summaryrefslogtreecommitdiffstats
path: root/doc/event.n
blob: f35c6e0f8a4a1a17df567e2031702362de6a58b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
'\"
'\" Copyright (c) 1996 Sun Microsystems, Inc.
'\" Copyright (c) 1998-2000 Ajuba Solutions.
'\"
'\" See the file "license.terms" for information on usage and redistribution
'\" of this file, and for a DISCLAIMER OF ALL WARRANTIES.
'\" 
'\" RCS: @(#) $Id: event.n,v 1.15 2007/10/29 16:04:13 dkf Exp $
'\" 
.so man.macros
.TH event n 8.3 Tk "Tk Built-In Commands"
.BS
'\" Note:  do not modify the .SH NAME line immediately below!
.SH NAME
event \- Miscellaneous event facilities: define virtual events and generate events
.SH SYNOPSIS
\fBevent\fI option \fR?\fIarg arg ...\fR?
.BE

.SH DESCRIPTION
.PP
The \fBevent\fR command provides several facilities for dealing with
window system events, such as defining virtual events and synthesizing
events.  The command has several different forms, determined by the
first argument.  The following forms are currently supported:
.TP
\fBevent add <<\fIvirtual\fB>>\fI sequence \fR?\fIsequence ...\fR?
Associates the virtual event \fIvirtual\fR with the physical
event sequence(s) given by the \fIsequence\fR arguments, so that
the virtual event will trigger whenever any one of the \fIsequence\fRs
occurs.
\fIVirtual\fR may be any string value and \fIsequence\fR may have
any of the values allowed for the \fIsequence\fR argument to the
\fBbind\fR command.
If \fIvirtual\fR is already defined, the new physical event sequences
add to the existing sequences for the event.
.TP
\fBevent delete <<\fIvirtual\fB>> \fR?\fIsequence\fR \fIsequence ...\fR?
Deletes each of the \fIsequence\fRs from those associated with
the virtual event given by \fIvirtual\fR.
\fIVirtual\fR may be any string value and \fIsequence\fR may have
any of the values allowed for the \fIsequence\fR argument to the
\fBbind\fR command.
Any \fIsequence\fRs not currently associated with \fIvirtual\fR
are ignored.
If no \fIsequence\fR argument is provided, all physical event sequences
are removed for \fIvirtual\fR, so that the virtual event will not
trigger anymore.
.TP
\fBevent generate \fIwindow event \fR?\fIoption value option value ...\fR?
Generates a window event and arranges for it to be processed just as if
it had come from the window system.
\fIWindow\fR gives the path name of the window for which the event
will be generated; it may also be an identifier (such as returned by
\fBwinfo id\fR) as long as it is for a window in the current application.
\fIEvent\fR provides a basic description of
the event, such as \fB<Shift-Button-2>\fR or \fB<<Paste>>\fR.
If \fIWindow\fR is empty the whole screen is meant, and coordinates
are relative to the screen.
\fIEvent\fR may have any of the forms allowed for the \fIsequence\fR
argument of the \fBbind\fR command except that it must consist
of a single event pattern, not a sequence.
\fIOption-value\fR pairs may be used to specify additional
attributes of the event, such as the x and y mouse position;  see
\fBEVENT FIELDS\fR below.  If the \fB\-when\fR option is not specified, the
event is processed immediately:  all of the handlers for the event
will complete before the \fBevent generate\fR command returns.
If the \fB\-when\fR option is specified then it determines when the
event is processed.  Certain events, such as key events, require
that the window has focus to receive the event properly.
.TP
\fBevent info \fR?<<\fIvirtual\fB>>\fR?
Returns information about virtual events.
If the \fB<<\fIvirtual\fB>>\fR argument is omitted, the return value
is a list of all the virtual events that are currently defined.
If \fB<<\fIvirtual\fB>>\fR is specified then the return value is
a list whose elements are the physical event sequences currently
defined for the given virtual event;  if the virtual event is
not defined then an empty string is returned.
.SH "EVENT FIELDS"
.PP
The following options are supported for the \fBevent generate\fR
command.  These correspond to the
.QW %
expansions allowed in binding scripts for the \fBbind\fR command.
.TP
\fB\-above\fI window\fR
\fIWindow\fR specifies the \fIabove\fR field for the event,
either as a window path name or as an integer window id.
Valid for \fBConfigure\fR events.
Corresponds to the \fB%a\fR substitution for binding scripts.
.TP
\fB\-borderwidth\fI size\fR
\fISize\fR must be a screen distance;  it specifies the
\fIborder_width\fR field for the event.
Valid for \fBConfigure\fR events.
Corresponds to the \fB%B\fR substitution for binding scripts.
.TP
\fB\-button\fI number\fR
\fINumber\fR must be an integer;  it specifies the \fIdetail\fR field
for a \fBButtonPress\fR or \fBButtonRelease\fR event, overriding
any button  number provided in the base \fIevent\fR argument.
Corresponds to the \fB%b\fR substitution for binding scripts.
.TP
\fB\-count\fI number\fR
\fINumber\fR must be an integer;  it specifies the \fIcount\fR field
for the event.  Valid for \fBExpose\fR events.
Corresponds to the \fB%c\fR substitution for binding scripts.
.VS 8.5
.TP
\fB\-data\fI string\fR
\fIString\fR may be any value; it specifies the \fIuser_data\fR field
for the event.  Only valid for virtual events.  Corresponds to the
\fB%d\fR substitution for virtual events in binding scripts.
.VE 8.5
.TP
\fB\-delta\fI number\fR
\fINumber\fR must be an integer;  it specifies the \fIdelta\fR field
for the \fBMouseWheel\fR event.  The \fIdelta\fR refers to the
direction and magnitude the mouse wheel was rotated.  Note the value
is not a screen distance but are units of motion in the mouse wheel.
Typically these values are multiples of 120.  For example, 120 should
scroll the text widget up 4 lines and \-240 would scroll the text
widget down 8 lines.  Of course, other widgets may define different
behaviors for mouse wheel motion.  This field corresponds to the
\fB%D\fR substitution for binding scripts.
.TP
\fB\-detail\fI detail\fR
\fIDetail\fR specifies the \fIdetail\fR field for the event
and must be one of the following:
.RS
.DS
.ta 6c
\fBNotifyAncestor	NotifyNonlinearVirtual
NotifyDetailNone	NotifyPointer
NotifyInferior	NotifyPointerRoot
NotifyNonlinear	NotifyVirtual\fR
.DE
Valid for \fBEnter\fR, \fBLeave\fR, \fBFocusIn\fR and
\fBFocusOut\fR events.
Corresponds to the \fB%d\fR substitution for binding scripts.
.RE
.TP
\fB\-focus\fI boolean\fR
\fIBoolean\fR must be a boolean value;  it specifies the \fIfocus\fR
field for the event.
Valid for \fBEnter\fR and \fBLeave\fR events.
Corresponds to the \fB%f\fR substitution for binding scripts.
.TP
\fB\-height\fI size\fR
\fISize\fR must be a screen distance;  it specifies the \fIheight\fR
field for the event.  Valid for \fBConfigure\fR events.
Corresponds to the \fB%h\fR substitution for binding scripts.
.TP
\fB\-keycode\fI number\fR
\fINumber\fR  must be an integer;  it specifies the \fIkeycode\fR
field for the event.
Valid for \fBKeyPress\fR and \fBKeyRelease\fR events.
Corresponds to the \fB%k\fR substitution for binding scripts.
.TP
\fB\-keysym\fI name\fR
\fIName\fR must be the name of a valid keysym, such as \fBg\fR,
\fBspace\fR, or \fBReturn\fR;  its corresponding
keycode value is used as the \fIkeycode\fR field for event, overriding
any detail specified in the base \fIevent\fR argument.
Valid for \fBKeyPress\fR and \fBKeyRelease\fR events.
Corresponds to the \fB%K\fR substitution for binding scripts.
.TP
\fB\-mode\fI notify\fR
\fINotify\fR specifies the \fImode\fR field for the event and must be
one of \fBNotifyNormal\fR, \fBNotifyGrab\fR, \fBNotifyUngrab\fR, or
\fBNotifyWhileGrabbed\fR.
Valid for \fBEnter\fR, \fBLeave\fR, \fBFocusIn\fR, and
\fBFocusOut\fR events.
Corresponds to the \fB%m\fR substitution for binding scripts.  
.TP
\fB\-override\fI boolean\fR
\fIBoolean\fR must be a boolean value;  it specifies the
\fIoverride_redirect\fR field for the event.
Valid for \fBMap\fR, \fBReparent\fR, and \fBConfigure\fR events.
Corresponds to the \fB%o\fR substitution for binding scripts.
.TP
\fB\-place\fI where\fR
\fIWhere\fR specifies the \fIplace\fR field for the event;  it must be
either \fBPlaceOnTop\fR or \fBPlaceOnBottom\fR.
Valid for \fBCirculate\fR events.
Corresponds to the \fB%p\fR substitution for binding scripts.
.TP
\fB\-root\fI window\fR
\fIWindow\fR must be either a window path name or an integer window
identifier;  it specifies the \fIroot\fR field for the event.
Valid for \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, \fBEnter\fR, \fBLeave\fR, and \fBMotion\fR
events.
Corresponds to the \fB%R\fR substitution for binding scripts.
.TP
\fB\-rootx\fI coord\fR
\fICoord\fR must be a screen distance;  it specifies the \fIx_root\fR
field for the event.
Valid for \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, \fBEnter\fR, \fBLeave\fR, and \fBMotion\fR
events.  Corresponds to the \fB%X\fR substitution for binding scripts.
.TP
\fB\-rooty\fI coord\fR
\fICoord\fR must be a screen distance;  it specifies the \fIy_root\fR
field for the event.
Valid for \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, \fBEnter\fR, \fBLeave\fR, and \fBMotion\fR
events.
Corresponds to the \fB%Y\fR substitution for binding scripts.
.TP
\fB\-sendevent\fI boolean\fR
\fIBoolean\fR must be a boolean value;  it specifies the \fIsend_event\fR
field for the event.  Valid for all events.  Corresponds to the
\fB%E\fR substitution for binding scripts.
.TP
\fB\-serial\fI number\fR
\fINumber\fR must be an integer;  it specifies the \fIserial\fR field
for the event.  Valid for all events.
Corresponds to the \fB%#\fR substitution for binding scripts.
.TP
\fB\-state\fI state\fR
\fIState\fR specifies the \fIstate\fR field for the event.
For \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, \fBEnter\fR, \fBLeave\fR, and \fBMotion\fR events
it must be an integer value.
For \fBVisibility\fR events it must be one of \fBVisibilityUnobscured\fR, 
\fBVisibilityPartiallyObscured\fR, or \fBVisibilityFullyObscured\fR.
This option overrides any modifiers such as \fBMeta\fR or \fBControl\fR
specified in the base \fIevent\fR.
Corresponds to the \fB%s\fR substitution for binding scripts.
.TP
\fB\-subwindow\fI window\fR
\fIWindow\fR specifies the \fIsubwindow\fR field for the event, either
as a path name for a Tk widget or as an integer window identifier.
Valid for \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, \fBEnter\fR, \fBLeave\fR, and \fBMotion\fR events.
Similar to \fB%S\fR substitution for binding scripts.
.TP
\fB\-time\fI integer\fR
\fIInteger\fR must be an integer value;  it specifies the \fItime\fR field
for the event.
Valid for \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, \fBEnter\fR, \fBLeave\fR, \fBMotion\fR,
and \fBProperty\fR events.
Corresponds to the \fB%t\fR substitution for binding scripts.
.TP
\fB\-warp\fI boolean\fR
\fIboolean\fR must be a boolean value;  it specifies whether
the screen pointer should be warped as well.
Valid for \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, and \fBMotion\fR events.  The pointer will
only warp to a window if it is mapped.
.TP
\fB\-width\fI size\fR
\fISize\fR must be a screen distance;  it specifies the \fIwidth\fR field
for the event.
Valid for \fBConfigure\fR events.
Corresponds to the \fB%w\fR substitution for binding scripts.
.TP
\fB\-when\fI when\fR
\fIWhen\fR determines when the event will be processed;  it must have one
of the following values:
.RS
.IP \fBnow\fR 10
Process the event immediately, before the command returns.
This also happens if the \fB\-when\fR option is omitted.
.IP \fBtail\fR 10
Place the event on Tcl's event queue behind any events already
queued for this application.
.IP \fBhead\fR 10
Place the event at the front of Tcl's event queue, so that it
will be handled before any other events already queued.
.IP \fBmark\fR 10
Place the event at the front of Tcl's event queue but behind any
other events already queued with \fB\-when mark\fR.
This option is useful when generating a series of events that should
be processed in order but at the front of the queue.
.RE
.TP
\fB\-x\fI coord\fR
\fICoord\fR must be a screen distance;  it specifies the \fIx\fR field
for the event.
Valid for \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, \fBMotion\fR, \fBEnter\fR, \fBLeave\fR,
\fBExpose\fR, \fBConfigure\fR, \fBGravity\fR, and \fBReparent\fR
events.
Corresponds to the \fB%x\fR substitution for binding scripts.
If \fIWindow\fR is empty the coordinate is relative to the
screen, and this option corresponds to the \fB%X\fR substitution
for binding scripts.
.TP
\fB\-y\fI coord\fR
\fICoord\fR must be a screen distance;  it specifies the \fIy\fR
field for the event.
Valid for \fBKeyPress\fR, \fBKeyRelease\fR, \fBButtonPress\fR,
\fBButtonRelease\fR, \fBMotion\fR, \fBEnter\fR, \fBLeave\fR,
\fBExpose\fR, \fBConfigure\fR, \fBGravity\fR, and \fBReparent\fR
events.
Corresponds to the \fB%y\fR substitution for binding scripts.
If \fIWindow\fR is empty the coordinate is relative to the
screen, and this option corresponds to the \fB%Y\fR substitution
for binding scripts.
.PP
Any options that are not specified when generating an event are filled 
with the value 0, except for \fIserial\fR, which is filled with the 
next X event serial number.  
.SH "PREDEFINED VIRTUAL EVENTS"
Tk defines the following virtual events for the purposes of
notification:
.TP
\fB<<AltUnderlined>>\fR
This is sent to widget to notify it that the letter it has underlined
(as an accelerator indicator) with the \fB\-underline\fR option has
been pressed in combination with the Alt key. The usual response to
this is to either focus into the widget (or some related widget) or to
invoke the widget.
.TP
\fB<<ListboxSelect>>\fR
This is sent to a listbox when the set of selected item(s) in the
listbox is updated.
.TP
\fB<<MenuSelect>>\fR
This is sent to a menu when the currently selected item in the menu
changes. It is intended for use with context-sensitive help systems.
.TP
\fB<<Modified>>\fR
This is sent to a text widget when the contents of the widget are
changed.
.TP
\fB<<Selection>>\fR
This is sent to a text widget when the selection in the widget is
changed.
.TP
\fB<<TraverseIn>>\fR
This is sent to a widget when the focus enters the widget because of a
user-driven
.QW "tab to widget"
action.
.TP
\fB<<TraverseOut>>\fR
This is sent to a widget when the focus leaves the widget because of a
user-driven
.QW "tab to widget"
action.
.PP
Tk defines the following virtual events for the purposes of unifying
bindings across multiple platforms. Users expect them to behave in the
following way:
.TP
\fB<<Clear>>\fR
Delete the currently selected widget contents.
.TP
\fB<<Copy>>\fR
Copy the currently selected widget contents to the clipboard.
.TP
\fB<<Cut>>\fR
Move the currently selected widget contents to the clipboard.
.TP
\fB<<Paste>>\fR
Replace the currently selected widget contents with the contents of
the clipboard.
.TP
\fB<<PasteSelection>>\fR
Insert the contents of the selection at the mouse location. (This
event has meaningful \fB%x\fR and \fB%y\fR substitutions).
.TP
\fB<<PrevWindow>>\fR
Traverse to the previous window.
.TP
\fB<<Redo>>\fR
Redo one undone action.
.TP
\fB<<Undo>>\fR
Undo the last action.
.SH "VIRTUAL EVENT EXAMPLES"
.PP
In order for a virtual event binding to trigger, two things must
happen.  First, the virtual event must be defined with the
\fBevent add\fR command.  Second, a binding must be created for
the virtual event with the \fBbind\fR command.
Consider the following virtual event definitions:
.CS
event add <<Paste>> <Control-y>
event add <<Paste>> <Button-2>
event add <<Save>> <Control-X><Control-S>
event add <<Save>> <Shift-F12>
.CE
In the \fBbind\fR command, a virtual event can be bound like any other
builtin event type as follows:
.CS
bind Entry <<Paste>> {%W insert [selection get]}
.CE
The double angle brackets are used to specify that a virtual event is being
bound.  If the user types Control-y or presses button 2, or if
a \fB<<Paste>>\fR virtual event is synthesized with \fBevent generate\fR,
then the \fB<<Paste>>\fR binding will be invoked.
.PP
If a virtual binding has the exact same sequence as a separate
physical binding, then the physical binding will take precedence.
Consider the following example:
.CS
event add <<Paste>> <Control-y> <Meta-Control-y>
bind Entry <Control-y> {puts Control-y}
bind Entry <<Paste>> {puts Paste}
.CE
When the user types Control-y the \fB<Control-y>\fR binding
will be invoked, because a physical event is considered
more specific than a virtual event, all other things being equal.
However, when the user types Meta-Control-y the
\fB<<Paste>>\fR binding will be invoked, because the
\fBMeta\fR modifier in the physical pattern associated with the 
virtual binding is more specific than the \fB<Control-y\fR> sequence for
the physical event.
.PP
Bindings on a virtual event may be created before the virtual event exists.
Indeed, the virtual event never actually needs to be defined, for instance,
on platforms where the specific virtual event would meaningless or
ungeneratable.
.PP
When a definition of a virtual event changes at run time, all windows
will respond immediately to the new definition.
Starting from the preceding example, if the following code is executed:
.CS
bind <Entry> <Control-y> {}
event add <<Paste>> <Key-F6>
.CE
the behavior will change such in two ways.  First, the shadowed
\fB<<Paste>>\fR binding will emerge.
Typing Control-y will no longer invoke the \fB<Control-y>\fR binding, 
but instead invoke the virtual event \fB<<Paste>>\fR.  Second,
pressing the F6 key will now also invoke the \fB<<Paste>>\fR binding.

