/* * tkCanvPoly.c -- * * This file implements polygon items for canvas widgets. * * Copyright © 1991-1994 The Regents of the University of California. * Copyright © 1994-1997 Sun Microsystems, Inc. * Copyright © 1998-2000 Ajuba Solutions. * * See the file "license.terms" for information on usage and redistribution of * this file, and for a DISCLAIMER OF ALL WARRANTIES. */ #include "tkInt.h" #include "tkCanvas.h" #include "default.h" /* * The structure below defines the record for each polygon item. */ typedef struct PolygonItem { Tk_Item header; /* Generic stuff that's the same for all * types. MUST BE FIRST IN STRUCTURE. */ Tk_Outline outline; /* Outline structure */ int numPoints; /* Number of points in polygon. Polygon is * always closed. */ int pointsAllocated; /* Number of points for which space is * allocated at *coordPtr. */ double *coordPtr; /* Pointer to malloc-ed array containing x- * and y-coords of all points in polygon. * X-coords are even-valued indices, y-coords * are corresponding odd-valued indices. */ int joinStyle; /* Join style for outline */ Tk_TSOffset tsoffset; XColor *fillColor; /* Foreground color for polygon. */ XColor *activeFillColor; /* Foreground color for polygon if state is * active. */ XColor *disabledFillColor; /* Foreground color for polygon if state is * disabled. */ Pixmap fillStipple; /* Stipple bitmap for filling polygon. */ Pixmap activeFillStipple; /* Stipple bitmap for filling polygon if state * is active. */ Pixmap disabledFillStipple; /* Stipple bitmap for filling polygon if state * is disabled. */ GC fillGC; /* Graphics context for filling polygon. */ const Tk_SmoothMethod *smooth; /* Non-zero means draw shape smoothed (i.e. * with Bezier splines). */ int splineSteps; /* Number of steps in each spline segment. */ int autoClosed; /* Zero means the given polygon was closed, one means that we auto closed it. */ } PolygonItem; /* * Information used for parsing configuration specs: */ static const Tk_CustomOption smoothOption = { TkSmoothParseProc, TkSmoothPrintProc, NULL }; static const Tk_CustomOption stateOption = { TkStateParseProc, TkStatePrintProc, INT2PTR(2) }; static const Tk_CustomOption tagsOption = { Tk_CanvasTagsParseProc, Tk_CanvasTagsPrintProc, NULL }; static const Tk_CustomOption dashOption = { TkCanvasDashParseProc, TkCanvasDashPrintProc, NULL }; static const Tk_CustomOption offsetOption = { TkOffsetParseProc, TkOffsetPrintProc, INT2PTR(TK_OFFSET_RELATIVE|TK_OFFSET_INDEX) }; static const Tk_CustomOption pixelOption = { TkPixelParseProc, TkPixelPrintProc, NULL }; static const Tk_ConfigSpec configSpecs[] = { {TK_CONFIG_CUSTOM, "-activedash", NULL, NULL, NULL, offsetof(PolygonItem, outline.activeDash), TK_CONFIG_NULL_OK, &dashOption}, {TK_CONFIG_COLOR, "-activefill", NULL, NULL, NULL, offsetof(PolygonItem, activeFillColor), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_COLOR, "-activeoutline", NULL, NULL, NULL, offsetof(PolygonItem, outline.activeColor), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_BITMAP, "-activeoutlinestipple", NULL, NULL, NULL, offsetof(PolygonItem, outline.activeStipple), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_BITMAP, "-activestipple", NULL, NULL, NULL, offsetof(PolygonItem, activeFillStipple), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_CUSTOM, "-activewidth", NULL, NULL, "0.0", offsetof(PolygonItem, outline.activeWidth), TK_CONFIG_DONT_SET_DEFAULT, &pixelOption}, {TK_CONFIG_CUSTOM, "-dash", NULL, NULL, NULL, offsetof(PolygonItem, outline.dash), TK_CONFIG_NULL_OK, &dashOption}, {TK_CONFIG_PIXELS, "-dashoffset", NULL, NULL, "0", offsetof(PolygonItem, outline.offset), TK_CONFIG_DONT_SET_DEFAULT, NULL}, {TK_CONFIG_CUSTOM, "-disableddash", NULL, NULL, NULL, offsetof(PolygonItem, outline.disabledDash), TK_CONFIG_NULL_OK, &dashOption}, {TK_CONFIG_COLOR, "-disabledfill", NULL, NULL, NULL, offsetof(PolygonItem, disabledFillColor), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_COLOR, "-disabledoutline", NULL, NULL, NULL, offsetof(PolygonItem, outline.disabledColor), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_BITMAP, "-disabledoutlinestipple", NULL, NULL, NULL, offsetof(PolygonItem, outline.disabledStipple), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_BITMAP, "-disabledstipple", NULL, NULL, NULL, offsetof(PolygonItem, disabledFillStipple), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_CUSTOM, "-disabledwidth", NULL, NULL, "0.0", offsetof(PolygonItem, outline.disabledWidth), TK_CONFIG_DONT_SET_DEFAULT, &pixelOption}, {TK_CONFIG_COLOR, "-fill", NULL, NULL, NULL, offsetof(PolygonItem, fillColor), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_JOIN_STYLE, "-joinstyle", NULL, NULL, "round", offsetof(PolygonItem, joinStyle), TK_CONFIG_DONT_SET_DEFAULT, NULL}, {TK_CONFIG_CUSTOM, "-offset", NULL, NULL, "0,0", offsetof(PolygonItem, tsoffset), TK_CONFIG_NULL_OK, &offsetOption}, {TK_CONFIG_COLOR, "-outline", NULL, NULL, DEF_CANVITEM_OUTLINE, offsetof(PolygonItem, outline.color), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_CUSTOM, "-outlineoffset", NULL, NULL, "0,0", offsetof(PolygonItem, outline.tsoffset), TK_CONFIG_NULL_OK, &offsetOption}, {TK_CONFIG_BITMAP, "-outlinestipple", NULL, NULL, NULL, offsetof(PolygonItem, outline.stipple), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_CUSTOM, "-smooth", NULL, NULL, "0", offsetof(PolygonItem, smooth), TK_CONFIG_DONT_SET_DEFAULT, &smoothOption}, {TK_CONFIG_INT, "-splinesteps", NULL, NULL, "12", offsetof(PolygonItem, splineSteps), TK_CONFIG_DONT_SET_DEFAULT, NULL}, {TK_CONFIG_CUSTOM, "-state", NULL, NULL, NULL, offsetof(Tk_Item, state), TK_CONFIG_NULL_OK, &stateOption}, {TK_CONFIG_BITMAP, "-stipple", NULL, NULL, NULL, offsetof(PolygonItem, fillStipple), TK_CONFIG_NULL_OK, NULL}, {TK_CONFIG_CUSTOM, "-tags", NULL, NULL, NULL, 0, TK_CONFIG_NULL_OK, &tagsOption}, {TK_CONFIG_CUSTOM, "-width", NULL, NULL, "1.0", offsetof(PolygonItem, outline.width), TK_CONFIG_DONT_SET_DEFAULT, &pixelOption}, {TK_CONFIG_END, NULL, NULL, NULL, NULL, 0, 0, NULL} }; /* * Prototypes for functions defined in this file: */ static void ComputePolygonBbox(Tk_Canvas canvas, PolygonItem *polyPtr); static int ConfigurePolygon(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Item *itemPtr, int objc, Tcl_Obj *const objv[], int flags); static int CreatePolygon(Tcl_Interp *interp, Tk_Canvas canvas, struct Tk_Item *itemPtr, int objc, Tcl_Obj *const objv[]); static void DeletePolygon(Tk_Canvas canvas, Tk_Item *itemPtr, Display *display); static void DisplayPolygon(Tk_Canvas canvas, Tk_Item *itemPtr, Display *display, Drawable dst, int x, int y, int width, int height); static int GetPolygonIndex(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Item *itemPtr, Tcl_Obj *obj, Tcl_Size *indexPtr); static int PolygonCoords(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Item *itemPtr, int objc, Tcl_Obj *const