/* * tkTrig.c -- * * This file contains a collection of trigonometry utility * routines that are used by Tk and in particular by the * canvas code. It also has miscellaneous geometry functions * used by canvases. * * Copyright (c) 1992-1994 The Regents of the University of California. * Copyright (c) 1994-1997 Sun Microsystems, Inc. * * See the file "license.terms" for information on usage and redistribution * of this file, and for a DISCLAIMER OF ALL WARRANTIES. * * RCS: @(#) $Id: tkTrig.c,v 1.4 1999/12/14 06:52:33 hobbs Exp $ */ #include <stdio.h> #include "tkInt.h" #include "tkPort.h" #include "tkCanvas.h" #undef MIN #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #undef MAX #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #ifndef PI # define PI 3.14159265358979323846 #endif /* PI */ /* *-------------------------------------------------------------- * * TkLineToPoint -- * * Compute the distance from a point to a finite line segment. * * Results: * The return value is the distance from the line segment * whose end-points are *end1Ptr and *end2Ptr to the point * given by *pointPtr. * * Side effects: * None. * *-------------------------------------------------------------- */ double TkLineToPoint(end1Ptr, end2Ptr, pointPtr) double end1Ptr[2]; /* Coordinates of first end-point of line. */ double end2Ptr[2]; /* Coordinates of second end-point of line. */ double pointPtr[2]; /* Points to coords for point. */ { double x, y; /* * Compute the point on the line that is closest to the * point. This must be done separately for vertical edges, * horizontal edges, and other edges. */ if (end1Ptr[0] == end2Ptr[0]) { /* * Vertical edge. */ x = end1Ptr[0]; if (end1Ptr[1] >= end2Ptr[1]) { y = MIN(end1Ptr[1], pointPtr[1]); y = MAX(y, end2Ptr[1]); } else { y = MIN(end2Ptr[1], pointPtr[1]); y = MAX(y, end1Ptr[1]); } } else if (end1Ptr[1] == end2Ptr[1]) { /* * Horizontal edge. */ y = end1Ptr[1]; if (end1Ptr[0] >= end2Ptr[0]) { x = MIN(end1Ptr[0], pointPtr[0]); x = MAX(x, end2Ptr[0]); } else { x = MIN(end2Ptr[0], pointPtr[0]); x = MAX(x, end1Ptr[0]); } } else { double m1, b1, m2, b2; /* * The edge is neither horizontal nor vertical. Convert the * edge to a line equation of the form y = m1*x + b1. Then * compute a line perpendicular to this edge but passing * through the point, also in the form y = m2*x + b2. */ m1 = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]); b1 = end1Ptr[1] - m1*end1Ptr[0]; m2 = -1.0/m1; b2 = pointPtr[1] - m2*pointPtr[0]; x = (b2 - b1)/(m1 - m2); y = m1*x + b1; if (end1Ptr[0] > end2Ptr[0]) { if (x > end1Ptr[0]) { x = end1Ptr[0]; y = end1Ptr[1]; } else if (x < end2Ptr[0]) { x = end2Ptr[0]; y = end2Ptr[1]; } } else { if (x > end2Ptr[0]) { x = end2Ptr[0]; y = end2Ptr[1]; } else if (x < end1Ptr[0]) { x = end1Ptr[0]; y = end1Ptr[1]; } } } /* * Compute the distance to the closest point. */ return hypot(pointPtr[0] - x, pointPtr[1] - y); } /* *-------------------------------------------------------------- * * TkLineToArea -- * * Determine whether a line lies entirely inside, entirely * outside, or overlapping a given rectangular area. * * Results: * -1 is returned if the line given by end1Ptr and end2Ptr * is entirely outside the rectangle given by rectPtr. 0 is * returned if the polygon overlaps the rectangle, and 1 is * returned if the polygon is entirely inside the rectangle. * * Side effects: * None. * *-------------------------------------------------------------- */ int TkLineToArea(end1Ptr, end2Ptr, rectPtr) double end1Ptr[2]; /* X and y coordinates for one endpoint * of line. */ double end2Ptr[2]; /* X and y coordinates for other endpoint * of line. */ double rectPtr[4]; /* Points to coords for rectangle, in the * order x1, y1, x2, y2. X1 must be no * larger than x2, and y1 no larger than y2. */ { int inside1, inside2; /* * First check the two points individually to see whether they * are inside the rectangle or not. */ inside1 = (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2]) && (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3]); inside2 = (end2Ptr[0] >= rectPtr[0]) && (end2Ptr[0] <= rectPtr[2]) && (end2Ptr[1] >= rectPtr[1]) && (end2Ptr[1] <= rectPtr[3]); if (inside1 != inside2) { return 0; } if (inside1 & inside2) { return 1; } /* * Both points are outside the rectangle, but still need to check * for intersections between the line and the rectangle. Horizontal * and vertical lines are particularly easy, so handle them * separately. */ if (end1Ptr[0] == end2Ptr[0]) { /* * Vertical line. */ if (((end1Ptr[1] >= rectPtr[1]) ^ (end2Ptr[1] >= rectPtr[1])) && (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2])) { return 