summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMark Dickinson <dickinsm@gmail.com>2008-02-10 21:29:51 (GMT)
committerMark Dickinson <dickinsm@gmail.com>2008-02-10 21:29:51 (GMT)
commitd058cd2cc8e2a3f61609b92a8fc821ea8ec524ca (patch)
tree07e5d6aa70f60c886ca138de24fdca84686a0b54
parentda614dcc4f56bfb136c53b04d60889870d969926 (diff)
downloadcpython-d058cd2cc8e2a3f61609b92a8fc821ea8ec524ca.zip
cpython-d058cd2cc8e2a3f61609b92a8fc821ea8ec524ca.tar.gz
cpython-d058cd2cc8e2a3f61609b92a8fc821ea8ec524ca.tar.bz2
Rename rational.Rational to fractions.Fraction, to avoid name clash
with numbers.Rational. See issue #1682 for related discussion.
-rw-r--r--Doc/library/fractions.rst (renamed from Doc/library/rational.rst)40
-rw-r--r--Doc/library/numbers.rst10
-rw-r--r--Doc/whatsnew/2.6.rst22
-rwxr-xr-xLib/fractions.py (renamed from Lib/rational.py)130
-rw-r--r--Lib/test/test_builtin.py4
-rw-r--r--Lib/test/test_fractions.py (renamed from Lib/test/test_rational.py)60
-rw-r--r--Misc/NEWS4
7 files changed, 137 insertions, 133 deletions
diff --git a/Doc/library/rational.rst b/Doc/library/fractions.rst
index 8ed702f..af6ed76 100644
--- a/Doc/library/rational.rst
+++ b/Doc/library/fractions.rst
@@ -1,29 +1,29 @@
-:mod:`rational` --- Rational numbers
+:mod:`fractions` --- Rational numbers
====================================
-.. module:: rational
+.. module:: fractions
:synopsis: Rational numbers.
.. moduleauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
.. sectionauthor:: Jeffrey Yasskin <jyasskin at gmail.com>
.. versionadded:: 2.6
-The :mod:`rational` module defines an immutable, infinite-precision
-Rational number class.
+The :mod:`fractions` module defines an immutable, infinite-precision
+Fraction number class.
-.. class:: Rational(numerator=0, denominator=1)
- Rational(other_rational)
- Rational(string)
+.. class:: Fraction(numerator=0, denominator=1)
+ Fraction(other_fraction)
+ Fraction(string)
The first version requires that *numerator* and *denominator* are
instances of :class:`numbers.Integral` and returns a new
- ``Rational`` representing ``numerator/denominator``. If
+ ``Fraction`` representing ``numerator/denominator``. If
*denominator* is :const:`0`, raises a :exc:`ZeroDivisionError`. The
- second version requires that *other_rational* is an instance of
+ second version requires that *other_fraction* is an instance of
:class:`numbers.Rational` and returns an instance of
- :class:`Rational` with the same value. The third version expects a
+ :class:`Fraction` with the same value. The third version expects a
string of the form ``[-+]?[0-9]+(/[0-9]+)?``, optionally surrounded
by spaces.
@@ -31,39 +31,39 @@ Rational number class.
:class:`numbers.Rational` and is immutable and hashable.
-.. method:: Rational.from_float(flt)
+.. method:: Fraction.from_float(flt)
- This classmethod constructs a :class:`Rational` representing the
+ This classmethod constructs a :class:`Fraction` representing the
exact value of *flt*, which must be a :class:`float`. Beware that
- ``Rational.from_float(0.3)`` is not the same value as ``Rational(3,
+ ``Fraction.from_float(0.3)`` is not the same value as ``Fraction(3,
10)``
-.. method:: Rational.from_decimal(dec)
+.. method:: Fraction.from_decimal(dec)
- This classmethod constructs a :class:`Rational` representing the
+ This classmethod constructs a :class:`Fraction` representing the
exact value of *dec*, which must be a
:class:`decimal.Decimal`.