objv[]); static void PolygonDeleteCoords(Tk_Canvas canvas, Tk_Item *itemPtr, Tcl_Size first, Tcl_Size last); static void PolygonInsert(Tk_Canvas canvas, Tk_Item *itemPtr, Tcl_Size beforeThis, Tcl_Obj *obj); static int PolygonToArea(Tk_Canvas canvas, Tk_Item *itemPtr, double *rectPtr); static double PolygonToPoint(Tk_Canvas canvas, Tk_Item *itemPtr, double *pointPtr); static int PolygonToPostscript(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Item *itemPtr, int prepass); static void RotatePolygon(Tk_Canvas canvas, Tk_Item *itemPtr, double originX, double originY, double angleRad); static void ScalePolygon(Tk_Canvas canvas, Tk_Item *itemPtr, double originX, double originY, double scaleX, double scaleY); static void TranslatePolygon(Tk_Canvas canvas, Tk_Item *itemPtr, double deltaX, double deltaY); /* * The structures below defines the polygon item type by means of functions * that can be invoked by generic item code. */ Tk_ItemType tkPolygonType = { "polygon", /* name */ sizeof(PolygonItem), /* itemSize */ CreatePolygon, /* createProc */ configSpecs, /* configSpecs */ ConfigurePolygon, /* configureProc */ PolygonCoords, /* coordProc */ DeletePolygon, /* deleteProc */ DisplayPolygon, /* displayProc */ TK_CONFIG_OBJS | TK_MOVABLE_POINTS, /* flags */ PolygonToPoint, /* pointProc */ PolygonToArea, /* areaProc */ PolygonToPostscript, /* postscriptProc */ ScalePolygon, /* scaleProc */ TranslatePolygon, /* translateProc */ GetPolygonIndex, /* indexProc */ NULL, /* icursorProc */ NULL, /* selectionProc */ PolygonInsert, /* insertProc */ PolygonDeleteCoords, /* dTextProc */ NULL, /* nextPtr */ RotatePolygon, /* rotateProc */ 0, NULL, NULL }; /* * The definition below determines how large are static arrays used to hold * spline points (splines larger than this have to have their arrays * malloc-ed). */ #define MAX_STATIC_POINTS 200 /* *-------------------------------------------------------------- * * CreatePolygon -- * * This function is invoked to create a new polygon item in a canvas. * * Results: * A standard Tcl return value. If an error occurred in creating the * item, then an error message is left in the interp's result; in this * case itemPtr is left uninitialized, so it can be safely freed by the * caller. * * Side effects: * A new polygon item is created. * *-------------------------------------------------------------- */ static int CreatePolygon( Tcl_Interp *interp, /* Interpreter for error reporting. */ Tk_Canvas canvas, /* Canvas to hold new item. */ Tk_Item *itemPtr, /* Record to hold new item; header has been * initialized by caller. */ int objc, /* Number of arguments in objv. */ Tcl_Obj *const objv[]) /* Arguments describing polygon. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; int i; if (objc == 0) { Tcl_Panic("canvas did not pass any coords"); } /* * Carry out initialization that is needed in order to clean up after * errors during the the remainder of this function. */ Tk_CreateOutline(&polyPtr->outline); polyPtr->numPoints = 0; polyPtr->pointsAllocated = 0; polyPtr->coordPtr = NULL; polyPtr->joinStyle = JoinRound; polyPtr->tsoffset.flags = 0; polyPtr->tsoffset.xoffset = 0; polyPtr->tsoffset.yoffset = 0; polyPtr->fillColor = NULL; polyPtr->activeFillColor = NULL; polyPtr->disabledFillColor = NULL; polyPtr->fillStipple = None; polyPtr->activeFillStipple = None; polyPtr->disabledFillStipple = None; polyPtr->fillGC = NULL; polyPtr->smooth = NULL; polyPtr->splineSteps = 12; polyPtr->autoClosed = 0; /* * Count the number of points and then parse them into a point array. * Leading arguments are assumed to be points if they start with a digit * or a minus sign followed by a digit. */ for (i = 0; i < objc; i++) { const char *arg = Tcl_GetString(objv[i]); if ((arg[0] == '-') && (arg[1] >= 'a') && (arg[1] <= 'z')) { break; } } if (i && PolygonCoords(interp, canvas, itemPtr, i, objv) != TCL_OK) { goto error; } if (ConfigurePolygon(interp, canvas, itemPtr, objc-i, objv+i, 0) == TCL_OK) { return TCL_OK; } error: DeletePolygon(canvas, itemPtr, Tk_Display(Tk_CanvasTkwin(canvas))); return TCL_ERROR; } /* *-------------------------------------------------------------- * * PolygonCoords -- * * This function is invoked to process the "coords" widget command on * polygons. See the user documentation for details on what it does. * * Results: * Returns TCL_OK or TCL_ERROR, and sets the interp's result. * * Side effects: * The coordinates for the given item may be changed. * *-------------------------------------------------------------- */ static int PolygonCoords( Tcl_Interp *interp, /* Used for error reporting. */ Tk_Canvas canvas, /* Canvas containing item. */ Tk_Item *itemPtr, /* Item whose coordinates are to be read or * modified. */ int objc, /* Number of coordinates supplied in objv. */ Tcl_Obj *const objv[]) /* Array of coordinates: x1, y1, x2, y2, ... */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; int i, numPoints; if (objc == 0) { /* * Print the coords used to create the polygon. If we auto closed the * polygon then we don't report the last point. */ Tcl_Obj *subobj, *obj = Tcl_NewObj(); for (i = 0; i < 2*(polyPtr->numPoints - polyPtr->autoClosed); i++) { subobj = Tcl_NewDoubleObj(polyPtr->coordPtr[i]); Tcl_ListObjAppendElement(interp, obj, subobj); } Tcl_SetObjResult(interp, obj); return TCL_OK; } if (objc == 1) { if (Tcl_ListObjGetElements(interp, objv[0], &objc, (Tcl_Obj ***) &objv) != TCL_OK) { return TCL_ERROR; } } if (objc & 1) { Tcl_SetObjResult(interp, Tcl_ObjPrintf( "wrong # coordinates: expected an even number, got %d", objc)); Tcl_SetErrorCode(interp, "TK", "CANVAS", "COORDS", "POLYGON", NULL); return TCL_ERROR; } numPoints = objc/2; if (polyPtr->pointsAllocated <= numPoints) { if (polyPtr->coordPtr != NULL) { ckfree(polyPtr->coordPtr); } /* * One extra point gets allocated here, because we always add * another point to close the polygon. */ polyPtr->coordPtr = (double *)ckalloc(sizeof(double) * (objc+2)); polyPtr->pointsAllocated = numPoints+1; } for (i = objc-1; i >= 0; i--) { if (Tk_CanvasGetCoordFromObj(interp, canvas, objv[i], &polyPtr->coordPtr[i]) != TCL_OK) { return TCL_ERROR; } } polyPtr->numPoints = numPoints; polyPtr->autoClosed = 0; /* * Close the polygon if it isn't already closed. */ if (objc>2 && ((polyPtr->coordPtr[objc-2] != polyPtr->coordPtr[0]) || (polyPtr->coordPtr[objc-1] != polyPtr->coordPtr[1]))) { polyPtr->autoClosed = 1; polyPtr->numPoints++; polyPtr->coordPtr[objc] = polyPtr->coordPtr[0]; polyPtr->coordPtr[objc+1] = polyPtr->coordPtr[1]; } ComputePolygonBbox(canvas, polyPtr); return TCL_OK; } /* *-------------------------------------------------------------- * * ConfigurePolygon -- * * This function is invoked to configure various aspects of a polygon * item such as its background color. * * Results: * A standard Tcl result code. If an error occurs, then an error message * is left in the interp's result. * * Side effects: * Configuration information, such as colors and stipple patterns, may be * set for itemPtr. * *-------------------------------------------------------------- */ static int ConfigurePolygon( Tcl_Interp *interp, /* Interpreter for error reporting. */ Tk_Canvas canvas, /* Canvas containing itemPtr. */ Tk_Item *itemPtr, /* Polygon item to reconfigure. */ int objc, /* Number of elements in objv. */ Tcl_Obj *const objv[], /* Arguments describing things to configure. */ int flags) /* Flags to pass to Tk_ConfigureWidget. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; XGCValues gcValues; GC newGC; unsigned long mask; Tk_Window tkwin; XColor *color; Pixmap stipple; Tk_State state; tkwin = Tk_CanvasTkwin(canvas); if (TCL_OK != Tk_ConfigureWidget(interp, tkwin, configSpecs, objc, (const char **) objv, (char *) polyPtr, flags|TK_CONFIG_OBJS)) { return TCL_ERROR; } /* * A few of the options require additional processing, such as graphics * contexts. */ state = itemPtr->state; if (polyPtr->outline.activeWidth > polyPtr->outline.width || polyPtr->outline.activeDash.number != 0 || polyPtr->outline.activeColor != NULL || polyPtr->outline.activeStipple != None || polyPtr->activeFillColor != NULL || polyPtr->activeFillStipple != None) { itemPtr->redraw_flags |= TK_ITEM_STATE_DEPENDANT; } else { itemPtr->redraw_flags &= ~TK_ITEM_STATE_DEPENDANT; } if (state == TK_STATE_NULL) { state = Canvas(canvas)->canvas_state; } if (state == TK_STATE_HIDDEN) { ComputePolygonBbox(canvas, polyPtr); return TCL_OK; } mask = Tk_ConfigOutlineGC(&gcValues, canvas, itemPtr, &polyPtr->outline); if (mask) { gcValues.cap_style = CapRound; gcValues.join_style = polyPtr->joinStyle; mask |= GCCapStyle|GCJoinStyle; newGC = Tk_GetGC(tkwin, mask, &gcValues); } else { newGC = NULL; } if (polyPtr->outline.gc != NULL) { Tk_FreeGC(Tk_Display(tkwin), polyPtr->outline.gc); } polyPtr->outline.gc = newGC; color = polyPtr->fillColor; stipple = polyPtr->fillStipple; if (Canvas(canvas)->currentItemPtr == itemPtr) { if (polyPtr->activeFillColor != NULL) { color = polyPtr->activeFillColor; } if (polyPtr->activeFillStipple != None) { stipple = polyPtr->activeFillStipple; } } else if (state == TK_STATE_DISABLED) { if (polyPtr->disabledFillColor != NULL) { color = polyPtr->disabledFillColor; } if (polyPtr->disabledFillStipple != None) { stipple = polyPtr->disabledFillStipple; } } if (color == NULL) { newGC = NULL; } else { gcValues.foreground = color->pixel; mask = GCForeground; if (stipple != None) { gcValues.stipple = stipple; gcValues.fill_style = FillStippled; mask |= GCStipple|GCFillStyle; } #ifdef MAC_OSX_TK /* * Mac OS X CG drawing needs access to the outline linewidth * even for fills (as linewidth controls antialiasing). */ gcValues.line_width = polyPtr->outline.gc != NULL ? polyPtr->outline.gc->line_width : 0; mask |= GCLineWidth; #endif newGC = Tk_GetGC(tkwin, mask, &gcValues); } if (polyPtr->fillGC != NULL) { Tk_FreeGC(Tk_Display(tkwin), polyPtr->fillGC); } polyPtr->fillGC = newGC; /* * Keep spline parameters within reasonable limits. */ if (polyPtr->splineSteps < 1) { polyPtr->splineSteps = 1; } else if (polyPtr->splineSteps > 100) { polyPtr->splineSteps = 100; } ComputePolygonBbox(canvas, polyPtr); return TCL_OK; } /* *-------------------------------------------------------------- * * DeletePolygon -- * * This function is called to clean up the data structure associated with * a polygon item. * * Results: * None. * * Side effects: * Resources associated with itemPtr are released. * *-------------------------------------------------------------- */ static void DeletePolygon( TCL_UNUSED(Tk_Canvas), /* Info about overall canvas widget. */ Tk_Item *itemPtr, /* Item that is being deleted. */ Display *display) /* Display containing window for canvas. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; Tk_DeleteOutline(display, &polyPtr->outline); if (polyPtr->coordPtr != NULL) { ckfree(polyPtr->coordPtr); } if (polyPtr->fillColor != NULL) { Tk_FreeColor(polyPtr->fillColor); } if (polyPtr->activeFillColor != NULL) { Tk_FreeColor(polyPtr->activeFillColor); } if (polyPtr->disabledFillColor != NULL) { Tk_FreeColor(polyPtr->disabledFillColor); } if (polyPtr->fillStipple != None) { Tk_FreeBitmap(display, polyPtr->fillStipple); } if (polyPtr->activeFillStipple != None) { Tk_FreeBitmap(display, polyPtr->activeFillStipple); } if (polyPtr->disabledFillStipple != None) { Tk_FreeBitmap(display, polyPtr->disabledFillStipple); } if (polyPtr->fillGC != NULL) { Tk_FreeGC(display, polyPtr->fillGC); } } /* *-------------------------------------------------------------- * * ComputePolygonBbox -- * * This function is invoked to compute the bounding box of all the pixels * that may be drawn as part of a polygon. * * Results: * None. * * Side effects: * The fields x1, y1, x2, and y2 are updated in the header for itemPtr. * *-------------------------------------------------------------- */ static void ComputePolygonBbox( Tk_Canvas canvas, /* Canvas that contains item. */ PolygonItem *polyPtr) /* Item whose bbox is to be recomputed. */ { double *coordPtr; int i; double width; Tk_State state = polyPtr->header.state; Tk_TSOffset *tsoffset; if (state == TK_STATE_NULL) { state = Canvas(canvas)->canvas_state; } width = polyPtr->outline.width; if (polyPtr->coordPtr == NULL || (polyPtr->numPoints < 1) || (state == TK_STATE_HIDDEN)) { polyPtr->header.x1 = polyPtr->header.x2 = polyPtr->header.y1 = polyPtr->header.y2 = -1; return; } if (Canvas(canvas)->currentItemPtr == (Tk_Item *) polyPtr) { if (polyPtr->outline.activeWidth > width) { width = polyPtr->outline.activeWidth; } } else if (state == TK_STATE_DISABLED) { if (polyPtr->outline.disabledWidth > 0.0) { width = polyPtr->outline.disabledWidth; } } coordPtr = polyPtr->coordPtr; polyPtr->header.x1 = polyPtr->header.x2 = (int) *coordPtr; polyPtr->header.y1 = polyPtr->header.y2 = (int) coordPtr[1]; /* * Compute the bounding box of all the points in the polygon, then expand * in all directions by the outline's width to take care of butting or * rounded corners and projecting or rounded caps. This expansion is an * overestimate (worst-case is square root of two over two) but it's * simple. Don't do anything special for curves. This causes an additional * overestimate in the bounding box, but is faster. */ for (i = 1, coordPtr = polyPtr->coordPtr+2; i < polyPtr->numPoints-1; i++, coordPtr += 2) { TkIncludePoint((Tk_Item *) polyPtr, coordPtr); } tsoffset = &polyPtr->tsoffset; if (tsoffset->flags & TK_OFFSET_INDEX) { int index = tsoffset->flags & ~TK_OFFSET_INDEX; if (tsoffset->flags == INT_MAX) { index = (polyPtr->numPoints - polyPtr->autoClosed) * 2; if (index < 0) { index = 0; } } index %= (polyPtr->numPoints - polyPtr->autoClosed) * 2; if (index < 0) { index += (polyPtr->numPoints - polyPtr->autoClosed) * 2; } tsoffset->xoffset = (int) (polyPtr->coordPtr[index] + 0.5); tsoffset->yoffset = (int) (polyPtr->coordPtr[index+1] + 0.5); } else { if (tsoffset->flags & TK_OFFSET_LEFT) { tsoffset->xoffset = polyPtr->header.x1; } else if (tsoffset->flags & TK_OFFSET_CENTER) { tsoffset->xoffset = (polyPtr->header.x1 + polyPtr->header.x2)/2; } else if (tsoffset->flags & TK_OFFSET_RIGHT) { tsoffset->xoffset = polyPtr->header.x2; } if (tsoffset->flags & TK_OFFSET_TOP) { tsoffset->yoffset = polyPtr->header.y1; } else if (tsoffset->flags & TK_OFFSET_MIDDLE) { tsoffset->yoffset = (polyPtr->header.y1 + polyPtr->header.y2)/2; } else if (tsoffset->flags & TK_OFFSET_BOTTOM) { tsoffset->yoffset = polyPtr->header.y2; } } if (polyPtr->outline.gc != NULL) { tsoffset = &polyPtr->outline.tsoffset; if (tsoffset) { if (tsoffset->flags & TK_OFFSET_INDEX) { int index = tsoffset->flags & ~TK_OFFSET_INDEX; if (tsoffset->flags == INT_MAX) { index = (polyPtr->numPoints - 1) * 2; } index %= (polyPtr->numPoints - 1) * 2; if (index < 0) { index += (polyPtr->numPoints - 1) * 2; } tsoffset->xoffset = (int) (polyPtr->coordPtr[index] + 0.5); tsoffset->yoffset = (int) (polyPtr->coordPtr[index+1] + 0.5); } else { if (tsoffset->flags & TK_OFFSET_LEFT) { tsoffset->xoffset = polyPtr->header.x1; } else if (tsoffset->flags & TK_OFFSET_CENTER) { tsoffset->xoffset = (polyPtr->header.x1 + polyPtr->header.x2) / 2; } else if (tsoffset->flags & TK_OFFSET_RIGHT) { tsoffset->xoffset = polyPtr->header.x2; } if (tsoffset->flags & TK_OFFSET_TOP) { tsoffset->yoffset = polyPtr->header.y1; } else if (tsoffset->flags & TK_OFFSET_MIDDLE) { tsoffset->yoffset = (polyPtr->header.y1 + polyPtr->header.y2) / 2; } else if (tsoffset->flags & TK_OFFSET_BOTTOM) { tsoffset->yoffset = polyPtr->header.y2; } } } i = (int) ((width+1.5) / 2.0); polyPtr->header.x1 -= i; polyPtr->header.x2 += i; polyPtr->header.y1 -= i; polyPtr->header.y2 += i; /* * For mitered lines, make a second pass through all the points. * Compute the locations of the two miter vertex points and add those * into the bounding box. */ if (polyPtr->joinStyle == JoinMiter) { double miter[4]; int j; coordPtr = polyPtr->coordPtr; if (polyPtr->numPoints > 3) { if (TkGetMiterPoints(coordPtr+2*(polyPtr->numPoints-2), coordPtr, coordPtr+2, width, miter, miter+2)) { for (j = 0; j < 4; j += 2) { TkIncludePoint((Tk_Item *) polyPtr, miter+j); } } } for (i = polyPtr->numPoints ; i >= 3; i--, coordPtr += 2) { if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4, width, miter, miter+2)) { for (j = 0; j < 4; j += 2) { TkIncludePoint((Tk_Item *) polyPtr, miter+j); } } } } } /* * Add one more pixel of fudge factor just to be safe (e.g. X may round * differently than we do). */ polyPtr->header.x1 -= 1; polyPtr->header.x2 += 1; polyPtr->header.y1 -= 1; polyPtr->header.y2 += 1; } /* *-------------------------------------------------------------- * * TkFillPolygon -- * * This function is invoked to convert a polygon to screen coordinates * and display it using a particular GC. * * Results: * None. * * Side effects: * ItemPtr is drawn in drawable using the transformation information in * canvas. * *-------------------------------------------------------------- */ void TkFillPolygon( Tk_Canvas canvas, /* Canvas whose coordinate system is to be * used for drawing. */ double *coordPtr, /* Array of coordinates for polygon: x1, y1, * x2, y2, .... */ int numPoints, /* Twice this many coordinates are present at * *coordPtr. */ Display *display, /* Display on which to draw polygon. */ Drawable drawable, /* Pixmap or window in which to draw * polygon. */ GC gc, /* Graphics context for drawing. */ GC outlineGC) /* If not None, use this to draw an outline * around the polygon after filling it. */ { XPoint staticPoints[MAX_STATIC_POINTS]; XPoint *pointPtr; XPoint *pPtr; int i; /* * Build up an array of points in screen coordinates. Use a static array * unless the polygon has an enormous number of points; in this case, * dynamically allocate an array. */ if (numPoints <= MAX_STATIC_POINTS) { pointPtr = staticPoints; } else { pointPtr = (XPoint *)ckalloc(numPoints * sizeof(XPoint)); } for (i=0, pPtr=pointPtr ; ix, &pPtr->y); } /* * Display polygon, then free up polygon storage if it was dynamically * allocated. */ if (gc != NULL && numPoints > 3) { XFillPolygon(display, drawable, gc, pointPtr, numPoints, Complex, CoordModeOrigin); } if (outlineGC != NULL) { XDrawLines(display, drawable, outlineGC, pointPtr, numPoints, CoordModeOrigin); } if (pointPtr != staticPoints) { ckfree(pointPtr); } } /* *-------------------------------------------------------------- * * DisplayPolygon -- * * This function is invoked to draw a polygon item in a given drawable. * * Results: * None. * * Side effects: * ItemPtr is drawn in drawable using the transformation information in * canvas. * *-------------------------------------------------------------- */ static void DisplayPolygon( Tk_Canvas canvas, /* Canvas that contains item. */ Tk_Item *itemPtr, /* Item to be displayed. */ Display *display, /* Display on which to draw item. */ Drawable drawable, /* Pixmap or window in which to draw item. */ TCL_UNUSED(int), /* Describes region of canvas that must be */ TCL_UNUSED(int), /* redisplayed (not used). */ TCL_UNUSED(int), TCL_UNUSED(int)) { PolygonItem *polyPtr = (PolygonItem *) itemPtr; Tk_State state = itemPtr->state; Pixmap stipple = polyPtr->fillStipple; double linewidth = polyPtr->outline.width; if (((polyPtr->fillGC == NULL) && (polyPtr->outline.gc == NULL)) || (polyPtr->numPoints < 1) || (polyPtr->numPoints < 3 && polyPtr->outline.gc == NULL)) { return; } if (state == TK_STATE_NULL) { state = Canvas(canvas)->canvas_state; } if (Canvas(canvas)->currentItemPtr == itemPtr) { if (polyPtr->outline.activeWidth > linewidth) { linewidth = polyPtr->outline.activeWidth; } if (polyPtr->activeFillStipple != None) { stipple = polyPtr->activeFillStipple; } } else if (state == TK_STATE_DISABLED) { if (polyPtr->outline.disabledWidth > 0.0) { linewidth = polyPtr->outline.disabledWidth; } if (polyPtr->disabledFillStipple != None) { stipple = polyPtr->disabledFillStipple; } } /* * If we're stippling then modify the stipple offset in the GC. Be sure to * reset the offset when done, since the GC is supposed to be read-only. */ if ((stipple != None) && (polyPtr->fillGC != NULL)) { Tk_TSOffset *tsoffset = &polyPtr->tsoffset; int w = 0, h = 0; int flags = tsoffset->flags; if (!