsvg__addEdge(r, lx1, ly1, lx0, ly0); rx0 = rx1 = p1->x + p1->dmx * w; ry0 = ry1 = p1->y + p1->dmy * w; nsvg__addEdge(r, right->x, right->y, rx1, ry1); } left->x = lx1; left->y = ly1; right->x = rx1; right->y = ry1; } static void nsvg__roundJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth, int ncap) { int i, n; float w = lineWidth * 0.5f; float dlx0 = p0->dy, dly0 = -p0->dx; float dlx1 = p1->dy, dly1 = -p1->dx; float a0 = atan2f(dly0, dlx0); float a1 = atan2f(dly1, dlx1); float da = a1 - a0; float lx, ly, rx, ry; if (da < NSVG_PI) da += NSVG_PI*2; if (da > NSVG_PI) da -= NSVG_PI*2; n = (int)ceilf((nsvg__absf(da) / NSVG_PI) * (float)ncap); if (n < 2) n = 2; if (n > ncap) n = ncap; lx = left->x; ly = left->y; rx = right->x; ry = right->y; for (i = 0; i < n; i++) { float u = (float)i/(float)(n-1); float a = a0 + u*da; float ax = cosf(a) * w, ay = sinf(a) * w; float lx1 = p1->x - ax, ly1 = p1->y - ay; float rx1 = p1->x + ax, ry1 = p1->y + ay; nsvg__addEdge(r, lx1, ly1, lx, ly); nsvg__addEdge(r, rx, ry, rx1, ry1); lx = lx1; ly = ly1; rx = rx1; ry = ry1; } left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static void nsvg__straightJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p1, float lineWidth) { float w = lineWidth * 0.5f; float lx = p1->x - (p1->dmx * w), ly = p1->y - (p1->dmy * w); float rx = p1->x + (p1->dmx * w), ry = p1->y + (p1->dmy * w); nsvg__addEdge(r, lx, ly, left->x, left->y); nsvg__addEdge(r, right->x, right->y, rx, ry); left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static int nsvg__curveDivs(float r, float arc, float tol) { float da = acosf(r / (r + tol)) * 2.0f; int divs = (int)ceilf(arc / da); if (divs < 2) divs = 2; return divs; } static void nsvg__expandStroke(NSVGrasterizer* r, NSVGpoint* points, int npoints, int closed, int lineJoin, int lineCap, float lineWidth) { int ncap = nsvg__curveDivs(lineWidth*0.5f, NSVG_PI, r->tessTol); // Calculate divisions per half circle. NSVGpoint left = {0,0,0,0,0,0,0,0}, right = {0,0,0,0,0,0,0,0}, firstLeft = {0,0,0,0,0,0,0,0}, firstRight = {0,0,0,0,0,0,0,0}; NSVGpoint* p0, *p1; int j, s, e; // Build stroke edges if (closed) { // Looping p0 = &points[npoints-1]; p1 = &points[0]; s = 0; e = npoints; } else { // Add cap p0 = &points[0]; p1 = &points[1]; s = 1; e = npoints-1; } if (closed) { nsvg__initClosed(&left, &right, p0, p1, lineWidth); firstLeft = left; firstRight = right; } else { // Add cap float dx = p1->x - p0->x; float dy = p1->y - p0->y; nsvg__normalize(&dx, &dy); if (lineCap == NSVG_CAP_BUTT) nsvg__buttCap(r, &left, &right, p0, dx, dy, lineWidth, 0); else if (lineCap == NSVG_CAP_SQUARE) nsvg__squareCap(r, &left, &right, p0, dx, dy, lineWidth, 0); else if (lineCap == NSVG_CAP_ROUND) nsvg__roundCap(r, &left, &right, p0, dx, dy, lineWidth, ncap, 0); } for (j = s; j < e; ++j) { if (p1->flags & NSVG_PT_CORNER) { if (lineJoin == NSVG_JOIN_ROUND) nsvg__roundJoin(r, &left, &right, p0, p1, lineWidth, ncap); else if (lineJoin == NSVG_JOIN_BEVEL || (p1->flags & NSVG_PT_BEVEL)) nsvg__bevelJoin(r, &left, &right, p0, p1, lineWidth); else nsvg__miterJoin(r, &left, &right, p0, p1, lineWidth); } else { nsvg__straightJoin(r, &left, &right, p1, lineWidth); } p0 = p1++; } if (closed) { // Loop it