.SH "SEE ALSO"
bind(n)

.SH KEYWORDS
event, binding, define, handle, virtual event
56' href='#n2656'>2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
# Test enhancements related to descriptors and new-style classes

from test.test_support import verify, vereq, verbose, TestFailed, TESTFN, get_original_stdout
from copy import deepcopy
import warnings

warnings.filterwarnings("ignore",
         r'complex divmod\(\), // and % are deprecated$',
         DeprecationWarning, r'(<string>|%s)$' % __name__)

def veris(a, b):
    if a is not b:
        raise TestFailed, "%r is %r" % (a, b)

def testunop(a, res, expr="len(a)", meth="__len__"):
    if verbose: print "checking", expr
    dict = {'a': a}
    vereq(eval(expr, dict), res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    vereq(m(a), res)
    bm = getattr(a, meth)
    vereq(bm(), res)

def testbinop(a, b, res, expr="a+b", meth="__add__"):
    if verbose: print "checking", expr
    dict = {'a': a, 'b': b}

    # XXX Hack so this passes before 2.3 when -Qnew is specified.
    if meth == "__div__" and 1/2 == 0.5:
        meth = "__truediv__"

    vereq(eval(expr, dict), res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    vereq(m(a, b), res)
    bm = getattr(a, meth)
    vereq(bm(b), res)

def testternop(a, b, c, res, expr="a[b:c]", meth="__getslice__"):
    if verbose: print "checking", expr
    dict = {'a': a, 'b': b, 'c': c}
    vereq(eval(expr, dict), res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    vereq(m(a, b, c), res)
    bm = getattr(a, meth)
    vereq(bm(b, c), res)

def testsetop(a, b, res, stmt="a+=b", meth="__iadd__"):
    if verbose: print "checking", stmt
    dict = {'a': deepcopy(a), 'b': b}
    exec stmt in dict
    vereq(dict['a'], res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    dict['a'] = deepcopy(a)
    m(dict['a'], b)
    vereq(dict['a'], res)
    dict['a'] = deepcopy(a)
    bm = getattr(dict['a'], meth)
    bm(b)
    vereq(dict['a'], res)

def testset2op(a, b, c, res, stmt="a[b]=c", meth="__setitem__"):
    if verbose: print "checking", stmt
    dict = {'a': deepcopy(a), 'b': b, 'c': c}
    exec stmt in dict
    vereq(dict['a'], res)
    t = type(a)
    m = getattr(t, meth)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    vereq(m, t.__dict__[meth])
    dict['a'] = deepcopy(a)
    m(dict['a'], b, c)
    vereq(dict['a'], res)
    dict['a'] = deepcopy(a)
    bm = getattr(dict['a'], meth)
    bm(b, c)
    vereq(dict['a'], res)

def testset3op(a, b, c, d, res, stmt="a[b:c]=d", meth="__setslice__"):
    if verbose: print "checking", stmt
    dict = {'a': deepcopy(a), 'b': b, 'c': c, 'd': d}
    exec stmt in dict
    vereq(dict['a'], res)
    t = type(a)
    while meth not in t.__dict__:
        t = t.__bases__[0]
    m = getattr(t, meth)
    vereq(m, t.__dict__[meth])
    dict['a'] = deepcopy(a)
    m(dict['a'], b, c, d)
    vereq(dict['a'], res)
    dict['a'] = deepcopy(a)
    bm = getattr(dict['a'], meth)
    bm(b, c, d)
    vereq(dict['a'], res)

def class_docstrings():
    class Classic:
        "A classic docstring."
    vereq(Classic.__doc__, "A classic docstring.")
    vereq(Classic.__dict__['__doc__'], "A classic docstring.")

    class Classic2:
        pass
    verify(Classic2.__doc__ is None)

    class NewStatic(object):
        "Another docstring."
    vereq(NewStatic.__doc__, "Another docstring.")
    vereq(NewStatic.__dict__['__doc__'], "Another docstring.")

    class NewStatic2(object):
        pass
    verify(NewStatic2.__doc__ is None)

    class NewDynamic(object):
        "Another docstring."
    vereq(NewDynamic.__doc__, "Another docstring.")
    vereq(NewDynamic.__dict__['__doc__'], "Another docstring.")

    class NewDynamic2(object):
        pass
    verify(NewDynamic2.__doc__ is None)

def lists():
    if verbose: print "Testing list operations..."
    testbinop([1], [2], [1,2], "a+b", "__add__")
    testbinop([1,2,3], 2, 1, "b in a", "__contains__")
    testbinop([1,2,3], 4, 0, "b in a", "__contains__")
    testbinop([1,2,3], 1, 2, "a[b]", "__getitem__")
    testternop([1,2,3], 0, 2, [1,2], "a[b:c]", "__getslice__")
    testsetop([1], [2], [1,2], "a+=b", "__iadd__")
    testsetop([1,2], 3, [1,2,1,2,1,2], "a*=b", "__imul__")
    testunop([1,2,3], 3, "len(a)", "__len__")
    testbinop([1,2], 3, [1,2,1,2,1,2], "a*b", "__mul__")
    testbinop([1,2], 3, [1,2,1,2,1,2], "b*a", "__rmul__")
    testset2op([1,2], 1, 3, [1,3], "a[b]=c", "__setitem__")
    testset3op([1,2,3,4], 1, 3, [5,6], [1,5,6,4], "a[b:c]=d", "__setslice__")

def dicts():
    if verbose: print "Testing dict operations..."
    testbinop({1:2}, {2:1}, -1, "cmp(a,b)", "__cmp__")
    testbinop({1:2,3:4}, 1, 1, "b in a", "__contains__")
    testbinop({1:2,3:4}, 2, 0, "b in a", "__contains__")
    testbinop({1:2,3:4}, 1, 2, "a[b]", "__getitem__")
    d = {1:2,3:4}
    l1 = []
    for i in d.keys(): l1.append(i)
    l = []
    for i in iter(d): l.append(i)
    vereq(l, l1)
    l = []
    for i in d.__iter__(): l.append(i)
    vereq(l, l1)
    l = []
    for i in dict.__iter__(d): l.append(i)
    vereq(l, l1)
    d = {1:2, 3:4}
    testunop(d, 2, "len(a)", "__len__")
    vereq(eval(repr(d), {}), d)
    vereq(eval(d.__repr__(), {}), d)
    testset2op({1:2,3:4}, 2, 3, {1:2,2:3,3:4}, "a[b]=c", "__setitem__")

def dict_constructor():
    if verbose:
        print "Testing dict constructor ..."
    d = dict()
    vereq(d, {})
    d = dict({})
    vereq(d, {})
    d = dict({1: 2, 'a': 'b'})
    vereq(d, {1: 2, 'a': 'b'})
    vereq(d, dict(d.items()))
    vereq(d, dict(d.iteritems()))
    d = dict({'one':1, 'two':2})
    vereq(d, dict(one=1, two=2))
    vereq(d, dict(**d))
    vereq(d, dict({"one": 1}, two=2))
    vereq(d, dict([("two", 2)], one=1))
    vereq(d, dict([("one", 100), ("two", 200)], **d))
    verify(d is not dict(**d))
    for badarg in 0, 0L, 0j, "0", [0], (0,):
        try:
            dict(badarg)
        except TypeError:
            pass
        except ValueError:
            if badarg == "0":
                # It's a sequence, and its elements are also sequences (gotta
                # love strings <wink>), but they aren't of length 2, so this
                # one seemed better as a ValueError than a TypeError.
                pass
            else:
                raise TestFailed("no TypeError from dict(%r)" % badarg)
        else:
            raise TestFailed("no TypeError from dict(%r)" % badarg)

    try:
        dict({}, {})
    except TypeError:
        pass
    else:
        raise TestFailed("no TypeError from dict({}, {})")

    class Mapping:
        # Lacks a .keys() method; will be added later.
        dict = {1:2, 3:4, 'a':1j}

    try:
        dict(Mapping())
    except TypeError:
        pass
    else:
        raise TestFailed("no TypeError from dict(incomplete mapping)")

    Mapping.keys = lambda self: self.dict.keys()
    Mapping.__getitem__ = lambda self, i: self.dict[i]
    d = dict(Mapping())
    vereq(d, Mapping.dict)

    # Init from sequence of iterable objects, each producing a 2-sequence.
    class AddressBookEntry:
        def __init__(self, first, last):
            self.first = first
            self.last = last
        def __iter__(self):
            return iter([self.first, self.last])

    d = dict([AddressBookEntry('Tim', 'Warsaw'),
              AddressBookEntry('Barry', 'Peters'),
              AddressBookEntry('Tim', 'Peters'),
              AddressBookEntry('Barry', 'Warsaw')])
    vereq(d, {'Barry': 'Warsaw', 'Tim': 'Peters'})

    d = dict(zip(range(4), range(1, 5)))
    vereq(d, dict([(i, i+1) for i in range(4)]))

    # Bad sequence lengths.
    for bad in [('tooshort',)], [('too', 'long', 'by 1')]:
        try:
            dict(bad)
        except ValueError:
            pass
        else:
            raise TestFailed("no ValueError from dict(%r)" % bad)

def test_dir():
    if verbose:
        print "Testing dir() ..."
    junk = 12
    vereq(dir(), ['junk'])
    del junk

    # Just make sure these don't blow up!
    for arg in 2, 2L, 2j, 2e0, [2], "2", u"2", (2,), {2:2}, type, test_dir:
        dir(arg)

    # Try classic classes.
    class C:
        Cdata = 1
        def Cmethod(self): pass

    cstuff = ['Cdata', 'Cmethod', '__doc__', '__module__']
    vereq(dir(C), cstuff)
    verify('im_self' in dir(C.Cmethod))

    c = C()  # c.__doc__ is an odd thing to see here; ditto c.__module__.
    vereq(dir(c), cstuff)

    c.cdata = 2
    c.cmethod = lambda self: 0
    vereq(dir(c), cstuff + ['cdata', 'cmethod'])
    verify('im_self' in dir(c.Cmethod))

    class A(C):
        Adata = 1
        def Amethod(self): pass

    astuff = ['Adata', 'Amethod'] + cstuff
    vereq(dir(A), astuff)
    verify('im_self' in dir(A.Amethod))
    a = A()
    vereq(dir(a), astuff)
    verify('im_self' in dir(a.Amethod))
    a.adata = 42
    a.amethod = lambda self: 3
    vereq(dir(a), astuff + ['adata', 'amethod'])

    # The same, but with new-style classes.  Since these have object as a
    # base class, a lot more gets sucked in.
    def interesting(strings):
        return [s for s in strings if not s.startswith('_')]

    class C(object):
        Cdata = 1
        def Cmethod(self): pass

    cstuff = ['Cdata', 'Cmethod']
    vereq(interesting(dir(C)), cstuff)

    c = C()
    vereq(interesting(dir(c)), cstuff)
    verify('im_self' in dir(C.Cmethod))

    c.cdata = 2
    c.cmethod = lambda self: 0
    vereq(interesting(dir(c)), cstuff + ['cdata', 'cmethod'])
    verify('im_self' in dir(c.Cmethod))

    class A(C):
        Adata = 1
        def Amethod(self): pass

    astuff = ['Adata', 'Amethod'] + cstuff
    vereq(interesting(dir(A)), astuff)
    verify('im_self' in dir(A.Amethod))
    a = A()
    vereq(interesting(dir(a)), astuff)
    a.adata = 42
    a.amethod = lambda self: 3
    vereq(interesting(dir(a)), astuff + ['adata', 'amethod'])
    verify('im_self' in dir(a.Amethod))

    # Try a module subclass.
    import sys
    class M(type(sys)):
        pass
    minstance = M("m")
    minstance.b = 2
    minstance.a = 1
    names = [x for x in dir(minstance) if x not in ["__name__", "__doc__"]]
    vereq(names, ['a', 'b'])

    class M2(M):
        def getdict(self):
            return "Not a dict!"
        __dict__ = property(getdict)

    m2instance = M2("m2")
    m2instance.b = 2
    m2instance.a = 1
    vereq(m2instance.__dict__, "Not a dict!")
    try:
        dir(m2instance)
    except TypeError:
        pass