0; } } else if (end1Ptr[1] == end2Ptr[1]) { /* * Horizontal line. */ if (((end1Ptr[0] >= rectPtr[0]) ^ (end2Ptr[0] >= rectPtr[0])) && (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3])) { return 0; } } else { double m, x, y, low, high; /* * Diagonal line. Compute slope of line and use * for intersection checks against each of the * sides of the rectangle: left, right, bottom, top. */ m = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]); if (end1Ptr[0] < end2Ptr[0]) { low = end1Ptr[0]; high = end2Ptr[0]; } else { low = end2Ptr[0]; high = end1Ptr[0]; } /* * Left edge. */ y = end1Ptr[1] + (rectPtr[0] - end1Ptr[0])*m; if ((rectPtr[0] >= low) && (rectPtr[0] <= high) && (y >= rectPtr[1]) && (y <= rectPtr[3])) { return 0; } /* * Right edge. */ y += (rectPtr[2] - rectPtr[0])*m; if ((y >= rectPtr[1]) && (y <= rectPtr[3]) && (rectPtr[2] >= low) && (rectPtr[2] <= high)) { return 0; } /* * Bottom edge. */ if (end1Ptr[1] < end2Ptr[1]) { low = end1Ptr[1]; high = end2Ptr[1]; } else { low = end2Ptr[1]; high = end1Ptr[1]; } x = end1Ptr[0] + (rectPtr[1] - end1Ptr[1])/m; if ((x >= rectPtr[0]) && (x <= rectPtr[2]) && (rectPtr[1] >= low) && (rectPtr[1] <= high)) { return 0; } /* * Top edge. */ x += (rectPtr[3] - rectPtr[1])/m; if ((x >= rectPtr[0]) && (x <= rectPtr[2]) && (rectPtr[3] >= low) && (rectPtr[3] <= high)) { return 0; } } return -1; } /* *-------------------------------------------------------------- * * TkThickPolyLineToArea -- * * This procedure is called to determine whether a connected * series of line segments lies entirely inside, entirely * outside, or overlapping a given rectangular area. * * Results: * -1 is returned if the lines are entirely outside the area, * 0 if they overlap, and 1 if they are entirely inside the * given area. * * Side effects: * None. * *-------------------------------------------------------------- */ /* ARGSUSED */ int TkThickPolyLineToArea(coordPtr, numPoints, width, capStyle, joinStyle, rectPtr) double *coordPtr; /* Points to an array of coordinates for * the polyline: x0, y0, x1, y1, ... */ int numPoints; /* Total number of points at *coordPtr. */ double width; /* Width of each line segment. */ int capStyle; /* How are end-points of polyline drawn? * CapRound, CapButt, or CapProjecting. */ int joinStyle; /* How are joints in polyline drawn? * JoinMiter, JoinRound, or JoinBevel. */ double *rectPtr; /* Rectangular area to check against. */ { double radius, poly[10]; int count; int changedMiterToBevel; /* Non-zero means that a mitered corner * had to be treated as beveled after all * because the angle was < 11 degrees. */ int inside; /* Tentative guess about what to return, * based on all points seen so far: one * means everything seen so far was * inside the area; -1 means everything * was outside the area. 0 means overlap * has been found. */ radius = width/2.0; inside = -1; if ((coordPtr[0] >= rectPtr[0]) && (coordPtr[0] <= rectPtr[2]) && (coordPtr[1] >= rectPtr[1]) && (coordPtr[1] <= rectPtr[3])) { inside = 1; } /* * Iterate through all of the edges of the line, computing a polygon * for each edge and testing the area against that polygon. In * addition, there are additional tests to deal with rounded joints * and caps. */ changedMiterToBevel = 0; for (count = numPoints; count >= 2; count--, coordPtr += 2) { /* * If rounding is done around the first point of the edge * then test a circular region around the point with the * area. */ if (((capStyle == CapRound) && (count == numPoints)) || ((joinStyle == JoinRound) && (count != numPoints))) { poly[0] = coordPtr[0] - radius; poly[1] = coordPtr[1] - radius; poly[2] = coordPtr[0] + radius; poly[3] = coordPtr[1] + radius; if (TkOvalToArea(poly, rectPtr) != inside) { return 0; } } /* * Compute the polygonal shape corresponding to this edge, * consisting of two points for the first point of the edge * and two points for the last point of the edge. */ if (count == numPoints) { TkGetButtPoints(coordPtr+2, coordPtr, width, capStyle == CapProjecting, poly, poly+2); } else if ((joinStyle == JoinMiter) && !changedMiterToBevel) { poly[0] = poly[6]; poly[1] = poly[7]; poly[2] = poly[4]; poly[3] = poly[5]; } else { TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2); /* * If the last joint was beveled, then also check a * polygon comprising the last two points of the previous * polygon and the first two from this polygon; this checks * the wedges that fill the beveled joint. */ if ((joinStyle == JoinBevel) || changedMiterToBevel) { poly[8] = poly[0]; poly[9] = poly[1]; if (TkPolygonToArea(poly, 5, rectPtr) != inside) { return 0; } changedMiterToBevel = 0; } } if (count == 