/* * tkBind.c -- * * This file provides functions that associate Tcl commands with X events * or sequences of X events. * * Copyright (c) 1989-1994 The Regents of the University of California. * Copyright (c) 1994-1997 Sun Microsystems, Inc. * Copyright (c) 1998 by Scriptics Corporation. * Copyright (c) 2018-2019 by Gregor Cramer. * * See the file "license.terms" for information on usage and redistribution of * this file, and for a DISCLAIMER OF ALL WARRANTIES. */ #include "tkInt.h" #include "tkDList.h" #include "tkArray.h" #if defined(_WIN32) #include "tkWinInt.h" #elif defined(MAC_OSX_TK) #include "tkMacOSXInt.h" #else /* if defined(__unix__) */ #include "tkUnixInt.h" #endif #ifdef NDEBUG # define DEBUG(expr) #else # define DEBUG(expr) expr #endif #ifdef _MSC_VER /* * Earlier versions of MSVC don't know snprintf, but _snprintf is compatible. * Note that sprintf is deprecated. */ # define snprintf _snprintf #endif #define SIZE_OF_ARRAY(arr) (sizeof(arr)/sizeof(arr[0])) /* * File structure: * * Structure definitions and static variables. * * Init/Free this package. * * Tcl "bind" command (actually located in tkCmds.c) core implementation, plus helpers. * * Tcl "event" command implementation, plus helpers. * * Package-specific common helpers. * * Non-package-specific helpers. */ /* * In old implementation (the one that used an event ring), and <1><1> were * equivalent sequences. However it is logical to give higher precedence * since it is more specific. Indeed includes time and space requirements, * which is not the case for <1><1>. * This is achieved by setting PREFER_MOST_SPECIALIZED_EVENT to 1. */ #ifndef PREFER_MOST_SPECIALIZED_EVENT # define PREFER_MOST_SPECIALIZED_EVENT 1 #endif /* * Traditionally motion events can be combined with buttons in this way: . * However it should be allowed to express this as in addition. This is achieved * by setting SUPPORT_ADDITIONAL_MOTION_SYNTAX to 1. */ #ifndef SUPPORT_ADDITIONAL_MOTION_SYNTAX # define SUPPORT_ADDITIONAL_MOTION_SYNTAX 1 #endif /* * The output for motion events is of the type . This can be changed to become * instead by setting PRINT_SHORT_MOTION_SYNTAX to 1, however this would be a * backwards incompatibility. */ #ifndef PRINT_SHORT_MOTION_SYNTAX # define PRINT_SHORT_MOTION_SYNTAX 0 /* set to 1 if wanted */ #endif #if !SUPPORT_ADDITIONAL_MOTION_SYNTAX # undef PRINT_SHORT_MOTION_SYNTAX # define PRINT_SHORT_MOTION_SYNTAX 0 #endif /* * For debugging only, normally set to zero. */ #ifdef SUPPORT_DEBUGGING # undef SUPPORT_DEBUGGING #endif #define SUPPORT_DEBUGGING 0 /* * Test validity of PSEntry items. */ # define TEST_PSENTRY(psPtr) psPtr->number != 0xdeadbeef # define MARK_PSENTRY(psPtr) psPtr->number = 0xdeadbeef /* * The following union is used to hold the detail information from an XEvent * (including Tk's XVirtualEvent extension). */ typedef KeySym Info; typedef union { Info info; /* This either corresponds to xkey.keycode, or to xbutton.button, * or is meaningless, depending on event type. */ Tk_Uid name; /* Tk_Uid of virtual event. */ } Detail; /* * We need an extended event definition. */ typedef struct { XEvent xev; /* The original event from server. */ Detail detail; /* Additional information (for hashing). */ unsigned countAny; /* Count of multi-events, like multi-clicks, or repeated key pressing, * this count does not depend on detail (keySym or button). */ unsigned countDetailed; /* Count of multi-events, like multi-clicks, or repeated key pressing, * this count considers the detail (keySym or button). */ } Event; /* * We need a structure providing a list of pattern sequences. */ typedef unsigned EventMask; typedef unsigned long ModMask; struct PatSeq; /* forward declaration */ /* We need this array for bookkeeping the last matching modifier mask per pattern. */ TK_ARRAY_DEFINE(PSModMaskArr, ModMask); typedef struct PSEntry { TK_DLIST_LINKS(PSEntry); /* Makes this struct a double linked list; must be first entry. */ Window window; /* Window of last match. */ struct PatSeq* psPtr; /* Pointer to pattern sequence. */ PSModMaskArr *lastModMaskArr; /* Last matching modifier mask per pattern (except last pattern). * Only needed if pattern sequence is not single (more than one * pattern), and if one of these patterns contains a non-zero * modifier mask. */ unsigned count; /* Only promote to next level if this count has reached count of * pattern. */ unsigned expired:1; /* Whether this entry is expired, this means it has to be removed * from promotion list. */ unsigned keepIt:1; /* Whether to keep this entry, even if expired. */ } PSEntry; /* Defining the whole PSList_* stuff (list of PSEntry items). */ TK_DLIST_DEFINE(PSList, PSEntry); /* Don't keep larger arrays of modifier masks inside PSEntry. */ #define MAX_MOD_MASK_ARR_SIZE 8 /* * Maps and lookup tables from an event to a list of patterns that match that event. */ typedef struct { Tcl_HashTable patternTable; /* Keys are PatternTableKey structs, values are (PatSeq *). */ Tcl_HashTable listTable; /* Keys are PatternTableKey structs, values are (PSList *). */ PSList entryPool; /* Contains free (unused) list items. */ unsigned number; /* Needed for enumeration of pattern sequences. */ } LookupTables; /* * The structure below represents a binding table. A binding table represents * a domain in which event bindings may occur. It includes a space of objects * relative to which events occur (usually windows, but not always), a history * of recent events in the domain, and a set of mappings that associate * particular Tcl commands with sequences of events in the domain. Multiple * binding tables may exist at once, either because there are multiple * applications open, or because there are multiple domains within an * application with separate event bindings for each (for example, each canvas * widget has a separate binding table for associating events with the items * in the canvas). */ /* defining the whole Promotion_* stuff (array of PSList entries) */ TK_ARRAY_DEFINE(PromArr, PSList); typedef struct Tk_BindingTable_ { Event eventInfo[TK_LASTEVENT]; /* Containing the most recent event for every event type. */ PromArr *promArr; /* Contains the promoted pattern sequences. */ Event *curEvent; /* Pointing to most recent event. */ ModMask curModMask; /* Containing the current modifier mask. */ LookupTables lookupTables; /* Containing hash tables for fast lookup. */ Tcl_HashTable objectTable; /* Used to map from an object to a list of patterns associated with * that object. Keys are ClientData, values are (PatSeq *). */ Tcl_Interp *interp; /* Interpreter in which commands are executed. */ } BindingTable; /* * The following structure represents virtual event table. A virtual event * table provides a way to map from platform-specific physical events such as * button clicks or key presses to virtual events such as <>, * <>, or <>. * * A virtual event is usually never part of the event stream, but instead is * synthesized inline by matching low-level events. However, a virtual event * may be generated by platform-specific code or by Tcl commands. In that case, * no lookup of the virtual event will need to be done using this table, * because the virtual event is actually in the event stream. */ typedef struct { LookupTables lookupTables; /* Providing fast lookup tables to lists of pattern sequences. */ Tcl_HashTable nameTable; /* Used to map a virtual event name to the array of physical events * that can trigger it. Keys are the Tk_Uid names of the virtual * events, values are PhysOwned structs. */ } VirtualEventTable; /* * The following structure is used as a key in a patternTable for both binding * tables and a virtual event tables. * * In a binding table, the object field corresponds to the binding tag for the * widget whose bindings are being accessed. * * In a virtual event table, the object field is always NULL. Virtual events * are a global definiton and are not tied to a particular binding tag. * * The same key is used for both types of pattern tables so that the helper * functions that traverse and match patterns will work for both binding * tables and virtual event tables. */ typedef struct { ClientData object; /* For binding table, identifies the binding tag of the object * (or class of objects) relative to which the event occurred. * For virtual event table, always NULL. */ unsigned type; /* Type of event (from X). */ Detail detail; /* Additional information, such as keysym, button, Tk_Uid, or zero * if nothing additional. */ } PatternTableKey; /* * The following structure defines a pattern, which is matched against X * events as part of the process of converting X events into Tcl commands. * * For technical reasons we do not use 'union Detail', although this would * be possible, instead 'info' and 'name' are both included. */ typedef struct { unsigned eventType; /* Type of X event, e.g. ButtonPress. */ unsigned count; /* Multi-event count, e.g. double-clicks, triple-clicks, etc. */ ModMask modMask; /* Mask of modifiers that must be present (zero means no modifiers * are required). */ Info info; /* Additional information that must match event. Normally this is zero, * meaning no additional information must match. For KeyPress and * KeyRelease events, it may be specified to select a particular * keystroke (zero means any keystrokes). For button events, specifies * a particular button (zero means any buttons are OK). */ Tk_Uid name; /* Specifies the Tk_Uid of the virtual event name. NULL if not a * virtual event. */ } TkPattern; /* * The following structure keeps track of all the virtual events that are * associated with a particular physical event. It is pointed to by the 'owners' * field in a PatSeq in the patternTable of a virtual event table. */ TK_PTR_ARRAY_DEFINE(VirtOwners, Tcl_HashEntry); /* define array of hash entries */ /* * The following structure defines a pattern sequence, which consists of one * or more patterns. In order to trigger, a pattern sequence must match the * most recent X events (first pattern to most recent event, next pattern to * next event, and so on). It is used as the hash value in a patternTable for * both binding tables and virtual event tables. * * In a binding table, it is the sequence of physical events that make up a * binding for an object. * * In a virtual event table, it is the sequence of physical events that define * a virtual event. * * The same structure is used for both types of pattern tables so that the * helper functions that traverse and match patterns will work for both * binding tables and virtual event tables. */ typedef struct PatSeq { unsigned numPats; /* Number of patterns in sequence (usually 1). */ unsigned count; /* Total number of repetition counts, summed over count in TkPattern. */ unsigned number; /* Needed for the decision whether a binding is less recently defined * than another, it is guaranteed that the most recently bound event * has the highest number. */ unsigned added:1; /* Is this pattern sequence already added to lookup table? */ unsigned modMaskUsed:1; /* Does at least one pattern contain a non-zero modifier mask? */ DEBUG(unsigned owned:1;) /* For debugging purposes. */ char *script; /* Binding script to evaluate when sequence matches (ckalloc()ed) */ Tcl_Obj* object; /* Token for object with which binding is associated. For virtual * event table this is NULL. */ struct PatSeq *nextSeqPtr; /* Next in list of all pattern sequences that have the same initial * pattern. NULL means end of list. */ Tcl_HashEntry *hPtr; /* Pointer to hash table entry for the initial pattern. This is the * head of the list of which nextSeqPtr forms a part. */ union { VirtOwners *owners; /* In a binding table it has no meaning. In a virtual event table, * identifies the array of virtual events that can be triggered * by this event. */ struct PatSeq *nextObj; /* In a binding table, next in list of all pattern sequences for * the same object (NULL for end of list). Needed to implement * Tk_DeleteAllBindings. In a virtual event table it has no meaning. */ } ptr; TkPattern pats[1]; /* Array of "numPats" patterns. Only one element is declared here * but in actuality enough space will be allocated for "numPats" * patterns (but usually 1). */ } PatSeq; /* * Compute memory size of struct PatSeq with given pattern size. * The caller must be sure that pattern size is greater than zero. */ #define PATSEQ_MEMSIZE(numPats) (sizeof(PatSeq) + (numPats - 1)*sizeof(TkPattern)) /* * Constants that define how close together two events must be in milliseconds * or pixels to meet the PAT_NEARBY constraint: */ #define NEARBY_PIXELS 5 #define NEARBY_MS 500 /* * The following structure is used in the nameTable of a virtual event table * to associate a virtual event with all the physical events that can trigger * it. */ TK_PTR_ARRAY_DEFINE(PhysOwned, PatSeq); /* define array of pattern seqs */ /* * One of the following structures exists for each interpreter. This structure * keeps track of the current display and screen in the interpreter, so that a * command can be invoked whenever the display/screen changes (the command does * things like point tk::Priv at a display-specific structure). */ typedef struct { TkDisplay *curDispPtr; /* Display for last binding command invoked in this application. */ int curScreenIndex; /* Index of screen for last binding command */ unsigned bindingDepth; /* Number of active instances of Tk_BindEvent in this application. */ } ScreenInfo; /* * The following structure keeps track of all the information local to the * binding package on a per interpreter basis. */ typedef struct TkBindInfo_ { VirtualEventTable virtualEventTable; /* The virtual events that exist in this interpreter. */ ScreenInfo screenInfo; /* Keeps track of the