    # Two essentially featureless objects, just inheriting stuff from
    # object.
    vereq(dir(None), dir(Ellipsis))

    # Nasty test case for proxied objects
    class Wrapper(object):
        def __init__(self, obj):
            self.__obj = obj
        def __repr__(self):
            return "Wrapper(%s)" % repr(self.__obj)
        def __getitem__(self, key):
            return Wrapper(self.__obj[key])
        def __len__(self):
            return len(self.__obj)
        def __getattr__(self, name):
            return Wrapper(getattr(self.__obj, name))

    class C(object):
        def __getclass(self):
            return Wrapper(type(self))
        __class__ = property(__getclass)

    dir(C()) # This used to segfault

binops = {
    'add': '+',
    'sub': '-',
    'mul': '*',
    'div': '/',
    'mod': '%',
    'divmod': 'divmod',
    'pow': '**',
    'lshift': '<<',
    'rshift': '>>',
    'and': '&',
    'xor': '^',
    'or': '|',
    'cmp': 'cmp',
    'lt': '<',
    'le': '<=',
    'eq': '==',
    'ne': '!=',
    'gt': '>',
    'ge': '>=',
    }

for name, expr in binops.items():
    if expr.islower():
        expr = expr + "(a, b)"
    else:
        expr = 'a %s b' % expr
    binops[name] = expr

unops = {
    'pos': '+',
    'neg': '-',
    'abs': 'abs',
    'invert': '~',
    'int': 'int',
    'long': 'long',
    'float': 'float',
    'oct': 'oct',
    'hex': 'hex',
    }

for name, expr in unops.items():
    if expr.islower():
        expr = expr + "(a)"
    else:
        expr = '%s a' % expr
    unops[name] = expr

def numops(a, b, skip=[]):
    dict = {'a': a, 'b': b}
    for name, expr in binops.items():
        if name not in skip:
            name = "__%s__" % name
            if hasattr(a, name):
                res = eval(expr, dict)
                testbinop(a, b, res, expr, name)
    for name, expr in unops.items():
        if name not in skip:
            name = "__%s__" % name
            if hasattr(a, name):
                res = eval(expr, dict)
                testunop(a, res, expr, name)

def ints():
    if verbose: print "Testing int operations..."
    numops(100, 3)
    # The following crashes in Python 2.2
    vereq((1).__nonzero__(), 1)
    vereq((0).__nonzero__(), 0)
    # This returns 'NotImplemented' in Python 2.2
    class C(int):
        def __add__(self, other):
            return NotImplemented
    vereq(C(5L), 5)
    try:
        C() + ""
    except TypeError:
        pass
    else:
        raise TestFailed, "NotImplemented should have caused TypeError"
    import sys
    try:
        C(sys.maxint+1)
    except OverflowError:
        pass
    else:
        raise TestFailed, "should have raised OverflowError"

def longs():
    if verbose: print "Testing long operations..."
    numops(100L, 3L)

def floats():
    if verbose: print "Testing float operations..."
    numops(100.0, 3.0)

def complexes():
    if verbose: print "Testing complex operations..."
    numops(100.0j, 3.0j, skip=['lt', 'le', 'gt', 'ge', 'int', 'long', 'float'])
    class Number(complex):
        __slots__ = ['prec']
        def __new__(cls, *args, **kwds):
            result = complex.__new__(cls, *args)
            result.prec = kwds.get('prec', 12)
            return result
        def __repr__(self):
            prec = self.prec
            if self.imag == 0.0:
                return "%.*g" % (prec, self.real)
            if self.real == 0.0:
                return "%.*gj" % (prec, self.imag)
            return "(%.*g+%.*gj)" % (prec, self.real, prec, self.imag)
        __str__ = __repr__

    a = Number(3.14, prec=6)
    vereq(repr(a), "3.14")
    vereq(a.prec, 6)

    a = Number(a, prec=2)
    vereq(repr(a), "3.1")
    vereq(a.prec, 2)

    a = Number(234.5)
    vereq(repr(a), "234.5")
    vereq(a.prec, 12)

def spamlists():
    if verbose: print "Testing spamlist operations..."
    import copy, xxsubtype as spam
    def spamlist(l, memo=None):
        import xxsubtype as spam
        return spam.spamlist(l)
    # This is an ugly hack:
    copy._deepcopy_dispatch[spam.spamlist] = spamlist

    testbinop(spamlist([1]), spamlist([2]), spamlist([1,2]), "a+b", "__add__")
    testbinop(spamlist([1,2,3]), 2, 1, "b in a", "__contains__")
    testbinop(spamlist([1,2,3]), 4, 0, "b in a", "__contains__")
    testbinop(spamlist([1,2,3]), 1, 2, "a[b]", "__getitem__")
    testternop(spamlist([1,2,3]), 0, 2, spamlist([1,2]),
               "a[b:c]", "__getslice__")
    testsetop(spamlist([1]), spamlist([2]), spamlist([1,2]),
              "a+=b", "__iadd__")
    testsetop(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "a*=b", "__imul__")
    testunop(spamlist([1,2,3]), 3, "len(a)", "__len__")
    testbinop(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "a*b", "__mul__")
    testbinop(spamlist([1,2]), 3, spamlist([1,2,1,2,1,2]), "b*a", "__rmul__")
    testset2op(spamlist([1,2]), 1, 3, spamlist([1,3]), "a[b]=c", "__setitem__")
    testset3op(spamlist([1,2,3,4]), 1, 3, spamlist([5,6]),
               spamlist([1,5,6,4]), "a[b:c]=d", "__setslice__")
    # Test subclassing
    class C(spam.spamlist):
        def foo(self): return 1
    a = C()
    vereq(a, [])
    vereq(a.foo(), 1)
    a.append(100)
    vereq(a, [100])
    vereq(a.getstate(), 0)
    a.setstate(42)
    vereq(a.getstate(), 42)

def spamdicts():
    if verbose: print "Testing spamdict operations..."
    import copy, xxsubtype as spam
    def spamdict(d, memo=None):
        import xxsubtype as spam
        sd = spam.spamdict()
        for k, v in d.items(): sd[k] = v
        return sd
    # This is an ugly hack:
    copy._deepcopy_dispatch[spam.spamdict] = spamdict

    testbinop(spamdict({1:2}), spamdict({2:1}), -1, "cmp(a,b)", "__cmp__")
    testbinop(spamdict({1:2,3:4}), 1, 1, "b in a", "__contains__")
    testbinop(spamdict({1:2,3:4}), 2, 0, "b in a", "__contains__")
    testbinop(spamdict({1:2,3:4}), 1, 2, "a[b]", "__getitem__")
    d = spamdict({1:2,3:4})
    l1 = []
    for i in d.keys(): l1.append(i)
    l = []
    for i in iter(d): l.append(i)
    vereq(l, l1)
    l = []
    for i in d.__iter__(): l.append(i)
    vereq(l, l1)
    l = []
    for i in type(spamdict({})).__iter__(d): l.append(i)
    vereq(l, l1)
    straightd = {1:2, 3:4}
    spamd = spamdict(straightd)
    testunop(spamd, 2, "len(a)", "__len__")
    testunop(spamd, repr(straightd), "repr(a)", "__repr__")
    testset2op(spamdict({1:2,3:4}), 2, 3, spamdict({1:2,2:3,3:4}),
               "a[b]=c", "__setitem__")
    # Test subclassing
    class C(spam.spamdict):
        def foo(self): return 1
    a = C()
    vereq(a.items(), [])
    vereq(a.foo(), 1)
    a['foo'] = 'bar'
    vereq(a.items(), [('foo', 'bar')])
    vereq(a.getstate(), 0)
    a.setstate(100)
    vereq(a.getstate(), 100)

def pydicts():
    if verbose: print "Testing Python subclass of dict..."
    verify(issubclass(dict, dict))
    verify(isinstance({}, dict))
    d = dict()
    vereq(d, {})
    verify(d.__class__ is dict)
    verify(isinstance(d, dict))
    class C(dict):
        state = -1
        def __init__(self, *a, **kw):
            if a:
                vereq(len(a), 1)
                self.state = a[0]
            if kw:
                for k, v in kw.items(): self[v] = k
        def __getitem__(self, key):
            return self.get(key, 0)
        def __setitem__(self, key, value):
            verify(isinstance(key, type(0)))
            dict.__setitem__(self, key, value)
        def setstate(self, state):
            self.state = state
        def getstate(self):
            return self.state
    verify(issubclass(C, dict))
    a1 = C(12)
    vereq(a1.state, 12)
    a2 = C(foo=1, bar=2)
    vereq(a2[1] == 'foo' and a2[2], 'bar')
    a = C()
    vereq(a.state, -1)
    vereq(a.getstate(), -1)
    a.setstate(0)
    vereq(a.state, 0)
    vereq(a.getstate(), 0)
    a.setstate(10)
    vereq(a.state, 10)
    vereq(a.getstate(), 10)
    vereq(a[42], 0)
    a[42] = 24
    vereq(a[42], 24)
    if verbose: print "pydict stress test ..."
    N = 50
    for i in range(N):
        a[i] = C()
        for j in range(N):
            a[i][j] = i*j
    for i in range(N):
        for j in range(N):
            vereq(a[i][j], i*j)

def pylists():
    if verbose: print "Testing Python subclass of list..."
    class C(list):
        def __getitem__(self, i):
            return list.__getitem__(self, i) + 100
        def __getslice__(self, i, j):
            return (i, j)
    a = C()
    a.extend([0,1,2])
    vereq(a[0], 100)
    vereq(a[1], 101)
    vereq(a[2], 102)
    vereq(a[100:200], (100,200))

def metaclass():
    if verbose: print "Testing __metaclass__..."
    class C:
        __metaclass__ = type
        def __init__(self):
            self.__state = 0
        def getstate(self):
            return self.__state
        def setstate(self, state):
            self.__state = state
    a = C()
    vereq(a.getstate(), 0)
    a.setstate(10)
    vereq(a.getstate(), 10)
    class D:
        class __metaclass__(type):
            def myself(cls): return cls
    vereq(D.myself(), D)
    d = D()
    verify(d.__class__ is D)
    class M1(type):
        def __new__(cls, name, bases, dict):
            dict['__spam__'] = 1
            return type.__new__(cls, name, bases, dict)
    class C:
        __metaclass__ = M1
    vereq(C.__spam__, 1)
    c = C()
    vereq(c.__spam__, 1)

    class _instance(object):
        pass
    class M2(object):
        @staticmethod
        def __new__(cls, name, bases, dict):
            self = object.__new__(cls)
            self.name = name
            self.bases = bases
            self.dict = dict
            return self
        def __call__(self):
            it = _instance()
            # Early binding of methods
            for key in self.dict:
                if key.startswith("__"):
                    continue
                setattr(it, key, self.dict[key].__get__(it, self))
            return it
    class C:
        __metaclass__ = M2
        def spam(self):
            return 42
    vereq(C.name, 'C')
    vereq(C.bases, ())
    verify('spam' in C.dict)
    c = C()
    vereq(c.spam(), 42)

    # More metaclass examples

    class autosuper(type):
        # Automatically add __super to the class
        # This trick only works for dynamic classes
        def __new__(metaclass, name, bases, dict):
            cls = super(autosuper, metaclass).__new__(metaclass,
                                                      name, bases, dict)
            # Name mangling for __super removes leading underscores
            while name[:1] == "_":
                name = name[1:]
            if name:
                name = "_%s__super" % name
            else:
                name = "__super"
            setattr(cls, name, super(cls))
            return cls
    class A:
        __metaclass__ = autosuper
        def meth(self):
            return "A"
    class B(A):
        def meth(self):
            return "B" + self.__super.meth()
    class C(A):
        def meth(self):
            return "C" + self.__super.meth()
    class D(C, B):
        def meth(self):
            return "D" + self.__super.meth()
    vereq(D().meth(), "DCBA")
    class E(B, C):
        def meth(self):
            return "E" + self.__super.meth()
    vereq(E().meth(), "EBCA")

    class autoproperty(type):
        # Automatically create property attributes when methods
        # named _get_x and/or _set_x are found
        def __new__(metaclass, name, bases, dict):
            hits = {}
            for key, val in dict.iteritems():
                if key.startswith("_get_"):
                    key = key[5:]
                    get, set = hits.get(key, (None, None))
                    get = val
                    hits[key] = get, set
                elif key.startswith("_set_"):
                    key = key[5:]
                    get, set = hits.get(key, (None, None))
                    set = val
                    hits[key] = get, set
            for key, (get, set) in hits.iteritems():
                dict[key] = property(get, set)
            return super(autoproperty, metaclass).__new__(metaclass,
                                                        name, bases, dict)
    class A:
        __metaclass__ = autoproperty
        def _get_x(self):
            return -self.__x
        def _set_x(self, x):
            self.__x = -x
    a = A()
    verify(not hasattr(a, "x"))
    a.x = 12
    vereq(a.x, 12)
    vereq(a._A__x, -12)

    class multimetaclass(autoproperty, autosuper):
        # Merge of multiple cooperating metaclasses
        pass
    class A:
        __metaclass__ = multimetaclass
        def _get_x(self):
            return "A"
    class B(A):
        def _get_x(self):
            return "B" + self.__super._get_x()
    class C(A):
        def _get_x(self):
            return "C" + self.__super._get_x()
    class D(C, B):
        def _get_x(self):
            return "D" + self.__super._get_x()
    vereq(D().x, "DCBA")

    # Make sure type(x) doesn't call x.__class__.__init__
    class T(type):
        counter = 0
        def __init__(self, *args):
            T.counter += 1
    class C:
        __metaclass__ = T
    vereq(T.counter, 1)
    a = C()
    vereq(type(a), C)
    vereq(T.counter, 1)

    class C(object): pass
    c = C()
    try: c()
    except TypeError: pass
    else: raise TestFailed, "calling object w/o call method should raise TypeError"

def pymods():
    if verbose: print "Testing Python subclass of module..."
    log = []
    import sys
    MT = type(sys)
    class MM(MT):
        def __init__(self, name):
            MT.__init__(self, name)
        def __getattribute__(self, name):
            log.append(("getattr", name))
            return MT.__getattribute__(self, name)
        def __setattr__(self, name, value):
            log.append(("setattr", name, value))
            MT.__setattr__(self, name, value)
        def __delattr__(self, name):
            log.append(("delattr", name))
            MT.__delattr__(self, name)
    a = MM("a")
    a.foo = 12
    x = a.foo
    del a.foo
    vereq(log, [("setattr", "foo", 12),
                ("getattr", "foo"),
                ("delattr", "foo")])

def multi():
    if verbose: print "Testing multiple inheritance..."
    class C(object):
        def __init__(self):
            self.__state = 0
        def getstate(self):
            return self.__state
        def setstate(self, state):
            self.__state = state
    a = C()
    vereq(a.getstate(), 0)
    a.setstate(10)
    vereq(a.getstate(), 10)
    class D(dict, C):
        def __init__(self):
            type({}).__init__(self)
            C.__init__(self)
    d = D()
    vereq(d.keys(), [])
    d["hello"] = "world"
    vereq(d.items(), [("hello", "world")])
    vereq(d["hello"], "world")
    vereq(d.getstate(), 0)
    d.setstate(10)
    vereq(d.getstate(), 10)
    vereq(D.__mro__, (D, dict, C, object))