2) { TkGetButtPoints(coordPtr, coordPtr+2, width, capStyle == CapProjecting, poly+4, poly+6); } else if (joinStyle == JoinMiter) { if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4, (double) width, poly+4, poly+6) == 0) { changedMiterToBevel = 1; TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6); } } else { TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6); } poly[8] = poly[0]; poly[9] = poly[1]; if (TkPolygonToArea(poly, 5, rectPtr) != inside) { return 0; } } /* * If caps are rounded, check the cap around the final point * of the line. */ if (capStyle == CapRound) { poly[0] = coordPtr[0] - radius; poly[1] = coordPtr[1] - radius; poly[2] = coordPtr[0] + radius; poly[3] = coordPtr[1] + radius; if (TkOvalToArea(poly, rectPtr) != inside) { return 0; } } return inside; } /* *-------------------------------------------------------------- * * TkPolygonToPoint -- * * Compute the distance from a point to a polygon. * * Results: * The return value is 0.0 if the point referred to by * pointPtr is within the polygon referred to by polyPtr * and numPoints. Otherwise the return value is the * distance of the point from the polygon. * * Side effects: * None. * *-------------------------------------------------------------- */ double TkPolygonToPoint(polyPtr, numPoints, pointPtr) double *polyPtr; /* Points to an array coordinates for * closed polygon: x0, y0, x1, y1, ... * The polygon may be self-intersecting. */ int numPoints; /* Total number of points at *polyPtr. */ double *pointPtr; /* Points to coords for point. */ { double bestDist; /* Closest distance between point and * any edge in polygon. */ int intersections; /* Number of edges in the polygon that * intersect a ray extending vertically * upwards from the point to infinity. */ int count; register double *pPtr; /* * Iterate through all of the edges in the polygon, updating * bestDist and intersections. * * TRICKY POINT: when computing intersections, include left * x-coordinate of line within its range, but not y-coordinate. * Otherwise if the point lies exactly below a vertex we'll * count it as two intersections. */ bestDist = 1.0e36; intersections = 0; for (count = numPoints, pPtr = polyPtr; count > 1; count--, pPtr += 2) { double x, y, dist; /* * Compute the point on the current edge closest to the point * and update the intersection count. This must be done * separately for vertical edges, horizontal edges, and * other edges. */ if (pPtr[2] == pPtr[0]) { /* * Vertical edge. */ x = pPtr[0]; if (pPtr[1] >= pPtr[3]) { y = MIN(pPtr[1], pointPtr[1]); y = MAX(y, pPtr[3]); } else { y = MIN(pPtr[3], pointPtr[1]); y = MAX(y, pPtr[1]); } } else if (pPtr[3] == pPtr[1]) { /* * Horizontal edge. */ y = pPtr[1]; if (pPtr[0] >= pPtr[2]) { x = MIN(pPtr[0], pointPtr[0]); x = MAX(x, pPtr[2]); if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0]) && (pointPtr[0] >= pPtr[2])) { intersections++; } } else { x = MIN(pPtr[2], pointPtr[0]); x = MAX(x, pPtr[0]); if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2]) && (pointPtr[0] >= pPtr[0])) { intersections++; } } } else { double m1, b1, m2, b2; int lower; /* Non-zero means point below line. */ /* * The edge is neither horizontal nor vertical. Convert the * edge to a line equation of the form y = m1*x + b1. Then * compute a line perpendicular to this edge but passing * through the point, also in the form y = m2*x + b2. */ m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]); b1 = pPtr[1] - m1*pPtr[0]; m2 = -1.0/m1; b2 = pointPtr[1] - m2*pointPtr[0]; x = (b2 - b1)/(m1 - m2); y = m1*x + b1; if (pPtr[0] > pPtr[2]) { if (x > pPtr[0]) { x = pPtr[0]; y = pPtr[1]; } else if (x < pPtr[2]) { x = pPtr[2]; y = pPtr[3]; } } else { if (x > pPtr[2]) { x = pPtr[2]; y = pPtr[3]; } else if (x < pPtr[0]) { x = pPtr[0]; y = pPtr[1]; } } lower = (m1*pointPtr[0] + b1) > pointPtr[1]; if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2])) && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) { intersections++; } } /* * Compute the distance to the closest point, and see if that * is the best distance seen so far. */ dist = hypot(pointPtr[0] - x, pointPtr[1] - y); if (dist < bestDist) { bestDist = dist; } } /* * We've processed all of the points. If the number of intersections * is odd, the point is inside the polygon. */ if (intersections & 0x1) { return 0.0; } return bestDist; } /* *-------------------------------------------------------------- * * TkPolygonToArea -- * * Determine whether a polygon lies entirely inside, entirely * outside, or overlapping a given rectangular area. * * Results: * -1 is returned if the polygon given by polyPtr and numPoints * is entirely outside the rectangle given by rectPtr. 