summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorNikita Sobolev <mail@sobolevn.me>2024-02-18 07:27:14 (GMT)
committerGitHub <noreply@github.com>2024-02-18 07:27:14 (GMT)
commitf9154f8f237e31e7c30f8698f980bee5e494f1e0 (patch)
tree16839c57328fa60dd42bcee523e9521033fe79ec
parent090dd21ab9379d6a2a6923d6cbab697355fb7165 (diff)
downloadcpython-f9154f8f237e31e7c30f8698f980bee5e494f1e0.zip
cpython-f9154f8f237e31e7c30f8698f980bee5e494f1e0.tar.gz
cpython-f9154f8f237e31e7c30f8698f980bee5e494f1e0.tar.bz2
gh-108303: Move `Lib/test/sortperf.py` to `Tools/scripts` (#114687)
-rw-r--r--Lib/test/sortperf.py169
-rw-r--r--Tools/scripts/sortperf.py196
2 files changed, 196 insertions, 169 deletions
diff --git a/Lib/test/sortperf.py b/Lib/test/sortperf.py
deleted file mode 100644
index 14a9d82..0000000
--- a/Lib/test/sortperf.py
+++ /dev/null
@@ -1,169 +0,0 @@
-"""Sort performance test.
-
-See main() for command line syntax.
-See tabulate() for output format.
-
-"""
-
-import sys
-import time
-import random
-import marshal
-import tempfile
-import os
-
-td = tempfile.gettempdir()
-
-def randfloats(n):
- """Return a list of n random floats in [0, 1)."""
- # Generating floats is expensive, so this writes them out to a file in
- # a temp directory. If the file already exists, it just reads them
- # back in and shuffles them a bit.
- fn = os.path.join(td, "rr%06d" % n)
- try:
- fp = open(fn, "rb")
- except OSError:
- r = random.random
- result = [r() for i in range(n)]
- try:
- try:
- fp = open(fn, "wb")
- marshal.dump(result, fp)
- fp.close()
- fp = None
- finally:
- if fp:
- try:
- os.unlink(fn)
- except OSError:
- pass
- except OSError as msg:
- print("can't write", fn, ":", msg)
- else:
- result = marshal.load(fp)
- fp.close()
- # Shuffle it a bit...
- for i in range(10):
- i = random.randrange(n)
- temp = result[:i]
- del result[:i]
- temp.reverse()
- result.extend(temp)
- del temp
- assert len(result) == n
- return result
-
-def flush():
- sys.stdout.flush()
-
-def doit(L):
- t0 = time.perf_counter()
- L.sort()
- t1 = time.perf_counter()
- print("%6.2f" % (t1-t0), end=' ')
- flush()
-
-def tabulate(r):
- r"""Tabulate sort speed for lists of various sizes.
-
- The sizes are 2**i for i in r (the argument, a list).
-
- The output displays i, 2**i, and the time to sort arrays of 2**i
- floating point numbers with the following properties:
-
- *sort: random data
- \sort: descending data
- /sort: ascending data
- 3sort: ascending, then 3 random exchanges
- +sort: ascending, then 10 random at the end
- %sort: ascending, then randomly replace 1% of the elements w/ random values
- ~sort: many duplicates
- =sort: all equal
- !sort: worst case scenario
-
- """
- cases = tuple([ch + "sort" for ch in r"*\/3+%~=!"])
- fmt = ("%2s %7s" + " %6s"*len(cases))
- print(fmt % (("i", "2**i") + cases))
- for i in r:
- n = 1 << i
- L = randfloats(n)
- print("%2d %7d" % (i, n), end=' ')
- flush()
- doit(L) # *sort
- L.reverse()
- doit(L) # \sort
- doit(L) # /sort
-
- # Do 3 random exchanges.
- for dummy in range(3):
- i1 = random.randrange(n)
- i2 = random.randrange(n)
- L[i1], L[i2] = L[i2], L[i1]
- doit(L) # 3sort
-
- # Replace the last 10 with random floats.
- if n >= 10:
- L[-10:] = [random.random() for dummy in range(10)]
- doit(L) # +sort
-
- # Replace 1% of the elements at random.
- for dummy in range(n // 100):
- L[random.randrange(n)] = random.random()
- doit(L) # %sort
-
- # Arrange for lots of duplicates.