-.. method:: Rational.__floor__()
+.. method:: Fraction.__floor__()
Returns the greatest :class:`int` ``<= self``. Will be accessible
through :func:`math.floor` in Py3k.
-.. method:: Rational.__ceil__()
+.. method:: Fraction.__ceil__()
Returns the least :class:`int` ``>= self``. Will be accessible
through :func:`math.ceil` in Py3k.
-.. method:: Rational.__round__()
- Rational.__round__(ndigits)
+.. method:: Fraction.__round__()
+ Fraction.__round__(ndigits)
The first version returns the nearest :class:`int` to ``self``,
rounding half to even. The second version rounds ``self`` to the
- nearest multiple of ``Rational(1, 10**ndigits)`` (logically, if
+ nearest multiple of ``Fraction(1, 10**ndigits)`` (logically, if
``ndigits`` is negative), again rounding half toward even. Will be
accessible through :func:`round` in Py3k.
diff --git a/Doc/library/numbers.rst b/Doc/library/numbers.rst
index 6ee8f27..7a5f105 100644
--- a/Doc/library/numbers.rst
+++ b/Doc/library/numbers.rst
@@ -106,7 +106,7 @@ Notes for type implementors
Implementors should be careful to make equal numbers equal and hash
them to the same values. This may be subtle if there are two different
-extensions of the real numbers. For example, :class:`rational.Rational`
+extensions of the real numbers. For example, :class:`fractions.Fraction`
implements :func:`hash` as follows::
def __hash__(self):
@@ -201,11 +201,11 @@ in :class:`complex`, and both :meth:`__radd__` s land there, so ``a+b
Because most of the operations on any given type will be very similar,
it can be useful to define a helper function which generates the
forward and reverse instances of any given operator. For example,
-:class:`rational.Rational` uses::
+:class:`fractions.Fraction` uses::
def _operator_fallbacks(monomorphic_operator, fallback_operator):
def forward(a, b):
- if isinstance(b, (int, long, Rational)):
+ if isinstance(b, (int, long, Fraction)):
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
@@ -217,7 +217,7 @@ forward and reverse instances of any given operator. For example,
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
- if isinstance(a, RationalAbc):
+ if isinstance(a, Rational):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
@@ -233,7 +233,7 @@ forward and reverse instances of any given operator. For example,
def _add(a, b):
"""a + b"""
- return Rational(a.numerator * b.denominator +
+ return Fraction(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)
diff --git a/Doc/whatsnew/2.6.rst b/Doc/whatsnew/2.6.rst
index cbc8b8f..83cca99 100644
--- a/Doc/whatsnew/2.6.rst
+++ b/Doc/whatsnew/2.6.rst
@@ -578,8 +578,8 @@ and comparisons.
:class:`Rational` numbers derive from :class:`Real`, have
:attr:`numerator` and :attr:`denominator` properties, and can be
-converted to floats. Python 2.6 adds a simple rational-number class
-in the :mod:`rational` module.
+converted to floats. Python 2.6 adds a simple rational-number class,
+:class:`Fraction`, in the :mod:`fractions` module.
:class:`Integral` numbers derive from :class:`Rational`, and
can be shifted left and right with ``<<`` and ``>>``,
@@ -598,29 +598,29 @@ one, :func:`trunc`, that's been backported to Python 2.6.
-The Rational Module
+The Fraction Module
--------------------------------------------------
To fill out the hierarchy of numeric types, a rational-number class
-has been added as the :mod:`rational` module. Rational numbers are
+has been added as the :mod:`fractions` module. Rational numbers are
represented as a fraction; rational numbers can exactly represent
numbers such as two-thirds that floating-point numbers can only
approximate.