0 is * returned if the polygon overlaps the rectangle, and 1 is * returned if the polygon is entirely inside the rectangle. * * Side effects: * None. * *-------------------------------------------------------------- */ int TkPolygonToArea(polyPtr, numPoints, rectPtr) double *polyPtr; /* Points to an array coordinates for * closed polygon: x0, y0, x1, y1, ... * The polygon may be self-intersecting. */ int numPoints; /* Total number of points at *polyPtr. */ register double *rectPtr; /* Points to coords for rectangle, in the * order x1, y1, x2, y2. X1 and y1 must * be lower-left corner. */ { int state; /* State of all edges seen so far (-1 means * outside, 1 means inside, won't ever be * 0). */ int count; register double *pPtr; /* * Iterate over all of the edges of the polygon and test them * against the rectangle. Can quit as soon as the state becomes * "intersecting". */ state = TkLineToArea(polyPtr, polyPtr+2, rectPtr); if (state == 0) { return 0; } for (pPtr = polyPtr+2, count = numPoints-1; count >= 2; pPtr += 2, count--) { if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) { return 0; } } /* * If all of the edges were inside the rectangle we're done. * If all of the edges were outside, then the rectangle could * still intersect the polygon (if it's entirely enclosed). * Call TkPolygonToPoint to figure this out. */ if (state == 1) { return 1; } if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) { return 0; } return -1; } /* *-------------------------------------------------------------- * * TkOvalToPoint -- * * Computes the distance from a given point to a given * oval, in canvas units. * * Results: * The return value is 0 if the point given by *pointPtr is * inside the oval. If the point isn't inside the * oval then the return value is approximately the distance * from the point to the oval. If the oval is filled, then * anywhere in the interior is considered "inside"; if * the oval isn't filled, then "inside" means only the area * occupied by the outline. * * Side effects: * None. * *-------------------------------------------------------------- */ /* ARGSUSED */ double TkOvalToPoint(ovalPtr, width, filled, pointPtr) double ovalPtr[4]; /* Pointer to array of four coordinates * (x1, y1, x2, y2) defining oval's bounding * box. */ double width; /* Width of outline for oval. */ int filled; /* Non-zero means oval should be treated as * filled; zero means only consider outline. */ double pointPtr[2]; /* Coordinates of point. */ { double xDelta, yDelta, scaledDistance, distToOutline, distToCenter; double xDiam, yDiam; /* * Compute the distance between the center of the oval and the * point in question, using a coordinate system where the oval * has been transformed to a circle with unit radius. */ xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0); yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0); distToCenter = hypot(xDelta, yDelta); scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0), yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0)); /* * If the scaled distance is greater than 1 then it means no * hit. Compute the distance from the point to the edge of * the circle, then scale this distance back to the original * coordinate system. * * Note: this distance isn't completely accurate. It's only * an approximation, and it can overestimate the correct * distance when the oval is eccentric. */ if (scaledDistance > 1.0) { return (distToCenter/scaledDistance) * (scaledDistance - 1.0); } /* * Scaled distance less than 1 means the point is inside the * outer edge of the oval. If this is a filled oval, then we * have a hit. Otherwise, do the same computation as above * (scale back to original coordinate system), but also check * to see if the point is within the width of the outline. */ if (filled) { return 0.0; } if (scaledDistance > 1E-10) { distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance) - width; } else { /* * Avoid dividing by a very small number (it could cause an * arithmetic overflow). This problem occurs if the point is * very close to the center of the oval. */ xDiam = ovalPtr[2] - ovalPtr[0]; yDiam = ovalPtr[3] - ovalPtr[1]; if (xDiam < yDiam) { distToOutline = (xDiam - width)/2; } else { distToOutline = (yDiam - width)/2; } } if (distToOutline < 0.0) { return 0.0; } return distToOutline; } /* *-------------------------------------------------------------- * * TkOvalToArea -- * * Determine whether an oval lies entirely inside, entirely * outside, or overlapping a given rectangular area. * * Results: * -1 is returned if the oval described by ovalPtr is entirely * outside the rectangle given by rectPtr. 