    # SF bug #442833
    class Node(object):
        def __int__(self):
            return int(self.foo())
        def foo(self):
            return "23"
    class Frag(Node, list):
        def foo(self):
            return "42"
    vereq(Node().__int__(), 23)
    vereq(int(Node()), 23)
    vereq(Frag().__int__(), 42)
    vereq(int(Frag()), 42)

    # MI mixing classic and new-style classes.

    class A:
        x = 1

    class B(A):
        pass

    class C(A):
        x = 2

    class D(B, C):
        pass
    vereq(D.x, 1)

    # Classic MRO is preserved for a classic base class.
    class E(D, object):
        pass
    vereq(E.__mro__, (E, D, B, A, C, object))
    vereq(E.x, 1)

    # But with a mix of classic bases, their MROs are combined using
    # new-style MRO.
    class F(B, C, object):
        pass
    vereq(F.__mro__, (F, B, C, A, object))
    vereq(F.x, 2)

    # Try something else.
    class C:
        def cmethod(self):
            return "C a"
        def all_method(self):
            return "C b"

    class M1(C, object):
        def m1method(self):
            return "M1 a"
        def all_method(self):
            return "M1 b"

    vereq(M1.__mro__, (M1, C, object))
    m = M1()
    vereq(m.cmethod(), "C a")
    vereq(m.m1method(), "M1 a")
    vereq(m.all_method(), "M1 b")

    class D(C):
        def dmethod(self):
            return "D a"
        def all_method(self):
            return "D b"

    class M2(D, object):
        def m2method(self):
            return "M2 a"
        def all_method(self):
            return "M2 b"

    vereq(M2.__mro__, (M2, D, C, object))
    m = M2()
    vereq(m.cmethod(), "C a")
    vereq(m.dmethod(), "D a")
    vereq(m.m2method(), "M2 a")
    vereq(m.all_method(), "M2 b")

    class M3(M1, M2, object):
        def m3method(self):
            return "M3 a"
        def all_method(self):
            return "M3 b"
    vereq(M3.__mro__, (M3, M1, M2, D, C, object))
    m = M3()
    vereq(m.cmethod(), "C a")
    vereq(m.dmethod(), "D a")
    vereq(m.m1method(), "M1 a")
    vereq(m.m2method(), "M2 a")
    vereq(m.m3method(), "M3 a")
    vereq(m.all_method(), "M3 b")

    class Classic:
        pass
    try:
        class New(Classic):
            __metaclass__ = type
    except TypeError:
        pass
    else:
        raise TestFailed, "new class with only classic bases - shouldn't be"

def diamond():
    if verbose: print "Testing multiple inheritance special cases..."
    class A(object):
        def spam(self): return "A"
    vereq(A().spam(), "A")
    class B(A):
        def boo(self): return "B"
        def spam(self): return "B"
    vereq(B().spam(), "B")
    vereq(B().boo(), "B")
    class C(A):
        def boo(self): return "C"
    vereq(C().spam(), "A")
    vereq(C().boo(), "C")
    class D(B, C): pass
    vereq(D().spam(), "B")
    vereq(D().boo(), "B")
    vereq(D.__mro__, (D, B, C, A, object))
    class E(C, B): pass
    vereq(E().spam(), "B")
    vereq(E().boo(), "C")
    vereq(E.__mro__, (E, C, B, A, object))
    # MRO order disagreement
    try:
        class F(D, E): pass
    except TypeError:
        pass
    else:
        raise TestFailed, "expected MRO order disagreement (F)"
    try:
        class G(E, D): pass
    except TypeError:
        pass
    else:
        raise TestFailed, "expected MRO order disagreement (G)"


# see thread python-dev/2002-October/029035.html
def ex5():
    if verbose: print "Testing ex5 from C3 switch discussion..."
    class A(object): pass
    class B(object): pass
    class C(object): pass
    class X(A): pass
    class Y(A): pass
    class Z(X,B,Y,C): pass
    vereq(Z.__mro__, (Z, X, B, Y, A, C, object))

# see "A Monotonic Superclass Linearization for Dylan",
# by Kim Barrett et al. (OOPSLA 1996)
def monotonicity():
    if verbose: print "Testing MRO monotonicity..."
    class Boat(object): pass
    class DayBoat(Boat): pass
    class WheelBoat(Boat): pass
    class EngineLess(DayBoat): pass
    class SmallMultihull(DayBoat): pass
    class PedalWheelBoat(EngineLess,WheelBoat): pass
    class SmallCatamaran(SmallMultihull): pass
    class Pedalo(PedalWheelBoat,SmallCatamaran): pass

    vereq(PedalWheelBoat.__mro__,
          (PedalWheelBoat, EngineLess, DayBoat, WheelBoat, Boat,
           object))
    vereq(SmallCatamaran.__mro__,
          (SmallCatamaran, SmallMultihull, DayBoat, Boat, object))

    vereq(Pedalo.__mro__,
          (Pedalo, PedalWheelBoat, EngineLess, SmallCatamaran,
           SmallMultihull, DayBoat, WheelBoat, Boat, object))

# see "A Monotonic Superclass Linearization for Dylan",
# by Kim Barrett et al. (OOPSLA 1996)
def consistency_with_epg():
    if verbose: print "Testing consistentcy with EPG..."
    class Pane(object): pass
    class ScrollingMixin(object): pass
    class EditingMixin(object): pass
    class ScrollablePane(Pane,ScrollingMixin): pass
    class EditablePane(Pane,EditingMixin): pass
    class EditableScrollablePane(ScrollablePane,EditablePane): pass

    vereq(EditableScrollablePane.__mro__,
          (EditableScrollablePane, ScrollablePane, EditablePane,
           Pane, ScrollingMixin, EditingMixin, object))

mro_err_msg = """Cannot create a consistent method resolution
order (MRO) for bases """

def mro_disagreement():
    if verbose: print "Testing error messages for MRO disagreement..."
    def raises(exc, expected, callable, *args):
        try:
            callable(*args)
        except exc, msg:
            if not str(msg).startswith(expected):
                raise TestFailed, "Message %r, expected %r" % (str(msg),
                                                               expected)
        else:
            raise TestFailed, "Expected %s" % exc
    class A(object): pass
    class B(A): pass
    class C(object): pass
    # Test some very simple errors
    raises(TypeError, "duplicate base class A",
           type, "X", (A, A), {})
    raises(TypeError, mro_err_msg,
           type, "X", (A, B), {})
    raises(TypeError, mro_err_msg,
           type, "X", (A, C, B), {})
    # Test a slightly more complex error
    class GridLayout(object): pass
    class HorizontalGrid(GridLayout): pass
    class VerticalGrid(GridLayout): pass
    class HVGrid(HorizontalGrid, VerticalGrid): pass
    class VHGrid(VerticalGrid, HorizontalGrid): pass
    raises(TypeError, mro_err_msg,
           type, "ConfusedGrid", (HVGrid, VHGrid), {})

def objects():
    if verbose: print "Testing object class..."
    a = object()
    vereq(a.__class__, object)
    vereq(type(a), object)
    b = object()
    verify(a is not b)
    verify(not hasattr(a, "foo"))
    try:
        a.foo = 12
    except (AttributeError, TypeError):
        pass
    else:
        verify(0, "object() should not allow setting a foo attribute")
    verify(not hasattr(object(), "__dict__"))

    class Cdict(object):
        pass
    x = Cdict()
    vereq(x.__dict__, {})
    x.foo = 1
    vereq(x.foo, 1)
    vereq(x.__dict__, {'foo': 1})

def slots():
    if verbose: print "Testing __slots__..."
    class C0(object):
        __slots__ = []
    x = C0()
    verify(not hasattr(x, "__dict__"))
    verify(not hasattr(x, "foo"))

    class C1(object):
        __slots__ = ['a']
    x = C1()
    verify(not hasattr(x, "__dict__"))
    verify(not hasattr(x, "a"))
    x.a = 1
    vereq(x.a, 1)
    x.a = None
    veris(x.a, None)
    del x.a
    verify(not hasattr(x, "a"))

    class C3(object):
        __slots__ = ['a', 'b', 'c']
    x = C3()
    verify(not hasattr(x, "__dict__"))
    verify(not hasattr(x, 'a'))
    verify(not hasattr(x, 'b'))
    verify(not hasattr(x, 'c'))
    x.a = 1
    x.b = 2
    x.c = 3
    vereq(x.a, 1)
    vereq(x.b, 2)
    vereq(x.c, 3)

    class C4(object):
        """Validate name mangling"""
        __slots__ = ['__a']
        def __init__(self, value):
            self.__a = value
        def get(self):
            return self.__a
    x = C4(5)
    verify(not hasattr(x, '__dict__'))
    verify(not hasattr(x, '__a'))
    vereq(x.get(), 5)
    try:
        x.__a = 6
    except AttributeError:
        pass
    else:
        raise TestFailed, "Double underscored names not mangled"

    # Make sure slot names are proper identifiers
    try:
        class C(object):
            __slots__ = [None]
    except TypeError:
        pass
    else:
        raise TestFailed, "[None] slots not caught"
    try:
        class C(object):
            __slots__ = ["foo bar"]
    except TypeError:
        pass
    else:
        raise TestFailed, "['foo bar'] slots not caught"
    try:
        class C(object):
            __slots__ = ["foo\0bar"]
    except TypeError:
        pass
    else:
        raise TestFailed, "['foo\\0bar'] slots not caught"
    try:
        class C(object):
            __slots__ = ["1"]
    except TypeError:
        pass
    else:
        raise TestFailed, "['1'] slots not caught"
    try:
        class C(object):
            __slots__ = [""]
    except TypeError:
        pass
    else:
        raise TestFailed, "[''] slots not caught"
    class C(object):
        __slots__ = ["a", "a_b", "_a", "A0123456789Z"]

    # Test leaks
    class Counted(object):
        counter = 0    # counts the number of instances alive
        def __init__(self):
            Counted.counter += 1
        def __del__(self):
            Counted.counter -= 1
    class C(object):
        __slots__ = ['a', 'b', 'c']
    x = C()
    x.a = Counted()
    x.b = Counted()
    x.c = Counted()
    vereq(Counted.counter, 3)
    del x
    vereq(Counted.counter, 0)
    class D(C):
        pass
    x = D()
    x.a = Counted()
    x.z = Counted()
    vereq(Counted.counter, 2)
    del x
    vereq(Counted.counter, 0)
    class E(D):
        __slots__ = ['e']
    x = E()
    x.a = Counted()
    x.z = Counted()
    x.e = Counted()
    vereq(Counted.counter, 3)
    del x
    vereq(Counted.counter, 0)

    # Test cyclical leaks [SF bug 519621]
    class F(object):
        __slots__ = ['a', 'b']
    log = []
    s = F()
    s.a = [Counted(), s]
    vereq(Counted.counter, 1)
    s = None
    import gc
    gc.collect()
    vereq(Counted.counter, 0)

    # Test lookup leaks [SF bug 572567]
    import sys,gc
    class G(object):
        def __cmp__(self, other):
            return 0
    g = G()
    orig_objects = len(gc.get_objects())
    for i in xrange(10):
        g==g
    new_objects = len(gc.get_objects())
    vereq(orig_objects, new_objects)
    class H(object):
        __slots__ = ['a', 'b']
        def __init__(self):
            self.a = 1
            self.b = 2
        def __del__(self):
            assert self.a == 1
            assert self.b == 2

    save_stderr = sys.stderr
    sys.stderr = sys.stdout
    h = H()
    try:
        del h
    finally:
        sys.stderr = save_stderr

def slotspecials():
    if verbose: print "Testing __dict__ and __weakref__ in __slots__..."

    class D(object):
        __slots__ = ["__dict__"]
    a = D()
    verify(hasattr(a, "__dict__"))
    verify(not hasattr(a, "__weakref__"))
    a.foo = 42
    vereq(a.__dict__, {"foo": 42})

    class W(object):
        __slots__ = ["__weakref__"]
    a = W()
    verify(hasattr(a, "__weakref__"))
    verify(not hasattr(a, "__dict__"))
    try:
        a.foo = 42
    except AttributeError:
        pass
    else:
        raise TestFailed, "shouldn't be allowed to set a.foo"

    class C1(W, D):
        __slots__ = []
    a = C1()
    verify(hasattr(a, "__dict__"))
    verify(hasattr(a, "__weakref__"))
    a.foo = 42
    vereq(a.__dict__, {"foo": 42})

    class C2(D, W):
        __slots__ = []
    a = C2()
    verify(hasattr(a, "__dict__"))
    verify(hasattr(a, "__weakref__"))
    a.foo = 42
    vereq(a.__dict__, {"foo": 42})

# MRO order disagreement
#
#    class C3(C1, C2):
#        __slots__ = []
#
#    class C4(C2, C1):
#        __slots__ = []

def dynamics():
    if verbose: print "Testing class attribute propagation..."
    class D(object):
        pass
    class E(D):
        pass
    class F(D):
        pass
    D.foo = 1
    vereq(D.foo, 1)
    # Test that dynamic attributes are inherited
    vereq(E.foo, 1)
    vereq(F.foo, 1)
    # Test dynamic instances
    class C(object):
        pass
    a = C()
    verify(not hasattr(a, "foobar"))
    C.foobar = 2
    vereq(a.foobar, 2)
    C.method = lambda self: 42
    vereq(a.method(), 42)
    C.__repr__ = lambda self: "C()"
    vereq(repr(a), "C()")
    C.__int__ = lambda self: 100
    vereq(int(a), 100)
    vereq(a.foobar, 2)
    verify(not hasattr(a, "spam"))
    def mygetattr(self, name):
        if name == "spam":
            return "spam"
        raise AttributeError
    C.__getattr__ = mygetattr
    vereq(a.spam, "spam")
    a.new = 12
    vereq(a.new, 12)
    def mysetattr(self, name, value):
        if name == "spam":
            raise AttributeError
        return object.__setattr__(self, name, value)
    C.__setattr__ = mysetattr
    try:
        a.spam = "not spam"
    except AttributeError:
        pass
    else:
        verify(0, "expected AttributeError")
    vereq(a.spam, "spam")
    class D(C):
        pass
    d = D()
    d.foo = 1
    vereq(d.foo, 1)

    # Test handling of int*seq and seq*int
    class I(int):
        pass
    vereq("a"*I(2), "aa")
    vereq(I(2)*"a", "aa")
    vereq(2*I(3), 6)
    vereq(I(3)*2, 6)
    vereq(I(3)*I(2), 6)

    # Test handling of long*seq and seq*long
    class L(long):
        pass
    vereq("a"*L(2L), "aa")
    vereq(L(2L)*"a", "aa")
    vereq(2*L(3), 6)
    vereq(L(3)*2, 6)
    vereq(L(3)*L(2), 6)

    # Test comparison of classes with dynamic metaclasses
    class dynamicmetaclass(type):
        pass
    class someclass:
        __metaclass__ = dynamicmetaclass
    verify(someclass != object)

def errors():
    if verbose: print "Testing errors..."