-The :class:`Rational` constructor takes two :class:`Integral` values
+The :class:`Fraction` constructor takes two :class:`Integral` values
that will be the numerator and denominator of the resulting fraction. ::
- >>> from rational import Rational
- >>> a = Rational(2, 3)
- >>> b = Rational(2, 5)
+ >>> from fractions import Fraction
+ >>> a = Fraction(2, 3)
+ >>> b = Fraction(2, 5)
>>> float(a), float(b)
(0.66666666666666663, 0.40000000000000002)
>>> a+b
- rational.Rational(16,15)
+ Fraction(16,15)
>>> a/b
- rational.Rational(5,3)
+ Fraction(5,3)
-The :mod:`rational` module is based upon an implementation by Sjoerd
+The :mod:`fractions` module is based upon an implementation by Sjoerd
Mullender that was in Python's :file:`Demo/classes/` directory for a
long time. This implementation was significantly updated by Jeffrey
Yaskin.
diff --git a/Lib/rational.py b/Lib/fractions.py
index b45da13..3f070de 100755
--- a/Lib/rational.py
+++ b/Lib/fractions.py
@@ -9,9 +9,9 @@ import numbers
import operator
import re
-__all__ = ["Rational"]
+__all__ = ["Fraction"]
-RationalAbc = numbers.Rational
+Rational = numbers.Rational
def gcd(a, b):
@@ -39,15 +39,15 @@ _RATIONAL_FORMAT = re.compile(r"""
""", re.VERBOSE)
-class Rational(RationalAbc):
+class Fraction(Rational):
"""This class implements rational numbers.
- Rational(8, 6) will produce a rational number equivalent to
+ Fraction(8, 6) will produce a rational number equivalent to
4/3. Both arguments must be Integral. The numerator defaults to 0
- and the denominator defaults to 1 so that Rational(3) == 3 and
- Rational() == 0.
+ and the denominator defaults to 1 so that Fraction(3) == 3 and
+ Fraction() == 0.
- Rationals can also be constructed from strings of the form
+ Fractions can also be constructed from strings of the form
'[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
"""
@@ -56,13 +56,13 @@ class Rational(RationalAbc):
# We're immutable, so use __new__ not __init__
def __new__(cls, numerator=0, denominator=1):
- """Constructs a Rational.
+ """Constructs a Fraction.
- Takes a string like '3/2' or '1.5', another Rational, or a
+ Takes a string like '3/2' or '1.5', another Fraction, or a
numerator/denominator pair.
"""
- self = super(Rational, cls).__new__(cls)
+ self = super(Fraction, cls).__new__(cls)
if denominator == 1:
if isinstance(numerator, basestring):
@@ -70,7 +70,7 @@ class Rational(RationalAbc):
input = numerator
m = _RATIONAL_FORMAT.match(input)
if m is None:
- raise ValueError('Invalid literal for Rational: ' + input)
+ raise ValueError('Invalid literal for Fraction: ' + input)
numerator = m.group('num')
decimal = m.group('decimal')
if decimal:
@@ -87,7 +87,7 @@ class Rational(RationalAbc):
numerator = -numerator
elif (not isinstance(numerator, numbers.Integral) and
- isinstance(numerator, RationalAbc)):
+ isinstance(numerator, Rational)):
# Handle copies from other rationals.
other_rational = numerator
numerator = other_rational.numerator
@@ -95,11 +95,11 @@ class Rational(RationalAbc):
if (not isinstance(numerator, numbers.Integral) or
not isinstance(denominator, numbers.Integral)):
- raise TypeError("Rational(%(numerator)s, %(denominator)s):"
+ raise TypeError("Fraction(%(numerator)s, %(denominator)s):"
" Both arguments must be integral." % locals())
if denominator == 0:
- raise ZeroDivisionError('Rational(%s, 0)' % numerator)
+ raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
g = gcd(numerator, denominator)
self._numerator = int(numerator // g)
@@ -110,15 +110,15 @@ class Rational(RationalAbc):
def from_float(f):
"""Converts a finite float to a rational number, exactly.
- Beware that Rational.from_float(0.3) != Rational(3, 10).
+ Beware that Fraction.from_float(0.3) != Fraction(3, 10).