0 is returned if the * oval overlaps the rectangle, and 1 is returned if the oval * is entirely inside the rectangle. * * Side effects: * None. * *-------------------------------------------------------------- */ int TkOvalToArea(ovalPtr, rectPtr) register double *ovalPtr; /* Points to coordinates definining the * bounding rectangle for the oval: x1, y1, * x2, y2. X1 must be less than x2 and y1 * less than y2. */ register double *rectPtr; /* Points to coords for rectangle, in the * order x1, y1, x2, y2. X1 and y1 must * be lower-left corner. */ { double centerX, centerY, radX, radY, deltaX, deltaY; /* * First, see if oval is entirely inside rectangle or entirely * outside rectangle. */ if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2]) && (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) { return 1; } if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2]) || (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) { return -1; } /* * Next, go through the rectangle side by side. For each side * of the rectangle, find the point on the side that is closest * to the oval's center, and see if that point is inside the * oval. If at least one such point is inside the oval, then * the rectangle intersects the oval. */ centerX = (ovalPtr[0] + ovalPtr[2])/2; centerY = (ovalPtr[1] + ovalPtr[3])/2; radX = (ovalPtr[2] - ovalPtr[0])/2; radY = (ovalPtr[3] - ovalPtr[1])/2; deltaY = rectPtr[1] - centerY; if (deltaY < 0.0) { deltaY = centerY - rectPtr[3]; if (deltaY < 0.0) { deltaY = 0; } } deltaY /= radY; deltaY *= deltaY; /* * Left side: */ deltaX = (rectPtr[0] - centerX)/radX; deltaX *= deltaX; if ((deltaX + deltaY) <= 1.0) { return 0; } /* * Right side: */ deltaX = (rectPtr[2] - centerX)/radX; deltaX *= deltaX; if ((deltaX + deltaY) <= 1.0) { return 0; } deltaX = rectPtr[0] - centerX; if (deltaX < 0.0) { deltaX = centerX - rectPtr[2]; if (deltaX < 0.0) { deltaX = 0; } } deltaX /= radX; deltaX *= deltaX; /* * Bottom side: */ deltaY = (rectPtr[1] - centerY)/radY; deltaY *= deltaY; if ((deltaX + deltaY) < 1.0) { return 0; } /* * Top side: */ deltaY = (rectPtr[3] - centerY)/radY; deltaY *= deltaY; if ((deltaX + deltaY) < 1.0) { return 0; } return -1; } /* *-------------------------------------------------------------- * * TkIncludePoint -- * * Given a point and a generic canvas item header, expand * the item's bounding box if needed to include the point. * * Results: * None. * * Side effects: * The boudn. * *-------------------------------------------------------------- */ /* ARGSUSED */ void TkIncludePoint(itemPtr, pointPtr) register Tk_Item *itemPtr; /* Item whose bounding box is * being calculated. */ double *pointPtr; /* Address of two doubles giving * x and y coordinates of point. */ { int tmp; tmp = (int) (pointPtr[0] + 0.5); if (tmp < itemPtr->x1) { itemPtr->x1 = tmp; } if (tmp > itemPtr->x2) { itemPtr->x2 = tmp; } tmp = (int) (pointPtr[1] + 0.5); if (tmp < itemPtr->y1) { itemPtr->y1 = tmp; } if (tmp > itemPtr->y2) { itemPtr->y2 = tmp; } } /* *-------------------------------------------------------------- * * TkBezierScreenPoints -- * * Given four control points, create a larger set of XPoints * for a Bezier spline based on the points. * * Results: * The array at *xPointPtr gets filled in with numSteps XPoints * corresponding to the Bezier spline defined by the four * control points. Note: no output point is generated for the * first input point, but an output point *is* generated for * the last input point. * * Side effects: * None. * *-------------------------------------------------------------- */ void TkBezierScreenPoints(canvas, control, numSteps, xPointPtr) Tk_Canvas canvas; /* Canvas in which curve is to be * drawn. */ double control[]; /* Array of coordinates for four * control points: x0, y0, x1, y1, * ... x3 y3. */ int numSteps; /* Number of curve points to * generate. */ register XPoint *xPointPtr; /* Where to put new points. */ { int i; double u, u2, u3, t, t2, t3; for (i = 1; i <= numSteps; i++, xPointPtr++) { t = ((double) i)/((double) numSteps); t2 = t*t; t3 = t2*t; u = 1.0 - t; u2 = u*u; u3 = u2*u; Tk_CanvasDrawableCoords(canvas, (control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3), (control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3), &xPointPtr->x, &xPointPtr->y); } } /* *-------------------------------------------------------------- * * TkBezierPoints -- * * Given four control points, create a larger set of points * for a Bezier spline based on the points. * * Results: * The array at *coordPtr gets filled in with 2*numSteps * coordinates, which correspond to the Bezier spline defined * by the four control points. Note: no output point is * generated for the first input point, but an output point * *is* generated for the last input point. * * Side effects: * None. * *-------------------------------------------------------------- */ void TkBezierPoints(control, numSteps, coordPtr) double control[]; /* Array of coordinates for four * control points: x0, y0, x1, y1, * ... x3 y3. */ int numSteps; /* Number of curve points to * generate. */ register double *coordPtr; /* Where to put new points. */ { int i; double u, u2, u3, t, t2, t3; for (i = 1; i <= numSteps; i++, coordPtr += 2) { t = ((double) i)/((double) numSteps); t2 = t*t; t3 = t2*t; u = 1.0 - t; u2 = u*u; u3 = u2*u; coordPtr[0] = control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3; coordPtr[1] = control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3; } } /* *-------------------------------------------------------------- * * TkMakeBezierCurve -- * * Given a set of points, create a new set of points that fit * parabolic splines to the line segments connecting the original * points. Produces output points in either of two forms. * * Note: in spite of this procedure's name, it does *not* generate * Bezier curves. Since only three control points are used for * each curve segment, not four, the curves are actually just * parabolic. * * Results: * Either or both of the xPoints or dblPoints arrays are filled * in. The return value is the number of points placed in the * arrays. Note: if the first and last points are the same, then * a closed curve is generated. * * Side effects: * None. * *-------------------------------------------------------------- */ int TkMakeBezierCurve(canvas, pointPtr, numPoints, numSteps, xPoints, dblPoints) Tk_Canvas canvas; /* Canvas in which curve is to be * drawn. */ double *pointPtr; /* Array of input coordinates: x0, * y0, x1, y1, etc.. */ int numPoints; /* Number of points at pointPtr. */ int numSteps; /* Number of steps to use for each * spline segments (determines * smoothness of curve). */ XPoint xPoints[]; /* Array of XPoints to fill in (e.g. * for display. NULL means don't * fill in any XPoints. */ double dblPoints[]; /* Array of points to fill in as * doubles, in the form x0, y0, * x1, y1, .... NULL means don't * fill in anything in this form. * Caller must make sure that this * array has enough space. */ { int closed, outputPoints, i; int numCoords = numPoints*2; double control[8]; /* * If the curve is a closed one then generate a special spline * that spans the last points and the first ones. Otherwise * just put the first point into the output. */ if (!pointPtr) { /* Of pointPtr == NULL, this function returns an upper limit. * of the array size to store the coordinates. This can be * used to allocate storage, before the actual coordinates * are calculated. */ return 1 + numPoints * numSteps; } outputPoints = 0; if ((pointPtr[0] == pointPtr[numCoords-2]) && (pointPtr[1] == pointPtr[numCoords-1])) { closed = 1; control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0]; control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1]; control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0]; control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1]; control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2]; control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3]; control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2]; control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3]; if (xPoints != NULL) { Tk_CanvasDrawableCoords(canvas, control[0], control[1], &xPoints->x, &xPoints->y); TkBezierScreenPoints(canvas, control, numSteps, xPoints+1); xPoints += numSteps+1; } if (dblPoints != NULL) { dblPoints[0] = control[0]; dblPoints[1] = control[1]; TkBezierPoints(control, numSteps, dblPoints+2); dblPoints += 2*(numSteps+1); } outputPoints += numSteps+1; } else { closed = 0; if (xPoints != NULL) { Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1], &xPoints->x, &xPoints->y); xPoints += 1; } if (dblPoints != NULL) { dblPoints[0] = pointPtr[0]; dblPoints[1] = pointPtr[1]; dblPoints += 2; } outputPoints += 1; } for (i = 2; i < numPoints; i++, pointPtr += 2) { /* * Set up the first two control points. This is done * differently for the first spline of an open curve * than for other cases. */ if ((i == 2) && !closed) { control[0] = pointPtr[0]; control[1] = pointPtr[1]; control[2] = 0.333*pointPtr[0] + 0.667*pointPtr[2]; control[3] = 0.333*pointPtr[1] + 0.667*pointPtr[3]; } else { control[0] = 0.5*pointPtr[0] + 0.5*pointPtr[2]; control[1] = 0.5*pointPtr[1] + 0.5*pointPtr[3]; control[2] = 0.167*pointPtr[0] + 