    try:
        class C(list, dict):
            pass
    except TypeError:
        pass
    else:
        verify(0, "inheritance from both list and dict should be illegal")

    try:
        class C(object, None):
            pass
    except TypeError:
        pass
    else:
        verify(0, "inheritance from non-type should be illegal")
    class Classic:
        pass

    try:
        class C(type(len)):
            pass
    except TypeError:
        pass
    else:
        verify(0, "inheritance from CFunction should be illegal")

    try:
        class C(object):
            __slots__ = 1
    except TypeError:
        pass
    else:
        verify(0, "__slots__ = 1 should be illegal")

    try:
        class C(object):
            __slots__ = [1]
    except TypeError:
        pass
    else:
        verify(0, "__slots__ = [1] should be illegal")

def classmethods():
    if verbose: print "Testing class methods..."
    class C(object):
        def foo(*a): return a
        goo = classmethod(foo)
    c = C()
    vereq(C.goo(1), (C, 1))
    vereq(c.goo(1), (C, 1))
    vereq(c.foo(1), (c, 1))
    class D(C):
        pass
    d = D()
    vereq(D.goo(1), (D, 1))
    vereq(d.goo(1), (D, 1))
    vereq(d.foo(1), (d, 1))
    vereq(D.foo(d, 1), (d, 1))
    # Test for a specific crash (SF bug 528132)
    def f(cls, arg): return (cls, arg)
    ff = classmethod(f)
    vereq(ff.__get__(0, int)(42), (int, 42))
    vereq(ff.__get__(0)(42), (int, 42))

    # Test super() with classmethods (SF bug 535444)
    veris(C.goo.im_self, C)
    veris(D.goo.im_self, D)
    veris(super(D,D).goo.im_self, D)
    veris(super(D,d).goo.im_self, D)
    vereq(super(D,D).goo(), (D,))
    vereq(super(D,d).goo(), (D,))

    # Verify that argument is checked for callability (SF bug 753451)
    try:
        classmethod(1).__get__(1)
    except TypeError:
        pass
    else:
        raise TestFailed, "classmethod should check for callability"

def classmethods_in_c():
    if verbose: print "Testing C-based class methods..."
    import xxsubtype as spam
    a = (1, 2, 3)
    d = {'abc': 123}
    x, a1, d1 = spam.spamlist.classmeth(*a, **d)
    veris(x, spam.spamlist)
    vereq(a, a1)
    vereq(d, d1)
    x, a1, d1 = spam.spamlist().classmeth(*a, **d)
    veris(x, spam.spamlist)
    vereq(a, a1)
    vereq(d, d1)

def staticmethods():
    if verbose: print "Testing static methods..."
    class C(object):
        def foo(*a): return a
        goo = staticmethod(foo)
    c = C()
    vereq(C.goo(1), (1,))
    vereq(c.goo(1), (1,))
    vereq(c.foo(1), (c, 1,))
    class D(C):
        pass
    d = D()
    vereq(D.goo(1), (1,))
    vereq(d.goo(1), (1,))
    vereq(d.foo(1), (d, 1))
    vereq(D.foo(d, 1), (d, 1))

def staticmethods_in_c():
    if verbose: print "Testing C-based static methods..."
    import xxsubtype as spam
    a = (1, 2, 3)
    d = {"abc": 123}
    x, a1, d1 = spam.spamlist.staticmeth(*a, **d)
    veris(x, None)
    vereq(a, a1)
    vereq(d, d1)
    x, a1, d2 = spam.spamlist().staticmeth(*a, **d)
    veris(x, None)
    vereq(a, a1)
    vereq(d, d1)

def classic():
    if verbose: print "Testing classic classes..."
    class C:
        def foo(*a): return a
        goo = classmethod(foo)
    c = C()
    vereq(C.goo(1), (C, 1))
    vereq(c.goo(1), (C, 1))
    vereq(c.foo(1), (c, 1))
    class D(C):
        pass
    d = D()
    vereq(D.goo(1), (D, 1))
    vereq(d.goo(1), (D, 1))
    vereq(d.foo(1), (d, 1))
    vereq(D.foo(d, 1), (d, 1))
    class E: # *not* subclassing from C
        foo = C.foo
    vereq(E().foo, C.foo) # i.e., unbound
    verify(repr(C.foo.__get__(C())).startswith("<bound method "))

def compattr():
    if verbose: print "Testing computed attributes..."
    class C(object):
        class computed_attribute(object):
            def __init__(self, get, set=None, delete=None):
                self.__get = get
                self.__set = set
                self.__delete = delete
            def __get__(self, obj, type=None):
                return self.__get(obj)
            def __set__(self, obj, value):
                return self.__set(obj, value)
            def __delete__(self, obj):
                return self.__delete(obj)
        def __init__(self):
            self.__x = 0
        def __get_x(self):
            x = self.__x
            self.__x = x+1
            return x
        def __set_x(self, x):
            self.__x = x
        def __delete_x(self):
            del self.__x
        x = computed_attribute(__get_x, __set_x, __delete_x)
    a = C()
    vereq(a.x, 0)
    vereq(a.x, 1)
    a.x = 10
    vereq(a.x, 10)
    vereq(a.x, 11)
    del a.x
    vereq(hasattr(a, 'x'), 0)

def newslot():
    if verbose: print "Testing __new__ slot override..."
    class C(list):
        def __new__(cls):
            self = list.__new__(cls)
            self.foo = 1
            return self
        def __init__(self):
            self.foo = self.foo + 2
    a = C()
    vereq(a.foo, 3)
    verify(a.__class__ is C)
    class D(C):
        pass
    b = D()
    vereq(b.foo, 3)
    verify(b.__class__ is D)

def altmro():
    if verbose: print "Testing mro() and overriding it..."
    class A(object):
        def f(self): return "A"
    class B(A):
        pass
    class C(A):
        def f(self): return "C"
    class D(B, C):
        pass
    vereq(D.mro(), [D, B, C, A, object])
    vereq(D.__mro__, (D, B, C, A, object))
    vereq(D().f(), "C")

    class PerverseMetaType(type):
        def mro(cls):
            L = type.mro(cls)
            L.reverse()
            return L
    class X(D,B,C,A):
        __metaclass__ = PerverseMetaType
    vereq(X.__mro__, (object, A, C, B, D, X))
    vereq(X().f(), "A")

def overloading():
    if verbose: print "Testing operator overloading..."

    class B(object):
        "Intermediate class because object doesn't have a __setattr__"

    class C(B):

        def __getattr__(self, name):
            if name == "foo":
                return ("getattr", name)
            else:
                raise AttributeError
        def __setattr__(self, name, value):
            if name == "foo":
                self.setattr = (name, value)
            else:
                return B.__setattr__(self, name, value)
        def __delattr__(self, name):
            if name == "foo":
                self.delattr = name
            else:
                return B.__delattr__(self, name)

        def __getitem__(self, key):
            return ("getitem", key)
        def __setitem__(self, key, value):
            self.setitem = (key, value)
        def __delitem__(self, key):
            self.delitem = key

        def __getslice__(self, i, j):
            return ("getslice", i, j)
        def __setslice__(self, i, j, value):
            self.setslice = (i, j, value)
        def __delslice__(self, i, j):
            self.delslice = (i, j)

    a = C()
    vereq(a.foo, ("getattr", "foo"))
    a.foo = 12
    vereq(a.setattr, ("foo", 12))
    del a.foo
    vereq(a.delattr, "foo")

    vereq(a[12], ("getitem", 12))
    a[12] = 21
    vereq(a.setitem, (12, 21))
    del a[12]
    vereq(a.delitem, 12)

    vereq(a[0:10], ("getslice", 0, 10))
    a[0:10] = "foo"
    vereq(a.setslice, (0, 10, "foo"))
    del a[0:10]
    vereq(a.delslice, (0, 10))

def methods():
    if verbose: print "Testing methods..."
    class C(object):
        def __init__(self, x):
            self.x = x
        def foo(self):
            return self.x
    c1 = C(1)
    vereq(c1.foo(), 1)
    class D(C):
        boo = C.foo
        goo = c1.foo
    d2 = D(2)
    vereq(d2.foo(), 2)
    vereq(d2.boo(), 2)
    vereq(d2.goo(), 1)
    class E(object):
        foo = C.foo
    vereq(E().foo, C.foo) # i.e., unbound
    verify(repr(C.foo.__get__(C(1))).startswith("<bound method "))

def specials():
    # Test operators like __hash__ for which a built-in default exists
    if verbose: print "Testing special operators..."
    # Test the default behavior for static classes
    class C(object):
        def __getitem__(self, i):
            if 0 <= i < 10: return i
            raise IndexError
    c1 = C()
    c2 = C()
    verify(not not c1)
    vereq(hash(c1), id(c1))
    vereq(cmp(c1, c2), cmp(id(c1), id(c2)))
    vereq(c1, c1)
    verify(c1 != c2)
    verify(not c1 != c1)
    verify(not c1 == c2)
    # Note that the module name appears in str/repr, and that varies
    # depending on whether this test is run standalone or from a framework.
    verify(str(c1).find('C object at ') >= 0)
    vereq(str(c1), repr(c1))
    verify(-1 not in c1)
    for i in range(10):
        verify(i in c1)
    verify(10 not in c1)
    # Test the default behavior for dynamic classes
    class D(object):
        def __getitem__(self, i):
            if 0 <= i < 10: return i
            raise IndexError
    d1 = D()
    d2 = D()
    verify(not not d1)
    vereq(hash(d1), id(d1))
    vereq(cmp(d1, d2), cmp(id(d1), id(d2)))
    vereq(d1, d1)
    verify(d1 != d2)
    verify(not d1 != d1)
    verify(not d1 == d2)
    # Note that the module name appears in str/repr, and that varies
    # depending on whether this test is run standalone or from a framework.
    verify(str(d1).find('D object at ') >= 0)
    vereq(str(d1), repr(d1))
    verify(-1 not in d1)
    for i in range(10):
        verify(i in d1)
    verify(10 not in d1)
    # Test overridden behavior for static classes
    class Proxy(object):
        def __init__(self, x):
            self.x = x
        def __nonzero__(self):
            return not not self.x
        def __hash__(self):
            return hash(self.x)
        def __eq__(self, other):
            return self.x == other
        def __ne__(self, other):
            return self.x != other
        def __cmp__(self, other):
            return cmp(self.x, other.x)
        def __str__(self):
            return "Proxy:%s" % self.x
        def __repr__(self):
            return "Proxy(%r)" % self.x
        def __contains__(self, value):
            return value in self.x
    p0 = Proxy(0)
    p1 = Proxy(1)
    p_1 = Proxy(-1)
    verify(not p0)
    verify(not not p1)
    vereq(hash(p0), hash(0))
    vereq(p0, p0)
    verify(p0 != p1)
    verify(not p0 != p0)
    vereq(not p0, p1)
    vereq(cmp(p0, p1), -1)
    vereq(cmp(p0, p0), 0)
    vereq(cmp(p0, p_1), 1)
    vereq(str(p0), "Proxy:0")
    vereq(repr(p0), "Proxy(0)")
    p10 = Proxy(range(10))
    verify(-1 not in p10)
    for i in range(10):
        verify(i in p10)
    verify(10 not in p10)
    # Test overridden behavior for dynamic classes
    class DProxy(object):
        def __init__(self, x):
            self.x = x
        def __nonzero__(self):
            return not not self.x
        def __hash__(self):
            return hash(self.x)
        def __eq__(self, other):
            return self.x == other
        def __ne__(self, other):
            return self.x != other
        def __cmp__(self, other):
            return cmp(self.x, other.x)
        def __str__(self):
            return "DProxy:%s" % self.x
        def __repr__(self):
            return "DProxy(%r)" % self.x
        def __contains__(self, value):
            return value in self.x
    p0 = DProxy(0)
    p1 = DProxy(1)
    p_1 = DProxy(-1)
    verify(not p0)
    verify(not not p1)
    vereq(hash(p0), hash(0))
    vereq(p0, p0)
    verify(p0 != p1)
    verify(not p0 != p0)
    vereq(not p0, p1)
    vereq(cmp(p0, p1), -1)
    vereq(cmp(p0, p0), 0)
    vereq(cmp(p0, p_1), 1)
    vereq(str(p0), "DProxy:0")
    vereq(repr(p0), "DProxy(0)")
    p10 = DProxy(range(10))
    verify(-1 not in p10)
    for i in range(10):
        verify(i in p10)
    verify(10 not in p10)
    # Safety test for __cmp__
    def unsafecmp(a, b):
        try:
            a.__class__.__cmp__(a, b)
        except TypeError:
            pass
        else:
            raise TestFailed, "shouldn't allow %s.__cmp__(%r, %r)" % (
                a.__class__, a, b)
    unsafecmp(u"123", "123")
    unsafecmp("123", u"123")
    unsafecmp(1, 1.0)
    unsafecmp(1.0, 1)
    unsafecmp(1, 1L)
    unsafecmp(1L, 1)

    class Letter(str):
        def __new__(cls, letter):
            if letter == 'EPS':
                return str.__new__(cls)
            return str.__new__(cls, letter)
        def __str__(self):
            if not self:
                return 'EPS'
            return self

    # sys.stdout needs to be the original to trigger the recursion bug
    import sys
    test_stdout = sys.stdout
    sys.stdout = get_original_stdout()
    try:
        # nothing should actually be printed, this should raise an exception
        print Letter('w')
    except RuntimeError:
        pass
    else:
        raise TestFailed, "expected a RuntimeError for print recursion"
    sys.stdout = test_stdout

def weakrefs():
    if verbose: print "Testing weak references..."
    import weakref
    class C(object):
        pass
    c = C()
    r = weakref.ref(c)
    verify(r() is c)
    del c
    verify(r() is None)
    del r
    class NoWeak(object):
        __slots__ = ['foo']
    no = NoWeak()
    try:
        weakref.ref(no)
    except TypeError, msg:
        verify(str(msg).find("weak reference") >= 0)
    else:
        verify(0, "weakref.ref(no) should be illegal")
    class Weak(object):
        __slots__ = ['foo', '__weakref__']
    yes = Weak()
    r = weakref.ref(yes)
    verify(r() is yes)
    del yes
    verify(r() is None)
    del r

def properties():
    if verbose: print "Testing property..."
    class C(object):
        def getx(self):
            return self.__x
        def setx(self, value):
            self.__x = value
        def delx(self):
            del self.__x
        x = property(getx, setx, delx, doc="I'm the x property.")
    a = C()
    verify(not hasattr(a, "x"))
    a.x = 42
    vereq(a._C__x, 42)
    vereq(a.x, 42)
    del a.x
    verify(not hasattr(a, "x"))
    verify(not hasattr(a, "_C__x"))
    C.x.__set__(a, 100)
    vereq(C.x.__get__(a), 100)
    C.x.__delete__(a)
    verify(not hasattr(a, "x"))

    raw = C.__dict__['x']
    verify(isinstance(raw, property))

    attrs = dir(raw)
    verify("__doc__" in attrs)
    verify("fget" in attrs)
    verify("fset" in attrs)
    verify("fdel" in attrs)

    vereq(raw.__doc__, "I'm the x property.")
    verify(raw.fget is C.__dict__['getx'])
    verify(raw.fset is C.__dict__['setx'])
    verify(raw.fdel is C.__dict__['delx'])

    for attr in "__doc__", "fget", "fset", "fdel":
        try:
            setattr(raw, attr, 42)
        except TypeError, msg:
            if str(msg).find('readonly') < 0:
                raise TestFailed("when setting readonly attr %r on a "
                                 "property, got unexpected TypeError "
                                 "msg %r" % (attr, str(msg)))
        else:
            raise TestFailed("expected TypeError from trying to set "
                             "readonly %r attr on a property" % attr)

    class D(object):
        __getitem__ = property(lambda s: 1/0)

    d = D()
    try:
        for i in d:
            str(i)
    except ZeroDivisionError:
        pass
    else:
        raise TestFailed, "expected ZeroDivisionError from bad property"

def supers():
    if verbose: print "Testing super..."