"""
if not isinstance(f, float):
- raise TypeError("Rational.from_float() only takes floats, "
+ raise TypeError("Fraction.from_float() only takes floats, "
"not %r (%s)" % (f, type(f).__name__))
if math.isnan(f) or math.isinf(f):
- raise TypeError("Cannot convert %r to Rational." % f)
- return Rational(*f.as_integer_ratio())
+ raise TypeError("Cannot convert %r to Fraction." % f)
+ return Fraction(*f.as_integer_ratio())
@staticmethod
def from_decimal(dec):
@@ -126,28 +126,28 @@ class Rational(RationalAbc):
from decimal import Decimal
if not isinstance(dec, Decimal):
raise TypeError(
- "Rational.from_decimal() only takes Decimals, not %r (%s)" %
+ "Fraction.from_decimal() only takes Decimals, not %r (%s)" %
(dec, type(dec).__name__))
if not dec.is_finite():
# Catches infinities and nans.
- raise TypeError("Cannot convert %s to Rational." % dec)
+ raise TypeError("Cannot convert %s to Fraction." % dec)
sign, digits, exp = dec.as_tuple()
digits = int(''.join(map(str, digits)))
if sign:
digits = -digits
if exp >= 0:
- return Rational(digits * 10 ** exp)
+ return Fraction(digits * 10 ** exp)
else:
- return Rational(digits, 10 ** -exp)
+ return Fraction(digits, 10 ** -exp)
@staticmethod
def from_continued_fraction(seq):
- 'Build a Rational from a continued fraction expessed as a sequence'
+ 'Build a Fraction from a continued fraction expessed as a sequence'
n, d = 1, 0
for e in reversed(seq):
n, d = d, n
n += e * d
- return Rational(n, d) if seq else Rational(0)
+ return Fraction(n, d) if seq else Fraction(0)
def as_continued_fraction(self):
'Return continued fraction expressed as a list'
@@ -169,7 +169,7 @@ class Rational(RationalAbc):
if self.denominator <= max_denominator:
return self
cf = self.as_continued_fraction()
- result = Rational(0)
+ result = Fraction(0)
for i in range(1, len(cf)):
new = self.from_continued_fraction(cf[:i])
if new.denominator > max_denominator:
@@ -187,7 +187,7 @@ class Rational(RationalAbc):
def __repr__(self):
"""repr(self)"""
- return ('Rational(%r,%r)' % (self.numerator, self.denominator))
+ return ('Fraction(%r,%r)' % (self.numerator, self.denominator))
def __str__(self):
"""str(self)"""
@@ -207,13 +207,13 @@ class Rational(RationalAbc):
that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both
to the nearest built in type and do the operation there. In
- Rational, that means that we define __add__ and __radd__ as:
+ Fraction, that means that we define __add__ and __radd__ as:
def __add__(self, other):
# Both types have numerators/denominator attributes,
# so do the operation directly
- if isinstance(other, (int, long, Rational)):
- return Rational(self.numerator * other.denominator +
+ if isinstance(other, (int, long, Fraction)):
+ return Fraction(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
# float and complex don't have those operations, but we
@@ -228,8 +228,8 @@ class Rational(RationalAbc):
def __radd__(self, other):
# radd handles more types than add because there's
# nothing left to fall back to.
- if isinstance(other, RationalAbc):
- return Rational(self.numerator * other.denominator +
+ if isinstance(other, Rational):
+ return Fraction(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
elif isinstance(other, Real):
@@ -240,32 +240,32 @@ class Rational(RationalAbc):
There are 5 different cases for a mixed-type addition on
- Rational. I'll refer to all of the above code that doesn't
- refer to Rational, float, or complex as "boilerplate". 'r'
- will be an instance of Rational, which is a subtype of
- RationalAbc (r : Rational <: RationalAbc), and b : B <:
+ Fraction. I'll refer to all of the above code that doesn't
+ refer to Fraction, float, or complex as "boilerplate". 'r'
+ will be an instance of Fraction, which is a subtype of
+ Rational (r : Fraction <: Rational), and b : B <:
Complex. The first three involve 'r + b':
- 1. If B <: Rational, int, float, or complex, we handle
+ 1. If B <: Fraction, int, float, or complex, we handle
that specially, and all is well.