nsvg__addEdge(r, firstLeft.x, firstLeft.y, left.x, left.y); nsvg__addEdge(r, right.x, right.y, firstRight.x, firstRight.y); } else { // Add cap float dx = p1->x - p0->x; float dy = p1->y - p0->y; nsvg__normalize(&dx, &dy); if (lineCap == NSVG_CAP_BUTT) nsvg__buttCap(r, &right, &left, p1, -dx, -dy, lineWidth, 1); else if (lineCap == NSVG_CAP_SQUARE) nsvg__squareCap(r, &right, &left, p1, -dx, -dy, lineWidth, 1); else if (lineCap == NSVG_CAP_ROUND) nsvg__roundCap(r, &right, &left, p1, -dx, -dy, lineWidth, ncap, 1); } } static void nsvg__prepareStroke(NSVGrasterizer* r, float miterLimit, int lineJoin) { int i, j; NSVGpoint* p0, *p1; p0 = &r->points[r->npoints-1]; p1 = &r->points[0]; for (i = 0; i < r->npoints; i++) { // Calculate segment direction and length p0->dx = p1->x - p0->x; p0->dy = p1->y - p0->y; p0->len = nsvg__normalize(&p0->dx, &p0->dy); // Advance p0 = p1++; } // calculate joins p0 = &r->points[r->npoints-1]; p1 = &r->points[0]; for (j = 0; j < r->npoints; j++) { float dlx0, dly0, dlx1, dly1, dmr2, cross; dlx0 = p0->dy; dly0 = -p0->dx; dlx1 = p1->dy; dly1 = -p1->dx; // Calculate extrusions p1->dmx = (dlx0 + dlx1) * 0.5f; p1->dmy = (dly0 + dly1) * 0.5f; dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy; if (dmr2 > 0.000001f) { float s2 = 1.0f / dmr2; if (s2 > 600.0f) { s2 = 600.0f; } p1->dmx *= s2; p1->dmy *= s2; } // Clear flags, but keep the corner. p1->flags = (p1->flags & NSVG_PT_CORNER) ? NSVG_PT_CORNER : 0; // Keep track of left turns. cross = p1->dx * p0->dy - p0->dx * p1->dy; if (cross > 0.0f) p1->flags |= NSVG_PT_LEFT; // Check to see if the corner needs to be beveled. if (p1->flags & NSVG_PT_CORNER) { if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NSVG_JOIN_BEVEL || lineJoin == NSVG_JOIN_ROUND) { p1->flags |= NSVG_PT_BEVEL; } } p0 = p1++; } } static void nsvg__flattenShapeStroke(NSVGrasterizer* r, NSVGshape* shape, float scale) { int i, j, closed; NSVGpath* path; NSVGpoint* p0, *p1; float miterLimit = shape->miterLimit; int lineJoin = shape->strokeLineJoin; int lineCap = shape->strokeLineCap; float lineWidth = shape->strokeWidth * scale; for (path = shape->paths; path != NULL; path = path->next) { // Flatten path r->npoints = 0; nsvg__addPathPoint(r, path->pts[0]*scale, path->pts[1]*scale, NSVG_PT_CORNER); for (i = 0; i < path->npts-1; i += 3) { float* p = &path->pts[i*2]; nsvg__flattenCubicBez(r, p[0]*scale,p[1]*scale, p[2]*scale,p[3]*scale, p[4]*scale,p[5]*scale, p[6]*scale,p[7]*scale, 0, NSVG_PT_CORNER); } if (r->npoints < 2) continue; closed = path->closed; // If the first and last points are the same, remove the last, mark as closed path. p0 = &r->points[r->npoints-1]; p1 = &r->points[0]; if (nsvg__ptEquals(p0->x,p0->y, p1->x,p1->y, r->distTol)) { r->npoints--; p0 = &r->points[r->npoints-1]; closed = 1; } if (shape->strokeDashCount > 0) { int idash = 0, dashState = 1; float totalDist = 0, dashLen, allDashLen, dashOffset; NSVGpoint cur; if (closed) nsvg__appendPathPoint(r, r->points[0]); // Duplicate points -> points2. nsvg__duplicatePoints(r); r->npoints = 0; cur = r->points2[0]; nsvg__appendPathPoint(r, cur); // Figure out dash offset. allDashLen = 0; for (j = 0; j < shape->strokeDashCount; j++) allDashLen += shape->strokeDashArray[j]; if (shape->strokeDashCount & 