    class A(object):
        def meth(self, a):
            return "A(%r)" % a

    vereq(A().meth(1), "A(1)")

    class B(A):
        def __init__(self):
            self.__super = super(B, self)
        def meth(self, a):
            return "B(%r)" % a + self.__super.meth(a)

    vereq(B().meth(2), "B(2)A(2)")

    class C(A):
        def meth(self, a):
            return "C(%r)" % a + self.__super.meth(a)
    C._C__super = super(C)

    vereq(C().meth(3), "C(3)A(3)")

    class D(C, B):
        def meth(self, a):
            return "D(%r)" % a + super(D, self).meth(a)

    vereq(D().meth(4), "D(4)C(4)B(4)A(4)")

    # Test for subclassing super

    class mysuper(super):
        def __init__(self, *args):
            return super(mysuper, self).__init__(*args)

    class E(D):
        def meth(self, a):
            return "E(%r)" % a + mysuper(E, self).meth(a)

    vereq(E().meth(5), "E(5)D(5)C(5)B(5)A(5)")

    class F(E):
        def meth(self, a):
            s = self.__super # == mysuper(F, self)
            return "F(%r)[%s]" % (a, s.__class__.__name__) + s.meth(a)
    F._F__super = mysuper(F)

    vereq(F().meth(6), "F(6)[mysuper]E(6)D(6)C(6)B(6)A(6)")

    # Make sure certain errors are raised

    try:
        super(D, 42)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't allow super(D, 42)"

    try:
        super(D, C())
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't allow super(D, C())"

    try:
        super(D).__get__(12)
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't allow super(D).__get__(12)"

    try:
        super(D).__get__(C())
    except TypeError:
        pass
    else:
        raise TestFailed, "shouldn't allow super(D).__get__(C())"

    # Make sure data descriptors can be overridden and accessed via super
    # (new feature in Python 2.3)

    class DDbase(object):
        def getx(self): return 42
        x = property(getx)

    class DDsub(DDbase):
        def getx(self): return "hello"
        x = property(getx)

    dd = DDsub()
    vereq(dd.x, "hello")
    vereq(super(DDsub, dd).x, 42)

    # Ensure that super() lookup of descriptor from classmethod
    # works (SF ID# 743627)

    class Base(object):
        aProp = property(lambda self: "foo")

    class Sub(Base):
        @classmethod
        def test(klass):
            return super(Sub,klass).aProp

    veris(Sub.test(), Base.aProp)


def inherits():
    if verbose: print "Testing inheritance from basic types..."

    class hexint(int):
        def __repr__(self):
            return hex(self)
        def __add__(self, other):
            return hexint(int.__add__(self, other))
        # (Note that overriding __radd__ doesn't work,
        # because the int type gets first dibs.)
    vereq(repr(hexint(7) + 9), "0x10")
    vereq(repr(hexint(1000) + 7), "0x3ef")
    a = hexint(12345)
    vereq(a, 12345)
    vereq(int(a), 12345)
    verify(int(a).__class__ is int)
    vereq(hash(a), hash(12345))
    verify((+a).__class__ is int)
    verify((a >> 0).__class__ is int)
    verify((a << 0).__class__ is int)
    verify((hexint(0) << 12).__class__ is int)
    verify((hexint(0) >> 12).__class__ is int)

    class octlong(long):
        __slots__ = []
        def __str__(self):
            s = oct(self)
            if s[-1] == 'L':
                s = s[:-1]
            return s
        def __add__(self, other):
            return self.__class__(super(octlong, self).__add__(other))
        __radd__ = __add__
    vereq(str(octlong(3) + 5), "010")
    # (Note that overriding __radd__ here only seems to work
    # because the example uses a short int left argument.)
    vereq(str(5 + octlong(3000)), "05675")
    a = octlong(12345)
    vereq(a, 12345L)
    vereq(long(a), 12345L)
    vereq(hash(a), hash(12345L))
    verify(long(a).__class__ is long)
    verify((+a).__class__ is long)
    verify((-a).__class__ is long)
    verify((-octlong(0)).__class__ is long)
    verify((a >> 0).__class__ is long)
    verify((a << 0).__class__ is long)
    verify((a - 0).__class__ is long)
    verify((a * 1).__class__ is long)
    verify((a ** 1).__class__ is long)
    verify((a // 1).__class__ is long)
    verify((1 * a).__class__ is long)
    verify((a | 0).__class__ is long)
    verify((a ^ 0).__class__ is long)
    verify((a & -1L).__class__ is long)
    verify((octlong(0) << 12).__class__ is long)
    verify((octlong(0) >> 12).__class__ is long)
    verify(abs(octlong(0)).__class__ is long)

    # Because octlong overrides __add__, we can't check the absence of +0
    # optimizations using octlong.
    class longclone(long):
        pass
    a = longclone(1)
    verify((a + 0).__class__ is long)
    verify((0 + a).__class__ is long)

    # Check that negative clones don't segfault
    a = longclone(-1)
    vereq(a.__dict__, {})
    vereq(long(a), -1)  # verify PyNumber_Long() copies the sign bit

    class precfloat(float):
        __slots__ = ['prec']
        def __init__(self, value=0.0, prec=12):
            self.prec = int(prec)
            float.__init__(value)
        def __repr__(self):
            return "%.*g" % (self.prec, self)
    vereq(repr(precfloat(1.1)), "1.1")
    a = precfloat(12345)
    vereq(a, 12345.0)
    vereq(float(a), 12345.0)
    verify(float(a).__class__ is float)
    vereq(hash(a), hash(12345.0))
    verify((+a).__class__ is float)

    class madcomplex(complex):
        def __repr__(self):
            return "%.17gj%+.17g" % (self.imag, self.real)
    a = madcomplex(-3, 4)
    vereq(repr(a), "4j-3")
    base = complex(-3, 4)
    veris(base.__class__, complex)
    vereq(a, base)
    vereq(complex(a), base)
    veris(complex(a).__class__, complex)
    a = madcomplex(a)  # just trying another form of the constructor
    vereq(repr(a), "4j-3")
    vereq(a, base)
    vereq(complex(a), base)
    veris(complex(a).__class__, complex)
    vereq(hash(a), hash(base))
    veris((+a).__class__, complex)
    veris((a + 0).__class__, complex)
    vereq(a + 0, base)
    veris((a - 0).__class__, complex)
    vereq(a - 0, base)
    veris((a * 1).__class__, complex)
    vereq(a * 1, base)
    veris((a / 1).__class__, complex)
    vereq(a / 1, base)

    class madtuple(tuple):
        _rev = None
        def rev(self):
            if self._rev is not None:
                return self._rev
            L = list(self)
            L.reverse()
            self._rev = self.__class__(L)
            return self._rev
    a = madtuple((1,2,3,4,5,6,7,8,9,0))
    vereq(a, (1,2,3,4,5,6,7,8,9,0))
    vereq(a.rev(), madtuple((0,9,8,7,6,5,4,3,2,1)))
    vereq(a.rev().rev(), madtuple((1,2,3,4,5,6,7,8,9,0)))
    for i in range(512):
        t = madtuple(range(i))
        u = t.rev()
        v = u.rev()
        vereq(v, t)
    a = madtuple((1,2,3,4,5))
    vereq(tuple(a), (1,2,3,4,5))
    verify(tuple(a).__class__ is tuple)
    vereq(hash(a), hash((1,2,3,4,5)))
    verify(a[:].__class__ is tuple)
    verify((a * 1).__class__ is tuple)
    verify((a * 0).__class__ is tuple)
    verify((a + ()).__class__ is tuple)
    a = madtuple(())
    vereq(tuple(a), ())
    verify(tuple(a).__class__ is tuple)
    verify((a + a).__class__ is tuple)
    verify((a * 0).__class__ is tuple)
    verify((a * 1).__class__ is tuple)
    verify((a * 2).__class__ is tuple)
    verify(a[:].__class__ is tuple)

    class madstring(str):
        _rev = None
        def rev(self):
            if self._rev is not None:
                return self._rev
            L = list(self)
            L.reverse()
            self._rev = self.__class__("".join(L))
            return self._rev
    s = madstring("abcdefghijklmnopqrstuvwxyz")
    vereq(s, "abcdefghijklmnopqrstuvwxyz")
    vereq(s.rev(), madstring("zyxwvutsrqponmlkjihgfedcba"))
    vereq(s.rev().rev(), madstring("abcdefghijklmnopqrstuvwxyz"))
    for i in range(256):
        s = madstring("".join(map(chr, range(i))))
        t = s.rev()
        u = t.rev()
        vereq(u, s)
    s = madstring("12345")
    vereq(str(s), "12345")
    verify(str(s).__class__ is str)

    base = "\x00" * 5
    s = madstring(base)
    vereq(s, base)
    vereq(str(s), base)
    verify(str(s).__class__ is str)
    vereq(hash(s), hash(base))
    vereq({s: 1}[base], 1)
    vereq({base: 1}[s], 1)
    verify((s + "").__class__ is str)
    vereq(s + "", base)
    verify(("" + s).__class__ is str)
    vereq("" + s, base)
    verify((s * 0).__class__ is str)
    vereq(s * 0, "")
    verify((s * 1).__class__ is str)
    vereq(s * 1, base)
    verify((s * 2).__class__ is str)
    vereq(s * 2, base + base)
    verify(s[:].__class__ is str)
    vereq(s[:], base)
    verify(s[0:0].__class__ is str)
    vereq(s[0:0], "")
    verify(s.strip().__class__ is str)
    vereq(s.strip(), base)
    verify(s.lstrip().__class__ is str)
    vereq(s.lstrip(), base)
    verify(s.rstrip().__class__ is str)
    vereq(s.rstrip(), base)
    identitytab = ''.join([chr(i) for i in range(256)])
    verify(s.translate(identitytab).__class__ is str)
    vereq(s.translate(identitytab), base)
    verify(s.translate(identitytab, "x").__class__ is str)
    vereq(s.translate(identitytab, "x"), base)
    vereq(s.translate(identitytab, "\x00"), "")
    verify(s.replace("x", "x").__class__ is str)
    vereq(s.replace("x", "x"), base)
    verify(s.ljust(len(s)).__class__ is str)
    vereq(s.ljust(len(s)), base)
    verify(s.rjust(len(s)).__class__ is str)
    vereq(s.rjust(len(s)), base)
    verify(s.center(len(s)).__class__ is str)
    vereq(s.center(len(s)), base)
    verify(s.lower().__class__ is str)
    vereq(s.lower(), base)

    class madunicode(unicode):
        _rev = None
        def rev(self):
            if self._rev is not None:
                return self._rev
            L = list(self)
            L.reverse()
            self._rev = self.__class__(u"".join(L))
            return self._rev
    u = madunicode("ABCDEF")
    vereq(u, u"ABCDEF")
    vereq(u.rev(), madunicode(u"FEDCBA"))
    vereq(u.rev().rev(), madunicode(u"ABCDEF"))
    base = u"12345"
    u = madunicode(base)
    vereq(unicode(u), base)
    verify(unicode(u).__class__ is unicode)
    vereq(hash(u), hash(base))
    vereq({u: 1}[base], 1)
    vereq({base: 1}[u], 1)
    verify(u.strip().__class__ is unicode)
    vereq(u.strip(), base)
    verify(u.lstrip().__class__ is unicode)
    vereq(u.lstrip(), base)
    verify(u.rstrip().__class__ is unicode)
    vereq(u.rstrip(), base)
    verify(u.replace(u"x", u"x").__class__ is unicode)
    vereq(u.replace(u"x", u"x"), base)
    verify(u.replace(u"xy", u"xy").__class__ is unicode)
    vereq(u.replace(u"xy", u"xy"), base)
    verify(u.center(len(u)).__class__ is unicode)
    vereq(u.center(len(u)), base)
    verify(u.ljust(len(u)).__class__ is unicode)
    vereq(u.ljust(len(u)), base)
    verify(u.rjust(len(u)).__class__ is unicode)
    vereq(u.rjust(len(u)), base)
    verify(u.lower().__class__ is unicode)
    vereq(u.lower(), base)
    verify(u.upper().__class__ is unicode)
    vereq(u.upper(), base)
    verify(u.capitalize().__class__ is unicode)
    vereq(u.capitalize(), base)
    verify(u.title().__class__ is unicode)
    vereq(u.title(), base)
    verify((u + u"").__class__ is unicode)
    vereq(u + u"", base)
    verify((u"" + u).__class__ is unicode)
    vereq(u"" + u, base)
    verify((u * 0).__class__ is unicode)
    vereq(u * 0, u"")
    verify((u * 1).__class__ is unicode)
    vereq(u * 1, base)
    verify((u * 2).__class__ is unicode)
    vereq(u * 2, base + base)
    verify(u[:].__class__ is unicode)
    vereq(u[:], base)
    verify(u[0:0].__class__ is unicode)
    vereq(u[0:0], u"")

    class sublist(list):
        pass
    a = sublist(range(5))
    vereq(a, range(5))
    a.append("hello")
    vereq(a, range(5) + ["hello"])
    a[5] = 5
    vereq(a, range(6))
    a.extend(range(6, 20))
    vereq(a, range(20))
    a[-5:] = []
    vereq(a, range(15))
    del a[10:15]
    vereq(len(a), 10)
    vereq(a, range(10))
    vereq(list(a), range(10))
    vereq(a[0], 0)
    vereq(a[9], 9)
    vereq(a[-10], 0)
    vereq(a[-1], 9)
    vereq(a[:5], range(5))

    class CountedInput(file):
        """Counts lines read by self.readline().

        self.lineno is the 0-based ordinal of the last line read, up to
        a maximum of one greater than the number of lines in the file.

        self.ateof is true if and only if the final "" line has been read,
        at which point self.lineno stops incrementing, and further calls
        to readline() continue to return "".
        """

        lineno = 0
        ateof = 0
        def readline(self):
            if self.ateof:
                return ""
            s = file.readline(self)
            # Next line works too.
            # s = super(CountedInput, self).readline()
            self.lineno += 1
            if s == "":
                self.ateof = 1
            return s

    f = file(name=TESTFN, mode='w')
    lines = ['a\n', 'b\n', 'c\n']
    try:
        f.writelines(lines)
        f.close()
        f = CountedInput(TESTFN)
        for (i, expected) in zip(range(1, 5) + [4], lines + 2 * [""]):
            got = f.readline()
            vereq(expected, got)
            vereq(f.lineno, i)
            vereq(f.ateof, (i > len(lines)))
        f.close()
    finally:
        try:
            f.close()
        except:
            pass
        try:
            import os
            os.unlink(TESTFN)
        except:
            pass

def keywords():
    if verbose:
        print "Testing keyword args to basic type constructors ..."
    vereq(int(x=1), 1)
    vereq(float(x=2), 2.0)
    vereq(long(x=3), 3L)
    vereq(complex(imag=42, real=666), complex(666, 42))
    vereq(str(object=500), '500')
    vereq(unicode(string='abc', errors='strict'), u'abc')
    vereq(tuple(sequence=range(3)), (0, 1, 2))
    vereq(list(sequence=(0, 1, 2)), range(3))
    # note: as of Python 2.3, dict() no longer has an "items" keyword arg

    for constructor in (int, float, long, complex, str, unicode,
                        tuple, list, file):
        try:
            constructor(bogus_keyword_arg=1)
        except TypeError:
            pass
        else:
            raise TestFailed("expected TypeError from bogus keyword "
                             "argument to %r" % constructor)

def restricted():
    # XXX This test is disabled because rexec is not deemed safe
    return
    import rexec
    if verbose:
        print "Testing interaction with restricted execution ..."

    sandbox = rexec.RExec()

    code1 = """f = open(%r, 'w')""" % TESTFN
    code2 = """f = file(%r, 'w')""" % TESTFN
    code3 = """\
f = open(%r)
t = type(f)  # a sneaky way to get the file() constructor
f.close()
f = t(%r, 'w')  # rexec can't catch this by itself
""" % (TESTFN, TESTFN)

    f = open(TESTFN, 'w')  # Create the file so code3 can find it.
    f.close()

    try:
        for code in code1, code2, code3:
            try:
                sandbox.r_exec(code)
            except IOError, msg:
                if str(msg).find("restricted") >= 0:
                    outcome = "OK"
                else:
                    outcome = "got an exception, but not an expected one"
            else:
                outcome = "expected a restricted-execution exception"

            if outcome != "OK":
                raise TestFailed("%s, in %r" % (outcome, code))

    finally:
        try:
            import os
            os.unlink(TESTFN)
        except:
            pass

def str_subclass_as_dict_key():
    if verbose:
        print "Testing a str subclass used as dict key .."

    class cistr(str):
        """Sublcass of str that computes __eq__ case-insensitively.