- 2. If Rational falls back to the boilerplate code, and it
+ 2. If Fraction falls back to the boilerplate code, and it
were to return a value from __add__, we'd miss the
possibility that B defines a more intelligent __radd__,
so the boilerplate should return NotImplemented from
- __add__. In particular, we don't handle RationalAbc
+ __add__. In particular, we don't handle Rational
here, even though we could get an exact answer, in case
the other type wants to do something special.
- 3. If B <: Rational, Python tries B.__radd__ before
- Rational.__add__. This is ok, because it was
- implemented with knowledge of Rational, so it can
+ 3. If B <: Fraction, Python tries B.__radd__ before
+ Fraction.__add__. This is ok, because it was
+ implemented with knowledge of Fraction, so it can
handle those instances before delegating to Real or
Complex.
The next two situations describe 'b + r'. We assume that b
- didn't know about Rational in its implementation, and that it
+ didn't know about Fraction in its implementation, and that it
uses similar boilerplate code:
- 4. If B <: RationalAbc, then __radd_ converts both to the
+ 4. If B <: Rational, then __radd_ converts both to the
builtin rational type (hey look, that's us) and
proceeds.
5. Otherwise, __radd__ tries to find the nearest common
@@ -277,7 +277,7 @@ class Rational(RationalAbc):
"""
def forward(a, b):
- if isinstance(b, (int, long, Rational)):
+ if isinstance(b, (int, long, Fraction)):
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
@@ -289,7 +289,7 @@ class Rational(RationalAbc):
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
- if isinstance(a, RationalAbc):
+ if isinstance(a, Rational):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
@@ -305,7 +305,7 @@ class Rational(RationalAbc):
def _add(a, b):
"""a + b"""
- return Rational(a.numerator * b.denominator +
+ return Fraction(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)
@@ -313,7 +313,7 @@ class Rational(RationalAbc):
def _sub(a, b):
"""a - b"""
- return Rational(a.numerator * b.denominator -
+ return Fraction(a.numerator * b.denominator -
b.numerator * a.denominator,
a.denominator * b.denominator)
@@ -321,13 +321,13 @@ class Rational(RationalAbc):
def _mul(a, b):
"""a * b"""
- return Rational(a.numerator * b.numerator, a.denominator * b.denominator)
+ return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
"""a / b"""
- return Rational(a.numerator * b.denominator,
+ return Fraction(a.numerator * b.denominator,
a.denominator * b.numerator)
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
@@ -337,7 +337,7 @@ class Rational(RationalAbc):
"""a // b"""
# Will be math.floor(a / b) in 3.0.
div = a / b
- if isinstance(div, RationalAbc):
+ if isinstance(div, Rational):
# trunc(math.floor(div)) doesn't work if the rational is
# more precise than a float because the intermediate
# rounding may cross an integer boundary.
@@ -349,7 +349,7 @@ class Rational(RationalAbc):
"""a // b"""
# Will be math.floor(a / b) in 3.0.
div = a / b
- if isinstance(div, RationalAbc):
+ if isinstance(div, Rational):
# trunc(math.floor(div)) doesn't work if the rational is
# more precise than a float because the intermediate
# rounding may cross an integer boundary.
@@ -375,14 +375,14 @@ class Rational(RationalAbc):
result will be rational.