1) allDashLen *= 2.0f; // Find location inside pattern dashOffset = fmodf(shape->strokeDashOffset, allDashLen); if (dashOffset < 0.0f) dashOffset += allDashLen; while (dashOffset > shape->strokeDashArray[idash]) { dashOffset -= shape->strokeDashArray[idash]; idash = (idash + 1) % shape->strokeDashCount; } dashLen = (shape->strokeDashArray[idash] - dashOffset) * scale; for (j = 1; j < r->npoints2; ) { float dx = r->points2[j].x - cur.x; float dy = r->points2[j].y - cur.y; float dist = sqrtf(dx*dx + dy*dy); if ((totalDist + dist) > dashLen) { // Calculate intermediate point float d = (dashLen - totalDist) / dist; float x = cur.x + dx * d; float y = cur.y + dy * d; nsvg__addPathPoint(r, x, y, NSVG_PT_CORNER); // Stroke if (r->npoints > 1 && dashState) { nsvg__prepareStroke(r, miterLimit, lineJoin); nsvg__expandStroke(r, r->points, r->npoints, 0, lineJoin, lineCap, lineWidth); } // Advance dash pattern dashState = !dashState; idash = (idash+1) % shape->strokeDashCount; dashLen = shape->strokeDashArray[idash] * scale; // Restart cur.x = x; cur.y = y; cur.flags = NSVG_PT_CORNER; totalDist = 0.0f; r->npoints = 0; nsvg__appendPathPoint(r, cur); } else { totalDist += dist; cur = r->points2[j]; nsvg__appendPathPoint(r, cur); j++; } } // Stroke any leftover path if (r->npoints > 1 && dashState) nsvg__expandStroke(r, r->points, r->npoints, 0, lineJoin, lineCap, lineWidth); } else { nsvg__prepareStroke(r, miterLimit, lineJoin); nsvg__expandStroke(r, r->points, r->npoints, closed, lineJoin, lineCap, lineWidth); } } } static int nsvg__cmpEdge(const void *p, const void *q) { const NSVGedge* a = (const NSVGedge*)p; const NSVGedge* b = (const NSVGedge*)q; if (a->y0 < b->y0) return -1; if (a->y0 > b->y0) return 1; return 0; } static NSVGactiveEdge* nsvg__addActive(NSVGrasterizer* r, NSVGedge* e, float startPoint) { NSVGactiveEdge* z; float dxdy; if (r->freelist != NULL) { // Restore from freelist. z = r->freelist; r->freelist = z->next; } else { // Alloc new edge. z = (NSVGactiveEdge*)nsvg__alloc(r, sizeof(NSVGactiveEdge)); if (z == NULL) return NULL; } dxdy = (e->x1 - e->x0) / (e->y1 - e->y0); // STBTT_assert(e->y0 <= start_point); // round dx down to avoid going too far if (dxdy < 0) z->dx = (int)(-floorf(NSVG__FIX * -dxdy)); else z->dx = (int)floorf(NSVG__FIX * dxdy); z->x = (int)floorf(NSVG__FIX * (e->x0 + dxdy * (startPoint - e->y0))); // z->x -= off_x * FIX; z->ey = e->y1; z->next = 0; z->dir = e->dir; return z; } static void nsvg__freeActive(NSVGrasterizer* r, NSVGactiveEdge* z) { z->next = r->freelist; r->freelist = z; } static void nsvg__fillScanline(unsigned char* scanline, int len, int x0, int x1, int maxWeight, int* xmin, int* xmax) { int i = x0 >> NSVG__FIXSHIFT; int j = x1 >> NSVG__FIXSHIFT; if (i < *xmin) *xmin = i; if (j > *xmax) *xmax = j; if (i < len && j >= 0) { if (i == j) { // x0,x1 are the same pixel, so compute combined coverage scanline[i] = (unsigned char)(scanline[i] + ((x1 - x0) * maxWeight >> NSVG__FIXSHIFT)); } else { if (i >= 0) // add antialiasing for x0 scanline[i] = (unsigned char)(scanline[i] + (((NSVG__FIX - (x0 & NSVG__FIXMASK)) * maxWeight) >> NSVG__FIXSHIFT)); else i = -1; // clip if (j < len) // add antialiasing for x1 scanline[j] = (unsigned char)(scanline[j] + (((x1 & NSVG__FIXMASK) * maxWeight) >> NSVG__FIXSHIFT)); else j = len; // clip for (++i; i < j; ++i) // fill pixels between x0 and x1 scanline[i] = (unsigned char)(scanline[i] + maxWeight); } } } // note: this routine clips fills that extend off the edges... ideally this // wouldn't happen, but it could happen if the truetype glyph bounding boxes // are wrong, or if the user supplies a too-small bitmap static void nsvg__fillActiveEdges(unsigned char* scanline, int len, NSVGactiveEdge* e, int maxWeight, int* xmin, int* xmax, char fillRule) { // non-zero winding fill int x0 = 0, w = 0; if (fillRule == NSVG_FILLRULE_NONZERO) { // Non-zero while (e != NULL) { if (w == 0) { // if we're currently at zero, we need to record the edge start point x0 = e->x; w += e->dir; } else { int x1 = e->x; w += e->dir; // if we went to zero, we need to draw if (w == 0) nsvg__fillScanline(scanline, len, x0, x1, maxWeight, xmin, xmax); } e = e->next; } } else if (fillRule == NSVG_FILLRULE_EVENODD) { // Even-odd while (e != NULL) { if (w == 0) { // if we're currently at zero, we need to record the edge start point x0 = e->x; w = 1; } else { int x1 = e->x; w = 0; nsvg__fillScanline(scanline, len, x0, x1, maxWeight, xmin, xmax); } e = e->next; } } } static float nsvg__clampf(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); } static unsigned int nsvg__RGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { return (r) | (g << 8) | (b << 16) | (a << 24); } static unsigned int nsvg__lerpRGBA(unsigned int c0, unsigned int c1, float u) { int iu = (int)(nsvg__clampf(u, 0.0f, 1.0f) * 256.0f); int r = (((c0) & 0xff)*(256-iu) + (((c1) & 0xff)*iu)) >> 8; int g = (((c0>>8) & 0xff)*(256-iu) + (((c1>>8) & 0xff)*iu)) >> 8; int b = (((c0>>16) & 0xff)*(256-iu) + (((c1>>16) & 0xff)*iu)) >> 8; int a = (((c0>>24) & 0xff)*(256-iu) + (((c1>>24) & 0xff)*iu)) >> 8; return nsvg__RGBA((unsigned char)r, (unsigned char)g, (unsigned char)b, (unsigned char)a); } static unsigned int nsvg__applyOpacity(unsigned int c, float u) { int iu = (int)(nsvg__clampf(u, 0.0f, 1.0f) * 256.0f); int r = (c) & 0xff; int g = (c>>8) & 0xff; int b = (c>>16) & 0xff; int a = (((c>>24) & 0xff)*iu) >> 8; return nsvg__RGBA((unsigned char)r, (unsigned char)g, (unsigned char)b, (unsigned char)a); } static inline int nsvg__div255(int x) { return ((x+1) * 257) >> 16; } static void nsvg__scanlineSolid(unsigned char* dst, int count, unsigned char* cover, int x, int y, float tx, float ty, float scale, NSVGcachedPaint* cache) { if (cache->type == NSVG_PAINT_COLOR) { int i, cr, cg, cb, ca; cr = cache->colors[0] & 0xff; cg = (cache->colors[0] >> 8) & 0xff; cb = (cache->colors[0] >> 16) & 0xff; ca = (cache->colors[0] >> 24) & 0xff; for (i = 0; i < count; i++) { int r,g,b; int a = nsvg__div255((int)cover[0] * ca); int ia = 255 - a; // Premultiply r = nsvg__div255(cr * a); g = nsvg__div255(cg * a); b = nsvg__div255(cb * a); // Blend over r += nsvg__div255(ia * (int)dst[0]); g += nsvg__div255(ia * (int)dst[1]); b += nsvg__div255(ia * (int)dst[2]); a += nsvg__div255(ia * (int)dst[3]); dst[0] = (unsigned char)r; dst[1] = (unsigned char)g; dst[2] = (unsigned char)b; dst[3] = (unsigned char)a; cover++; dst += 4; } } else if (cache->type == NSVG_PAINT_LINEAR_GRADIENT) { // TODO: spread modes. // TODO: plenty of opportunities to optimize. float fx, fy, dx, gy; float* t = cache->xform; int i, cr, cg, cb, ca; unsigned int c; fx = ((float)x - tx) / scale; fy = ((float)y - ty) / scale; dx = 1.0f / scale; for (i = 0; i < count; i++) { int r,g,b,a,ia; gy = fx*t[1] + fy*t[3] + t[5]; c = cache->colors[(int)nsvg__clampf(gy*255.0f, 0, 255.0f)]; cr = (c) & 0xff; cg = (c >> 8) & 0xff; cb = (c >> 16) & 0xff; ca = (c >> 24) & 0xff; a = nsvg__div255((int)cover[0] * ca); ia = 255 - a; // Premultiply r = nsvg__div255(cr * a); g = nsvg__div255(cg * a); b = nsvg__div255(cb * a); // Blend over r += nsvg__div255(ia * (int)dst[0]); g += nsvg__div255(ia * (int)dst[1]); b += nsvg__div255(ia * (int)dst[2]); a += nsvg__div255(ia * (int)dst[3]); dst[0] = (unsigned char)r; dst[1] = (unsigned char)g; dst[2] = (unsigned char)b; dst[3] = (unsigned char)a; cover++; dst += 4; fx += dx; } } else if (cache->type == NSVG_PAINT_RADIAL_GRADIENT) { // TODO: spread modes. // TODO: plenty of opportunities to optimize. // TODO: focus (fx,fy) float fx, fy, dx, gx, gy, gd; float* t = cache->xform; int i, cr, cg, cb, ca; unsigned int c; fx = ((float)x - tx) / scale; fy = ((float)y - ty) / scale; dx = 1.0f / scale; for (i = 0; i < count; i++) { int r,g,b,a,ia; gx = fx*t[0] + fy*t[2] + t[4]; gy = fx*t[1] + fy*t[3] + t[5]; gd = sqrtf(gx*gx + gy*gy); c = cache->colors[(int)nsvg__clampf(gd*255.0f, 0, 255.0f)]; cr = (c) & 0xff; cg = (c >> 8) & 0xff; cb = (c >> 16) & 0xff; ca = (c >> 24) & 0xff; a = nsvg__div255((int)cover[0] * ca); ia = 255 - a; // Premultiply r = nsvg__div255(cr * a); g = nsvg__div255(cg * a); b = nsvg__div255(cb * a); // Blend over r += nsvg__div255(ia * (int)dst[0]); g += nsvg__div255(ia * (int)dst[1]); b += nsvg__div255(ia * (int)dst[2]); a += nsvg__div255(ia * (int)dst[3]); dst[0] = (unsigned char)r; dst[1] = (unsigned char)g; dst[2] = (unsigned char)b; dst[3] = (unsigned char)a; cover++; dst += 4; fx += dx; } } } static void nsvg__rasterizeSortedEdges(NSVGrasterizer *r, float tx, float ty, float scale, NSVGcachedPaint* cache, char fillRule) { NSVGactiveEdge *active = NULL; int y, s; int e = 0; int maxWeight = (255 / NSVG__SUBSAMPLES); // weight per vertical scanline int xmin, xmax; for (y = 0; y < r->height; y++) { memset(r->scanline, 0, r->width); xmin = r->width; xmax = 0; for (s = 0; s < NSVG__SUBSAMPLES; ++s) { // find center of pixel for this scanline float scany = (float)(y*NSVG__SUBSAMPLES + s) + 0.5f; NSVGactiveEdge **step = &active; // update all active edges; // remove all active edges that terminate before the center of this scanline while (*step) { NSVGactiveEdge *z = *step; if (z->ey <= scany) { *step = z->next; // delete from list // NSVG__assert(z->valid); nsvg__freeActive(r, z); } else { z->x += z->dx; // advance to position for current scanline step = &((*step)->next); // advance through list } } // resort the list if needed for (;;) { int changed = 0; step = &active; while (*step && (*step)->next) { if ((*step)->x > (*step)->next->x) { NSVGactiveEdge* t = *step; NSVGactiveEdge* q = t->next; t->next = q->next; q->next = t; *step = q; changed = 1; } step = &(*step)->next; } if (!changed) break; } // insert all edges that start before the center of this scanline -- omit