- if n > 4:
- del L[4:]
- L = L * (n // 4)
- # Force the elements to be distinct objects, else timings can be
- # artificially low.
- L = list(map(lambda x: --x, L))
- doit(L) # ~sort
- del L
-
- # All equal. Again, force the elements to be distinct objects.
- L = list(map(abs, [-0.5] * n))
- doit(L) # =sort
- del L
-
- # This one looks like [3, 2, 1, 0, 0, 1, 2, 3]. It was a bad case
- # for an older implementation of quicksort, which used the median
- # of the first, last and middle elements as the pivot.
- half = n // 2
- L = list(range(half - 1, -1, -1))
- L.extend(range(half))
- # Force to float, so that the timings are comparable. This is
- # significantly faster if we leave them as ints.
- L = list(map(float, L))
- doit(L) # !sort
- print()
-
-def main():
- """Main program when invoked as a script.
-
- One argument: tabulate a single row.
- Two arguments: tabulate a range (inclusive).
- Extra arguments are used to seed the random generator.
-
- """
- # default range (inclusive)
- k1 = 15
- k2 = 20
- if sys.argv[1:]:
- # one argument: single point
- k1 = k2 = int(sys.argv[1])
- if sys.argv[2:]:
- # two arguments: specify range
- k2 = int(sys.argv[2])
- if sys.argv[3:]:
- # derive random seed from remaining arguments
- x = 1
- for a in sys.argv[3:]:
- x = 69069 * x + hash(a)
- random.seed(x)
- r = range(k1, k2+1) # include the end point
- tabulate(r)
-
-if __name__ == '__main__':
- main()
diff --git a/Tools/scripts/sortperf.py b/Tools/scripts/sortperf.py
new file mode 100644
index 0000000..b546815
--- /dev/null
+++ b/Tools/scripts/sortperf.py
@@ -0,0 +1,196 @@
+"""
+List sort performance test.
+
+To install `pyperf` you would need to:
+
+ python3 -m pip install pyperf
+
+To run:
+
+ python3 Tools/scripts/sortperf
+
+Options:
+
+ * `benchmark` name to run
+ * `--rnd-seed` to set random seed
+ * `--size` to set the sorted list size
+
+Based on https://github.com/python/cpython/blob/963904335e579bfe39101adf3fd6a0cf705975ff/Lib/test/sortperf.py
+"""
+
+from __future__ import annotations
+
+import argparse
+import time
+import random
+
+
+# ===============
+# Data generation
+# ===============
+
+def _random_data(size: int, rand: random.Random) -> list[float]:
+ result = [rand.random() for _ in range(size)]
+ # Shuffle it a bit...
+ for i in range(10):
+ i = rand.randrange(size)
+ temp = result[:i]
+ del result[:i]
+ temp.reverse()
+ result.extend(temp)
+ del temp
+ assert len(result) == size
+ return result
+
+
+def list_sort(size: int, rand: random.Random) -> list[float]:
+ return _random_data(size, rand)
+
+
+def list_sort_descending(size: int, rand: random.Random) -> list[float]:
+ return list(reversed(list_sort_ascending(size, rand)))
+
+
+def list_sort_ascending(size: int, rand: random.Random) -> list[float]:
+ return sorted(_random_data(size, rand))
+
+
+def list_sort_ascending_exchanged(size: int, rand: random.Random) -> list[float]:
+ result = list_sort_ascending(size, rand)
+ # Do 3 random exchanges.
+ for _ in range(3):
+ i1 = rand.randrange(size)
+ i2 = rand.randrange(size)
+ result[i1], result[i2] = result[i2], result[i1]
+ return result
+
+
+def list_sort_ascending_random(size: int, rand: random.Random) -> list[float]:
+ assert size >= 10, "This benchmark requires size to be >= 10"
+ result = list_sort_ascending(size, rand)
+ # Replace the last 10 with random floats.
+ result[-10:] = [rand.random() for _ in range(10)]
+ return result
+
+
+def list_sort_ascending_one_percent(size: int, rand: random.Random) -> list[float]:
+ result = list_sort_ascending(size, rand)
+ # Replace 1% of the elements at random.