"""
- if isinstance(b, RationalAbc):
+ if isinstance(b, Rational):
if b.denominator == 1:
power = b.numerator
if power >= 0:
- return Rational(a.numerator ** power,
+ return Fraction(a.numerator ** power,
a.denominator ** power)
else:
- return Rational(a.denominator ** -power,
+ return Fraction(a.denominator ** -power,
a.numerator ** -power)
else:
# A fractional power will generally produce an
@@ -397,8 +397,8 @@ class Rational(RationalAbc):
# If a is an int, keep it that way if possible.
return a ** b.numerator
- if isinstance(a, RationalAbc):
- return Rational(a.numerator, a.denominator) ** b
+ if isinstance(a, Rational):
+ return Fraction(a.numerator, a.denominator) ** b
if b.denominator == 1:
return a ** b.numerator
@@ -406,16 +406,16 @@ class Rational(RationalAbc):
return a ** float(b)
def __pos__(a):
- """+a: Coerces a subclass instance to Rational"""
- return Rational(a.numerator, a.denominator)
+ """+a: Coerces a subclass instance to Fraction"""
+ return Fraction(a.numerator, a.denominator)
def __neg__(a):
"""-a"""
- return Rational(-a.numerator, a.denominator)
+ return Fraction(-a.numerator, a.denominator)
def __abs__(a):
"""abs(a)"""
- return Rational(abs(a.numerator), a.denominator)
+ return Fraction(abs(a.numerator), a.denominator)
def __trunc__(a):
"""trunc(a)"""
@@ -445,7 +445,7 @@ class Rational(RationalAbc):
def __eq__(a, b):
"""a == b"""
- if isinstance(b, RationalAbc):
+ if isinstance(b, Rational):
return (a.numerator == b.numerator and
a.denominator == b.denominator)
if isinstance(b, numbers.Complex) and b.imag == 0:
@@ -472,7 +472,7 @@ class Rational(RationalAbc):
if isinstance(b, float):
b = a.from_float(b)
try:
- # XXX: If b <: Real but not <: RationalAbc, this is likely
+ # XXX: If b <: Real but not <: Rational, this is likely
# to fall back to a float. If the actual values differ by
# less than MIN_FLOAT, this could falsely call them equal,
# which would make <= inconsistent with ==. Better ways of
@@ -480,7 +480,7 @@ class Rational(RationalAbc):
diff = a - b
except TypeError:
return NotImplemented
- if isinstance(diff, RationalAbc):
+ if isinstance(diff, Rational):
return op(diff.numerator, 0)
return op(diff, 0)
@@ -510,11 +510,11 @@ class Rational(RationalAbc):
return (self.__class__, (str(self),))
def __copy__(self):
- if type(self) == Rational:
+ if type(self) == Fraction:
return self # I'm immutable; therefore I am my own clone
return self.__class__(self.numerator, self.denominator)
def __deepcopy__(self, memo):
- if type(self) == Rational:
+ if type(self) == Fraction:
return self # My components are also immutable
return self.__class__(self.numerator, self.denominator)
diff --git a/Lib/test/test_builtin.py b/Lib/test/test_builtin.py
index 9612a4b..ddc5842 100644
--- a/Lib/test/test_builtin.py
+++ b/Lib/test/test_builtin.py
@@ -5,7 +5,7 @@ from test.test_support import fcmp, have_unicode, TESTFN, unlink, \
run_unittest, run_with_locale
from operator import neg
-import sys, warnings, cStringIO, random, rational, UserDict
+import sys, warnings, cStringIO, random, fractions, UserDict
warnings.filterwarnings("ignore", "hex../oct.. of negative int",
FutureWarning, __name__)
warnings.filterwarnings("ignore", "integer argument expected",
@@ -703,7 +703,7 @@ class BuiltinTest(unittest.TestCase):
n, d = f.as_integer_ratio()
self.assertEqual(float(n).__truediv__(d), f)
- R = rational.Rational
+ R = fractions.Fraction
self.assertEqual(R(0, 1),
R(*float(0.0).as_integer_ratio()))
self.assertEqual(R(5, 2),
diff --git a/Lib/test/test_rational.py b/Lib/test/test_fractions.py
index 8e62081..cd35644 100644
--- a/Lib/test/test_rational.py
+++ b/Lib/test/test_fractions.py
@@ -1,15 +1,15 @@
-"""Tests for Lib/rational.py."""