        Also computes a hash code of the string in canonical form.
        """

        def __init__(self, value):
            self.canonical = value.lower()
            self.hashcode = hash(self.canonical)

        def __eq__(self, other):
            if not isinstance(other, cistr):
                other = cistr(other)
            return self.canonical == other.canonical

        def __hash__(self):
            return self.hashcode

    vereq(cistr('ABC'), 'abc')
    vereq('aBc', cistr('ABC'))
    vereq(str(cistr('ABC')), 'ABC')

    d = {cistr('one'): 1, cistr('two'): 2, cistr('tHree'): 3}
    vereq(d[cistr('one')], 1)
    vereq(d[cistr('tWo')], 2)
    vereq(d[cistr('THrEE')], 3)
    verify(cistr('ONe') in d)
    vereq(d.get(cistr('thrEE')), 3)

def classic_comparisons():
    if verbose: print "Testing classic comparisons..."
    class classic:
        pass
    for base in (classic, int, object):
        if verbose: print "        (base = %s)" % base
        class C(base):
            def __init__(self, value):
                self.value = int(value)
            def __cmp__(self, other):
                if isinstance(other, C):
                    return cmp(self.value, other.value)
                if isinstance(other, int) or isinstance(other, long):
                    return cmp(self.value, other)
                return NotImplemented
        c1 = C(1)
        c2 = C(2)
        c3 = C(3)
        vereq(c1, 1)
        c = {1: c1, 2: c2, 3: c3}
        for x in 1, 2, 3:
            for y in 1, 2, 3:
                verify(cmp(c[x], c[y]) == cmp(x, y), "x=%d, y=%d" % (x, y))
                for op in "<", "<=", "==", "!=", ">", ">=":
                    verify(eval("c[x] %s c[y]" % op) == eval("x %s y" % op),
                           "x=%d, y=%d" % (x, y))
                verify(cmp(c[x], y) == cmp(x, y), "x=%d, y=%d" % (x, y))
                verify(cmp(x, c[y]) == cmp(x, y), "x=%d, y=%d" % (x, y))

def rich_comparisons():
    if verbose:
        print "Testing rich comparisons..."
    class Z(complex):
        pass
    z = Z(1)
    vereq(z, 1+0j)
    vereq(1+0j, z)
    class ZZ(complex):
        def __eq__(self, other):
            try:
                return abs(self - other) <= 1e-6
            except:
                return NotImplemented
    zz = ZZ(1.0000003)
    vereq(zz, 1+0j)
    vereq(1+0j, zz)

    class classic:
        pass
    for base in (classic, int, object, list):
        if verbose: print "        (base = %s)" % base
        class C(base):
            def __init__(self, value):
                self.value = int(value)
            def __cmp__(self, other):
                raise TestFailed, "shouldn't call __cmp__"
            def __eq__(self, other):
                if isinstance(other, C):
                    return self.value == other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value == other
                return NotImplemented
            def __ne__(self, other):
                if isinstance(other, C):
                    return self.value != other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value != other
                return NotImplemented
            def __lt__(self, other):
                if isinstance(other, C):
                    return self.value < other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value < other
                return NotImplemented
            def __le__(self, other):
                if isinstance(other, C):
                    return self.value <= other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value <= other
                return NotImplemented
            def __gt__(self, other):
                if isinstance(other, C):
                    return self.value > other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value > other
                return NotImplemented
            def __ge__(self, other):
                if isinstance(other, C):
                    return self.value >= other.value
                if isinstance(other, int) or isinstance(other, long):
                    return self.value >= other
                return NotImplemented
        c1 = C(1)
        c2 = C(2)
        c3 = C(3)
        vereq(c1, 1)
        c = {1: c1, 2: c2, 3: c3}
        for x in 1, 2, 3:
            for y in 1, 2, 3:
                for op in "<", "<=", "==", "!=", ">", ">=":
                    verify(eval("c[x] %s c[y]" % op) == eval("x %s y" % op),
                           "x=%d, y=%d" % (x, y))
                    verify(eval("c[x] %s y" % op) == eval("x %s y" % op),
                           "x=%d, y=%d" % (x, y))
                    verify(eval("x %s c[y]" % op) == eval("x %s y" % op),
                           "x=%d, y=%d" % (x, y))

def coercions():
    if verbose: print "Testing coercions..."
    class I(int): pass
    coerce(I(0), 0)
    coerce(0, I(0))
    class L(long): pass
    coerce(L(0), 0)
    coerce(L(0), 0L)
    coerce(0, L(0))
    coerce(0L, L(0))
    class F(float): pass
    coerce(F(0), 0)
    coerce(F(0), 0L)
    coerce(F(0), 0.)
    coerce(0, F(0))
    coerce(0L, F(0))
    coerce(0., F(0))
    class C(complex): pass
    coerce(C(0), 0)
    coerce(C(0), 0L)
    coerce(C(0), 0.)
    coerce(C(0), 0j)
    coerce(0, C(0))
    coerce(0L, C(0))
    coerce(0., C(0))
    coerce(0j, C(0))

def descrdoc():
    if verbose: print "Testing descriptor doc strings..."
    def check(descr, what):
        vereq(descr.__doc__, what)
    check(file.closed, "True if the file is closed") # getset descriptor
    check(file.name, "file name") # member descriptor

def setclass():
    if verbose: print "Testing __class__ assignment..."
    class C(object): pass
    class D(object): pass
    class E(object): pass
    class F(D, E): pass
    for cls in C, D, E, F:
        for cls2 in C, D, E, F:
            x = cls()
            x.__class__ = cls2
            verify(x.__class__ is cls2)
            x.__class__ = cls
            verify(x.__class__ is cls)
    def cant(x, C):
        try:
            x.__class__ = C
        except TypeError:
            pass
        else:
            raise TestFailed, "shouldn't allow %r.__class__ = %r" % (x, C)
        try:
            delattr(x, "__class__")
        except TypeError:
            pass
        else:
            raise TestFailed, "shouldn't allow del %r.__class__" % x
    cant(C(), list)
    cant(list(), C)
    cant(C(), 1)
    cant(C(), object)
    cant(object(), list)
    cant(list(), object)
    class Int(int): __slots__ = []
    cant(2, Int)
    cant(Int(), int)
    cant(True, int)
    cant(2, bool)
    o = object()
    cant(o, type(1))
    cant(o, type(None))
    del o

def setdict():
    if verbose: print "Testing __dict__ assignment..."
    class C(object): pass
    a = C()
    a.__dict__ = {'b': 1}
    vereq(a.b, 1)
    def cant(x, dict):
        try:
            x.__dict__ = dict
        except (AttributeError, TypeError):
            pass
        else:
            raise TestFailed, "shouldn't allow %r.__dict__ = %r" % (x, dict)
    cant(a, None)
    cant(a, [])
    cant(a, 1)
    del a.__dict__ # Deleting __dict__ is allowed
    # Classes don't allow __dict__ assignment
    cant(C, {})

def pickles():
    if verbose:
        print "Testing pickling and copying new-style classes and objects..."
    import pickle, cPickle

    def sorteditems(d):
        L = d.items()
        L.sort()
        return L

    global C
    class C(object):
        def __init__(self, a, b):
            super(C, self).__init__()
            self.a = a
            self.b = b
        def __repr__(self):
            return "C(%r, %r)" % (self.a, self.b)

    global C1
    class C1(list):
        def __new__(cls, a, b):
            return super(C1, cls).__new__(cls)
        def __getnewargs__(self):
            return (self.a, self.b)
        def __init__(self, a, b):
            self.a = a
            self.b = b
        def __repr__(self):
            return "C1(%r, %r)<%r>" % (self.a, self.b, list(self))

    global C2
    class C2(int):
        def __new__(cls, a, b, val=0):
            return super(C2, cls).__new__(cls, val)
        def __getnewargs__(self):
            return (self.a, self.b, int(self))
        def __init__(self, a, b, val=0):
            self.a = a
            self.b = b
        def __repr__(self):
            return "C2(%r, %r)<%r>" % (self.a, self.b, int(self))

    global C3
    class C3(object):
        def __init__(self, foo):
            self.foo = foo
        def __getstate__(self):
            return self.foo
        def __setstate__(self, foo):
            self.foo = foo

    global C4classic, C4
    class C4classic: # classic
        pass
    class C4(C4classic, object): # mixed inheritance
        pass

    for p in pickle, cPickle:
        for bin in 0, 1:
            if verbose:
                print p.__name__, ["text", "binary"][bin]

            for cls in C, C1, C2:
                s = p.dumps(cls, bin)
                cls2 = p.loads(s)
                verify(cls2 is cls)

            a = C1(1, 2); a.append(42); a.append(24)
            b = C2("hello", "world", 42)
            s = p.dumps((a, b), bin)
            x, y = p.loads(s)
            vereq(x.__class__, a.__class__)
            vereq(sorteditems(x.__dict__), sorteditems(a.__dict__))
            vereq(y.__class__, b.__class__)
            vereq(sorteditems(y.__dict__), sorteditems(b.__dict__))
            vereq(repr(x), repr(a))
            vereq(repr(y), repr(b))
            if verbose:
                print "a = x =", a
                print "b = y =", b
            # Test for __getstate__ and __setstate__ on new style class
            u = C3(42)
            s = p.dumps(u, bin)
            v = p.loads(s)
            veris(u.__class__, v.__class__)
            vereq(u.foo, v.foo)
            # Test for picklability of hybrid class
            u = C4()
            u.foo = 42
            s = p.dumps(u, bin)
            v = p.loads(s)
            veris(u.__class__, v.__class__)
            vereq(u.foo, v.foo)

    # Testing copy.deepcopy()
    if verbose:
        print "deepcopy"
    import copy
    for cls in C, C1, C2:
        cls2 = copy.deepcopy(cls)
        verify(cls2 is cls)

    a = C1(1, 2); a.append(42); a.append(24)
    b = C2("hello", "world", 42)
    x, y = copy.deepcopy((a, b))
    vereq(x.__class__, a.__class__)
    vereq(sorteditems(x.__dict__), sorteditems(a.__dict__))
    vereq(y.__class__, b.__class__)
    vereq(sorteditems(y.__dict__), sorteditems(b.__dict__))
    vereq(repr(x), repr(a))
    vereq(repr(y), repr(b))
    if verbose:
        print "a = x =", a
        print "b = y =", b

def pickleslots():
    if verbose: print "Testing pickling of classes with __slots__ ..."
    import pickle, cPickle
    # Pickling of classes with __slots__ but without __getstate__ should fail
    global B, C, D, E
    class B(object):
        pass
    for base in [object, B]:
        class C(base):
            __slots__ = ['a']
        class D(C):
            pass
        try:
            pickle.dumps(C())
        except TypeError:
            pass
        else:
            raise TestFailed, "should fail: pickle C instance - %s" % base
        try:
            cPickle.dumps(C())
        except TypeError:
            pass
        else:
            raise TestFailed, "should fail: cPickle C instance - %s" % base
        try:
            pickle.dumps(C())
        except TypeError:
            pass
        else:
            raise TestFailed, "should fail: pickle D instance - %s" % base
        try:
            cPickle.dumps(D())
        except TypeError:
            pass
        else:
            raise TestFailed, "should fail: cPickle D instance - %s" % base
        # Give C a nice generic __getstate__ and __setstate__
        class C(base):
            __slots__ = ['a']
            def __getstate__(self):
                try:
                    d = self.__dict__.copy()
                except AttributeError:
                    d = {}
                for cls in self.__class__.__mro__:
                    for sn in cls.__dict__.get('__slots__', ()):
                        try:
                            d[sn] = getattr(self, sn)
                        except AttributeError:
                            pass
                return d
            def __setstate__(self, d):
                for k, v in d.items():
                    setattr(self, k, v)
        class D(C):
            pass
        # Now it should work
        x = C()
        y = pickle.loads(pickle.dumps(x))
        vereq(hasattr(y, 'a'), 0)
        y = cPickle.loads(cPickle.dumps(x))
        vereq(hasattr(y, 'a'), 0)
        x.a = 42
        y = pickle.loads(pickle.dumps(x))
        vereq(y.a, 42)
        y = cPickle.loads(cPickle.dumps(x))
        vereq(y.a, 42)
        x = D()
        x.a = 42
        x.b = 100
        y = pickle.loads(pickle.dumps(x))
        vereq(y.a + y.b, 142)
        y = cPickle.loads(cPickle.dumps(x))
        vereq(y.a + y.b, 142)
        # A subclass that adds a slot should also work
        class E(C):
            __slots__ = ['b']
        x = E()
        x.a = 42
        x.b = "foo"
        y = pickle.loads(pickle.dumps(x))
        vereq(y.a, x.a)
        vereq(y.b, x.b)
        y = cPickle.loads(cPickle.dumps(x))
        vereq(y.a, x.a)
        vereq(y.b, x.b)

def copies():
    if verbose: print "Testing copy.copy() and copy.deepcopy()..."
    import copy
    class C(object):
        pass

    a = C()
    a.foo = 12
    b = copy.copy(a)
    vereq(b.__dict__, a.__dict__)

    a.bar = [1,2,3]
    c = copy.copy(a)
    vereq(c.bar, a.bar)
    verify(c.bar is a.bar)

    d = copy.deepcopy(a)
    vereq(d.__dict__, a.__dict__)
    a.bar.append(4)
    vereq(d.bar, [1,2,3])