+ for _ in range(size // 100):
+ result[rand.randrange(size)] = rand.random()
+ return result
+
+
+def list_sort_duplicates(size: int, rand: random.Random) -> list[float]:
+ assert size >= 4
+ result = list_sort_ascending(4, rand)
+ # Arrange for lots of duplicates.
+ result = result * (size // 4)
+ # Force the elements to be distinct objects, else timings can be
+ # artificially low.
+ return list(map(abs, result))
+
+
+def list_sort_equal(size: int, rand: random.Random) -> list[float]:
+ # All equal. Again, force the elements to be distinct objects.
+ return list(map(abs, [-0.519012] * size))
+
+
+def list_sort_worst_case(size: int, rand: random.Random) -> list[float]:
+ # This one looks like [3, 2, 1, 0, 0, 1, 2, 3]. It was a bad case
+ # for an older implementation of quicksort, which used the median
+ # of the first, last and middle elements as the pivot.
+ half = size // 2
+ result = list(range(half - 1, -1, -1))
+ result.extend(range(half))
+ # Force to float, so that the timings are comparable. This is
+ # significantly faster if we leave them as ints.
+ return list(map(float, result))
+
+
+# =========
+# Benchmark
+# =========
+
+class Benchmark:
+ def __init__(self, name: str, size: int, seed: int) -> None:
+ self._name = name
+ self._size = size
+ self._seed = seed
+ self._random = random.Random(self._seed)
+
+ def run(self, loops: int) -> float:
+ all_data = self._prepare_data(loops)
+ start = time.perf_counter()
+
+ for data in all_data:
+ data.sort() # Benching this method!
+
+ return time.perf_counter() - start
+
+ def _prepare_data(self, loops: int) -> list[float]:
+ bench = BENCHMARKS[self._name]
+ return [bench(self._size, self._random)] * loops
+
+
+def add_cmdline_args(cmd: list[str], args) -> None:
+ if args.benchmark:
+ cmd.append(args.benchmark)
+ cmd.append(f"--size={args.size}")
+ cmd.append(f"--rng-seed={args.rng_seed}")
+
+
+def add_parser_args(parser: argparse.ArgumentParser) -> None:
+ parser.add_argument(
+ "benchmark",
+ choices=BENCHMARKS,
+ nargs="?",
+ help="Can be any of: {0}".format(", ".join(BENCHMARKS)),
+ )
+ parser.add_argument(
+ "--size",
+ type=int,
+ default=DEFAULT_SIZE,
+ help=f"Size of the lists to sort (default: {DEFAULT_SIZE})",
+ )
+ parser.add_argument(
+ "--rng-seed",
+ type=int,
+ default=DEFAULT_RANDOM_SEED,
+ help=f"Random number generator seed (default: {DEFAULT_RANDOM_SEED})",
+ )
+
+
+DEFAULT_SIZE = 1 << 14
+DEFAULT_RANDOM_SEED = 0
+BENCHMARKS = {
+ "list_sort": list_sort,
+ "list_sort_descending": list_sort_descending,
+ "list_sort_ascending": list_sort_ascending,
+ "list_sort_ascending_exchanged": list_sort_ascending_exchanged,
+ "list_sort_ascending_random": list_sort_ascending_random,
+ "list_sort_ascending_one_percent": list_sort_ascending_one_percent,
+ "list_sort_duplicates": list_sort_duplicates,
+ "list_sort_equal": list_sort_equal,
+ "list_sort_worst_case": list_sort_worst_case,
+}
+
+if __name__ == "__main__":
+ # This needs `pyperf` 3rd party library:
+ import pyperf
+
+ runner = pyperf.Runner(add_cmdline_args=add_cmdline_args)
+ add_parser_args(runner.argparser)
+ args = runner.parse_args()
+
+ runner.metadata["description"] = "Test `list.sort()` with different data"
+ runner.metadata["list_sort_size"] = args.size
+ runner.metadata["list_sort_random_seed"] = args.rng_seed
+
+ if args.benchmark:
+ benchmarks = (args.benchmark,)
+ else:
+ benchmarks = sorted(BENCHMARKS)
+ for bench in benchmarks:
+ benchmark = Benchmark(bench, args.size, args.rng_seed)
+ runner.bench_time_func(bench, benchmark.run)