+"""Tests for Lib/fractions.py."""
from decimal import Decimal
from test.test_support import run_unittest, verbose
import math
import operator
-import rational
+import fractions
import unittest
from copy import copy, deepcopy
from cPickle import dumps, loads
-R = rational.Rational
-gcd = rational.gcd
+R = fractions.Fraction
+gcd = fractions.gcd
class GcdTest(unittest.TestCase):
@@ -31,7 +31,7 @@ def _components(r):
return (r.numerator, r.denominator)
-class RationalTest(unittest.TestCase):
+class FractionTest(unittest.TestCase):
def assertTypedEquals(self, expected, actual):
"""Asserts that both the types and values are the same."""
@@ -60,7 +60,7 @@ class RationalTest(unittest.TestCase):
self.assertEquals((7, 15), _components(R(7, 15)))
self.assertEquals((10**23, 1), _components(R(10**23)))
- self.assertRaisesMessage(ZeroDivisionError, "Rational(12, 0)",
+ self.assertRaisesMessage(ZeroDivisionError, "Fraction(12, 0)",
R, 12, 0)
self.assertRaises(TypeError, R, 1.5)
self.assertRaises(TypeError, R, 1.5 + 3j)
@@ -83,41 +83,41 @@ class RationalTest(unittest.TestCase):
self.assertRaisesMessage(
- ZeroDivisionError, "Rational(3, 0)",
+ ZeroDivisionError, "Fraction(3, 0)",
R, "3/0")
self.assertRaisesMessage(
- ValueError, "Invalid literal for Rational: 3/",
+ ValueError, "Invalid literal for Fraction: 3/",
R, "3/")
self.assertRaisesMessage(
- ValueError, "Invalid literal for Rational: 3 /2",
+ ValueError, "Invalid literal for Fraction: 3 /2",
R, "3 /2")
self.assertRaisesMessage(
# Denominators don't need a sign.
- ValueError, "Invalid literal for Rational: 3/+2",
+ ValueError, "Invalid literal for Fraction: 3/+2",
R, "3/+2")
self.assertRaisesMessage(
# Imitate float's parsing.
- ValueError, "Invalid literal for Rational: + 3/2",
+ ValueError, "Invalid literal for Fraction: + 3/2",
R, "+ 3/2")
self.assertRaisesMessage(
# Avoid treating '.' as a regex special character.
- ValueError, "Invalid literal for Rational: 3a2",
+ ValueError, "Invalid literal for Fraction: 3a2",
R, "3a2")
self.assertRaisesMessage(
# Only parse ordinary decimals, not scientific form.
- ValueError, "Invalid literal for Rational: 3.2e4",
+ ValueError, "Invalid literal for Fraction: 3.2e4",
R, "3.2e4")
self.assertRaisesMessage(
- # Don't accept combinations of decimals and rationals.
- ValueError, "Invalid literal for Rational: 3/7.2",
+ # Don't accept combinations of decimals and fractions.
+ ValueError, "Invalid literal for Fraction: 3/7.2",
R, "3/7.2")
self.assertRaisesMessage(
- # Don't accept combinations of decimals and rationals.
- ValueError, "Invalid literal for Rational: 3.2/7",
+ # Don't accept combinations of decimals and fractions.