current display and screen, so it can be * restored after a binding has executed. */ int deleted; /* 1 if the application has been deleted but the structure has been * preserved. */ Time lastEventTime; /* Needed for time measurement. */ Time lastCurrentTime; /* Needed for time measurement. */ } BindInfo; /* * In X11R4 and earlier versions, XStringToKeysym is ridiculously slow. The * data structure and hash table below, along with the code that uses them, * implement a fast mapping from strings to keysyms. In X11R5 and later * releases XStringToKeysym is plenty fast so this stuff isn't needed. The * #define REDO_KEYSYM_LOOKUP is normally undefined, so that XStringToKeysym * gets used. It can be set in the Makefile to enable the use of the hash * table below. */ #ifdef REDO_KEYSYM_LOOKUP typedef struct { const char *name; /* Name of keysym. */ KeySym value; /* Numeric identifier for keysym. */ } KeySymInfo; static const KeySymInfo keyArray[] = { #ifndef lint #include "ks_names.h" #endif {NULL, 0} }; static Tcl_HashTable keySymTable; /* keyArray hashed by keysym value. */ static Tcl_HashTable nameTable; /* keyArray hashed by keysym name. */ #endif /* REDO_KEYSYM_LOOKUP */ /* * A hash table is kept to map from the string names of event modifiers to * information about those modifiers. The structure for storing this * information, and the hash table built at initialization time, are defined * below. */ typedef struct { const char *name; /* Name of modifier. */ ModMask mask; /* Button/modifier mask value, such as Button1Mask. */ unsigned flags; /* Various flags; see below for definitions. */ } ModInfo; /* * Flags for ModInfo structures: * * DOUBLE - Non-zero means duplicate this event, e.g. for double-clicks. * TRIPLE - Non-zero means triplicate this event, e.g. for triple-clicks. * QUADRUPLE - Non-zero means quadruple this event, e.g. for 4-fold-clicks. * MULT_CLICKS - Combination of all of above. */ #define DOUBLE (1<<0) #define TRIPLE (1<<1) #define QUADRUPLE (1<<2) #define MULT_CLICKS (DOUBLE|TRIPLE|QUADRUPLE) static const ModInfo modArray[] = { {"Control", ControlMask, 0}, {"Shift", ShiftMask, 0}, {"Lock", LockMask, 0}, {"Meta", META_MASK, 0}, {"M", META_MASK, 0}, {"Alt", ALT_MASK, 0}, {"Extended", EXTENDED_MASK, 0}, {"B1", Button1Mask, 0}, {"Button1", Button1Mask, 0}, {"B2", Button2Mask, 0}, {"Button2", Button2Mask, 0}, {"B3", Button3Mask, 0}, {"Button3", Button3Mask, 0}, {"B4", Button4Mask, 0}, {"Button4", Button4Mask, 0}, {"B5", Button5Mask, 0}, {"Button5", Button5Mask, 0}, {"B6", Button6Mask, 0}, {"Button6", Button6Mask, 0}, {"B7", Button7Mask, 0}, {"Button7", Button7Mask, 0}, {"B8", Button8Mask, 0}, {"Button8", Button8Mask, 0}, {"B9", Button9Mask, 0}, {"Button9", Button9Mask, 0}, {"Mod1", Mod1Mask, 0}, {"M1", Mod1Mask, 0}, {"Command", Mod1Mask, 0}, {"Mod2", Mod2Mask, 0}, {"M2", Mod2Mask, 0}, {"Option", Mod2Mask, 0}, {"Mod3", Mod3Mask, 0}, {"M3", Mod3Mask, 0}, {"Mod4", Mod4Mask, 0}, {"M4", Mod4Mask, 0}, {"Mod5", Mod5Mask, 0}, {"M5", Mod5Mask, 0}, {"Double", 0, DOUBLE}, {"Triple", 0, TRIPLE}, {"Quadruple", 0, QUADRUPLE}, {"Any", 0, 0}, /* Ignored: historical relic */ {NULL, 0, 0} }; static Tcl_HashTable modTable; /* * This module also keeps a hash table mapping from event names to information * about those events. The structure, an array to use to initialize the hash * table, and the hash table are all defined below. */ typedef struct { const char *name; /* Name of event. */ unsigned type; /* Event type for X, such as ButtonPress. */ unsigned eventMask; /* Mask bits (for XSelectInput) for this event type. */ } EventInfo; /* * Note: some of the masks below are an OR-ed combination of several masks. * This is necessary because X doesn't report up events unless you also ask * for down events. Also, X doesn't report button state in motion events * unless you've asked about button events. */ static const EventInfo eventArray[] = { {"Key", KeyPress, KeyPressMask}, {"KeyPress", KeyPress, KeyPressMask}, {"KeyRelease", KeyRelease, KeyPressMask|KeyReleaseMask}, {"Button", ButtonPress, ButtonPressMask}, {"ButtonPress", ButtonPress, ButtonPressMask}, {"ButtonRelease", ButtonRelease, ButtonPressMask|ButtonReleaseMask}, {"Motion", MotionNotify, ButtonPressMask|PointerMotionMask}, {"Enter", EnterNotify, EnterWindowMask}, {"Leave", LeaveNotify, LeaveWindowMask}, {"FocusIn", FocusIn, FocusChangeMask}, {"FocusOut", FocusOut, FocusChangeMask}, {"Expose", Expose, ExposureMask}, {"Visibility", VisibilityNotify, VisibilityChangeMask}, {"Destroy", DestroyNotify, StructureNotifyMask}, {"Unmap", UnmapNotify, StructureNotifyMask}, {"Map", MapNotify, StructureNotifyMask}, {"Reparent", ReparentNotify, StructureNotifyMask}, {"Configure", ConfigureNotify, StructureNotifyMask}, {"Gravity", GravityNotify, StructureNotifyMask}, {"Circulate", CirculateNotify, StructureNotifyMask}, {"Property", PropertyNotify, PropertyChangeMask}, {"Colormap", ColormapNotify, ColormapChangeMask}, {"Activate", ActivateNotify, ActivateMask}, {"Deactivate", DeactivateNotify, ActivateMask}, {"MouseWheel", MouseWheelEvent, MouseWheelMask}, {"CirculateRequest", CirculateRequest, SubstructureRedirectMask}, {"ConfigureRequest", ConfigureRequest, SubstructureRedirectMask}, {"Create", CreateNotify, SubstructureNotifyMask}, {"MapRequest", MapRequest, SubstructureRedirectMask}, {"ResizeRequest", ResizeRequest, ResizeRedirectMask}, {NULL, 0, 0} }; static Tcl_HashTable eventTable; static int eventArrayIndex[TK_LASTEVENT]; /* * The defines and table below are used to classify events into various * groups. The reason for this is that logically identical fields (e.g. * "state") appear at different places in different types of events. The * classification masks can be used to figure out quickly where to extract * information from events. */ #define KEY (1<<0) #define BUTTON (1<<1) #define MOTION (1<<2) #define CROSSING (1<<3) #define FOCUS (1<<4) #define EXPOSE (1<<5) #define VISIBILITY (1<<6) #define CREATE (1<<7) #define DESTROY (1<<8) #define UNMAP (1<<9) #define MAP (1<<10) #define REPARENT (1<<11) #define CONFIG (1<<12) #define GRAVITY (1<<13) #define CIRC (1<<14) #define PROP (1<<15) #define COLORMAP (1<<16) #define VIRTUAL (1<<17) #define ACTIVATE (1<<18) #define WHEEL (1<<19) #define MAPREQ (1<<20) #define CONFIGREQ (1<<21) #define RESIZEREQ (1<<22) #define CIRCREQ (1<<23) /* * These structs agree with xkey for the fields type, serial, send_event, display, * window, root, subwindow, time, x, y, x_root, and y_root. So when accessing * these fields we may pretend that we are using a struct xkey. */ #define HAS_XKEY_HEAD (KEY|BUTTON|MOTION|VIRTUAL|CROSSING|WHEEL) /* * The xcrossing struct puts the state field in a different location, but the other * events above agree on where state is located. */ #define HAS_XKEY_HEAD_AND_STATE (KEY|BUTTON|MOTION|VIRTUAL|WHEEL) /* * Event types which support -warp. */ #define CAN_WARP (KEY|BUTTON|MOTION|WHEEL) static const int flagArray[TK_LASTEVENT] = { /* Not used */ 0, /* Not used */ 0, /* KeyPress */ KEY, /* KeyRelease */ KEY, /* ButtonPress */ BUTTON, /* ButtonRelease */ BUTTON, /* MotionNotify */ MOTION, /* EnterNotify */ CROSSING, /* LeaveNotify */ CROSSING, /* FocusIn */ FOCUS, /* FocusOut */ FOCUS, /* KeymapNotify */ 0, /* Expose */ EXPOSE, /* GraphicsExpose */ EXPOSE, /* NoExpose */ 0, /* VisibilityNotify */ VISIBILITY, /* CreateNotify */ CREATE, /* DestroyNotify */ DESTROY, /* UnmapNotify */ UNMAP, /* MapNotify */ MAP, /* MapRequest */ MAPREQ, /* ReparentNotify */ REPARENT, /* ConfigureNotify */ CONFIG, /* ConfigureRequest */ CONFIGREQ, /* GravityNotify */ GRAVITY, /* ResizeRequest */ RESIZEREQ, /* CirculateNotify */ CIRC, /* CirculateRequest */ 0, /* PropertyNotify */ PROP, /* SelectionClear */ 0, /* SelectionRequest */ 0, /* SelectionNotify */ 0, /* ColormapNotify */ COLORMAP, /* ClientMessage */ 0, /* MappingNotify */ 0, /* VirtualEvent */ VIRTUAL, /* Activate */ ACTIVATE, /* Deactivate */ ACTIVATE, /* MouseWheel */ WHEEL }; /* * The following table is used to map between the location where an generated * event should be queued and the string used to specify the location. */ static const TkStateMap queuePosition[] = { {-1, "now"}, {TCL_QUEUE_HEAD, "head"}, {TCL_QUEUE_MARK, "mark"}, {TCL_QUEUE_TAIL, "tail"}, {-2, NULL} }; /* * The following tables are used as a two-way map between X's internal numeric * values for fields in an XEvent and the strings used in Tcl. The tables are * used both when constructing an XEvent from user input and when providing * data from an XEvent to the user. */ static const TkStateMap notifyMode[] = { {NotifyNormal, "NotifyNormal"}, {NotifyGrab, "NotifyGrab"}, {NotifyUngrab, "NotifyUngrab"}, {NotifyWhileGrabbed, "NotifyWhileGrabbed"}, {-1, NULL} }; static const TkStateMap notifyDetail[] = { {NotifyAncestor, "NotifyAncestor"}, {NotifyVirtual, "NotifyVirtual"}, {NotifyInferior, "NotifyInferior"}, {NotifyNonlinear, "NotifyNonlinear"}, {NotifyNonlinearVirtual, "NotifyNonlinearVirtual"}, {NotifyPointer, "NotifyPointer"}, {NotifyPointerRoot, "NotifyPointerRoot"}, {NotifyDetailNone, "NotifyDetailNone"}, {-1, NULL} }; static const TkStateMap circPlace[] = { {PlaceOnTop, "PlaceOnTop"}, {PlaceOnBottom, "PlaceOnBottom"}, {-1, NULL} }; static const TkStateMap visNotify[] = { {VisibilityUnobscured, "VisibilityUnobscured"}, {VisibilityPartiallyObscured, "VisibilityPartiallyObscured"}, {VisibilityFullyObscured, "VisibilityFullyObscured"}, {-1, NULL} }; static const TkStateMap configureRequestDetail[] = { {None, "None"}, {Above, "Above"}, {Below, "Below"}, {BottomIf, "BottomIf"}, {TopIf, "TopIf"}, {Opposite, "Opposite"}, {-1, NULL} }; static const TkStateMap propNotify[] = { {PropertyNewValue, "NewValue"}, {PropertyDelete, "Delete"}, {-1, NULL} }; DEBUG(static int countTableItems = 0;) DEBUG(static int countEntryItems = 0;) DEBUG(static int countListItems = 0;) DEBUG(static int countBindItems = 0;) DEBUG(static int countSeqItems = 0;) /* * Prototypes for local functions defined in this file: */ static void ChangeScreen(Tcl_Interp *interp, char *dispName, int screenIndex); static int CreateVirtualEvent(Tcl_Interp *interp, VirtualEventTable *vetPtr, char *virtString, const char *eventString); static int DeleteVirtualEvent(Tcl_Interp *interp, VirtualEventTable *vetPtr, char *virtString, const char *eventString); static void DeleteVirtualEventTable(VirtualEventTable *vetPtr); static void ExpandPercents(TkWindow *winPtr, const char *before, Event *eventPtr, unsigned scriptCount, Tcl_DString *dsPtr); static PatSeq * FindSequence(Tcl_Interp *interp, LookupTables *lookupTables, ClientData object, const char *eventString, int create, int allowVirtual, EventMask *maskPtr); static void GetAllVirtualEvents(Tcl_Interp *interp, VirtualEventTable *vetPtr); static const char * GetField(const char *p, char *copy, unsigned size); static Tcl_Obj * GetPatternObj(const PatSeq *psPtr); static int GetVirtualEvent(Tcl_Interp *interp, VirtualEventTable *vetPtr, Tcl_Obj *virtName); static Tk_Uid GetVirtualEventUid(Tcl_Interp *interp, char *virtString); static int HandleEventGenerate(Tcl_Interp *interp, Tk_Window main, int objc, Tcl_Obj *const objv[]); static void InitVirtualEventTable(VirtualEventTable *vetPtr); static PatSeq * MatchPatterns(TkDisplay *dispPtr, Tk_BindingTable bindPtr, PSList *psList, PSList *psSuccList, unsigned patIndex, const Event *eventPtr, ClientData object, PatSeq **physPtrPtr); static int NameToWindow(Tcl_Interp *interp, Tk_Window main, Tcl_Obj *objPtr, Tk_Window *tkwinPtr); static unsigned ParseEventDescription(Tcl_Interp *interp, const char **eventStringPtr, TkPattern *patPtr, EventMask *eventMaskPtr); static void DoWarp(ClientData clientData); static PSList * GetLookupForEvent(LookupTables* lookupPtr, const Event *eventPtr, Tcl_Obj *object, int onlyConsiderDetailedEvents); static void ClearLookupTable(LookupTables *lookupTables, ClientData object); static void ClearPromotionLists(Tk_BindingTable bindPtr, ClientData object); static PSEntry * MakeListEntry(PSList *pool, PatSeq *psPtr, int needModMasks); static void RemovePatSeqFromLookup(LookupTables *lookupTables, PatSeq *psPtr); static void RemovePatSeqFromPromotionLists(Tk_BindingTable bindPtr, PatSeq *psPtr); static PatSeq * DeletePatSeq(PatSeq *psPtr); static void InsertPatSeq(LookupTables *lookupTables, PatSeq *psPtr); #if SUPPORT_DEBUGGING void TkpDumpPS(const PatSeq *psPtr); void TkpDumpPSList(const PSList *psList); #endif /* * Some useful helper functions. */ #ifdef SUPPORT_DEBUGGING static int BindCount = 0; #endif static unsigned Max(unsigned a, unsigned b) { return a < b ? b : a; } static int Abs(int n) { return n < 0 ? -n : n; } static int IsOdd(int n) { return n & 1; } static int TestNearbyTime(int lhs, int rhs) { return Abs(lhs - rhs) <= NEARBY_MS; } static int TestNearbyCoords(int lhs, int rhs) { return Abs(lhs - rhs) <= NEARBY_PIXELS; } static int IsSubsetOf( ModMask lhsMask, /* this is a subset */ ModMask rhsMask) /* of this bit field? */ { return (lhsMask & rhsMask) == lhsMask; } static const char* SkipSpaces( const char* s) { assert(s); while (isspace(UCHAR(*s))) ++s; return s; } static const char* SkipFieldDelims( const char* s) { assert(s); while (*s == '-' || isspace(UCHAR(*s))) { ++s; } return s; } static unsigned GetButtonNumber( const char *field) { assert(field); return (field[0] >= '1' && field[0] <= '9' && field[1] == '\0') ? field[0] - '0' : 0; } static Time CurrentTimeInMilliSecs(void) { Tcl_Time now; Tcl_GetTime(&now); return ((Time) now.sec)*1000 + ((Time) now.usec)/1000; } static Info GetInfo( const PatSeq *psPtr, unsigned index) { assert(psPtr); assert(index < psPtr->numPats); return psPtr->pats[index].info; } static unsigned GetCount( const PatSeq *psPtr, unsigned index) { assert(psPtr); assert(index < psPtr->numPats); return psPtr->pats[index].count; } static int CountSpecialized( const PatSeq *fstMatchPtr, const PatSeq *sndMatchPtr) { int fstCount = 0; int sndCount = 0; unsigned i; assert(fstMatchPtr); assert(sndMatchPtr); for (i = 0; i < fstMatchPtr->numPats; ++i) { if (GetInfo(fstMatchPtr, i)) { fstCount += GetCount(fstMatchPtr, i); } } for (i = 0; i < sndMatchPtr->numPats; ++i) { if (GetInfo(sndMatchPtr, i)) { sndCount += GetCount(sndMatchPtr, i); } } return sndCount - fstCount; } int IsKeyEventType( unsigned eventType) { return eventType == KeyPress || eventType == KeyRelease; } int IsButtonEventType( unsigned eventType) { return eventType == ButtonPress || eventType == ButtonRelease; } static int MatchEventNearby( const XEvent *lhs, /* previous button event */ const XEvent *rhs) /* current button event */ { assert(lhs); assert(rhs); assert(IsButtonEventType(lhs->type)); assert(lhs->type == rhs->type); /* assert: lhs->xbutton.time <= rhs->xbutton.time */ return TestNearbyTime(rhs->xbutton.time, lhs->xbutton.time) && TestNearbyCoords(rhs->xbutton.x_root, lhs->xbutton.x_root) && TestNearbyCoords(rhs->xbutton.y_root, lhs->xbutton.y_root); } static int MatchEventRepeat( const XKeyEvent *lhs, /* previous key event */ const XKeyEvent *rhs) /* current key event */ { assert(lhs); assert(rhs); assert(IsKeyEventType(lhs->type)); assert(lhs->type == rhs->type); /* assert: lhs->time <= rhs->time */ return lhs->keycode == rhs->keycode && TestNearbyTime(lhs->time, rhs->time); } static void FreePatSeq( PatSeq *psPtr) { assert(psPtr); assert(!psPtr->owned); DEBUG(MARK_PSENTRY(psPtr);) ckfree(psPtr->script); if (!psPtr->object) { VirtOwners_Free(&psPtr->ptr.owners); } ckfree(psPtr); DEBUG(countSeqItems -= 1;) } static void RemoveListEntry( PSList *pool, PSEntry *psEntry) { assert(pool); assert(psEntry); if (PSModMaskArr_Capacity(psEntry->lastModMaskArr) > MAX_MOD_MASK_ARR_SIZE) { PSModMaskArr_Free(&psEntry->lastModMaskArr); } PSList_Remove(psEntry); PSList_Append(pool, psEntry); } static void ClearList( PSList *psList, PSList *pool, ClientData object) { assert(psList); assert(pool); if (object) { PSEntry *psEntry; PSEntry *psNext; for (psEntry = PSList_First(psList); psEntry; psEntry = psNext) { psNext = PSList_Next(psEntry); if (psEntry->psPtr->object == object) { RemoveListEntry(pool, psEntry); } } } else { PSList_Move(pool, psList); } } static PSEntry * FreePatSeqEntry( PSList *pool, PSEntry *entry) { PSEntry *next = PSList_Next(entry); (void)pool; PSModMaskArr_Free(&entry->lastModMaskArr); ckfree(entry); return next; } static unsigned ResolveModifiers( TkDisplay *dispPtr, unsigned modMask) { assert(dispPtr); if (dispPtr->metaModMask) { if (modMask & META_MASK) { modMask &= ~(ModMask)META_MASK; modMask |= dispPtr->metaModMask; } } if (dispPtr->altModMask) { if (modMask & ALT_MASK) { modMask &= ~(ModMask)ALT_MASK; modMask |= dispPtr->altModMask; } } return modMask; } static int ButtonNumberFromState( ModMask state) { if (!(state & ALL_BUTTONS)) { return 0; } if (state & Button1Mask) { return 1; } if (state & Button2Mask) { return 2; } if (state & Button3Mask) { return 3; } if (state & Button4Mask) { return 4; } if (state & Button5Mask) { return 5; } if (state & Button6Mask) { return 6; } if (state & Button7Mask) { return 7; } if (state & Button8Mask) { return 8; } return 9; } static void SetupPatternKey( PatternTableKey *key, const PatSeq *psPtr) { const TkPattern *patPtr; assert(key); assert(psPtr); /* otherwise on some systems the key contains uninitialized bytes */ memset(key, 0, sizeof(PatternTableKey)); patPtr = psPtr->pats; assert(!patPtr->info || !patPtr->name); key->object = psPtr->object; key->type = patPtr->eventType; if (patPtr->info) { key->detail.info = patPtr->info; } else { key->detail.name = patPtr->name; } } /* *-------------------------------------------------------------- * * MakeListEntry -- * * Makes new entry item for lookup table. We are using a * pool of items, this avoids superfluous memory allocation/ * deallocation. * * Results: * New entry item. * * Side effects: * Memory allocated. * *-------------------------------------------------------------- */ static PSEntry * MakeListEntry( PSList *pool, PatSeq *psPtr, int needModMasks) { PSEntry *newEntry = NULL; assert(pool); assert(psPtr); assert(psPtr->numPats > 0); assert(TEST_PSENTRY(psPtr)); if (PSList_IsEmpty(pool)) { newEntry = (PSEntry *)ckalloc(sizeof(PSEntry)); newEntry->lastModMaskArr = NULL; DEBUG(countEntryItems += 1;) } else { newEntry = PSList_First(pool); PSList_RemoveHead(pool); } if (!needModMasks) { PSModMaskArr_SetSize(newEntry->lastModMaskArr, 0); } else { if (PSModMaskArr_Capacity(newEntry->lastModMaskArr) < psPtr->numPats - 1) { PSModMaskArr_Resize(&newEntry->lastModMaskArr, psPtr->numPats - 1); } PSModMaskArr_SetSize(newEntry->lastModMaskArr, psPtr->numPats - 1); } newEntry->psPtr = psPtr; newEntry->window = None; newEntry->expired = 0; newEntry->keepIt = 1; newEntry->count = 1; DEBUG(psPtr->owned = 0;) return newEntry; } /* *-------------------------------------------------------------- * * GetLookupForEvent -- * * Get specific pattern sequence table for given event. * * Results: * Specific pattern sequence table for given event. * * Side effects: * None. * *-------------------------------------------------------------- */ static PSList * GetLookupForEvent( LookupTables* lookupTables, const Event *eventPtr, Tcl_Obj *object, int onlyConsiderDetailedEvents) { PatternTableKey key; Tcl_HashEntry *hPtr; assert(lookupTables); assert(eventPtr); /* otherwise on some systems the key contains uninitialized bytes */ memset(&key, 0, sizeof(PatternTableKey)); if (onlyConsiderDetailedEvents) { switch (eventPtr->xev.type) { case ButtonPress: /* fallthru */ case ButtonRelease: key.detail.info = eventPtr->xev.xbutton.button; break; case MotionNotify: key.detail.info = ButtonNumberFromState(eventPtr->xev.xmotion.state); break; case KeyPress: /* fallthru */ case KeyRelease: key.detail.info = eventPtr->detail.info; break; case VirtualEvent: key.detail.name = eventPtr->detail.name; break; } if (!key.detail.name) { assert(!key.detail.info); return NULL; } } key.object = object; key.type = eventPtr->xev.type; hPtr = Tcl_FindHashEntry(&lookupTables->listTable, (char *) &key); return hPtr ? (PSList *)Tcl_GetHashValue(hPtr) : NULL; } /* *-------------------------------------------------------------- * * ClearLookupTable -- * * Clear lookup table in given binding table, but only those * bindings associated to given object. If object is NULL * then remove all entries. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ static void ClearLookupTable( LookupTables *lookupTables, ClientData object) { Tcl_HashSearch search; Tcl_HashEntry *hPtr; Tcl_HashEntry *nextPtr; PSList *pool = &lookupTables->entryPool; assert(lookupTables); for (hPtr = Tcl_FirstHashEntry(&lookupTables->listTable, &search); hPtr; hPtr = nextPtr) { PSList *psList; nextPtr = Tcl_NextHashEntry(&search); if (object) { const PatternTableKey *key = (const PatternTableKey *)Tcl_GetHashKey(&lookupTables->listTable, hPtr); if (key->object != object) { continue; } } psList = (PSList *)Tcl_GetHashValue(hPtr); PSList_Move(pool, psList); ckfree(psList); DEBUG(countListItems -= 1;) Tcl_DeleteHashEntry(hPtr); } } /* *-------------------------------------------------------------- * * ClearPromotionLists -- * * Clear all the lists holding the promoted pattern * sequences, which belongs to given object. If object * is NULL then remove all patterns. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ static void ClearPromotionLists( Tk_BindingTable bindPtr, ClientData object) { unsigned newArraySize = 0; unsigned i; assert(bindPtr); for (i = 0; i < PromArr_Size(bindPtr->promArr); ++i) { PSList *psList = PromArr_Get(bindPtr->promArr, i); ClearList(psList, &bindPtr->lookupTables.entryPool, object); if (!PSList_IsEmpty(psList)) { newArraySize = i + 1; } } PromArr_SetSize(bindPtr->promArr, newArraySize); } /* *--------------------------------------------------------------------------- * * TkBindInit -- * * This function is called when an application is created. It initializes * all the structures used by bindings and virtual events. It must be * called before any other functions in this file are called. * * Results: * None. * * Side effects: * Memory allocated. * *--------------------------------------------------------------------------- */ /* * Windoze compiler does not allow the definition of these static variables inside a function, * otherwise this should belong to function TkBindInit(). */ TCL_DECLARE_MUTEX(bindMutex); static int initialized = 0; void TkBindInit( TkMainInfo *mainPtr) /* The newly created application. */ { BindInfo *bindInfoPtr; assert(mainPtr); /* otherwise virtual events can't be supported */ assert(sizeof(XEvent) >= sizeof(XVirtualEvent)); /* type of TkPattern.info is well defined? */ assert(sizeof(Info) >= sizeof(KeySym)); assert(sizeof(Info) >= sizeof(unsigned)); /* ensure that our matching algorithm is working (when testing detail) */ assert(sizeof(Detail) == sizeof(Tk_Uid)); /* test expected indices of Button1..Button5, otherwise our button handling is not working */ assert(Button1 == 1 && Button2 == 2 && Button3 == 3 && Button4 == 4 && Button5 == 5); assert(Button2Mask == (Button1Mask << 1)); assert(Button3Mask == (Button1Mask << 2)); assert(Button4Mask == (Button1Mask << 3)); assert(Button5Mask == (Button1Mask << 4)); /* test expected values of button motion masks, otherwise our button handling is not working */ assert(Button1MotionMask == Button1Mask); assert(Button2MotionMask == Button2Mask); assert(Button3MotionMask == Button3Mask); assert(Button4MotionMask == Button4Mask); assert(Button5MotionMask == Button5Mask); /* because we expect zero if keySym is empty */ assert(NoSymbol == 0L); /* this must be a union, not a struct, otherwise comparison with NULL will not work */ assert(offsetof(Detail, name) == offsetof(Detail, info)); /* we use some constraints about X*Event */ assert(offsetof(XButtonEvent, time) == offsetof(XMotionEvent, time)); assert(offsetof(XButtonEvent, x_root) == offsetof(XMotionEvent, x_root)); assert(offsetof(XButtonEvent, y_root) == offsetof(XMotionEvent, y_root)); assert(offsetof(XCreateWindowEvent, border_width) == offsetof(XConfigureEvent, border_width)); assert(offsetof(XCreateWindowEvent, width) == offsetof(XConfigureEvent, width)); assert(offsetof(XCreateWindowEvent, window) == offsetof(XCirculateRequestEvent, window)); assert(offsetof(XCreateWindowEvent, window) == offsetof(XConfigureEvent, window)); assert(offsetof(XCreateWindowEvent, window) == offsetof(XGravityEvent, window)); assert(offsetof(XCreateWindowEvent, window) == offsetof(XMapEvent, window)); assert(offsetof(XCreateWindowEvent, window) == offsetof(XReparentEvent, window)); assert(offsetof(XCreateWindowEvent, window) == offsetof(XUnmapEvent, window)); assert(offsetof(XCreateWindowEvent, x) == offsetof(XConfigureEvent, x)); assert(offsetof(XCreateWindowEvent, x) == offsetof(XGravityEvent, x)); assert(offsetof(XCreateWindowEvent, y) == offsetof(XConfigureEvent, y)); assert(offsetof(XCreateWindowEvent, y) == offsetof(XGravityEvent, y)); assert(offsetof(XCrossingEvent, time) == offsetof(XEnterWindowEvent, time)); assert(offsetof(XCrossingEvent, time) == offsetof(XLeaveWindowEvent, time)); assert(offsetof(XCrossingEvent, time) == offsetof(XKeyEvent, time)); assert(offsetof(XKeyEvent, root) == offsetof(XButtonEvent, root)); assert(offsetof(XKeyEvent, root) == offsetof(XCrossingEvent, root)); assert(offsetof(XKeyEvent, root) == offsetof(XMotionEvent, root)); assert(offsetof(XKeyEvent, state) == offsetof(XButtonEvent, state)); assert(offsetof(XKeyEvent, state) == offsetof(XMotionEvent, state)); assert(offsetof(XKeyEvent, subwindow) == offsetof(XButtonEvent, subwindow)); assert(offsetof(XKeyEvent, subwindow) == offsetof(XCrossingEvent, subwindow)); assert(offsetof(XKeyEvent, subwindow) == offsetof(XMotionEvent, subwindow)); assert(offsetof(XKeyEvent, time) == offsetof(XButtonEvent, time)); assert(offsetof(XKeyEvent, time) == offsetof(XMotionEvent, time)); assert(offsetof(XKeyEvent, x) == offsetof(XButtonEvent, x)); assert(offsetof(XKeyEvent, x) == offsetof(XCrossingEvent, x)); assert(offsetof(XKeyEvent, x) == offsetof(XMotionEvent, x)); assert(offsetof(XKeyEvent, x_root) == offsetof(XButtonEvent, x_root)); assert(offsetof(XKeyEvent, x_root) == offsetof(XCrossingEvent, x_root)); assert(offsetof(XKeyEvent, x_root) == offsetof(XMotionEvent, x_root)); assert(offsetof(XKeyEvent, y) == offsetof(XButtonEvent, y)); assert(offsetof(XKeyEvent, y) == offsetof(XCrossingEvent, y)); assert(offsetof(XKeyEvent, y) == offsetof(XMotionEvent, y)); assert(offsetof(XKeyEvent, y_root) == offsetof(XButtonEvent, y_root)); assert(offsetof(XKeyEvent, y_root) == offsetof(XCrossingEvent, y_root)); assert(offsetof(XKeyEvent, y_root) == offsetof(XMotionEvent, y_root)); /* * Initialize the static data structures used by the binding package. They * are only initialized once, no matter how many interps are created. */ if (!initialized) { Tcl_MutexLock(&bindMutex); if (!initialized) { Tcl_HashEntry *hPtr; const ModInfo *modPtr; const EventInfo *eiPtr; int newEntry; unsigned i; #ifdef REDO_KEYSYM_LOOKUP const KeySymInfo *kPtr; Tcl_InitHashTable(&keySymTable, TCL_STRING_KEYS); Tcl_InitHashTable(&nameTable, TCL_ONE_WORD_KEYS); for (kPtr = keyArray; kPtr->name; ++kPtr) { hPtr = Tcl_CreateHashEntry(&keySymTable, kPtr->name, &newEntry); Tcl_SetHashValue(hPtr, kPtr->value); hPtr = Tcl_CreateHashEntry(&nameTable, (char *) kPtr->value, &newEntry); if (newEntry) { Tcl_SetHashValue(hPtr, kPtr->name); } } #endif /* REDO_KEYSYM_LOOKUP */ for (i = 0; i < SIZE_OF_ARRAY(eventArrayIndex); ++i) { eventArrayIndex[i] = -1; } for (i = 0; i < SIZE_OF_ARRAY(eventArray); ++i) { unsigned type = eventArray[i].type; assert(type < TK_LASTEVENT); assert(type > 0 || i == SIZE_OF_ARRAY(eventArray) - 1); if (type > 0 && eventArrayIndex[type] == -1) { eventArrayIndex[type] = i; } } Tcl_InitHashTable(&modTable, TCL_STRING_KEYS); for (modPtr = modArray; modPtr->name; ++modPtr) { hPtr = Tcl_CreateHashEntry(&modTable, modPtr->name, &newEntry); Tcl_SetHashValue(hPtr, modPtr); } Tcl_InitHashTable(&eventTable, TCL_STRING_KEYS); for (eiPtr = eventArray; eiPtr->name; ++eiPtr) { hPtr = Tcl_CreateHashEntry(&eventTable, eiPtr->name, &newEntry); Tcl_SetHashValue(hPtr, eiPtr); } initialized = 1; } Tcl_MutexUnlock(&bindMutex); } mainPtr->bindingTable = Tk_CreateBindingTable(mainPtr->interp); bindInfoPtr = (BindInfo *)ckalloc(sizeof(BindInfo)); InitVirtualEventTable(&bindInfoPtr->virtualEventTable); bindInfoPtr->screenInfo.curDispPtr = NULL; bindInfoPtr->screenInfo.curScreenIndex = -1; bindInfoPtr->screenInfo.bindingDepth = 0; bindInfoPtr->deleted = 0; bindInfoPtr->lastCurrentTime = CurrentTimeInMilliSecs(); bindInfoPtr->lastEventTime = 0; mainPtr->bindInfo = bindInfoPtr; DEBUG(countBindItems += 1;) TkpInitializeMenuBindings(mainPtr->interp, mainPtr->bindingTable); } /* *--------------------------------------------------------------------------- * * TkBindFree -- * * This function is called when an application is deleted. It deletes all * the structures used by bindings and virtual events. * * Results: * None. * * Side effects: * Memory freed. * *--------------------------------------------------------------------------- */ void TkBindFree( TkMainInfo *mainPtr) /* The newly created application. */ { BindInfo *bindInfoPtr; assert(mainPtr); Tk_DeleteBindingTable(mainPtr->bindingTable); mainPtr->bindingTable = NULL; bindInfoPtr = mainPtr->bindInfo; DeleteVirtualEventTable(&bindInfoPtr->virtualEventTable); bindInfoPtr->deleted = 1; Tcl_EventuallyFree(bindInfoPtr, TCL_DYNAMIC); mainPtr->bindInfo = NULL; DEBUG(countBindItems -= 1;) assert(countBindItems > 0 || countTableItems == 0); assert(countBindItems > 0 || countEntryItems == 0); assert(countBindItems > 0 || countListItems == 0); assert(countBindItems > 0 || countSeqItems == 0); } /* *-------------------------------------------------------------- * * Tk_CreateBindingTable -- * * Set up a new domain in which event bindings may be created. * * Results: * The return value is a token for the new table, which must be passed to * functions like Tk_CreateBinding. * * Side effects: * Memory is allocated for the new table. * *-------------------------------------------------------------- */ Tk_BindingTable Tk_CreateBindingTable( Tcl_Interp *interp) /* Interpreter to associate with the binding table: commands are * executed in this interpreter. */ { BindingTable *bindPtr = (BindingTable *)ckalloc(sizeof(BindingTable)); unsigned i; assert(interp); DEBUG(countTableItems += 1;) /* * Create and initialize a new binding table. */ memset(bindPtr, 0, sizeof(BindingTable)); for (i = 0; i < SIZE_OF_ARRAY(bindPtr->eventInfo); ++i) { bindPtr->eventInfo[i].xev.type = -1; } bindPtr->curEvent = bindPtr->eventInfo; /* do not assign NULL */ bindPtr->lookupTables.number = 0; PromArr_ResizeAndClear(&bindPtr->promArr, 2); Tcl_InitHashTable(&bindPtr->lookupTables.listTable, sizeof(PatternTableKey)/sizeof(int)); Tcl_InitHashTable(&bindPtr->lookupTables.patternTable, sizeof(PatternTableKey)/sizeof(int)); Tcl_InitHashTable(&bindPtr->objectTable, TCL_ONE_WORD_KEYS); bindPtr->interp = interp; return bindPtr; } /* *-------------------------------------------------------------- * * Tk_DeleteBindingTable -- * * Destroy a binding table and free up all its memory. The caller should * not use bindingTable again after this function returns. * * Results: * None. * * Side effects: * Memory is freed. * *-------------------------------------------------------------- */ void Tk_DeleteBindingTable( Tk_BindingTable bindPtr) /* Token for the binding table to destroy. */ { Tcl_HashEntry *hPtr; Tcl_HashSearch search; assert(bindPtr); /* * Find and delete all of the patterns associated with the binding table. */ hPtr = Tcl_FirstHashEntry(&bindPtr->lookupTables.patternTable, &search); for ( ; hPtr; hPtr = Tcl_NextHashEntry(&search)) { PatSeq *nextPtr; PatSeq *psPtr; for (psPtr = (PatSeq *)Tcl_GetHashValue(hPtr); psPtr; psPtr = nextPtr) { assert(TEST_PSENTRY(psPtr)); nextPtr = psPtr->nextSeqPtr; FreePatSeq(psPtr); } } /* * Don't forget to release lookup elements. */ ClearLookupTable(&bindPtr->lookupTables, NULL); ClearPromotionLists(bindPtr, NULL); PromArr_Free(&bindPtr->promArr); DEBUG(countEntryItems -= PSList_Size(&bindPtr->lookupTables.entryPool);) PSList_Traverse(&bindPtr->lookupTables.entryPool, FreePatSeqEntry); /* * Clean up the rest of the information associated with the binding table. */ Tcl_DeleteHashTable(&bindPtr->lookupTables.patternTable); Tcl_DeleteHashTable(&bindPtr->lookupTables.listTable); Tcl_DeleteHashTable(&bindPtr->objectTable); ckfree(bindPtr); DEBUG(countTableItems -= 1;) } /* *-------------------------------------------------------------- * * InsertPatSeq -- * * Insert given pattern sequence into lookup table for fast * access. * * Results: * None. * * Side effects: * Memory allocated. * *-------------------------------------------------------------- */ static void InsertPatSeq( LookupTables *lookupTables, PatSeq *psPtr) { assert(lookupTables); assert(psPtr); assert(TEST_PSENTRY(psPtr)); assert(psPtr->numPats >= 1u); if (!(psPtr->added)) { PatternTableKey key; Tcl_HashEntry *hPtr; int isNew; PSList *psList; PSEntry *psEntry; SetupPatternKey(&key, psPtr); hPtr = Tcl_CreateHashEntry(&lookupTables->listTable, (char *) &key, &isNew); if (isNew) { psList = (PSList *)ckalloc(sizeof(PSList)); PSList_Init(psList); Tcl_SetHashValue(hPtr, psList); DEBUG(countListItems += 1;) } else { psList = (PSList *)Tcl_GetHashValue(hPtr); } psEntry = MakeListEntry(&lookupTables->entryPool, psPtr, 0); PSList_Append(psList, psEntry); psPtr->added = 1; } } /* *-------------------------------------------------------------- * * Tk_CreateBinding -- * * Add a binding to a binding table, so that future calls to Tk_BindEvent * may execute the command in the binding. * * Results: * The return value is 0 if an error occurred while setting up the * binding. In this case, an error message will be left in the interp's * result. If all went well then the return value is a mask of the event * types that must be made available to Tk_BindEvent in order to properly * detect when this binding triggers. This value can be used to determine * what events to select for in a window, for example. * * Side effects: * An existing binding on the same event sequence may be replaced. The * new binding may cause future calls to Tk_BindEvent to behave * differently than they did previously. * *-------------------------------------------------------------- */ unsigned long Tk_CreateBinding( Tcl_Interp *interp, /* Used for error reporting. */ Tk_BindingTable bindPtr, /* Table in which to create binding. */ ClientData object, /* Token for object with which binding is associated. */ const char *eventString, /* String describing event sequence that triggers binding. */ const char *script, /* Contains Tcl script to execute when binding triggers. */ int append) /* 0 means replace any existing binding for eventString; * 1 means append to that binding. If the existing binding is * for a callback function and not a Tcl command string, the * existing binding will always be replaced. */ { PatSeq *psPtr; EventMask eventMask; char *oldStr; char *newStr; assert(bindPtr); assert(object); assert(eventString); assert(script); psPtr = FindSequence(interp, &bindPtr->lookupTables, object, eventString, !!*script, 1, &eventMask); if (!*script) { assert(!psPtr || psPtr->added); /* Silently ignore empty scripts -- see SF#3006842 */ return eventMask; } if (!psPtr) { return 0; } assert(TEST_PSENTRY(psPtr)); if (psPtr->numPats > PromArr_Capacity(bindPtr->promArr)) { /* * We have to increase the size of array containing the lists of promoted sequences. * Normally the maximal size is 1, only in very seldom cases a bigger size is needed. * Note that for technical reasons the capacity should be one higher than the expected * maximal size. */ PromArr_ResizeAndClear(&bindPtr->promArr, psPtr->numPats); } if (!psPtr->script) { Tcl_HashEntry *hPtr; int isNew; /* * This pattern sequence was just created. Link the pattern into the * list associated with the object, so that if the object goes away, * these bindings will all automatically be deleted. */ hPtr = Tcl_CreateHashEntry(&bindPtr->objectTable, (char *) object, &isNew); psPtr->ptr.nextObj = isNew ? NULL : (PatSeq *)Tcl_GetHashValue(hPtr); Tcl_SetHashValue(hPtr, psPtr); InsertPatSeq(&bindPtr->lookupTables, psPtr); } oldStr = psPtr->script; if (append && oldStr) { size_t length1 = strlen(oldStr); size_t length2 = strlen(script); newStr = (char *)ckalloc(length1 + length2 + 2); memcpy(newStr, oldStr, length1); newStr[length1] = '\n'; memcpy(newStr + length1 + 1, script, length2 + 1); } else { size_t length = strlen(script); newStr = (char *)ckalloc(length + 1); memcpy(newStr, script, length + 1); } ckfree(oldStr); psPtr->script = newStr; return eventMask; } /* *-------------------------------------------------------------- * * Tk_DeleteBinding -- * * Remove an event binding from a binding table. * * Results: * The result is a standard Tcl return value. If an error occurs then the * interp's result will contain an error message. * * Side effects: * The binding given by object and eventString is removed from * bindingTable. * *-------------------------------------------------------------- */ int Tk_DeleteBinding( Tcl_Interp *interp, /* Used for error reporting. */ Tk_BindingTable bindPtr, /* Table in which to delete binding. */ ClientData object, /* Token for object with which binding is associated. */ const char *eventString) /* String describing event sequence that triggers binding. */ { PatSeq *psPtr; assert(bindPtr); assert(object); assert(eventString); psPtr = FindSequence(interp, &bindPtr->lookupTables, object, eventString, 0, 1, NULL); if (!psPtr) { Tcl_ResetResult(interp); } else { Tcl_HashEntry *hPtr; PatSeq *prevPtr; assert(TEST_PSENTRY(psPtr)); /* * Unlink the binding from the list for its object. */ if (!(hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object))) { Tcl_Panic("Tk_DeleteBinding couldn't find object table entry"); } prevPtr = (PatSeq *)Tcl_GetHashValue(hPtr); if (prevPtr == psPtr) { Tcl_SetHashValue(hPtr, psPtr->ptr.nextObj); } else { for ( ; ; prevPtr = prevPtr->ptr.nextObj) { if (!prevPtr) { Tcl_Panic("Tk_DeleteBinding couldn't find on object list"); } if (prevPtr->ptr.nextObj == psPtr) { prevPtr->ptr.nextObj = psPtr->ptr.nextObj; break; } } } RemovePatSeqFromLookup(&bindPtr->lookupTables, psPtr); RemovePatSeqFromPromotionLists(bindPtr, psPtr); DeletePatSeq(psPtr); } return TCL_OK; } /* *-------------------------------------------------------------- * * Tk_GetBinding -- * * Return the script associated with a given event string. * * Results: * The return value is a pointer to the script associated with * eventString for object in the domain given by bindingTable. If there * is no binding for eventString, or if eventString is improperly formed, * then NULL is returned and an error message is left in the interp's * result. The return value is semi-static: it will persist until the * binding is changed or deleted. * * Side effects: * None. * *-------------------------------------------------------------- */ const char * Tk_GetBinding( Tcl_Interp *interp, /* Interpreter for error reporting. */ Tk_BindingTable bindPtr, /* Table in which to look for binding. */ ClientData object, /* Token for object with which binding is associated. */ const char *eventString) /* String describing event sequence that triggers binding. */ { const PatSeq *psPtr; assert(bindPtr); assert(object); assert(eventString); psPtr = FindSequence(interp, &bindPtr->lookupTables, object, eventString, 0, 1, NULL); assert(!psPtr || TEST_PSENTRY(psPtr)); return psPtr ? psPtr->script : NULL; } /* *-------------------------------------------------------------- * * Tk_GetAllBindings -- * * Return a list of event strings for all the bindings associated with a * given object. * * Results: * There is no return value. The interp's result is modified to hold a * Tcl list with one entry for each binding associated with object in * bindingTable. Each entry in the list contains the event string * associated with one binding. * * Side effects: * None. * *-------------------------------------------------------------- */ void Tk_GetAllBindings( Tcl_Interp *interp, /* Interpreter returning result or error. */ Tk_BindingTable bindPtr, /* Table in which to look for bindings. */ ClientData object) /* Token for object. */ { Tcl_HashEntry *hPtr; assert(bindPtr); assert(object); if ((hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object))) { const PatSeq *psPtr; Tcl_Obj *resultObj = Tcl_NewObj(); /* * For each binding, output information about each of the patterns in its sequence. */ for (psPtr = (const PatSeq *)Tcl_GetHashValue(hPtr); psPtr; psPtr = psPtr->ptr.nextObj) { assert(TEST_PSENTRY(psPtr)); Tcl_ListObjAppendElement(NULL, resultObj, GetPatternObj(psPtr)); } Tcl_SetObjResult(interp, resultObj); } } /* *-------------------------------------------------------------- * * RemovePatSeqFromLookup -- * * Remove given pattern sequence from lookup tables. This * can be required before deleting the pattern sequence. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ static void RemovePatSeqFromLookup( LookupTables *lookupTables, /* Remove from this lookup tables. */ PatSeq *psPtr) /* Remove this pattern sequence. */ { PatternTableKey key; Tcl_HashEntry *hPtr; assert(lookupTables); assert(psPtr); SetupPatternKey(&key, psPtr); if ((hPtr = Tcl_FindHashEntry(&lookupTables->listTable, (char *) &key))) { PSList *psList = (PSList *)Tcl_GetHashValue(hPtr); PSEntry *psEntry; TK_DLIST_FOREACH(psEntry, psList) { if (psEntry->psPtr == psPtr) { psPtr->added = 0; RemoveListEntry(&lookupTables->entryPool, psEntry); return; } } } assert(!"couldn't find pattern sequence in lookup"); } /* *-------------------------------------------------------------- * * RemovePatSeqFromPromotionLists -- * * Remove given pattern sequence from promotion lists. This * can be required before deleting the pattern sequence. * * Results: * None. * * Side effects: * None. * *-------------------------------------------------------------- */ static void RemovePatSeqFromPromotionLists( Tk_BindingTable bindPtr, /* Table in which to look for bindings. */ PatSeq *psPtr) /* Remove this pattern sequence. */ { unsigned i; assert(bindPtr); assert(psPtr); for (i = 0; i < PromArr_Size(bindPtr->promArr); ++i) { PSList *psList = PromArr_Get(bindPtr->promArr, i); PSEntry *psEntry; TK_DLIST_FOREACH(psEntry, psList) { if (psEntry->psPtr == psPtr) { RemoveListEntry(&bindPtr->lookupTables.entryPool, psEntry); break; } } } } /* *-------------------------------------------------------------- * * DeletePatSeq -- * * Delete given pattern sequence. Possibly it is required * to invoke RemovePatSeqFromLookup(), and RemovePatSeqFromPromotionLists() * before. * * Results: * Pointer to succeeding pattern sequence. * * Side effects: * Deallocation of memory. * *-------------------------------------------------------------- */ static PatSeq * DeletePatSeq( PatSeq *psPtr) /* Delete this pattern sequence. */ { PatSeq *prevPtr; PatSeq *nextPtr; assert(psPtr); assert(!psPtr->added); assert(!psPtr->owned); prevPtr = (PatSeq *)Tcl_GetHashValue(psPtr->hPtr); nextPtr = psPtr->ptr.nextObj; /* * Be sure to remove each binding from its hash chain in the pattern * table. If this is the last pattern in the chain, then delete the * hash entry too. */ if (prevPtr == psPtr) { if (!psPtr->nextSeqPtr) { Tcl_DeleteHashEntry(psPtr->hPtr); } else { Tcl_SetHashValue(psPtr->hPtr, psPtr->nextSeqPtr); } } else { for ( ; ; prevPtr = prevPtr->nextSeqPtr) { if (!prevPtr) { Tcl_Panic("DeletePatSeq couldn't find on hash chain"); } if (prevPtr->nextSeqPtr == psPtr) { prevPtr->nextSeqPtr = psPtr->nextSeqPtr; break; } } } FreePatSeq(psPtr); return nextPtr; } /* *-------------------------------------------------------------- * * Tk_DeleteAllBindings -- * * Remove all bindings associated with a given object in a given binding * table. * * Results: * All bindings associated with object are removed from bindingTable. * * Side effects: * None. * *-------------------------------------------------------------- */ void Tk_DeleteAllBindings( Tk_BindingTable bindPtr, /* Table in which to delete bindings. */ ClientData object) /* Token for object. */ { PatSeq *psPtr; PatSeq *nextPtr; Tcl_HashEntry *hPtr; assert(bindPtr); assert(object); if (!(hPtr = Tcl_FindHashEntry(&bindPtr->objectTable, (char *) object))) { return; } /* * Don't forget to clear lookup tables. */ ClearLookupTable(&bindPtr->lookupTables, object); ClearPromotionLists(bindPtr, object); for (psPtr = (PatSeq *)Tcl_GetHashValue(hPtr); psPtr; psPtr = nextPtr) { assert(TEST_PSENTRY(psPtr)); DEBUG(psPtr->added = 0;) nextPtr = DeletePatSeq(psPtr); } Tcl_DeleteHashEntry(hPtr); } /* *--------------------------------------------------------------------------- * * Tk_BindEvent -- * * This function is invoked to process an X event. The event is added to * those recorded for the binding table. Then each of the objects at * *objectPtr is checked in order to see if it has a binding that matches * the recent events. If so, the most specific binding is invoked for * each object. * * Results: * None. * * Side effects: * Depends on the script associated with the matching binding. * * All Tcl binding scripts for each object are accumulated before the * first binding is evaluated. If the action of a Tcl binding is to * change or delete a binding, or delete the window associated with the * binding, all the original Tcl binding scripts will still fire. * *--------------------------------------------------------------------------- */ /* helper function */ static void ResetCounters( Event *eventInfo, unsigned eventType, Window window) { Event *curEvent; assert(eventInfo); curEvent = eventInfo + eventType; if (curEvent->xev.xany.window == window) { curEvent->xev.xany.window = None; eventInfo[eventType].countAny = 0; eventInfo[eventType].countDetailed = 0; } } /* helper function */ static int IsBetterMatch( const PatSeq *fstMatchPtr, const PatSeq *sndMatchPtr) /* this is a better match? */ { int diff; if (!sndMatchPtr) { return 0; } if (!fstMatchPtr) { return 1; } diff = CountSpecialized(fstMatchPtr, sndMatchPtr); if (diff > 0) { return 1; } if (diff < 0) { return 0; } #if PREFER_MOST_SPECIALIZED_EVENT { /* local scope */ #define M (Tcl_WideUInt)1000000 static const Tcl_WideUInt weight[5] = { 0, 1, M, M*M, M*M*M }; #undef M Tcl_WideUInt fstCount = 0; Tcl_WideUInt sndCount = 0; unsigned i; /* * Count the most high-ordered patterns. * * (This computation assumes that a sequence does not contain more than * 1,000,000 single patterns. It can be precluded that in practice this * assumption will not be violated.) */ for (i = 0; i < fstMatchPtr->numPats; ++i) { assert(GetCount(fstMatchPtr, i) < SIZE_OF_ARRAY(weight)); fstCount += weight[GetCount(fstMatchPtr, i)]; } for (i = 0; i < sndMatchPtr->numPats; ++i) { assert(GetCount(sndMatchPtr, i) < SIZE_OF_ARRAY(weight)); sndCount += weight[GetCount(sndMatchPtr, i)]; } if (sndCount > fstCount) { return 1; } if (sndCount < fstCount) { return 0; } } #endif return sndMatchPtr->number > fstMatchPtr->number; } void Tk_BindEvent( Tk_BindingTable bindPtr, /* Table in which to look for bindings. */ XEvent *eventPtr, /* What actually happened. */ Tk_Window tkwin, /* Window on display where event occurred (needed in order to * locate display information). */ int numObjects, /* Number of objects at *objArr. */ ClientData *objArr) /* Array of one or more objects to check for a matching binding. */ { Tcl_Interp *interp; ScreenInfo *screenPtr; TkDisplay *dispPtr; TkDisplay *oldDispPtr; Event *curEvent; TkWindow *winPtr = (TkWindow *) tkwin; BindInfo *bindInfoPtr; Tcl_InterpState interpState; LookupTables *physTables; PatSeq *psPtr[2]; PatSeq *matchPtrBuf[32]; PatSeq **matchPtrArr = matchPtrBuf; PSList *psl[2]; Tcl_DString scripts; const char *p; const char *end; unsigned scriptCount; int oldScreen; unsigned flags; unsigned arraySize; unsigned newArraySize; unsigned i, k; assert(bindPtr); assert(eventPtr); assert(tkwin); assert(numObjects >= 0); /* * Ignore events on windows that don't have names: these are windows like * wrapper windows that shouldn't be visible to the application. */ if (!winPtr->pathName) { return; } flags = flagArray[eventPtr->type]; /* * Ignore event types which are not in flagArray and all zeroes there. */ if (eventPtr->type >= TK_LASTEVENT || !flags) { return; } if (flags & HAS_XKEY_HEAD_AND_STATE) { bindPtr->curModMask = eventPtr->xkey.state; } else if (flags & CROSSING) { bindPtr->curModMask = eventPtr->xcrossing.state; } dispPtr = ((TkWindow *) tkwin)->dispPtr; bindInfoPtr = winPtr->mainPtr->bindInfo; curEvent = bindPtr->eventInfo + eventPtr->type; /* * Ignore the event completely if it is an Enter, Leave, FocusIn, or * FocusOut event with detail NotifyInferior. The reason for ignoring * these events is that we don't want transitions between a window and its * children to be visible to bindings on the parent: this would cause * problems for mega-widgets, since the internal structure of a * mega-widget isn't supposed to be visible to people watching the parent. * * Furthermore we have to compute current time, needed for "event generate". */ switch (eventPtr->type) { case EnterNotify: case LeaveNotify: if (eventPtr->xcrossing.time) { bindInfoPtr->lastCurrentTime = CurrentTimeInMilliSecs(); bindInfoPtr->lastEventTime = eventPtr->xcrossing.time; } if (eventPtr->xcrossing.detail == NotifyInferior) { return; } break; case FocusIn: case FocusOut: if (eventPtr->xfocus.detail == NotifyInferior) { return; } break; case KeyPress: case KeyRelease: { int reset = 1; if (eventPtr->xkey.time) { bindInfoPtr->lastCurrentTime = CurrentTimeInMilliSecs(); bindInfoPtr->lastEventTime = eventPtr->xkey.time; } /* modifier keys should not influence button events */ for (i = 0; i < (unsigned) dispPtr->numModKeyCodes; ++i) { if (dispPtr->modKeyCodes[i] == eventPtr->xkey.keycode) { reset = 0; } } if (reset) { /* reset repetition count for button events */ bindPtr->eventInfo[ButtonPress].countAny = 0; bindPtr->eventInfo[ButtonPress].countDetailed = 0; bindPtr->eventInfo[ButtonRelease].countAny = 0; bindPtr->eventInfo[ButtonRelease].countDetailed = 0; } break; } case ButtonPress: case ButtonRelease: /* reset repetition count for key events */ bindPtr->eventInfo[KeyPress].countAny = 0; bindPtr->eventInfo[KeyPress].countDetailed = 0; bindPtr->eventInfo[KeyRelease].countAny = 0; bindPtr->eventInfo[KeyRelease].countDetailed = 0; /* fallthru */ case MotionNotify: if (eventPtr->xmotion.time) { bindInfoPtr->lastCurrentTime = CurrentTimeInMilliSecs(); bindInfoPtr->lastEventTime = eventPtr->xmotion.time; } break; case PropertyNotify: if (eventPtr->xproperty.time) { bindInfoPtr->lastCurrentTime = CurrentTimeInMilliSecs(); bindInfoPtr->lastEventTime = eventPtr->xproperty.time; } break; case DestroyNotify: ResetCounters(bindPtr->eventInfo, KeyPress, eventPtr->xany.window); ResetCounters(bindPtr->eventInfo, KeyRelease, eventPtr->xany.window); ResetCounters(bindPtr->eventInfo, ButtonPress, eventPtr->xany.window); ResetCounters(bindPtr->eventInfo, ButtonRelease, eventPtr->xany.window); break; } /* * Now check whether this is a repeating event (multi-click, repeated key press, and so on). */ /* NOTE: if curEvent is not yet set, then the following cannot match: */ if (curEvent->xev.xany.window == eventPtr->xany.window) { switch (eventPtr->type) { case KeyPress: case KeyRelease: if (MatchEventRepeat(&curEvent->xev.xkey, &eventPtr->xkey)) { if (curEvent->xev.xkey.keycode == eventPtr->xkey.keycode) { ++curEvent->countDetailed; } else { curEvent->countDetailed = 1; } ++curEvent->countAny; } else { curEvent->countAny = curEvent->countDetailed = 1; } break; case ButtonPress: case ButtonRelease: if (MatchEventNearby(&curEvent->xev, eventPtr)) { if (curEvent->xev.xbutton.button == eventPtr->xbutton.button) { ++curEvent->countDetailed; } else { curEvent->countDetailed = 1; } ++curEvent->countAny; } else { curEvent->countAny = curEvent->countDetailed = 1; } break; case EnterNotify: case LeaveNotify: if (TestNearbyTime(eventPtr->xcrossing.time, curEvent->xev.xcrossing.time)) { ++curEvent->countAny; } else { curEvent->countAny = 1; } break; case PropertyNotify: if (TestNearbyTime(eventPtr->xproperty.time, curEvent->xev.xproperty.time)) { ++curEvent->countAny; } else { curEvent->countAny = 1; } break; default: ++curEvent->countAny; break; } } else { curEvent->countAny = curEvent->countDetailed = 1; } /* * Now update the details. */ curEvent->xev = *eventPtr; if (flags & KEY) { curEvent->detail.info = TkpGetKeySym(dispPtr, eventPtr); } else if (flags & BUTTON) { curEvent->detail.info = eventPtr->xbutton.button; } else if (flags & MOTION) { curEvent->detail.info = ButtonNumberFromState(eventPtr->xmotion.state); } else if (flags & VIRTUAL) { curEvent->detail.name = ((XVirtualEvent *) eventPtr)->name; } bindPtr->curEvent = curEvent; physTables = &bindPtr->lookupTables; scriptCount = 0; arraySize = 0; Tcl_DStringInit(&scripts); if ((size_t) numObjects > SIZE_OF_ARRAY(matchPtrBuf)) { /* it's unrealistic that the buffer size is too small, but who knows? */ matchPtrArr = (PatSeq **)ckalloc(numObjects*sizeof(matchPtrArr[0])); } memset(matchPtrArr, 0, numObjects*sizeof(matchPtrArr[0])); if (!PromArr_IsEmpty(bindPtr->promArr)) { for (k = 0; k < (unsigned) numObjects; ++k) { psl[1] = PromArr_Last(bindPtr->promArr); psl[0] = psl[1] - 1; /* * Loop over all promoted bindings, finding the longest matching one. * * Note that we must process all lists, because all matching patterns * have to be promoted. Normally at most one list will be processed, and * usually this list only contains one or two patterns. */ for (i = PromArr_Size(bindPtr->promArr); i > 0; --i, --psl[0], --psl[1]) { psPtr[0] = MatchPatterns(dispPtr, bindPtr, psl[0], psl[1], i, curEvent, objArr[k], NULL); if (IsBetterMatch(matchPtrArr[k], psPtr[0])) { /* we will process it later, because we still may find a pattern with better match */ matchPtrArr[k] = psPtr[0]; } if (!PSList_IsEmpty(psl[1])) { /* we have promoted sequences, adjust array size */ arraySize = Max(i + 1, arraySize); } } } } /* * 1. Look for bindings for the specific detail (button and key events). * 2. Look for bindings without detail. */ for (k = 0; k < (unsigned) numObjects; ++k) { PSList *psSuccList = PromArr_First(bindPtr->promArr); PatSeq *bestPtr; psl[0] = GetLookupForEvent(physTables, curEvent, (Tcl_Obj *)objArr[k], 1); psl[1] = GetLookupForEvent(physTables, curEvent, (Tcl_Obj *)objArr[k], 0); assert(psl[0] == NULL || psl[0] != psl[1]); psPtr[0] = MatchPatterns(dispPtr, bindPtr, psl[0], psSuccList, 0, curEvent, objArr[k], NULL); psPtr[1] = MatchPatterns(dispPtr, bindPtr, psl[1], psSuccList, 0, curEvent, objArr[k], NULL); if (!PSList_IsEmpty(psSuccList)) { /* we have promoted sequences, adjust array size */ arraySize = Max(1u, arraySize); } bestPtr = psPtr[0] ? psPtr[0] : psPtr[1]; if (matchPtrArr[k]) { if (IsBetterMatch(matchPtrArr[k], bestPtr)) { matchPtrArr[k] = bestPtr; } else { /* * We've already found a higher level match, nevertheless it was required to * process the level zero patterns because of possible promotions. */ } /* * Now we have to catch up the processing of the script. */ } else { /* * We have to look whether we can find a better match in virtual table, provided that we * don't have a higher level match. */ matchPtrArr[k] = bestPtr; if (eventPtr->type != VirtualEvent) { LookupTables *virtTables = &bindInfoPtr->virtualEventTable.lookupTables; PatSeq *matchPtr = matchPtrArr[k]; PatSeq *mPtr; PSList *psl[2]; /* * Note that virtual events cannot promote. */ psl[0] = GetLookupForEvent(virtTables, curEvent, NULL, 1); psl[1] = GetLookupForEvent(virtTables, curEvent, NULL, 0); assert(psl[0] == NULL || psl[0] != psl[1]); mPtr = MatchPatterns(dispPtr, bindPtr, psl[0], NULL, 0, curEvent, objArr[k], &matchPtr); if (mPtr) { matchPtrArr[k] = matchPtr; matchPtr = mPtr; } if (MatchPatterns(dispPtr, bindPtr, psl[1], NULL, 0, curEvent, objArr[k], &matchPtr)) { matchPtrArr[k] = matchPtr; } } } if (matchPtrArr[k]) { ExpandPercents(winPtr, matchPtrArr[k]->script, curEvent, scriptCount++, &scripts); /* nul is added to the scripts string to separate the various scripts */ Tcl_DStringAppend(&scripts, "", 1); } } PromArr_SetSize(bindPtr->promArr, arraySize); /* * Remove expired pattern sequences. */ for (i = 0, newArraySize = 0; i < arraySize; ++i) { PSList *psList = PromArr_Get(bindPtr->promArr, i); PSEntry *psEntry; PSEntry *psNext; for (psEntry = PSList_First(psList); psEntry; psEntry = psNext) { const TkPattern *patPtr; assert(i + 1 < psEntry->psPtr->numPats); psNext = PSList_Next(psEntry); patPtr = &psEntry->psPtr->pats[i + 1]; /* * We have to remove the following entries from promotion list (but * only if we don't want to keep it): * ------------------------------------------------------------------ * 1) It is marked as expired (see MatchPatterns()). * 2) If we have a Key event, and current entry is matching a Button. * 3) If we have a Button event, and current entry is matching a Key. * 4) If we have a detailed event, current entry it is also detailed, * we have matching event types, but the details are different. * 5) Current entry has been matched with a different window. */ if (psEntry->keepIt) { assert(!psEntry->expired); psEntry->keepIt = 0; } else if (psEntry->expired || psEntry->window != curEvent->xev.xany.window || (patPtr->info && curEvent->detail.info && patPtr->eventType == (unsigned) curEvent->xev.type && patPtr->info != curEvent->detail.info)) { RemoveListEntry(&bindPtr->lookupTables.entryPool, psEntry); } else { switch (patPtr->eventType) { case ButtonPress: case ButtonRelease: if (IsKeyEventType(curEvent->xev.type)) { RemoveListEntry(&bindPtr->lookupTables.entryPool, psEntry); } break; case KeyPress: case KeyRelease: if (IsButtonEventType(curEvent->xev.type)) { RemoveListEntry(&bindPtr->lookupTables.entryPool, psEntry); } break; } } } if (!PSList_IsEmpty(psList)) { /* we still have promoted sequences, adjust array size */ newArraySize = Max(i + 1, newArraySize); } } PromArr_SetSize(bindPtr->promArr, newArraySize); if (matchPtrArr != matchPtrBuf) { ckfree(matchPtrArr); } if (Tcl_DStringLength(&scripts) == 0) { return; /* nothing to do */ } /* * Now go back through and evaluate the binding for each object, in order, * dealing with "break" and "continue" exceptions appropriately. * * There are two tricks here: * 1. Bindings can be invoked from in the middle of Tcl commands, where * the interp's result is significant (for example, a widget might be * deleted because of an error in creating it, so the result contains * an error message that is eventually going to be returned by the * creating command). To preserve the result, we save it in a dynamic * string. * 2. The binding's action can potentially delete the binding, so bindPtr * may not point to anything valid once the action completes. Thus we * have to save bindPtr->interp in a local variable in order to restore * the result. */ interp = bindPtr->interp; /* * Save information about the current screen, then invoke a script if the * screen has changed. */ interpState = Tcl_SaveInterpState(interp, TCL_OK); screenPtr = &bindInfoPtr->screenInfo; oldDispPtr = screenPtr->curDispPtr; oldScreen = screenPtr->curScreenIndex; if (dispPtr != screenPtr->curDispPtr || Tk_ScreenNumber(tkwin) != screenPtr->curScreenIndex) { screenPtr->curDispPtr = dispPtr; screenPtr->curScreenIndex = Tk_ScreenNumber(tkwin); ChangeScreen(interp, dispPtr->name, screenPtr->curScreenIndex); } /* * Be careful when dereferencing screenPtr or bindInfoPtr. If we evaluate * something that destroys ".", bindInfoPtr would have been freed, but we * can tell that by first checking to see if winPtr->mainPtr == NULL. */ Tcl_Preserve(bindInfoPtr); for (p = Tcl_DStringValue(&scripts), end = p + Tcl_DStringLength(&scripts); p < end; ) { unsigned len = strlen(p); int code; if (!bindInfoPtr->deleted) { ++screenPtr->bindingDepth; } Tcl_AllowExceptions(interp); code = Tcl_EvalEx(interp, p, len, TCL_EVAL_GLOBAL); p += len + 1; if (!bindInfoPtr->deleted) { --screenPtr->bindingDepth; } if (code != TCL_OK && code != TCL_CONTINUE) { if (code != TCL_BREAK) { Tcl_AddErrorInfo(interp, "\n (command bound to event)"); Tcl_BackgroundException(interp, code); } break; } } if (!bindInfoPtr->deleted && screenPtr->bindingDepth > 0 && (oldDispPtr != screenPtr->curDispPtr || oldScreen != screenPtr->curScreenIndex)) { /* * Some other binding script is currently executing, but its screen is * no longer current. Change the current display back again. */ screenPtr->curDispPtr = oldDispPtr; screenPtr->curScreenIndex = oldScreen; ChangeScreen(interp, oldDispPtr->name, oldScreen); } Tcl_RestoreInterpState(interp, interpState); Tcl_DStringFree(&scripts); Tcl_Release(bindInfoPtr); } /* *---------------------------------------------------------------------- * * MatchPatterns -- * * Given a list of pattern sequences and the recent event, return * the pattern sequence that best matches this event, if there is * one. * * Results: * * The return value is NULL if no match is found. Otherwise the * return value is the most specific pattern sequence among all * those that match the event table. * * Side effects: * None. * *---------------------------------------------------------------------- */ /* helper function */ static int VirtPatIsBound( Tk_BindingTable bindPtr, /* Table in which to look for bindings. */ PatSeq *psPtr, /* Test this pattern. */ ClientData object, /* Check for this binding tag. */ PatSeq **physPtrPtr) /* Input: the best physical event. * Output: the physical event associated with matching virtual event. */ { PatternTableKey key; const struct VirtOwners *owners; unsigned i; assert(bindPtr); assert(psPtr); assert(!psPtr->object); assert(physPtrPtr); if (*physPtrPtr) { const TkPattern *physPatPtr = (*physPtrPtr)->pats; const TkPattern *virtPatPtr = psPtr->pats; if (physPatPtr->info || !virtPatPtr->info) { if (IsSubsetOf(virtPatPtr->modMask, physPatPtr->modMask)) { return 0; /* we cannot surpass this match */ } } } /* otherwise on some systems the key contains uninitialized bytes */ memset(&key, 0, sizeof(key)); key.object = object; key.type = VirtualEvent; owners = psPtr->ptr.owners; for (i = 0; i < VirtOwners_Size(owners); ++i) { Tcl_HashEntry *hPtr = VirtOwners_Get(owners, i); key.detail.name = (Tk_Uid) Tcl_GetHashKey(hPtr->tablePtr, hPtr); if ((hPtr = Tcl_FindHashEntry(&bindPtr->lookupTables.patternTable, (char *) &key))) { /* The physical event matches this virtual event's definition. */ *physPtrPtr = (PatSeq *) Tcl_GetHashValue(hPtr); return 1; } } return 0; } /* helper function */ static int Compare( const PatSeq *fstMatchPtr, const PatSeq *sndMatchPtr) /* most recent match */ { int diff; if (!fstMatchPtr) { return +1; } assert(sndMatchPtr); diff = CountSpecialized(fstMatchPtr, sndMatchPtr); return diff ? diff : (int) sndMatchPtr->count - (int) fstMatchPtr->count; } /* helper function */ static int CompareModMasks( const PSModMaskArr *fstModMaskArr, const PSModMaskArr *sndModMaskArr, ModMask fstModMask, ModMask sndModMask) { int fstCount = 0; int sndCount = 0; int i; if (PSModMaskArr_IsEmpty(fstModMaskArr)) { if (!PSModMaskArr_IsEmpty(sndModMaskArr)) { for (i = PSModMaskArr_Size(sndModMaskArr) - 1; i >= 0; --i) { if (*PSModMaskArr_Get(sndModMaskArr, i)) { ++sndCount; } } } } else if (PSModMaskArr_IsEmpty(sndModMaskArr)) { for (i = PSModMaskArr_Size(fstModMaskArr) - 1; i >= 0; --i) { if (*PSModMaskArr_Get(fstModMaskArr, i)) { ++fstCount; } } } else { assert(PSModMaskArr_Size(fstModMaskArr) == PSModMaskArr_Size(sndModMaskArr)); for (i = PSModMaskArr_Size(fstModMaskArr) - 1; i >= 0; --i) { ModMask fstModMask = *PSModMaskArr_Get(fstModMaskArr, i); ModMask sndModMask = *PSModMaskArr_Get(sndModMaskArr, i); if (IsSubsetOf(fstModMask, sndModMask)) { ++sndCount; } if (IsSubsetOf(sndModMask, fstModMask)) { ++fstCount; } } } /* Finally compare modifier masks of last pattern. */ if (IsSubsetOf(fstModMask, sndModMask)) { ++sndCount; } if (IsSubsetOf(sndModMask, fstModMask)) { ++fstCount; } return fstCount - sndCount; } static PatSeq * MatchPatterns( TkDisplay *dispPtr, /* Display from which the event came. */ Tk_BindingTable bindPtr, /* Table in which to look for bindings. */ PSList *psList, /* List of potentially matching patterns, can be NULL. */ PSList *psSuccList, /* Add all matching higher-level pattern sequences to this list. * Can be NULL. */ unsigned patIndex, /* Match only this tag in sequence. */ const Event *curEvent, /* Match this event. */ ClientData object, /* Check for this binding tag. */ PatSeq **physPtrPtr) /* Input: the best physical event; NULL if we test physical events. * Output: the associated physical event for the best matching virtual * event; NULL when we match physical events. */ { Window window; PSEntry *psEntry; PatSeq *bestPtr; PatSeq *bestPhysPtr; ModMask bestModMask; const PSModMaskArr *bestModMaskArr = NULL; int i, isModKeyOnly = 0; assert(dispPtr); assert(bindPtr); assert(curEvent); if (!psList) { return NULL; } bestModMask = 0; bestPtr = NULL; bestPhysPtr = NULL; window = curEvent->xev.xany.window; /* * Modifier key events interlaced between patterns parts of a * sequence shall not prevent a sequence from ultimately * matching. Example: when trying to trigger * from the keyboard, the sequence of events actually seen is * then (possibly repeating if the key is hold * down), and finally . At the time is * seen, we shall keep the pattern sequence in * the promotion list, otherwise it is impossible to trigger * it from the keyboard. See bug [16ef161925]. */ if (IsKeyEventType(curEvent->xev.type)) { for (i = 0; i < dispPtr->numModKeyCodes; ++i) { if (dispPtr->modKeyCodes[i] == curEvent->xev.xkey.keycode) { isModKeyOnly = 1; break; } } } for (psEntry = PSList_First(psList); psEntry; psEntry = PSList_Next(psEntry)) { if (patIndex == 0 || psEntry->window == window) { PatSeq* psPtr = psEntry->psPtr; assert(TEST_PSENTRY(psPtr)); assert((psPtr->object == NULL) == (physPtrPtr != NULL)); assert(psPtr->object || patIndex == 0); assert(psPtr->numPats > patIndex); if (psPtr->object ? psPtr->object == object : VirtPatIsBound(bindPtr, psPtr, object, physPtrPtr)) { TkPattern *patPtr = psPtr->pats + patIndex; /* ignore modifier key events, and KeyRelease events if the current event * is of a different type (e.g. a Button event) */ psEntry->keepIt = isModKeyOnly || \ ((patPtr->eventType != (unsigned) curEvent->xev.type) && curEvent->xev.type == KeyRelease); if (patPtr->eventType == (unsigned) curEvent->xev.type && (curEvent->xev.type != CreateNotify || curEvent->xev.xcreatewindow.parent == window) && (!patPtr->name || patPtr->name == curEvent->detail.name) && (!patPtr->info || patPtr->info == curEvent->detail.info)) { /* * Resolve the modifier mask for Alt and Mod keys. Unfortunately this * cannot be done in ParseEventDescription, otherwise this function would * be the better place. */ ModMask modMask = ResolveModifiers(dispPtr, patPtr->modMask); ModMask curModMask = ResolveModifiers(dispPtr, bindPtr->curModMask); psEntry->expired = 1; /* remove it from promotion list */ psEntry->keepIt = 0; /* don't keep matching patterns */ if (IsSubsetOf(modMask, curModMask)) { unsigned count = patPtr->info ? curEvent->countDetailed : curEvent->countAny; if (patIndex < PSModMaskArr_Size(psEntry->lastModMaskArr)) { PSModMaskArr_Set(psEntry->lastModMaskArr, patIndex, &modMask); } /* * This pattern is finally matching. */ if (psPtr->numPats == patIndex + 1) { if (patPtr->count <= count) { /* * This is also a final pattern. * We always prefer the pattern with better match. * If completely equal than prefer most recently defined pattern. */ int cmp = Compare(bestPtr, psPtr); if (cmp == 0) { cmp = CompareModMasks(psEntry->lastModMaskArr, bestModMaskArr, modMask, bestModMask); } if (cmp > 0 || (cmp == 0 && bestPtr->number < psPtr->number)) { bestPtr = psPtr; bestModMask = modMask; bestModMaskArr = psEntry->lastModMaskArr; if (physPtrPtr) { bestPhysPtr = *physPtrPtr; } } } else { DEBUG(psEntry->expired = 0;) psEntry->keepIt = 1; /* don't remove it from promotion list */ } } else if (psSuccList) { /* * Not a final pattern, but matching, so promote it to next level. * But do not promote if count of current pattern is not yet reached. */ if (patPtr->count == psEntry->count) { PSEntry *psNewEntry; assert(!patPtr->name); psNewEntry = MakeListEntry( &bindPtr->lookupTables.entryPool, psPtr, psPtr->modMaskUsed); if (!PSModMaskArr_IsEmpty(psNewEntry->lastModMaskArr)) { PSModMaskArr_Set(psNewEntry->lastModMaskArr, patIndex, &modMask); } assert(psNewEntry->keepIt); assert(psNewEntry->count == 1u); PSList_Append(psSuccList, psNewEntry); psNewEntry->window = window; /* bind to current window */ } else { assert(psEntry->count < patPtr->count); DEBUG(psEntry->expired = 0;) psEntry->count += 1; psEntry->keepIt = 1; /* don't remove it from promotion list */ } } } } } } } if (bestPhysPtr) { assert(physPtrPtr); *physPtrPtr = bestPhysPtr; } return bestPtr; } /* *-------------------------------------------------------------- * * ExpandPercents -- * * Given a command and an event, produce a new command by replacing % * constructs in the original command with information from the X event. * * Results: * The new expanded command is appended to the dynamic string given by * dsPtr. * * Side effects: * None. * *-------------------------------------------------------------- */ static void ExpandPercents( TkWindow *winPtr, /* Window where event occurred: needed to get input context. */ const char *before, /* Command containing percent expressions to be replaced. */ Event *eventPtr, /* Event containing information to be used in % replacements. */ unsigned scriptCount, /* The number of script-based binding patterns matched so far for * this event. */ Tcl_DString *dsPtr) /* Dynamic string in which to append new command. */ { unsigned flags; Tcl_DString buf; XEvent *evPtr; assert(winPtr); assert(before); assert(eventPtr); assert(dsPtr); Tcl_DStringInit(&buf); evPtr = &eventPtr->xev; flags = (evPtr->type < TK_LASTEVENT) ? flagArray[evPtr->type] : 0; #define SET_NUMBER(value) { number = (value); \ snprintf(numStorage, sizeof(numStorage), "%" TCL_LL_MODIFIER "d", number); \ string = numStorage; \ } #define SET_UNUMBER(value) { unumber = (value); \ snprintf(numStorage, sizeof(numStorage), "%" TCL_LL_MODIFIER "u", unumber); \ string = numStorage; \ } while (1) { char numStorage[TCL_INTEGER_SPACE]; const char *string; Tcl_WideInt number; /* signed */ Tcl_WideUInt unumber; /* unsigned */ /* * Find everything up to the next % character and append it to the * result string. */ for (string = before; *string && *string != '%'; ++string) ; if (string != before) { Tcl_DStringAppend(dsPtr, before, string - before); before = string; } if (!*before) { break; } /* * There's a percent sequence here. Process it. */ string = "??"; switch (before[1]) { case '#': SET_UNUMBER(evPtr->xany.serial); break; case 'a': if (flags & CONFIG) { TkpPrintWindowId(numStorage, evPtr->xconfigure.above); string = numStorage; } break; case 'b': if (flags & BUTTON) { SET_UNUMBER(evPtr->xbutton.button); } break; case 'c': if (flags & EXPOSE) { SET_NUMBER(evPtr->xexpose.count); } break; case 'd': if (flags & (CROSSING|FOCUS)) { int detail = (flags & FOCUS) ? evPtr->xfocus.detail : evPtr->xcrossing.detail; string = TkFindStateString(notifyDetail, detail); } else if (flags & CONFIGREQ) { if (evPtr->xconfigurerequest.value_mask & CWStackMode) { string = TkFindStateString(configureRequestDetail, evPtr->xconfigurerequest.detail); } else { string = ""; } } else if (flags & VIRTUAL) { XVirtualEvent *vePtr = (XVirtualEvent *) evPtr; string = vePtr->user_data ? Tcl_GetString(vePtr->user_data) : ""; } break; case 'f': if (flags & CROSSING) { SET_NUMBER(evPtr->xcrossing.focus != 0); } break; case 'h': if (flags & EXPOSE) { SET_NUMBER(evPtr->xexpose.height); } else if (flags & CONFIG) { SET_NUMBER(evPtr->xconfigure.height); } else if (flags & CREATE) { SET_NUMBER(evPtr->xcreatewindow.height); } else if (flags & CONFIGREQ) { SET_NUMBER(evPtr->xconfigurerequest.height); } else if (flags & RESIZEREQ) { SET_NUMBER(evPtr->xresizerequest.height); } break; case 'i': if (flags & CREATE) { TkpPrintWindowId(numStorage, evPtr->xcreatewindow.window); } else if (flags & CONFIGREQ) { TkpPrintWindowId(numStorage, evPtr->xconfigurerequest.window); } else if (flags & MAPREQ) { TkpPrintWindowId(numStorage, evPtr->xmaprequest.window); } else { TkpPrintWindowId(numStorage, evPtr->xany.window); } string = numStorage; break; case 'k': if (flags & KEY) { SET_UNUMBER(evPtr->xkey.keycode); } break; case 'm': if (flags & CROSSING) { string = TkFindStateString(notifyMode, evPtr->xcrossing.mode); } else if (flags & FOCUS) { string = TkFindStateString(notifyMode, evPtr->xfocus.mode); } break; case 'o': if (flags & CREATE) { SET_NUMBER(evPtr->xcreatewindow.override_redirect != 0); } else if (flags & MAP) { SET_NUMBER(evPtr->xmap.override_redirect != 0); } else if (flags & REPARENT) { SET_NUMBER(evPtr->xreparent.override_redirect != 0); } else if (flags & CONFIG) { SET_NUMBER(evPtr->xconfigure.override_redirect != 0); } break; case 'p': if (flags & CIRC) { string = TkFindStateString(circPlace, evPtr->xcirculate.place); } else if (flags & CIRCREQ) { string = TkFindStateString(circPlace, evPtr->xcirculaterequest.place); } break; case 's': if (flags & HAS_XKEY_HEAD_AND_STATE) { SET_UNUMBER(evPtr->xkey.state); } else if (flags & CROSSING) { SET_UNUMBER(evPtr->xcrossing.state); } else if (flags & PROP) { string = TkFindStateString(propNotify, evPtr->xproperty.state); } else if (flags & VISIBILITY) { string = TkFindStateString(visNotify, evPtr->xvisibility.state); } break; case 't': if (flags & HAS_XKEY_HEAD) { SET_UNUMBER(evPtr->xkey.time); } else if (flags & PROP) { SET_UNUMBER(evPtr->xproperty.time); } break; case 'v': SET_UNUMBER(evPtr->xconfigurerequest.value_mask); break; case 'w': if (flags & EXPOSE) { SET_NUMBER(evPtr->xexpose.width); } else if (flags & CONFIG) { SET_NUMBER(evPtr->xconfigure.width); } else if (flags & CREATE) { SET_NUMBER(evPtr->xcreatewindow.width); } else if (flags & CONFIGREQ) { SET_NUMBER(evPtr->xconfigurerequest.width); } else if (flags & RESIZEREQ) { SET_NUMBER(evPtr->xresizerequest.width); } break; case 'x': if (flags & HAS_XKEY_HEAD) { SET_NUMBER(evPtr->xkey.x); } else if (flags & EXPOSE) { SET_NUMBER(evPtr->xexpose.x); } else if (flags & (CREATE|CONFIG|GRAVITY)) { SET_NUMBER(evPtr->xcreatewindow.x); } else if (flags & REPARENT) { SET_NUMBER(evPtr->xreparent.x); } else if (flags & CONFIGREQ) { SET_NUMBER(evPtr->xconfigurerequest.x); } break; case 'y': if (flags & HAS_XKEY_HEAD) { SET_NUMBER(evPtr->xkey.y); } else if (flags & EXPOSE) { SET_NUMBER(evPtr->xexpose.y); } else if (flags & (CREATE|CONFIG|GRAVITY)) { SET_NUMBER(evPtr->xcreatewindow.y); } else if (flags & REPARENT) { SET_NUMBER(evPtr->xreparent.y); } else if (flags & CONFIGREQ) { SET_NUMBER(evPtr->xconfigurerequest.y); } break; case 'A': if (flags & KEY) { Tcl_DStringFree(&buf); string = TkpGetString(winPtr, evPtr, &buf); } break; case 'B': if (flags & CREATE) { SET_NUMBER(evPtr->xcreatewindow.border_width); } else if (flags & CONFIGREQ) { SET_NUMBER(evPtr->xconfigurerequest.border_width); } else if (flags & CONFIG) { SET_NUMBER(evPtr->xconfigure.border_width); } break; case 'D': if (flags & WHEEL) { SET_NUMBER((int)evPtr->xbutton.button); /* mis-use button field for this */ } break; case 'E': SET_NUMBER(evPtr->xany.send_event != 0); break; case 'K': if (flags & KEY) { const char *name = TkKeysymToString(eventPtr->detail.info); if (name) { string = name; } } break; case 'M': SET_UNUMBER(scriptCount); break; case 'N': if (flags & KEY) { SET_UNUMBER(eventPtr->detail.info); } break; case 'P': if (flags & PROP) { string = Tk_GetAtomName((Tk_Window) winPtr, evPtr->xproperty.atom); } break; case 'R': if (flags & HAS_XKEY_HEAD) { TkpPrintWindowId(numStorage, evPtr->xkey.root); string = numStorage; } break; case 'S': if (flags & HAS_XKEY_HEAD) { TkpPrintWindowId(numStorage, evPtr->xkey.subwindow); string = numStorage; } break; case 'T': SET_NUMBER(evPtr->type); break; case 'W': { Tk_Window tkwin = Tk_IdToWindow(evPtr->xany.display, evPtr->xany.window); if (tkwin) { string = Tk_PathName(tkwin); } break; } case 'X': if (flags & HAS_XKEY_HEAD) { SET_NUMBER(evPtr->xkey.x_root); } break; case 'Y': if (flags & HAS_XKEY_HEAD) { SET_NUMBER(evPtr->xkey.y_root); } break; default: numStorage[0] = before[1]; numStorage[1] = '\0'; string = numStorage; break; } { /* local scope */ int cvtFlags; unsigned spaceNeeded = Tcl_ScanElement(string, &cvtFlags); unsigned length = Tcl_DStringLength(dsPtr); Tcl_DStringSetLength(dsPtr, length + spaceNeeded); spaceNeeded = Tcl_ConvertElement( string, Tcl_DStringValue(dsPtr) + length, cvtFlags | TCL_DONT_USE_BRACES); Tcl_DStringSetLength(dsPtr, length + spaceNeeded); before += 2; } } #undef SET_NUMBER #undef SET_UNUMBER Tcl_DStringFree(&buf); } /* *---------------------------------------------------------------------- * * ChangeScreen -- * * This function is invoked whenever the current screen changes in an * application. It invokes a Tcl command named "tk::ScreenChanged", * passing it the screen name as argument. tk::ScreenChanged does things * like making the tk::Priv variable point to an array for the current * display. * * Results: * None. * * Side effects: * Depends on what tk::ScreenChanged does. If an error occurs then * bgerror will be invoked. * *---------------------------------------------------------------------- */ static void ChangeScreen( Tcl_Interp *interp, /* Interpreter in which to invoke command. */ char *dispName, /* Name of new display. */ int screenIndex) /* Index of new screen. */ { Tcl_Obj *cmdObj = Tcl_ObjPrintf("::tk::ScreenChanged %s.%d", dispName, screenIndex); int code; Tcl_IncrRefCount(cmdObj); code = Tcl_EvalObjEx(interp, cmdObj, TCL_EVAL_GLOBAL); if (code != TCL_OK) { Tcl_AddErrorInfo(interp, "\n (changing screen in event binding)"); Tcl_BackgroundException(interp, code); } Tcl_DecrRefCount(cmdObj); } /* *---------------------------------------------------------------------- * * Tk_EventCmd -- * * This function is invoked to process the "event" Tcl command. It is * used to define and generate events. * * Results: * A standard Tcl result. * * Side effects: * See the user documentation. * *---------------------------------------------------------------------- */ int Tk_EventObjCmd( ClientData clientData, /* Main window associated with interpreter. */ Tcl_Interp *interp, /* Current interpreter. */ int objc, /* Number of arguments. */ Tcl_Obj *const objv[]) /* Argument objects. */ { int index, i; char *name; const char *event; Tk_Window tkwin; TkBindInfo bindInfo; VirtualEventTable *vetPtr; static const char *const optionStrings[] = { "add", "delete", "generate", "info", NULL }; enum options { EVENT_ADD, EVENT_DELETE, EVENT_GENERATE, EVENT_INFO }; assert(clientData); if (objc < 2) { Tcl_WrongNumArgs(interp, 1, objv, "option ?arg?"); return TCL_ERROR; } if (Tcl_GetIndexFromObjStruct( interp, objv[1], optionStrings, sizeof(char *), "option", 0, &index) != TCL_OK) { #ifdef SUPPORT_DEBUGGING if (strcmp(Tcl_GetString(objv[1]), "debug") == 0) { if (objc < 3) { Tcl_WrongNumArgs(interp, 1, objv, "debug number"); return TCL_ERROR; } Tcl_GetIntFromObj(interp, objv[2], &BindCount); return TCL_OK; } #endif return TCL_ERROR; } tkwin = (Tk_Window) clientData; bindInfo = ((TkWindow *) tkwin)->mainPtr->bindInfo; vetPtr = &bindInfo->virtualEventTable; switch ((enum options) index) { case EVENT_ADD: if (objc < 4) { Tcl_WrongNumArgs(interp, 2, objv, "virtual sequence ?sequence ...?"); return TCL_ERROR; } name = Tcl_GetString(objv[2]); for (i = 3; i < objc; ++i) { event = Tcl_GetString(objv[i]); if (!CreateVirtualEvent(interp, vetPtr, name, event)) { return TCL_ERROR; } } break; case EVENT_DELETE: if (objc < 3) { Tcl_WrongNumArgs(interp, 2, objv, "virtual ?sequence ...?"); return TCL_ERROR; } name = Tcl_GetString(objv[2]); if (objc == 3) { return DeleteVirtualEvent(interp, vetPtr, name, NULL); } for (i = 3; i < objc; ++i) { event = Tcl_GetString(objv[i]); if (DeleteVirtualEvent(interp, vetPtr, name, event) != TCL_OK) { return TCL_ERROR; } } break; case EVENT_GENERATE: if (objc < 4) { Tcl_WrongNumArgs(interp, 2, objv, "window event ?-option value ...?"); return TCL_ERROR; } return HandleEventGenerate(interp, tkwin, objc - 2, objv + 2); case EVENT_INFO: if (objc == 2) { GetAllVirtualEvents(interp, vetPtr); return TCL_OK; } if (objc == 3) { return GetVirtualEvent(interp, vetPtr, objv[2]); } Tcl_WrongNumArgs(interp, 2, objv, "?virtual?"); return TCL_ERROR; } return TCL_OK; } /* *--------------------------------------------------------------------------- * * InitVirtualEventTable -- * * Given storage for a virtual event table, set up the fields to prepare * a new domain in which virtual events may be defined. * * Results: * None. * * Side effects: * *vetPtr is now initialized. * *--------------------------------------------------------------------------- */ static void InitVirtualEventTable( VirtualEventTable *vetPtr) /* Pointer to virtual event table. Memory is supplied by the caller. */ { assert(vetPtr); memset(vetPtr, 0, sizeof(*vetPtr)); Tcl_InitHashTable(&vetPtr->lookupTables.patternTable, sizeof(PatternTableKey)/sizeof(int)); Tcl_InitHashTable(&vetPtr->lookupTables.listTable, sizeof(PatternTableKey)/sizeof(int)); Tcl_InitHashTable(&vetPtr->nameTable, TCL_ONE_WORD_KEYS); PSList_Init(&vetPtr->lookupTables.entryPool); } /* *--------------------------------------------------------------------------- * * DeleteVirtualEventTable -- * * Delete the contents of a virtual event table. The caller is * responsible for freeing any memory used by the table itself. * * Results: * None. * * Side effects: * Memory is freed. * *--------------------------------------------------------------------------- */ static void DeleteVirtualEventTable( VirtualEventTable *vetPtr) /* The virtual event table to delete. */ { Tcl_HashEntry *hPtr; Tcl_HashSearch search; assert(vetPtr); hPtr = Tcl_FirstHashEntry(&vetPtr->lookupTables.patternTable, &search); for ( ; hPtr; hPtr = Tcl_NextHashEntry(&search)) { PatSeq *nextPtr; PatSeq *psPtr; for (psPtr = (PatSeq *)Tcl_GetHashValue(hPtr); psPtr; psPtr = nextPtr) { assert(TEST_PSENTRY(psPtr)); nextPtr = psPtr->nextSeqPtr; DEBUG(psPtr->owned = 0;) FreePatSeq(psPtr); } } Tcl_DeleteHashTable(&vetPtr->lookupTables.patternTable); hPtr = Tcl_FirstHashEntry(&vetPtr->nameTable, &search); for ( ; hPtr; hPtr = Tcl_NextHashEntry(&search)) { ckfree(Tcl_GetHashValue(hPtr)); } Tcl_DeleteHashTable(&vetPtr->nameTable); ClearLookupTable(&vetPtr->lookupTables, NULL); Tcl_DeleteHashTable(&vetPtr->lookupTables.listTable); DEBUG(countEntryItems -= PSList_Size(&vetPtr->lookupTables.entryPool);) PSList_Traverse(&vetPtr->lookupTables.entryPool, FreePatSeqEntry); } /* *---------------------------------------------------------------------- * * CreateVirtualEvent -- * * Add a new definition for a virtual event. If the virtual event is * already defined, the new definition augments those that already exist. * * Results: * The return value is TCL_ERROR if an error occured while creating the * virtual binding. In this case, an error message will be left in the * interp's result. If all went well then the return value is TCL_OK. * * Side effects: * The virtual event may cause future calls to Tk_BindEvent to behave * differently than they did previously. * *---------------------------------------------------------------------- */ static int CreateVirtualEvent( Tcl_Interp *interp, /* Used for error reporting. */ VirtualEventTable *vetPtr, /* Table in which to augment virtual event. */ char *virtString, /* Name of new virtual event. */ const char *eventString) /* String describing physical event that triggers virtual event. */ { PatSeq *psPtr; int dummy; Tcl_HashEntry *vhPtr; PhysOwned *owned; Tk_Uid virtUid; assert(vetPtr); assert(virtString); assert(eventString); if (!