ones that also end on this scanline while (e < r->nedges && r->edges[e].y0 <= scany) { if (r->edges[e].y1 > scany) { NSVGactiveEdge* z = nsvg__addActive(r, &r->edges[e], scany); if (z == NULL) break; // find insertion point if (active == NULL) { active = z; } else if (z->x < active->x) { // insert at front z->next = active; active = z; } else { // find thing to insert AFTER NSVGactiveEdge* p = active; while (p->next && p->next->x < z->x) p = p->next; // at this point, p->next->x is NOT < z->x z->next = p->next; p->next = z; } } e++; } // now process all active edges in non-zero fashion if (active != NULL) nsvg__fillActiveEdges(r->scanline, r->width, active, maxWeight, &xmin, &xmax, fillRule); } // Blit if (xmin < 0) xmin = 0; if (xmax > r->width-1) xmax = r->width-1; if (xmin <= xmax) { nsvg__scanlineSolid(&r->bitmap[y * r->stride] + xmin*4, xmax-xmin+1, &r->scanline[xmin], xmin, y, tx,ty, scale, cache); } } } static void nsvg__unpremultiplyAlpha(unsigned char* image, int w, int h, int stride) { int x,y; // Unpremultiply for (y = 0; y < h; y++) { unsigned char *row = &image[y*stride]; for (x = 0; x < w; x++) { int r = row[0], g = row[1], b = row[2], a = row[3]; if (a != 0) { row[0] = (unsigned char)(r*255/a); row[1] = (unsigned char)(g*255/a); row[2] = (unsigned char)(b*255/a); } row += 4; } } // Defringe for (y = 0; y < h; y++) { unsigned char *row = &image[y*stride]; for (x = 0; x < w; x++) { int r = 0, g = 0, b = 0, a = row[3], n = 0; if (a == 0) { if (x-1 > 0 && row[-1] != 0) { r += row[-4]; g += row[-3]; b += row[-2]; n++; } if (x+1 < w && row[7] != 0) { r += row[4]; g += row[5]; b += row[6]; n++; } if (y-1 > 0 && row[-stride+3] != 0) { r += row[-stride]; g += row[-stride+1]; b += row[-stride+2]; n++; } if (y+1 < h && row[stride+3] != 0) { r += row[stride]; g += row[stride+1]; b += row[stride+2]; n++; } if (n > 0) { row[0] = (unsigned char)(r/n); row[1] = (unsigned char)(g/n); row[2] = (unsigned char)(b/n); } } row += 4; } } } static void nsvg__initPaint(NSVGcachedPaint* cache, NSVGpaint* paint, float opacity) { int i, j; NSVGgradient* grad; cache->type = paint->type; if (paint->type == NSVG_PAINT_COLOR) { cache->colors[0] = nsvg__applyOpacity(paint->color, opacity); return; } grad = paint->gradient; cache->spread = grad->spread; memcpy(cache->xform, grad->xform, sizeof(float)*6); if (grad->nstops == 0) { for (i = 0; i < 256; i++) cache->colors[i] = 0; } if (grad->nstops == 1) { for (i = 0; i < 256; i++) cache->colors[i] = nsvg__applyOpacity(grad->stops[i].color, opacity); } else { unsigned int ca, cb = 0; float ua, ub, du, u; int ia, ib, count; ca = nsvg__applyOpacity(grad->stops[0].color, opacity); ua = nsvg__clampf(grad->stops[0].offset, 0, 1); ub = nsvg__clampf(grad->stops[grad->nstops-1].offset, ua, 1); ia = (int)(ua * 255.0f); ib = (int)(ub * 255.0f); for (i = 0; i < ia; i++) { cache->colors[i] = ca; } for (i = 0; i < grad->nstops-1; i++) { ca = nsvg__applyOpacity(grad->stops[i].color, opacity); cb = nsvg__applyOpacity(grad->stops[i+1].color, opacity); ua = nsvg__clampf(grad->stops[i].offset, 0, 1); ub = nsvg__clampf(grad->stops[i+1].offset, 0, 1); ia = (int)(ua * 255.0f); ib = (int)(ub * 255.0f); count = ib - ia; if (count <= 0) continue; u = 0; du = 1.0f / (float)count; for (j = 0; j < count; j++) { cache->colors[ia+j] = nsvg__lerpRGBA(ca,cb,u); u += du; } } for (i = ib; i < 256; i++) cache->colors[i] = cb; } } /* static void dumpEdges(NSVGrasterizer* r, const char* name) { float xmin = 0, xmax = 0, ymin = 0, ymax = 0; NSVGedge *e = NULL; int i; if (r->nedges == 0) return; FILE* fp = fopen(name, "w"); if (fp == NULL) return; xmin = xmax = r->edges[0].x0; ymin = ymax = r->edges[0].y0; for (i = 0; i < r->nedges; i++) { e = &r->edges[i]; xmin = nsvg__minf(xmin, e->x0); xmin = nsvg__minf(xmin, e->x1); xmax = nsvg__maxf(xmax, e->x0); xmax = nsvg__maxf(xmax, e->x1); ymin = nsvg__minf(ymin, e->y0); ymin = nsvg__minf(ymin, e->y1); ymax = nsvg__maxf(ymax, e->y0); ymax = nsvg__maxf(ymax, e->y1); } fprintf(fp, "", xmin, ymin, (xmax - xmin), (ymax - ymin)); for (i = 0; i < r->nedges; i++) { e = &r->edges[i]; fprintf(fp ,"", e->x0,e->y0, e->x1,e->y1); } for (i = 0; i < r->npoints; i++) { if (i+1 < r->npoints) fprintf(fp ,"", r->points[i].x, r->points[i].y, r->points[i+1].x, r->points[i+1].y); fprintf(fp ,"", r->points[i].x, r->points[i].y, r->points[i].flags == 0 ? "#f00" : "#0f0"); } fprintf(fp, ""); fclose(fp); } */ NANOSVG_SCOPE void nsvgRasterize(NSVGrasterizer* r, NSVGimage* image, float tx, float ty, float scale, unsigned char* dst, int w, int h, int stride) { NSVGshape *shape = NULL; NSVGedge *e = NULL; NSVGcachedPaint cache; int i; r->bitmap = dst; r->width = w; r->height = h; r->stride = stride; if (w > r->cscanline) { r->cscanline = w; r->scanline = (unsigned char*)NANOSVG_realloc(r->scanline, w); if (r->scanline == NULL) return; } for (i = 0; i < h; i++) memset(&dst[i*stride], 0, w*4); for (shape = image->shapes; shape != NULL; shape = shape->next) { if (!(shape->flags & NSVG_FLAGS_VISIBLE)) continue; if (shape->fill.type != NSVG_PAINT_NONE) { nsvg__resetPool(r); r->freelist = NULL; r->nedges = 0; nsvg__flattenShape(r, shape, scale); // Scale and translate edges for (i = 0; i < r->nedges; i++) { e = &r->edges[i]; e->x0 = tx + e->x0; e->y0 = (ty + e->y0) * NSVG__SUBSAMPLES; e->x1 = tx + e->x1; e->y1 = (ty + e->y1) * NSVG__SUBSAMPLES; } // Rasterize edges qsort(r->edges, r->nedges, sizeof(NSVGedge), nsvg__cmpEdge); // now, traverse the scanlines and find the intersections on each scanline, use non-zero rule nsvg__initPaint(&cache, &shape->fill, shape->opacity); nsvg__rasterizeSortedEdges(r, tx,ty,scale, &cache, shape->fillRule); } if (shape->stroke.type != NSVG_PAINT_NONE && (shape->strokeWidth * scale) > 0.01f) { nsvg__resetPool(r); r->freelist = NULL; r->nedges = 0; nsvg__flattenShapeStroke(r, shape, scale); // dumpEdges(r, "edge.svg"); // Scale and translate edges for (i = 0; i < r->nedges; i++) { e = &r->edges[i]; e->x0 = tx + e->x0; e->y0 = (ty + e->y0) * NSVG__SUBSAMPLES; e->x1 = tx + e->x1; e->y1 = (ty + e->y1) * NSVG__SUBSAMPLES; } // Rasterize edges qsort(r->edges, r->nedges, sizeof(NSVGedge), nsvg__cmpEdge); // now, traverse the scanlines and find the intersections on each scanline, use non-zero rule nsvg__initPaint(&cache, &shape->stroke, shape->opacity); nsvg__rasterizeSortedEdges(r, tx,ty,scale, &cache, NSVG_FILLRULE_NONZERO); } } nsvg__unpremultiplyAlpha(dst, w, h, stride); r->bitmap = NULL; r->width = 0; r->height = 0; r->stride = 0; } #endif