+ ValueError, "Invalid literal for Fraction: 3.2/7",
R, "3.2/7")
self.assertRaisesMessage(
# Allow 3. and .3, but not .
- ValueError, "Invalid literal for Rational: .",
+ ValueError, "Invalid literal for Fraction: .",
R, ".")
def testImmutable(self):
@@ -138,7 +138,7 @@ class RationalTest(unittest.TestCase):
def testFromFloat(self):
self.assertRaisesMessage(
- TypeError, "Rational.from_float() only takes floats, not 3 (int)",
+ TypeError, "Fraction.from_float() only takes floats, not 3 (int)",
R.from_float, 3)
self.assertEquals((0, 1), _components(R.from_float(-0.0)))
@@ -154,19 +154,19 @@ class RationalTest(unittest.TestCase):
inf = 1e1000
nan = inf - inf
self.assertRaisesMessage(
- TypeError, "Cannot convert inf to Rational.",
+ TypeError, "Cannot convert inf to Fraction.",
R.from_float, inf)
self.assertRaisesMessage(
- TypeError, "Cannot convert -inf to Rational.",
+ TypeError, "Cannot convert -inf to Fraction.",
R.from_float, -inf)
self.assertRaisesMessage(
- TypeError, "Cannot convert nan to Rational.",
+ TypeError, "Cannot convert nan to Fraction.",
R.from_float, nan)
def testFromDecimal(self):
self.assertRaisesMessage(
TypeError,
- "Rational.from_decimal() only takes Decimals, not 3 (int)",
+ "Fraction.from_decimal() only takes Decimals, not 3 (int)",
R.from_decimal, 3)
self.assertEquals(R(0), R.from_decimal(Decimal("-0")))
self.assertEquals(R(5, 10), R.from_decimal(Decimal("0.5")))
@@ -176,16 +176,16 @@ class RationalTest(unittest.TestCase):
R.from_decimal(Decimal("0." + "9" * 30)))
self.assertRaisesMessage(
- TypeError, "Cannot convert Infinity to Rational.",
+ TypeError, "Cannot convert Infinity to Fraction.",
R.from_decimal, Decimal("inf"))
self.assertRaisesMessage(
- TypeError, "Cannot convert -Infinity to Rational.",
+ TypeError, "Cannot convert -Infinity to Fraction.",
R.from_decimal, Decimal("-inf"))
self.assertRaisesMessage(
- TypeError, "Cannot convert NaN to Rational.",
+ TypeError, "Cannot convert NaN to Fraction.",
R.from_decimal, Decimal("nan"))
self.assertRaisesMessage(
- TypeError, "Cannot convert sNaN to Rational.",
+ TypeError, "Cannot convert sNaN to Fraction.",
R.from_decimal, Decimal("snan"))
def testFromContinuedFraction(self):
@@ -301,7 +301,7 @@ class RationalTest(unittest.TestCase):
# Decimal refuses mixed comparisons.
self.assertRaisesMessage(
TypeError,
- "unsupported operand type(s) for +: 'Rational' and 'Decimal'",
+ "unsupported operand type(s) for +: 'Fraction' and 'Decimal'",
operator.add, R(3,11), Decimal('3.1415926'))
self.assertNotEquals(R(5, 2), Decimal('2.5'))
@@ -363,7 +363,7 @@ class RationalTest(unittest.TestCase):
self.assertFalse(R(5, 2) == 2)
def testStringification(self):
- self.assertEquals("Rational(7,3)", repr(R(7, 3)))
+ self.assertEquals("Fraction(7,3)", repr(R(7, 3)))
self.assertEquals("7/3", str(R(7, 3)))
self.assertEquals("7", str(R(7, 1)))
@@ -406,7 +406,7 @@ class RationalTest(unittest.TestCase):
self.assertEqual(id(r), id(deepcopy(r)))
def test_main():
- run_unittest(RationalTest, GcdTest)
+ run_unittest(FractionTest, GcdTest)
if __name__ == '__main__':
test_main()
diff --git a/Misc/NEWS b/Misc/NEWS
index c519ba6..81eef0e 100644
--- a/Misc/NEWS
+++ b/Misc/NEWS
@@ -400,6 +400,10 @@ Core and builtins
Library
-------
+- Rename rational.py to fractions.py and the rational.Rational class
+ to fractions.Fraction, to avoid the name clash with the abstract
+ base class numbers.Rational. See discussion in issue #1682.
+
- The pickletools module now provides an optimize() function
that eliminates unused PUT opcodes from a pickle string.