(flags & TK_OFFSET_INDEX) && (flags & (TK_OFFSET_CENTER|TK_OFFSET_MIDDLE))) { Tk_SizeOfBitmap(display, stipple, &w, &h); if (flags & TK_OFFSET_CENTER) { w /= 2; } else { w = 0; } if (flags & TK_OFFSET_MIDDLE) { h /= 2; } else { h = 0; } } tsoffset->xoffset -= w; tsoffset->yoffset -= h; Tk_CanvasSetOffset(canvas, polyPtr->fillGC, tsoffset); tsoffset->xoffset += w; tsoffset->yoffset += h; } Tk_ChangeOutlineGC(canvas, itemPtr, &polyPtr->outline); if (polyPtr->numPoints < 3) { short x, y; int intLineWidth = (int) (linewidth + 0.5); if (intLineWidth < 1) { intLineWidth = 1; } Tk_CanvasDrawableCoords(canvas, polyPtr->coordPtr[0], polyPtr->coordPtr[1], &x, &y); XFillArc(display, drawable, polyPtr->outline.gc, x - intLineWidth/2, y - intLineWidth/2, (unsigned) intLineWidth+1, (unsigned) intLineWidth+1, 0, 64*360); } else if (!polyPtr->smooth || polyPtr->numPoints < 4) { TkFillPolygon(canvas, polyPtr->coordPtr, polyPtr->numPoints, display, drawable, polyPtr->fillGC, polyPtr->outline.gc); } else { int numPoints; XPoint staticPoints[MAX_STATIC_POINTS]; XPoint *pointPtr; /* * This is a smoothed polygon. Display using a set of generated spline * points rather than the original points. */ numPoints = polyPtr->smooth->coordProc(canvas, NULL, polyPtr->numPoints, polyPtr->splineSteps, NULL, NULL); if (numPoints <= MAX_STATIC_POINTS) { pointPtr = staticPoints; } else { pointPtr = (XPoint *)ckalloc(numPoints * sizeof(XPoint)); } numPoints = polyPtr->smooth->coordProc(canvas, polyPtr->coordPtr, polyPtr->numPoints, polyPtr->splineSteps, pointPtr, NULL); if (polyPtr->fillGC != NULL) { XFillPolygon(display, drawable, polyPtr->fillGC, pointPtr, numPoints, Complex, CoordModeOrigin); } if (polyPtr->outline.gc != NULL) { XDrawLines(display, drawable, polyPtr->outline.gc, pointPtr, numPoints, CoordModeOrigin); } if (pointPtr != staticPoints) { ckfree(pointPtr); } } Tk_ResetOutlineGC(canvas, itemPtr, &polyPtr->outline); if ((stipple != None) && (polyPtr->fillGC != NULL)) { XSetTSOrigin(display, polyPtr->fillGC, 0, 0); } } /* *-------------------------------------------------------------- * * PolygonInsert -- * * Insert coords into a polygon item at a given index. * * Results: * None. * * Side effects: * The coords in the given item is modified. * *-------------------------------------------------------------- */ static void PolygonInsert( Tk_Canvas canvas, /* Canvas containing text item. */ Tk_Item *itemPtr, /* Line item to be modified. */ Tcl_Size beforeThis, /* Index before which new coordinates are to * be inserted. */ Tcl_Obj *obj) /* New coordinates to be inserted. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; int length, oriNumPoints, objc, nbInsPoints, i; Tcl_Obj **objv; double *newCoordPtr; Tk_State state = itemPtr->state; if (state == TK_STATE_NULL) { state = Canvas(canvas)->canvas_state; } if (!obj || (Tcl_ListObjGetElements(NULL, obj, &objc, &objv) != TCL_OK) || !objc || objc&1) { return; } oriNumPoints = polyPtr->numPoints - polyPtr->autoClosed; length = 2*(polyPtr->numPoints - polyPtr->autoClosed); nbInsPoints = objc / 2; while ((int)beforeThis > length) { beforeThis -= length; } while ((int)beforeThis < 0) { beforeThis += length; } newCoordPtr = (double *)ckalloc(sizeof(double) * (length + 2 + objc)); for (i=0; i<(int)beforeThis; i++) { newCoordPtr[i] = polyPtr->coordPtr[i]; } for (i=0; icoordPtr[i]; } if (polyPtr->coordPtr) { ckfree(polyPtr->coordPtr); } length += objc; polyPtr->coordPtr = newCoordPtr; polyPtr->numPoints = (length/2) + polyPtr->autoClosed; /* * Close the polygon if it isn't already closed, or remove autoclosing if * the user's coordinates are now closed. */ if (polyPtr->autoClosed) { if ((newCoordPtr[length-2] == newCoordPtr[0]) && (newCoordPtr[length-1] == newCoordPtr[1])) { polyPtr->autoClosed = 0; polyPtr->numPoints--; } } else { if ((newCoordPtr[length-2] != newCoordPtr[0]) || (newCoordPtr[length-1] != newCoordPtr[1])) { polyPtr->autoClosed = 1; polyPtr->numPoints++; } } newCoordPtr[length] = newCoordPtr[0]; newCoordPtr[length+1] = newCoordPtr[1]; if ((length-objc > 3) && (state != TK_STATE_HIDDEN)) { /* * This is some optimizing code that will result that only the part of * the polygon that changed (and the objects that are overlapping with * that part) need to be redrawn. A special flag is set that instructs * the general canvas code not to redraw the whole object. If this * flag is not set, the canvas will do the redrawing, otherwise I have * to do it here. * Rationale for the optimization code can be found in Tk ticket * [5fb8145997]. */ double width; int j; itemPtr->redraw_flags |= TK_ITEM_DONT_REDRAW; /* * The header elements that normally are used for the bounding box, * are now used to calculate the bounding box for only the part that * has to be redrawn. That doesn't matter, because afterwards the * bounding box has to be re-calculated anyway. */ itemPtr->x1 = itemPtr->x2 = (int) polyPtr->coordPtr[beforeThis]; itemPtr->y1 = itemPtr->y2 = (int) polyPtr->coordPtr[beforeThis+1]; beforeThis -= 2; objc += 4; if (polyPtr->smooth) { if (!strcmp(polyPtr->smooth->name, "true")) { /* * Quadratic Bezier splines. */ beforeThis -= 2; objc += 4; } else if (!strcmp(polyPtr->smooth->name, "raw")) { /* * Cubic Bezier splines. */ if ((oriNumPoints % 3) || (nbInsPoints % 3)) { /* * No optimization for "degenerate" polygons or when inserting * something else than a multiple of 3 points. */ itemPtr->redraw_flags &= ~TK_ITEM_DONT_REDRAW; } else { beforeThis -= abs((int)beforeThis) % 6; objc += 4; } } else { /* * Custom smoothing method. No optimization is possible. */ itemPtr->redraw_flags &= ~TK_ITEM_DONT_REDRAW; } } if (itemPtr->redraw_flags & TK_ITEM_DONT_REDRAW) { /* * Be careful; beforeThis could now be negative */ for (i=(int)beforeThis; i<(int)beforeThis+objc; i+=2) { j = i; if (j < 0) { j += length; } else if (j >= length) { j -= length; } TkIncludePoint(itemPtr, polyPtr->coordPtr+j); } width = polyPtr->outline.width; if (Canvas(canvas)->currentItemPtr == itemPtr) { if (polyPtr->outline.activeWidth > width) { width = polyPtr->outline.activeWidth; } } else if (state == TK_STATE_DISABLED) { if (polyPtr->outline.disabledWidth > 0.0) { width = polyPtr->outline.disabledWidth; } } itemPtr->x1 -= (int) width; itemPtr->y1 -= (int) width; itemPtr->x2 += (int) width; itemPtr->y2 += (int) width; Tk_CanvasEventuallyRedraw(canvas, itemPtr->x1, itemPtr->y1, itemPtr->x2, itemPtr->y2); } } ComputePolygonBbox(canvas, polyPtr); } /* *-------------------------------------------------------------- * * PolygonDeleteCoords -- * * Delete one or more coordinates from a polygon item. * * Results: * None. * * Side effects: * Characters between "first" and "last", inclusive, get deleted from * itemPtr. * *-------------------------------------------------------------- */ static void PolygonDeleteCoords( Tk_Canvas canvas, /* Canvas containing itemPtr. */ Tk_Item *itemPtr, /* Item in which to delete characters. */ Tcl_Size first, /* Index of first character to delete. */ Tcl_Size last) /* Index of last character to delete. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; int count, i; int length = 2*(polyPtr->numPoints - polyPtr->autoClosed); while ((int)first >= length) { first -= length; } while ((int)first < 0) { first += length; } while ((int)last >= length) { last -= length; } while ((int)last < 0) { last += length; } first &= -2; last &= -2; count = last + 2 - first; if (count <= 0) { count += length; } if (count >= length) { polyPtr->numPoints = 0; if (polyPtr->coordPtr != NULL) { ckfree(polyPtr->coordPtr); polyPtr->coordPtr = NULL; } ComputePolygonBbox(canvas, polyPtr); return; } if (last >= first) { for (i=last+2; icoordPtr[i-count] = polyPtr->coordPtr[i]; } } else { for (i=last; i<=(int)first; i++) { polyPtr->coordPtr[i-last] = polyPtr->coordPtr[i]; } } polyPtr->coordPtr[length-count] = polyPtr->coordPtr[0]; polyPtr->coordPtr[length-count+1] = polyPtr->coordPtr[1]; polyPtr->numPoints -= count/2; ComputePolygonBbox(canvas, polyPtr); } /* *-------------------------------------------------------------- * * PolygonToPoint -- * * Computes the distance from a given point to a given polygon, in canvas * units. * * Results: * The return value is 0 if the point whose x and y coordinates are * pointPtr[0] and pointPtr[1] is inside the polygon. If the point isn't * inside the polygon then the return value is the distance from the * point to the polygon. * * Side effects: * None. * *-------------------------------------------------------------- */ static double PolygonToPoint( Tk_Canvas canvas, /* Canvas containing item. */ Tk_Item *itemPtr, /* Item to check against point. */ double *pointPtr) /* Pointer to x and y coordinates. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; double *coordPtr, *polyPoints; double staticSpace[2*MAX_STATIC_POINTS]; double poly[10]; double radius; double bestDist, dist; int numPoints, count; int changedMiterToBevel; /* Non-zero means that a mitered corner had to * be treated as beveled after all because the * angle was < 11 degrees. */ double width; Tk_State state = itemPtr->state; bestDist = 1.0e36; if (state == TK_STATE_NULL) { state = Canvas(canvas)->canvas_state; } width = polyPtr->outline.width; if (Canvas(canvas)->currentItemPtr == itemPtr) { if (polyPtr->outline.activeWidth > width) { width = polyPtr->outline.activeWidth; } } else if (state == TK_STATE_DISABLED) { if (polyPtr->outline.disabledWidth > 0.0) { width = polyPtr->outline.disabledWidth; } } radius = width/2.0; /* * Handle smoothed polygons by generating an expanded set of points * against which to do the check. */ if ((polyPtr->smooth) && (polyPtr->numPoints > 2)) { numPoints = polyPtr->smooth->coordProc(canvas, NULL, polyPtr->numPoints, polyPtr->splineSteps, NULL, NULL); if (numPoints <= MAX_STATIC_POINTS) { polyPoints = staticSpace; } else { polyPoints = (double *)ckalloc(2 * numPoints * sizeof(double)); } numPoints = polyPtr->smooth->coordProc(canvas, polyPtr->coordPtr, polyPtr->numPoints, polyPtr->splineSteps, NULL, polyPoints); } else { numPoints = polyPtr->numPoints; polyPoints = polyPtr->coordPtr; } bestDist = TkPolygonToPoint(polyPoints, numPoints, pointPtr); if (bestDist <= 0.0) { goto donepoint; } if ((polyPtr->outline.gc != NULL) && (polyPtr->joinStyle == JoinRound)) { dist = bestDist - radius; if (dist <= 0.0) { bestDist = 0.0; goto donepoint; } else { bestDist = dist; } } if ((polyPtr->outline.gc == NULL) || (width <= 1)) { goto donepoint; } /* * The overall idea is to iterate through all of the edges of the line, * computing a polygon for each edge and testing the point against that * polygon. In addition, there are additional tests to deal with rounded * joints and caps. */ changedMiterToBevel = 0; for (count = numPoints, coordPtr = polyPoints; count >= 2; count--, coordPtr += 2) { /* * If rounding is done around the first point then compute the * distance between the point and the point. */ if (polyPtr->joinStyle == JoinRound) { dist = hypot(coordPtr[0] - pointPtr[0], coordPtr[1] - pointPtr[1]) - radius; if (dist <= 0.0) { bestDist = 0.0; goto donepoint; } else if (dist < bestDist) { bestDist = dist; } } /* * Compute the polygonal shape corresponding to this edge, consisting * of two points for the first point of the edge and two points for * the last point of the edge. */ if (count == numPoints) { TkGetButtPoints(coordPtr+2, coordPtr, (double) width, 0, poly, poly+2); } else if ((polyPtr->joinStyle == JoinMiter) && !changedMiterToBevel) { poly[0] = poly[6]; poly[1] = poly[7]; poly[2] = poly[4]; poly[3] = poly[5]; } else { TkGetButtPoints(coordPtr+2, coordPtr, (double) width, 0, poly, poly+2); /* * If this line uses beveled joints, then check the distance to a * polygon comprising the last two points of the previous polygon * and the first two from this polygon; this checks the wedges * that fill the mitered joint. */ if ((polyPtr->joinStyle == JoinBevel) || changedMiterToBevel) { poly[8] = poly[0]; poly[9] = poly[1]; dist = TkPolygonToPoint(poly, 5, pointPtr); if (dist <= 0.0) { bestDist = 0.0; goto donepoint; } else if (dist < bestDist) { bestDist = dist; } changedMiterToBevel = 0; } } if (count == 2) { TkGetButtPoints(coordPtr, coordPtr+2, (double) width, 0, poly+4, poly+6); } else if (polyPtr->joinStyle == JoinMiter) { if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4, (double) width, poly+4, poly+6) == 0) { changedMiterToBevel = 1; TkGetButtPoints(coordPtr, coordPtr+2, (double) width, 0, poly+4, poly+6); } } else { TkGetButtPoints(coordPtr, coordPtr+2, (double) width, 0, poly+4, poly+6); } poly[8] = poly[0]; poly[9] = poly[1]; dist = TkPolygonToPoint(poly, 5, pointPtr); if (dist <= 0.0) { bestDist = 0.0; goto donepoint; } else if (dist < bestDist) { bestDist = dist; } } donepoint: if (polyPoints != staticSpace && polyPoints != polyPtr->coordPtr) { ckfree(polyPoints); } return bestDist; } /* *-------------------------------------------------------------- * * PolygonToArea -- * * This function is called to determine whether an item lies entirely * inside, entirely outside, or overlapping a given rectangular area. * * Results: * -1 is returned if the item is entirely outside the area given by * rectPtr, 0 if it overlaps, and 1 if it is entirely inside the given * area. * * Side effects: * None. * *-------------------------------------------------------------- */ static int PolygonToArea( Tk_Canvas canvas, /* Canvas containing item. */ Tk_Item *itemPtr, /* Item to check against polygon. */ double *rectPtr) /* Pointer to array of four coordinates * (x1,y1,x2,y2) describing rectangular * area. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; double *coordPtr; double staticSpace[2*MAX_STATIC_POINTS]; double *polyPoints, poly[10]; double radius; int numPoints, count; int changedMiterToBevel; /* Non-zero means that a mitered corner had to * be treated as beveled after all because the * angle was < 11 degrees. */ int inside; /* Tentative guess about what to return, based * on all points seen so far: one means * everything seen so far was inside the area; * -1 means everything was outside the area. 0 * means overlap has been found. */ double width; Tk_State state = itemPtr->state; if (state == TK_STATE_NULL) { state = Canvas(canvas)->canvas_state; } width = polyPtr->outline.width; if (Canvas(canvas)->currentItemPtr == itemPtr) { if (polyPtr->outline.activeWidth > width) { width = polyPtr->outline.activeWidth; } } else if (state == TK_STATE_DISABLED) { if (polyPtr->outline.disabledWidth > 0.0) { width = polyPtr->outline.disabledWidth; } } radius = width/2.0; inside = -1; if ((state == TK_STATE_HIDDEN) || polyPtr->numPoints < 2) { return -1; } else if (polyPtr->numPoints < 3) { double oval[4]; oval[0] = polyPtr->coordPtr[0]-radius; oval[1] = polyPtr->coordPtr[1]-radius; oval[2] = polyPtr->coordPtr[0]+radius; oval[3] = polyPtr->coordPtr[1]+radius; return TkOvalToArea(oval, rectPtr); } /* * Handle smoothed polygons by generating an expanded set of points * against which to do the check. */ if (polyPtr->smooth) { numPoints = polyPtr->smooth->coordProc(canvas, NULL, polyPtr->numPoints, polyPtr->splineSteps, NULL, NULL); if (numPoints <= MAX_STATIC_POINTS) { polyPoints = staticSpace; } else { polyPoints = (double *)ckalloc(2 * numPoints * sizeof(double)); } numPoints = polyPtr->smooth->coordProc(canvas, polyPtr->coordPtr, polyPtr->numPoints, polyPtr->splineSteps, NULL, polyPoints); } else { numPoints = polyPtr->numPoints; polyPoints = polyPtr->coordPtr; } /* * Simple test to see if we are in the polygon. Polygons are different * from othe canvas items in that they register points being inside even * if it isn't filled. */ inside = TkPolygonToArea(polyPoints, numPoints, rectPtr); if (inside == 0) { goto donearea; } if (polyPtr->outline.gc == NULL) { goto donearea; } /* * Iterate through all of the edges of the line, computing a polygon for * each edge and testing the area against that polygon. In addition, there * are additional tests to deal with rounded joints and caps. */ changedMiterToBevel = 0; for (count = numPoints, coordPtr = polyPoints; count >= 2; count--, coordPtr += 2) { /* * If rounding is done around the first point of the edge then test a * circular region around the point with the area. */ if (polyPtr->joinStyle == JoinRound) { poly[0] = coordPtr[0] - radius; poly[1] = coordPtr[1] - radius; poly[2] = coordPtr[0] + radius; poly[3] = coordPtr[1] + radius; if (TkOvalToArea(poly, rectPtr) != inside) { inside = 0; goto donearea; } } /* * Compute the polygonal shape corresponding to this edge, consisting * of two points for the first point of the edge and two points for * the last point of the edge. */ if (count == numPoints) { TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2); } else if ((polyPtr->joinStyle == JoinMiter) && !changedMiterToBevel) { poly[0] = poly[6]; poly[1] = poly[7]; poly[2] = poly[4]; poly[3] = poly[5]; } else { TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2); /* * If the last joint was beveled, then also check a polygon * comprising the last two points of the previous polygon and the * first two from this polygon; this checks the wedges that fill * the beveled joint. */ if ((polyPtr->joinStyle == JoinBevel) || changedMiterToBevel) { poly[8] = poly[0]; poly[9] = poly[1]; if (TkPolygonToArea(poly, 5, rectPtr) != inside) { inside = 0; goto donearea; } changedMiterToBevel = 0; } } if (count == 2) { TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6); } else if (polyPtr->joinStyle == JoinMiter) { if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4, width, poly+4, poly+6) == 0) { changedMiterToBevel = 1; TkGetButtPoints(coordPtr, coordPtr+2, width,0, poly+4, poly+6); } } else { TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6); } poly[8] = poly[0]; poly[9] = poly[1]; if (TkPolygonToArea(poly, 5, rectPtr) != inside) { inside = 0; goto donearea; } } donearea: if ((polyPoints != staticSpace) && (polyPoints != polyPtr->coordPtr)) { ckfree(polyPoints); } return inside; } /* *-------------------------------------------------------------- * * ScalePolygon -- * * This function is invoked to rescale a polygon item. * * Results: * None. * * Side effects: * The polygon referred to by itemPtr is rescaled so that the following * transformation is applied to all point coordinates: * x' = originX + scaleX*(x-originX) * y' = originY + scaleY*(y-originY) * *-------------------------------------------------------------- */ static void ScalePolygon( Tk_Canvas canvas, /* Canvas containing polygon. */ Tk_Item *itemPtr, /* Polygon to be scaled. */ double originX, double originY, /* Origin about which to scale rect. */ double scaleX, /* Amount to scale in X direction. */ double scaleY) /* Amount to scale in Y direction. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; double *coordPtr; int i; for (i = 0, coordPtr = polyPtr->coordPtr; i < polyPtr->numPoints; i++, coordPtr += 2) { *coordPtr = originX + scaleX*(*coordPtr - originX); coordPtr[1] = originY + scaleY*(coordPtr[1] - originY); } ComputePolygonBbox(canvas, polyPtr); } /* *-------------------------------------------------------------- * * GetPolygonIndex -- * * Parse an index into a polygon item and return either its value or an * error. * * Results: * A standard Tcl result. If all went well, then *indexPtr is filled in * with the index (into itemPtr) corresponding to string. Otherwise an * error message is left in interp->result. * * Side effects: * None. * *-------------------------------------------------------------- */ static int GetPolygonIndex( Tcl_Interp *interp, /* Used for error reporting. */ TCL_UNUSED(Tk_Canvas), /* Canvas containing item. */ Tk_Item *itemPtr, /* Item for which the index is being * specified. */ Tcl_Obj *obj, /* Specification of a particular coord in * itemPtr's line. */ Tcl_Size *indexPtr) /* Where to store converted index. */ { Tcl_Size length, idx; PolygonItem *polyPtr = (PolygonItem *) itemPtr; const char *string; Tcl_Size count = 2*(polyPtr->numPoints - polyPtr->autoClosed); if (TCL_OK == TkGetIntForIndex(obj, (INT_MAX - 1) - ((INT_MAX) % count), 1, &idx)) { if (idx == TCL_INDEX_NONE) { idx = 0; } else if (idx >= INT_MAX - ((INT_MAX) % count)) { idx = count; } else { idx = (idx & (Tcl_Size)-2) % count; } *indexPtr = idx; return TCL_OK; } string = Tcl_GetStringFromObj(obj, &length); if (string[0] == '@') { int i; double x, y, bestDist, dist, *coordPtr; char *end; const char *p; p = string+1; x = strtod(p, &end); if ((end == p) || (*end != ',')) { goto badIndex; } p = end+1; y = strtod(p, &end); if ((end == p) || (*end != 0)) { goto badIndex; } bestDist = 1.0e36; coordPtr = polyPtr->coordPtr; *indexPtr = 0; for (i=0; inumPoints-1; i++) { dist = hypot(coordPtr[0] - x, coordPtr[1] - y); if (dist < bestDist) { bestDist = dist; *indexPtr = 2*i; } coordPtr += 2; } } else { /* * Some of the paths here leave messages in interp->result, so we have to * clear it out before storing our own message. */ badIndex: Tcl_SetObjResult(interp, Tcl_ObjPrintf("bad index \"%s\"", string)); Tcl_SetErrorCode(interp, "TK", "CANVAS", "ITEM_INDEX", "POLY", NULL); return TCL_ERROR; } return TCL_OK; } /* *-------------------------------------------------------------- * * RotatePolygon -- * * This function is called to rotate a polygon by a given amount about a * point. * * Results: * None. * * Side effects: * The position of the polygon is rotated by angleRad about (originX, * originY), and the bounding box is updated in the generic part of the * item structure. * *-------------------------------------------------------------- */ static void RotatePolygon( Tk_Canvas canvas, /* Canvas containing item. */ Tk_Item *itemPtr, /* Item that is being moved. */ double originX, double originY, double angleRad) /* Amount by which item is to be rotated. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; double *coordPtr; int i; double s = sin(angleRad), c = cos(angleRad); for (i = 0, coordPtr = polyPtr->coordPtr; i < polyPtr->numPoints; i++, coordPtr += 2) { TkRotatePoint(originX, originY, s, c, &coordPtr[0], &coordPtr[1]); } ComputePolygonBbox(canvas, polyPtr); } /* *-------------------------------------------------------------- * * TranslatePolygon -- * * This function is called to move a polygon by a given amount. * * Results: * None. * * Side effects: * The position of the polygon is offset by (xDelta, yDelta), and the * bounding box is updated in the generic part of the item structure. * *-------------------------------------------------------------- */ static void TranslatePolygon( Tk_Canvas canvas, /* Canvas containing item. */ Tk_Item *itemPtr, /* Item that is being moved. */ double deltaX, double deltaY) /* Amount by which item is to be moved. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; double *coordPtr; int i; for (i = 0, coordPtr = polyPtr->coordPtr; i < polyPtr->numPoints; i++, coordPtr += 2) { *coordPtr += deltaX; coordPtr[1] += deltaY; } ComputePolygonBbox(canvas, polyPtr); } /* *-------------------------------------------------------------- * * PolygonToPostscript -- * * This function is called to generate Postscript for polygon items. * * Results: * The return value is a standard Tcl result. If an error occurs in * generating Postscript then an error message is left in the interp's * result, replacing whatever used to be there. If no error occurs, then * Postscript for the item is appended to the result. * * Side effects: * None. * *-------------------------------------------------------------- */ static int PolygonToPostscript( Tcl_Interp *interp, /* Leave Postscript or error message here. */ Tk_Canvas canvas, /* Information about overall canvas. */ Tk_Item *itemPtr, /* Item for which Postscript is wanted. */ TCL_UNUSED(int)) /* 1 means this is a prepass to collect font * information; 0 means final Postscript is * being created. */ { PolygonItem *polyPtr = (PolygonItem *) itemPtr; int style; XColor *color; XColor *fillColor; Pixmap stipple; Pixmap fillStipple; Tk_State state = itemPtr->state; double width; Tcl_Obj *psObj; Tcl_InterpState interpState; if (polyPtr->numPoints < 2 || polyPtr->coordPtr == NULL) { return TCL_OK; } if (state == TK_STATE_NULL) { state = Canvas(canvas)->canvas_state; } width = polyPtr->outline.width; color = polyPtr->outline.color; stipple = polyPtr->fillStipple; fillColor = polyPtr->fillColor; fillStipple = polyPtr->fillStipple; if (Canvas(canvas)->currentItemPtr == itemPtr) { if (polyPtr->outline.activeWidth > width) { width = polyPtr->outline.activeWidth; } if (polyPtr->outline.activeColor != NULL) { color = polyPtr->outline.activeColor; } if (polyPtr->outline.activeStipple != None) { stipple = polyPtr->outline.activeStipple; } if (polyPtr->activeFillColor != NULL) { fillColor = polyPtr->activeFillColor; } if (polyPtr->activeFillStipple != None) { fillStipple = polyPtr->activeFillStipple; } } else if (state == TK_STATE_DISABLED) { if (polyPtr->outline.disabledWidth > 0.0) { width = polyPtr->outline.disabledWidth; } if (polyPtr->outline.disabledColor != NULL) { color = polyPtr->outline.disabledColor; } if (polyPtr->outline.disabledStipple != None) { stipple = polyPtr->outline.disabledStipple; } if (polyPtr->disabledFillColor != NULL) { fillColor = polyPtr->disabledFillColor; } if (polyPtr->disabledFillStipple != None) { fillStipple = polyPtr->disabledFillStipple; } } /* * Make our working space. */ psObj = Tcl_NewObj(); interpState = Tcl_SaveInterpState(interp, TCL_OK); if (polyPtr->numPoints == 2) { if (color == NULL) { goto done; } /* * Create a point by using a small circle. (Printer pixels are too * tiny to be used directly...) */ Tcl_AppendPrintfToObj(psObj, "matrix currentmatrix\n" /* save state */ "%.15g %.15g translate " /* go to drawing location */ "%.15g %.15g scale " /* scale the drawing */ "1 0 moveto " /* correct for origin */ "0 0 1 0 360 arc\n" /* make the circle */ "setmatrix\n", /* restore state */ polyPtr->coordPtr[0], Tk_CanvasPsY(canvas, polyPtr->coordPtr[1]), width/2.0, width/2.0); /* * Color it in. */ Tcl_ResetResult(interp); Tk_CanvasPsColor(interp, canvas, color); Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp)); if (stipple != None) { Tcl_AppendToObj(psObj, "clip ", -1); Tcl_ResetResult(interp); Tk_CanvasPsStipple(interp, canvas, stipple); Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp)); } else { Tcl_AppendToObj(psObj, "fill\n", -1); } goto done; } /* * Fill the area of the polygon. */ if (fillColor != NULL && polyPtr->numPoints > 3) { Tcl_ResetResult(interp); if (!polyPtr->smooth || !polyPtr->smooth->postscriptProc) { Tk_CanvasPsPath(interp, canvas, polyPtr->coordPtr, polyPtr->numPoints); } else { polyPtr->smooth->postscriptProc(interp, canvas, polyPtr->coordPtr, polyPtr->numPoints, polyPtr->splineSteps); } Tk_CanvasPsColor(interp, canvas, fillColor); Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp)); if (fillStipple != None) { Tcl_AppendToObj(psObj, "eoclip ", -1); Tcl_ResetResult(interp); Tk_CanvasPsStipple(interp, canvas, fillStipple); Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp)); if (color != NULL) { Tcl_AppendToObj(psObj, "grestore gsave\n", -1); } } else { Tcl_AppendToObj(psObj, "eofill\n", -1); } } /* * Now draw the outline, if there is one. */ if (color != NULL) { Tcl_ResetResult(interp); if (!polyPtr->smooth || !polyPtr->smooth->postscriptProc) { Tk_CanvasPsPath(interp, canvas, polyPtr->coordPtr, polyPtr->numPoints); } else { polyPtr->smooth->postscriptProc(interp, canvas, polyPtr->coordPtr, polyPtr->numPoints, polyPtr->splineSteps); } Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp)); if (polyPtr->joinStyle == JoinRound) { style = 1; } else if (polyPtr->joinStyle == JoinBevel) { style = 2; } else { style = 0; } Tcl_AppendPrintfToObj(psObj, "%d setlinejoin 1 setlinecap\n", style); Tcl_ResetResult(interp); Tk_CanvasPsOutline(canvas, itemPtr, &polyPtr->outline); Tcl_AppendObjToObj(psObj, Tcl_GetObjResult(interp)); } /* * Plug the accumulated postscript back into the result. */ done: (void) Tcl_RestoreInterpState(interp, interpState); Tcl_AppendObjToObj(Tcl_GetObjResult(interp), psObj); Tcl_DecrRefCount(psObj); return TCL_OK; } /* * Local Variables: * mode: c * c-basic-offset: 4 * fill-column: 78 * End: */