def binopoverride():
    if verbose: print "Testing overrides of binary operations..."
    class I(int):
        def __repr__(self):
            return "I(%r)" % int(self)
        def __add__(self, other):
            return I(int(self) + int(other))
        __radd__ = __add__
        def __pow__(self, other, mod=None):
            if mod is None:
                return I(pow(int(self), int(other)))
            else:
                return I(pow(int(self), int(other), int(mod)))
        def __rpow__(self, other, mod=None):
            if mod is None:
                return I(pow(int(other), int(self), mod))
            else:
                return I(pow(int(other), int(self), int(mod)))

    vereq(repr(I(1) + I(2)), "I(3)")
    vereq(repr(I(1) + 2), "I(3)")
    vereq(repr(1 + I(2)), "I(3)")
    vereq(repr(I(2) ** I(3)), "I(8)")
    vereq(repr(2 ** I(3)), "I(8)")
    vereq(repr(I(2) ** 3), "I(8)")
    vereq(repr(pow(I(2), I(3), I(5))), "I(3)")
    class S(str):
        def __eq__(self, other):
            return self.lower() == other.lower()

def subclasspropagation():
    if verbose: print "Testing propagation of slot functions to subclasses..."
    class A(object):
        pass
    class B(A):
        pass
    class C(A):
        pass
    class D(B, C):
        pass
    d = D()
    vereq(hash(d), id(d))
    A.__hash__ = lambda self: 42
    vereq(hash(d), 42)
    C.__hash__ = lambda self: 314
    vereq(hash(d), 314)
    B.__hash__ = lambda self: 144
    vereq(hash(d), 144)
    D.__hash__ = lambda self: 100
    vereq(hash(d), 100)
    del D.__hash__
    vereq(hash(d), 144)
    del B.__hash__
    vereq(hash(d), 314)
    del C.__hash__
    vereq(hash(d), 42)
    del A.__hash__
    vereq(hash(d), id(d))
    d.foo = 42
    d.bar = 42
    vereq(d.foo, 42)
    vereq(d.bar, 42)
    def __getattribute__(self, name):
        if name == "foo":
            return 24
        return object.__getattribute__(self, name)
    A.__getattribute__ = __getattribute__
    vereq(d.foo, 24)
    vereq(d.bar, 42)
    def __getattr__(self, name):
        if name in ("spam", "foo", "bar"):
            return "hello"
        raise AttributeError, name
    B.__getattr__ = __getattr__
    vereq(d.spam, "hello")
    vereq(d.foo, 24)
    vereq(d.bar, 42)
    del A.__getattribute__
    vereq(d.foo, 42)
    del d.foo
    vereq(d.foo, "hello")
    vereq(d.bar, 42)
    del B.__getattr__
    try:
        d.foo
    except AttributeError:
        pass
    else:
        raise TestFailed, "d.foo should be undefined now"

    # Test a nasty bug in recurse_down_subclasses()
    import gc
    class A(object):
        pass
    class B(A):
        pass
    del B
    gc.collect()
    A.__setitem__ = lambda *a: None # crash

def buffer_inherit():
    import binascii
    # SF bug [#470040] ParseTuple t# vs subclasses.
    if verbose:
        print "Testing that buffer interface is inherited ..."

    class MyStr(str):
        pass
    base = 'abc'
    m = MyStr(base)
    # b2a_hex uses the buffer interface to get its argument's value, via
    # PyArg_ParseTuple 't#' code.
    vereq(binascii.b2a_hex(m), binascii.b2a_hex(base))

    # It's not clear that unicode will continue to support the character
    # buffer interface, and this test will fail if that's taken away.
    class MyUni(unicode):
        pass
    base = u'abc'
    m = MyUni(base)
    vereq(binascii.b2a_hex(m), binascii.b2a_hex(base))

    class MyInt(int):
        pass
    m = MyInt(42)
    try:
        binascii.b2a_hex(m)
        raise TestFailed('subclass of int should not have a buffer interface')
    except TypeError:
        pass

def str_of_str_subclass():
    import binascii
    import cStringIO

    if verbose:
        print "Testing __str__ defined in subclass of str ..."

    class octetstring(str):
        def __str__(self):
            return binascii.b2a_hex(self)
        def __repr__(self):
            return self + " repr"

    o = octetstring('A')
    vereq(type(o), octetstring)
    vereq(type(str(o)), str)
    vereq(type(repr(o)), str)
    vereq(ord(o), 0x41)
    vereq(str(o), '41')
    vereq(repr(o), 'A repr')
    vereq(o.__str__(), '41')
    vereq(o.__repr__(), 'A repr')

    capture = cStringIO.StringIO()
    # Calling str() or not exercises different internal paths.
    print >> capture, o
    print >> capture, str(o)
    vereq(capture.getvalue(), '41\n41\n')
    capture.close()

def kwdargs():
    if verbose: print "Testing keyword arguments to __init__, __call__..."
    def f(a): return a
    vereq(f.__call__(a=42), 42)
    a = []
    list.__init__(a, sequence=[0, 1, 2])
    vereq(a, [0, 1, 2])

def delhook():
    if verbose: print "Testing __del__ hook..."
    log = []
    class C(object):
        def __del__(self):
            log.append(1)
    c = C()
    vereq(log, [])
    del c
    vereq(log, [1])

    class D(object): pass
    d = D()
    try: del d[0]
    except TypeError: pass
    else: raise TestFailed, "invalid del() didn't raise TypeError"

def hashinherit():
    if verbose: print "Testing hash of mutable subclasses..."

    class mydict(dict):
        pass
    d = mydict()
    try:
        hash(d)
    except TypeError:
        pass
    else:
        raise TestFailed, "hash() of dict subclass should fail"

    class mylist(list):
        pass
    d = mylist()
    try:
        hash(d)
    except TypeError:
        pass
    else:
        raise TestFailed, "hash() of list subclass should fail"

def strops():
    try: 'a' + 5
    except TypeError: pass
    else: raise TestFailed, "'' + 5 doesn't raise TypeError"

    try: ''.split('')
    except ValueError: pass
    else: raise TestFailed, "''.split('') doesn't raise ValueError"

    try: ''.join([0])
    except TypeError: pass
    else: raise TestFailed, "''.join([0]) doesn't raise TypeError"

    try: ''.rindex('5')
    except ValueError: pass
    else: raise TestFailed, "''.rindex('5') doesn't raise ValueError"

    try: '%(n)s' % None
    except TypeError: pass
    else: raise TestFailed, "'%(n)s' % None doesn't raise TypeError"

    try: '%(n' % {}
    except ValueError: pass
    else: raise TestFailed, "'%(n' % {} '' doesn't raise ValueError"

    try: '%*s' % ('abc')
    except TypeError: pass
    else: raise TestFailed, "'%*s' % ('abc') doesn't raise TypeError"

    try: '%*.*s' % ('abc', 5)
    except TypeError: pass
    else: raise TestFailed, "'%*.*s' % ('abc', 5) doesn't raise TypeError"

    try: '%s' % (1, 2)
    except TypeError: pass
    else: raise TestFailed, "'%s' % (1, 2) doesn't raise TypeError"

    try: '%' % None
    except ValueError: pass
    else: raise TestFailed, "'%' % None doesn't raise ValueError"

    vereq('534253'.isdigit(), 1)
    vereq('534253x'.isdigit(), 0)
    vereq('%c' % 5, '\x05')
    vereq('%c' % '5', '5')

def deepcopyrecursive():
    if verbose: print "Testing deepcopy of recursive objects..."
    class Node:
        pass
    a = Node()
    b = Node()
    a.b = b
    b.a = a
    z = deepcopy(a) # This blew up before

def modules():
    if verbose: print "Testing uninitialized module objects..."
    from types import ModuleType as M
    m = M.__new__(M)
    str(m)
    vereq(hasattr(m, "__name__"), 0)
    vereq(hasattr(m, "__file__"), 0)
    vereq(hasattr(m, "foo"), 0)
    vereq(m.__dict__, None)
    m.foo = 1
    vereq(m.__dict__, {"foo": 1})

def dictproxyiterkeys():
    class C(object):
        def meth(self):
            pass
    if verbose: print "Testing dict-proxy iterkeys..."
    keys = [ key for key in C.__dict__.iterkeys() ]
    keys.sort()
    vereq(keys, ['__dict__', '__doc__', '__module__', '__weakref__', 'meth'])

def dictproxyitervalues():
    class C(object):
        def meth(self):
            pass
    if verbose: print "Testing dict-proxy itervalues..."
    values = [ values for values in C.__dict__.itervalues() ]
    vereq(len(values), 5)

def dictproxyiteritems():
    class C(object):
        def meth(self):
            pass
    if verbose: print "Testing dict-proxy iteritems..."
    keys = [ key for (key, value) in C.__dict__.iteritems() ]
    keys.sort()
    vereq(keys, ['__dict__', '__doc__', '__module__', '__weakref__', 'meth'])

def funnynew():
    if verbose: print "Testing __new__ returning something unexpected..."
    class C(object):
        def __new__(cls, arg):
            if isinstance(arg, str): return [1, 2, 3]
            elif isinstance(arg, int): return object.__new__(D)
            else: return object.__new__(cls)
    class D(C):
        def __init__(self, arg):
            self.foo = arg
    vereq(C("1"), [1, 2, 3])
    vereq(D("1"), [1, 2, 3])
    d = D(None)
    veris(d.foo, None)
    d = C(1)
    vereq(isinstance(d, D), True)
    vereq(d.foo, 1)
    d = D(1)
    vereq(isinstance(d, D), True)
    vereq(d.foo, 1)

def imulbug():
    # SF bug 544647
    if verbose: print "Testing for __imul__ problems..."
    class C(object):
        def __imul__(self, other):
            return (self, other)
    x = C()
    y = x
    y *= 1.0
    vereq(y, (x, 1.0))
    y = x
    y *= 2
    vereq(y, (x, 2))
    y = x
    y *= 3L
    vereq(y, (x, 3L))
    y = x
    y *= 1L<<100
    vereq(y, (x, 1L<<100))
    y = x
    y *= None
    vereq(y, (x, None))
    y = x
    y *= "foo"
    vereq(y, (x, "foo"))

def docdescriptor():
    # SF bug 542984
    if verbose: print "Testing __doc__ descriptor..."
    class DocDescr(object):
        def __get__(self, object, otype):
            if object:
                object = object.__class__.__name__ + ' instance'
            if otype:
                otype = otype.__name__
            return 'object=%s; type=%s' % (object, otype)
    class OldClass:
        __doc__ = DocDescr()
    class NewClass(object):
        __doc__ = DocDescr()
    vereq(OldClass.__doc__, 'object=None; type=OldClass')
    vereq(OldClass().__doc__, 'object=OldClass instance; type=OldClass')
    vereq(NewClass.__doc__, 'object=None; type=NewClass')
    vereq(NewClass().__doc__, 'object=NewClass instance; type=NewClass')

def string_exceptions():
    if verbose:
        print "Testing string exceptions ..."

    # Ensure builtin strings work OK as exceptions.
    astring = "An exception string."
    try:
        raise astring
    except astring:
        pass
    else:
        raise TestFailed, "builtin string not usable as exception"

    # Ensure string subclass instances do not.
    class MyStr(str):
        pass

    newstring = MyStr("oops -- shouldn't work")
    try:
        raise newstring
    except TypeError:
        pass
    except:
        raise TestFailed, "string subclass allowed as exception"

def copy_setstate():
    if verbose:
        print "Testing that copy.*copy() correctly uses __setstate__..."
    import copy
    class C(object):
        def __init__(self, foo=None):
            self.foo = foo
            self.__foo = foo
        def setfoo(self, foo=None):
            self.foo = foo
        def getfoo(self):
            return self.__foo
        def __getstate__(self):
            return [self.foo]
        def __setstate__(self, lst):
            assert len(lst) == 1
            self.__foo = self.foo = lst[0]
    a = C(42)
    a.setfoo(24)
    vereq(a.foo, 24)
    vereq(a.getfoo(), 42)
    b = copy.copy(a)
    vereq(b.foo, 24)
    vereq(b.getfoo(), 24)
    b = copy.deepcopy(a)
    vereq(b.foo, 24)
    vereq(b.getfoo(), 24)

def slices():
    if verbose:
        print "Testing cases with slices and overridden __getitem__ ..."
    # Strings
    vereq("hello"[:4], "hell")
    vereq("hello"[slice(4)], "hell")
    vereq(str.__getitem__("hello", slice(4)), "hell")
    class S(str):
        def __getitem__(self, x):
            return str.__getitem__(self, x)
    vereq(S("hello")[:4], "hell")
    vereq(S("hello")[slice(4)], "hell")
    vereq(S("hello").__getitem__(slice(4)), "hell")
    # Tuples
    vereq((1,2,3)[:2], (1,2))
    vereq((1,2,3)[slice(2)], (1,2))
    vereq(tuple.__getitem__((1,2,3), slice(2)), (1,2))
    class T(tuple):
        def __getitem__(self, x):
            return tuple.__getitem__(self, x)
    vereq(T((1,2,3))[:2], (1,2))
    vereq(T((1,2,3))[slice(2)], (1,2))
    vereq(T((1,2,3)).__getitem__(slice(2)), (1,2))
    # Lists
    vereq([1,2,3][:2], [1,2])
    vereq([1,2,3][slice(2)], [1,2])
    vereq(list.__getitem__([1,2,3], slice(2)), [1,2])
    class L(list):
        def __getitem__(self, x):
            return list.__getitem__(self, x)
    vereq(L([1,2,3])[:2], [1,2])
    vereq(L([1,2,3])[slice(2)], [1,2])
    vereq(L([1,2,3]).__getitem__(slice(2)), [1,2])
    # Now do lists and __setitem__
    a = L([1,2,3])
    a[slice(1, 3)] = [3,2]
    vereq(a, [1,3,2])
    a[slice(0, 2, 1)] = [3,1]
    vereq(a, [3,1,2])
    a.__setitem__(slice(1, 3), [2,1])
    vereq(a, [3,2,1])
    a.__setitem__(slice(0, 2, 1), [2,3])
    vereq(a, [2,3,1])

def subtype_resurrection():
    if verbose:
        print "Testing resurrection of new-style instance..."

    class C(object):
        container = []

        def __del__(self):
            # resurrect the instance
            C.container.append(self)

    c = C()
    c.attr = 42
    # The most interesting thing here is whether this blows up, due to flawed
    #  GC tracking logic in typeobject.c's call_finalizer() (a 2.2.1 bug).
    del c

    # If that didn't blow up, it's also interesting to see whether clearing
    # the last container slot works:  that will attempt to delete c again,
    # which will cause c to get appended back to the container again "during"
    # the del.
    del C.container[-1]
    vereq(len(C.container), 1)
    vereq(C.container[-1].attr, 42)

    # Make c mortal again, so that the test framework with -l doesn't report
    # it as a leak.
    del C.__del__

def slottrash():
    # Deallocating deeply nested slotted trash caused stack overflows
    if verbose:
        print "Testing slot trash..."
    class trash(object):
        __slots__ = ['x']
        def __init__(self, x):
            self.x = x
    o = None
    for i in xrange(50000):
        o = trash(o)
    del o

def slotmultipleinheritance():
    # SF bug 575229, multiple inheritance w/ slots dumps core
    class A(object):
        __slots__=()
    class B(object):
        pass
    class C(A,B) :
        __slots__=()
    vereq(C.__basicsize__, B.__basicsize__)