0.833*pointPtr[2]; control[3] = 0.167*pointPtr[1] + 0.833*pointPtr[3]; } /* * Set up the last two control points. This is done * differently for the last spline of an open curve * than for other cases. */ if ((i == (numPoints-1)) && !closed) { control[4] = .667*pointPtr[2] + .333*pointPtr[4]; control[5] = .667*pointPtr[3] + .333*pointPtr[5]; control[6] = pointPtr[4]; control[7] = pointPtr[5]; } else { control[4] = .833*pointPtr[2] + .167*pointPtr[4]; control[5] = .833*pointPtr[3] + .167*pointPtr[5]; control[6] = 0.5*pointPtr[2] + 0.5*pointPtr[4]; control[7] = 0.5*pointPtr[3] + 0.5*pointPtr[5]; } /* * If the first two points coincide, or if the last * two points coincide, then generate a single * straight-line segment by outputting the last control * point. */ if (((pointPtr[0] == pointPtr[2]) && (pointPtr[1] == pointPtr[3])) || ((pointPtr[2] == pointPtr[4]) && (pointPtr[3] == pointPtr[5]))) { if (xPoints != NULL) { Tk_CanvasDrawableCoords(canvas, control[6], control[7], &xPoints[0].x, &xPoints[0].y); xPoints++; } if (dblPoints != NULL) { dblPoints[0] = control[6]; dblPoints[1] = control[7]; dblPoints += 2; } outputPoints += 1; continue; } /* * Generate a Bezier spline using the control points. */ if (xPoints != NULL) { TkBezierScreenPoints(canvas, control, numSteps, xPoints); xPoints += numSteps; } if (dblPoints != NULL) { TkBezierPoints(control, numSteps, dblPoints); dblPoints += 2*numSteps; } outputPoints += numSteps; } return outputPoints; } /* *-------------------------------------------------------------- * * TkMakeBezierPostscript -- * * This procedure generates Postscript commands that create * a path corresponding to a given Bezier curve. * * Results: * None. Postscript commands to generate the path are appended * to the interp's result. * * Side effects: * None. * *-------------------------------------------------------------- */ void TkMakeBezierPostscript(interp, canvas, pointPtr, numPoints) Tcl_Interp *interp; /* Interpreter in whose result the * Postscript is to be stored. */ Tk_Canvas canvas; /* Canvas widget for which the * Postscript is being generated. */ double *pointPtr; /* Array of input coordinates: x0, * y0, x1, y1, etc.. */ int numPoints; /* Number of points at pointPtr. */ { int closed, i; int numCoords = numPoints*2; double control[8]; char buffer[200]; /* * If the curve is a closed one then generate a special spline * that spans the last points and the first ones. Otherwise * just put the first point into the path. */ if ((pointPtr[0] == pointPtr[numCoords-2]) && (pointPtr[1] == pointPtr[numCoords-1])) { closed = 1; control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0]; control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1]; control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0]; control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1]; control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2]; control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3]; control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2]; control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3]; sprintf(buffer, "%.15g %.15g moveto\n%.15g %.15g %.15g %.15g %.15g %.15g curveto\n", control[0], Tk_CanvasPsY(canvas, control[1]), control[2], Tk_CanvasPsY(canvas, control[3]), control[4], Tk_CanvasPsY(canvas, control[5]), control[6], Tk_CanvasPsY(canvas, control[7])); } else { closed = 0; control[6] = pointPtr[0]; control[7] = pointPtr[1]; sprintf(buffer, "%.15g %.15g moveto\n", control[6], Tk_CanvasPsY(canvas, control[7])); } Tcl_AppendResult(interp, buffer, (char *) NULL); /* * Cycle through all the remaining points in the curve, generating * a curve section for each vertex in the linear path. */ for (i = numPoints-2, pointPtr += 2; i > 0; i--, pointPtr += 2) { control[2] = 0.333*control[6] + 0.667*pointPtr[0]; control[3] = 0.333*control[7] + 0.667*pointPtr[1]; /* * Set up the last two control points. This is done * differently for the last spline of an open curve * than for other cases. */ if ((i == 1) && !closed) { control[6] = pointPtr[2]; control[7] = pointPtr[3]; } else { control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2]; control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3]; } control[4] = 0.333*control[6] + 0.667*pointPtr[0]; control[5] = 0.333*control[7] + 0.667*pointPtr[1]; sprintf(buffer, "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n", control[2], Tk_CanvasPsY(canvas, control[3]), control[4], Tk_CanvasPsY(canvas, control[5]), control[6], Tk_CanvasPsY(canvas, control[7])); Tcl_AppendResult(interp, buffer, (char *) NULL); } } /* *-------------------------------------------------------------- * * TkGetMiterPoints -- * * Given three points forming an angle, compute the * coordinates of the inside and outside points of * the mitered corner formed by a line of a given * width at that angle. * * Results: * If the angle formed by the three points is less than * 11 degrees then 0 is returned and m1 and m2 aren't * modified. Otherwise 1 is returned and the points at * m1 and m2 are filled in with the positions of the points * of the mitered corner. * * Side effects: * None. * *-------------------------------------------------------------- */ int TkGetMiterPoints(p1, p2, p3, width, m1, m2) double p1[]; /* Points to x- and y-coordinates of point * before vertex. */ double p2[]; /* Points to x- and y-coordinates of vertex * for mitered joint. */ double p3[]; /* Points to x- and y-coordinates of point * after vertex. */ double width; /* Width of line. */ double m1[]; /* Points to place to put "left" vertex * point (see as you face from p1 to p2). */ double m2[]; /* Points to place to put "right" vertex * point. */ { double theta1; /* Angle of segment p2-p1. */ double theta2; /* Angle of segment p2-p3. */ double theta; /* Angle between line segments (angle * of joint). */ double theta3; /* Angle that bisects theta1 and * theta2 and points to m1. */ double dist; /* Distance of miter points from p2. */ double deltaX, deltaY; /* X and y offsets cooresponding to * dist (fudge factors for bounding * box). */ double p1x, p1y, p2x, p2y, p3x, p3y; static double elevenDegrees = (11.0*2.0*PI)/360.0; /* * Round the coordinates to integers to mimic what happens when the * line segments are displayed; without this code, the bounding box * of a mitered line can be miscomputed greatly. */ p1x = floor(p1[0]+0.5); p1y = floor(p1[1]+0.5); p2x = floor(p2[0]+0.5); p2y = floor(p2[1]+0.5); p3x = floor(p3[0]+0.5); p3y = floor(p3[1]+0.5); if (p2y == p1y) { theta1 = (p2x < p1x) ? 0 : PI; } else if (p2x == p1x) { theta1 = (p2y < p1y) ? PI/2.0 : -PI/2.0; } else { theta1 = atan2(p1y - p2y, p1x - p2x); } if (p3y == p2y) { theta2 = (p3x > p2x) ? 0 : PI; } else if (p3x == p2x) { theta2 = (p3y > p2y) ? PI/2.0 : -PI/2.0; } else { theta2 = atan2(p3y - p2y, p3x - p2x); } theta = theta1 - theta2; if (theta > PI) { theta -= 2*PI; } else if (theta < -PI) { theta += 2*PI; } if ((theta < elevenDegrees) && (theta > -elevenDegrees)) { return 0; } dist = 0.5*width/sin(0.5*theta); if (dist < 0.0) { dist = -dist; } /* * Compute theta3 (make sure that it points to the left when * looking from p1 to p2). */ theta3 = (theta1 + theta2)/2.0; if (sin(theta3 - (theta1 + PI)) < 0.0) { theta3 += PI; } deltaX = dist*cos(theta3); m1[0] = p2x + deltaX; m2[0] = p2x - deltaX; deltaY = dist*sin(theta3); m1[1] = p2y + deltaY; m2[1] = p2y - deltaY; return 1; } /* *-------------------------------------------------------------- * * TkGetButtPoints -- * * Given two points forming a line segment, compute the * coordinates of two endpoints of a rectangle formed by * bloating the line segment until it is width units wide. * * Results: * There is no return value. M1 and m2 are filled in to * correspond to m1 and m2 in the diagram below: * * ----------------* m1 * | * p1 *---------------* p2 * | * ----------------* m2 * * M1 and m2 will be W units apart, with p2 centered between * them and m1-m2 perpendicular to p1-p2. However, if * "project" is true then m1 and m2 will be as follows: * * -------------------* m1 * p2 | * p1 *---------------* | * | * -------------------* m2 * * In this case p2 will be width/2 units from the segment m1-m2. * * Side effects: * None. * *-------------------------------------------------------------- */ void TkGetButtPoints(p1, p2, width, project, m1, m2) double p1[]; /* Points to x- and y-coordinates of point * before vertex. */ double p2[]; /* Points to x- and y-coordinates of vertex * for mitered joint. */ double width; /* Width of line. */ int project; /* Non-zero means project p2 by an additional * width/2 before computing m1 and m2. */ double m1[]; /* Points to place to put "left" result * point, as you face from p1 to p2. */ double m2[]; /* Points to place to put "right" result * point. */ { double length; /* Length of p1-p2 segment. */ double deltaX, deltaY; /* Increments in coords. */ width *= 0.5; length = hypot(p2[0] - p1[0], p2[1] - p1[1]); if (length == 0.0) { m1[0] = m2[0] = p2[0]; m1[1] = m2[1] = p2[1]; } else { deltaX = -width * (p2[1] - p1[1]) / length; deltaY = width * (p2[0] - p1[0]) / length; m1[0] = p2[0] + deltaX; m2[0] = p2[0] - deltaX; m1[1] = p2[1] + deltaY; m2[1] = p2[1] - deltaY; if (project) { m1[0] += deltaY; m2[0] += deltaY; m1[1] -= deltaX; m2[1] -= deltaX; } } }