(virtUid = GetVirtualEventUid(interp, virtString))) { return 0; } /* * Find/create physical event */ if (!(psPtr = FindSequence(interp, &vetPtr->lookupTables, NULL, eventString, 1, 0, NULL))) { return 0; } assert(TEST_PSENTRY(psPtr)); /* * Find/create virtual event. */ vhPtr = Tcl_CreateHashEntry(&vetPtr->nameTable, virtUid, &dummy); /* * Make virtual event own the physical event. */ owned = (PhysOwned *)Tcl_GetHashValue(vhPtr); if (!PhysOwned_Contains(owned, psPtr)) { PhysOwned_Append(&owned, psPtr); Tcl_SetHashValue(vhPtr, owned); DEBUG(psPtr->owned = 1;) InsertPatSeq(&vetPtr->lookupTables, psPtr); /* Make physical event so it can trigger the virtual event. */ VirtOwners_Append(&psPtr->ptr.owners, vhPtr); } return 1; } /* *-------------------------------------------------------------- * * DeleteVirtualEvent -- * * Remove the definition of a given virtual event. If the event string is * NULL, all definitions of the virtual event will be removed. * Otherwise, just the specified definition of the virtual event will be * removed. * * Results: * The result is a standard Tcl return value. If an error occurs then the * interp's result will contain an error message. It is not an error to * attempt to delete a virtual event that does not exist or a definition * that does not exist. * * Side effects: * The virtual event given by virtString may be removed from the virtual * event table. * *-------------------------------------------------------------- */ static int DeleteVirtualEvent( Tcl_Interp *interp, /* Used for error reporting. */ VirtualEventTable *vetPtr, /* Table in which to delete event. */ char *virtString, /* String describing event sequence that triggers binding. */ const char *eventString) /* The event sequence that should be deleted, or NULL to delete * all event sequences for the entire virtual event. */ { int iPhys; Tk_Uid virtUid; Tcl_HashEntry *vhPtr; PhysOwned *owned; const PatSeq *eventPSPtr; PatSeq *lastElemPtr; assert(vetPtr); assert(virtString); if (!(virtUid = GetVirtualEventUid(interp, virtString))) { return TCL_ERROR; } if (!(vhPtr = Tcl_FindHashEntry(&vetPtr->nameTable, virtUid))) { return TCL_OK; } owned = (PhysOwned *)Tcl_GetHashValue(vhPtr); eventPSPtr = NULL; if (eventString) { LookupTables *lookupTables = &vetPtr->lookupTables; /* * Delete only the specific physical event associated with the virtual * event. If the physical event doesn't already exist, or the virtual * event doesn't own that physical event, return w/o doing anything. */ eventPSPtr = FindSequence(interp, lookupTables, NULL, eventString, 0, 0, NULL); if (!eventPSPtr) { const char *string = Tcl_GetString(Tcl_GetObjResult(interp)); return string[0] ? TCL_ERROR : TCL_OK; } } for (iPhys = PhysOwned_Size(owned); --iPhys >= 0; ) { PatSeq *psPtr = PhysOwned_Get(owned, iPhys); assert(TEST_PSENTRY(psPtr)); if (!eventPSPtr || psPtr == eventPSPtr) { VirtOwners *owners = psPtr->ptr.owners; int iVirt = VirtOwners_Find(owners, vhPtr); assert(iVirt != -1); /* otherwise we couldn't find owner, and this should not happen */ /* * Remove association between this physical event and the given * virtual event that it triggers. */ if (VirtOwners_Size(owners) > 1) { /* * This physical event still triggers some other virtual * event(s). Consolidate the list of virtual owners for this * physical event so it no longer triggers the given virtual * event. */ VirtOwners_Set(owners, iVirt, VirtOwners_Back(owners)); VirtOwners_PopBack(owners); } else { /* * Removed last reference to this physical event, so remove it * from lookup table. */ DEBUG(psPtr->owned = 0;) RemovePatSeqFromLookup(&vetPtr->lookupTables, psPtr); DeletePatSeq(psPtr); } /* * Now delete the virtual event's reference to the physical event. */ lastElemPtr = PhysOwned_Back(owned); if (PhysOwned_PopBack(owned) > 0 && eventPSPtr) { /* * Just deleting this one physical event. Consolidate list of * owned physical events and return. */ if ((size_t) iPhys < PhysOwned_Size(owned)) { PhysOwned_Set(owned, iPhys, lastElemPtr); } return TCL_OK; } } } if (PhysOwned_IsEmpty(owned)) { /* * All the physical events for this virtual event were deleted, either * because there was only one associated physical event or because the * caller was deleting the entire virtual event. Now the virtual event * itself should be deleted. */ PhysOwned_Free(&owned); Tcl_DeleteHashEntry(vhPtr); } return TCL_OK; } /* *--------------------------------------------------------------------------- * * GetVirtualEvent -- * * Return the list of physical events that can invoke the given virtual * event. * * Results: * The return value is TCL_OK and the interp's result is filled with the * string representation of the physical events associated with the * virtual event; if there are no physical events for the given virtual * event, the interp's result is filled with and empty string. If the * virtual event string is improperly formed, then TCL_ERROR is returned * and an error message is left in the interp's result. * * Side effects: * None. * *--------------------------------------------------------------------------- */ static int GetVirtualEvent( Tcl_Interp *interp, /* Interpreter for reporting. */ VirtualEventTable *vetPtr, /* Table in which to look for event. */ Tcl_Obj *virtName) /* String describing virtual event. */ { Tcl_HashEntry *vhPtr; unsigned iPhys; const PhysOwned *owned; Tk_Uid virtUid; Tcl_Obj *resultObj; assert(vetPtr); assert(virtName); if (!(virtUid = GetVirtualEventUid(interp, Tcl_GetString(virtName)))) { return TCL_ERROR; } if (!(vhPtr = Tcl_FindHashEntry(&vetPtr->nameTable, virtUid))) { return TCL_OK; } resultObj = Tcl_NewObj(); owned = (const PhysOwned *)Tcl_GetHashValue(vhPtr); for (iPhys = 0; iPhys < PhysOwned_Size(owned); ++iPhys) { Tcl_ListObjAppendElement(NULL, resultObj, GetPatternObj(PhysOwned_Get(owned, iPhys))); } Tcl_SetObjResult(interp, resultObj); return TCL_OK; } /* *-------------------------------------------------------------- * * GetAllVirtualEvents -- * * Return a list that contains the names of all the virtual event * defined. * * Results: * There is no return value. The interp's result is modified to hold a * Tcl list with one entry for each virtual event in nameTable. * * Side effects: * None. * *-------------------------------------------------------------- */ static void GetAllVirtualEvents( Tcl_Interp *interp, /* Interpreter returning result. */ VirtualEventTable *vetPtr) /* Table containing events. */ { Tcl_HashEntry *hPtr; Tcl_HashSearch search; Tcl_Obj *resultObj; assert(vetPtr); resultObj = Tcl_NewObj(); hPtr = Tcl_FirstHashEntry(&vetPtr->nameTable, &search); for ( ; hPtr; hPtr = Tcl_NextHashEntry(&search)) { Tcl_Obj* msg = Tcl_ObjPrintf("<<%s>>", (char *) Tcl_GetHashKey(hPtr->tablePtr, hPtr)); Tcl_ListObjAppendElement(NULL, resultObj, msg); } Tcl_SetObjResult(interp, resultObj); } /* *--------------------------------------------------------------------------- * * HandleEventGenerate -- * * Helper function for the "event generate" command. Generate and process * an XEvent, constructed from information parsed from the event * description string and its optional arguments. * * argv[0] contains name of the target window. * argv[1] contains pattern string for one event (e.g, ). * argv[2..argc-1] contains -field/option pairs for specifying additional * detail in the generated event. * * Either virtual or physical events can be generated this way. The event * description string must contain the specification for only one event. * * Results: * None. * * Side effects: * When constructing the event, * event.xany.serial is filled with the current X serial number. * event.xany.window is filled with the target window. * event.xany.display is filled with the target window's display. * Any other fields in eventPtr which are not specified by the pattern * string or the optional arguments, are set to 0. * * The event may be handled synchronously or asynchronously, depending on * the value specified by the optional "-when" option. The default * setting is synchronous. * *--------------------------------------------------------------------------- */ static int HandleEventGenerate( Tcl_Interp *interp, /* Interp for errors return and name lookup. */ Tk_Window mainWin, /* Main window associated with interp. */ int objc, /* Number of arguments. */ Tcl_Obj *const objv[]) /* Argument objects. */ { union { XEvent general; XVirtualEvent virt; } event; const char *p; const char *name; const char *windowName; Tcl_QueuePosition pos; TkPattern pat; Tk_Window tkwin; Tk_Window tkwin2; TkWindow *mainPtr; EventMask eventMask; Tcl_Obj *userDataObj; int synch; int warp; unsigned count; unsigned flags; int number; unsigned i; static const char *const fieldStrings[] = { "-when", "-above", "-borderwidth", "-button", "-count", "-data", "-delta", "-detail", "-focus", "-height", "-keycode", "-keysym", "-mode", "-override", "-place", "-root", "-rootx", "-rooty", "-sendevent", "-serial", "-state", "-subwindow", "-time", "-warp", "-width", "-window", "-x", "-y", NULL }; enum field { EVENT_WHEN, EVENT_ABOVE, EVENT_BORDER, EVENT_BUTTON, EVENT_COUNT, EVENT_DATA, EVENT_DELTA, EVENT_DETAIL, EVENT_FOCUS, EVENT_HEIGHT, EVENT_KEYCODE, EVENT_KEYSYM, EVENT_MODE, EVENT_OVERRIDE, EVENT_PLACE, EVENT_ROOT, EVENT_ROOTX, EVENT_ROOTY, EVENT_SEND, EVENT_SERIAL, EVENT_STATE, EVENT_SUBWINDOW, EVENT_TIME, EVENT_WARP, EVENT_WIDTH, EVENT_WINDOW, EVENT_X, EVENT_Y }; assert(mainWin); windowName = Tcl_GetString(objv[0]); if (!windowName[0]) { tkwin = mainWin; } else if (!NameToWindow(interp, mainWin, objv[0], &tkwin)) { return TCL_ERROR; } mainPtr = (TkWindow *) mainWin; if (!tkwin || mainPtr->mainPtr != ((TkWindow *) tkwin)->mainPtr) { Tcl_SetObjResult(interp, Tcl_ObjPrintf( "window id \"%s\" doesn't exist in this application", Tcl_GetString(objv[0]))); Tcl_SetErrorCode(interp, "TK", "LOOKUP", "WINDOW", Tcl_GetString(objv[0]), NULL); return TCL_ERROR; } name = Tcl_GetString(objv[1]); p = name; eventMask = 0; userDataObj = NULL; if ((count = ParseEventDescription(interp, &p, &pat, &eventMask)) == 0) { return TCL_ERROR; } if (count != 1u) { Tcl_SetObjResult(interp, Tcl_NewStringObj("Double, Triple, or Quadruple modifier not allowed", -1)); Tcl_SetErrorCode(interp, "TK", "EVENT", "BAD_MODIFIER", NULL); return TCL_ERROR; } if (*p) { Tcl_SetObjResult(interp, Tcl_NewStringObj("only one event specification allowed", -1)); Tcl_SetErrorCode(interp, "TK", "EVENT", "MULTIPLE", NULL); return TCL_ERROR; } memset(&event, 0, sizeof(event)); event.general.xany.type = pat.eventType; event.general.xany.serial = NextRequest(Tk_Display(tkwin)); event.general.xany.send_event = 0; if (windowName[0]) { event.general.xany.window = Tk_WindowId(tkwin); } else { event.general.xany.window = RootWindow(Tk_Display(tkwin), Tk_ScreenNumber(tkwin)); } event.general.xany.display = Tk_Display(tkwin); flags = flagArray[event.general.xany.type]; if (flags & DESTROY) { /* * Event DestroyNotify should be generated by destroying the window. */ Tk_DestroyWindow(tkwin); return TCL_OK; } if (flags & HAS_XKEY_HEAD_AND_STATE) { event.general.xkey.state = pat.modMask; if (flags & KEY) { TkpSetKeycodeAndState(tkwin, pat.info, &event.general); } else if (flags & BUTTON) { event.general.xbutton.button = pat.info; } else if (flags & VIRTUAL) { event.virt.name = pat.name; } } if (flags & (CREATE|UNMAP|MAP|REPARENT|CONFIG|GRAVITY|CIRC)) { event.general.xcreatewindow.window = event.general.xany.window; } if (flags & HAS_XKEY_HEAD) { event.general.xkey.x_root = -1; event.general.xkey.y_root = -1; } if (event.general.xany.type == FocusIn || event.general.xany.type == FocusOut) { event.general.xany.send_event = GENERATED_FOCUS_EVENT_MAGIC; } /* * Process the remaining arguments to fill in additional fields of the event. */ synch = 1; warp = 0; pos = TCL_QUEUE_TAIL; for (i = 2; i < (unsigned) objc; i += 2) { Tcl_Obj *optionPtr, *valuePtr; int badOpt = 0; int index; optionPtr = objv[i]; valuePtr = objv[i + 1]; if (Tcl_GetIndexFromObjStruct(interp, optionPtr, fieldStrings, sizeof(char *), "option", TCL_EXACT, &index) != TCL_OK) { return TCL_ERROR; } if (IsOdd(objc)) { /* * This test occurs after Tcl_GetIndexFromObj() so that "event * generate