diff options
author | jan.nijtmans <nijtmans@users.sourceforge.net> | 2016-11-18 09:50:37 (GMT) |
---|---|---|
committer | jan.nijtmans <nijtmans@users.sourceforge.net> | 2016-11-18 09:50:37 (GMT) |
commit | c85162575b2a6ba6d8b7103a103d8724c2d51e03 (patch) | |
tree | c945d6b5352f04dfb8dcda9435522ae38bf25c51 | |
parent | e0c2fc16a8641c16944de458557edf2d315d688b (diff) | |
parent | 44774dc3238ca1e269c6acedcbdfb449780c96f9 (diff) | |
download | tcl-c85162575b2a6ba6d8b7103a103d8724c2d51e03.zip tcl-c85162575b2a6ba6d8b7103a103d8724c2d51e03.tar.gz tcl-c85162575b2a6ba6d8b7103a103d8724c2d51e03.tar.bz2 |
Fix [e6f27aa56fa51bfc1752ce768bf0d301c60bfd2c|e6f27aa56f]: Update libtommath to 1.0
161 files changed, 9439 insertions, 15484 deletions
diff --git a/.fossil-settings/ignore-glob b/.fossil-settings/ignore-glob index 2b3ab8b..2f93505 100644 --- a/.fossil-settings/ignore-glob +++ b/.fossil-settings/ignore-glob @@ -19,7 +19,11 @@ */versions.vc libtommath/bn.ilg libtommath/bn.ind +libtommath/pretty.build +libtommath/tommath.src libtommath/*.pdf +libtommath/*.pl +libtommath/*.sh libtommath/tombc/* libtommath/pre_gen/* libtommath/pics/* diff --git a/generic/tclExecute.c b/generic/tclExecute.c index 1cfc030..1f78ead 100644 --- a/generic/tclExecute.c +++ b/generic/tclExecute.c @@ -8935,7 +8935,7 @@ ExecuteExtendedBinaryMathOp( } Tcl_TakeBignumFromObj(NULL, valuePtr, &big1); mp_init(&bigResult); - mp_expt_d(&big1, big2.dp[0], &bigResult); + mp_expt_d_ex(&big1, big2.dp[0], &bigResult, 1); mp_clear(&big1); mp_clear(&big2); BIG_RESULT(&bigResult); diff --git a/generic/tclStubInit.c b/generic/tclStubInit.c index 5b7a1cd..2f1bb8b 100644 --- a/generic/tclStubInit.c +++ b/generic/tclStubInit.c @@ -749,6 +749,7 @@ const TclTomMathStubs tclTomMathStubs = { TclBNInitBignumFromLong, /* 64 */ TclBNInitBignumFromWideInt, /* 65 */ TclBNInitBignumFromWideUInt, /* 66 */ + TclBN_mp_expt_d_ex, /* 67 */ }; static const TclStubHooks tclStubHooks = { diff --git a/generic/tclTomMath.decls b/generic/tclTomMath.decls index 610a031..74ccefc 100644 --- a/generic/tclTomMath.decls +++ b/generic/tclTomMath.decls @@ -90,7 +90,7 @@ declare 21 { int TclBN_mp_init(mp_int *a) } declare 22 { - int TclBN_mp_init_copy(mp_int *a, mp_int *b) + int TclBN_mp_init_copy(mp_int *a, const mp_int *b) } declare 23 { int TclBN_mp_init_multi(mp_int *a, ...) @@ -129,7 +129,7 @@ declare 34 { int TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c) } declare 35 { - int TclBN_mp_radix_size(mp_int *a, int radix, int *size) + int TclBN_mp_radix_size(const mp_int *a, int radix, int *size) } declare 36 { int TclBN_mp_read_radix(mp_int *a, const char *str, int radix) @@ -233,6 +233,11 @@ declare 66 { void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal) } +# Added in libtommath 1.0 +declare 67 { + int TclBN_mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast) +} + # Local Variables: # mode: tcl # End: diff --git a/generic/tclTomMath.h b/generic/tclTomMath.h index dd9edaf..690cd80 100644 --- a/generic/tclTomMath.h +++ b/generic/tclTomMath.h @@ -10,11 +10,12 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com */ #ifndef BN_H_ #define BN_H_ +#include "tclInt.h" #include "tclTomMathDecls.h" #ifndef MODULE_SCOPE #define MODULE_SCOPE extern @@ -22,33 +23,15 @@ -#ifndef MIN -# define MIN(x,y) ((x)<(y)?(x):(y)) -#endif - -#ifndef MAX -# define MAX(x,y) ((x)>(y)?(x):(y)) -#endif - #ifdef __cplusplus extern "C" { - -/* C++ compilers don't like assigning void * to mp_digit * */ -#define OPT_CAST(x) (x *) - -#else - -/* C on the other hand doesn't care */ -#define OPT_CAST(x) - #endif - /* detect 64-bit mode if possible */ -#if defined(NEVER) /* 128-bit ints fail in too many places */ -# if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) -# define MP_64BIT -# endif +#if defined(NEVER) /* 128-bit ints fail in too many places */ + #if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) + #define MP_64BIT + #endif #endif /* some default configurations. @@ -61,83 +44,89 @@ extern "C" { */ #ifdef MP_8BIT #ifndef MP_DIGIT_DECLARED - typedef unsigned char mp_digit; + typedef uint8_t mp_digit; #define MP_DIGIT_DECLARED #endif - typedef unsigned short mp_word; + typedef uint16_t mp_word; +#define MP_SIZEOF_MP_DIGIT 1 +#ifdef DIGIT_BIT +#error You must not define DIGIT_BIT when using MP_8BIT +#endif #elif defined(MP_16BIT) #ifndef MP_DIGIT_DECLARED - typedef unsigned short mp_digit; + typedef uint16_t mp_digit; #define MP_DIGIT_DECLARED #endif - typedef unsigned long mp_word; + typedef uint32_t mp_word; +#define MP_SIZEOF_MP_DIGIT 2 +#ifdef DIGIT_BIT +#error You must not define DIGIT_BIT when using MP_16BIT +#endif #elif defined(MP_64BIT) /* for GCC only on supported platforms */ #ifndef CRYPT - typedef unsigned long long ulong64; - typedef signed long long long64; + typedef unsigned long long ulong64; + typedef signed long long long64; #endif #ifndef MP_DIGIT_DECLARED - typedef unsigned long mp_digit; + typedef ulong64 mp_digit; #define MP_DIGIT_DECLARED #endif - typedef unsigned long mp_word __attribute__ ((mode(TI))); +#if defined(_WIN32) + typedef unsigned __int128 mp_word; +#elif defined(__GNUC__) + typedef unsigned long mp_word __attribute__ ((mode(TI))); +#else + /* it seems you have a problem + * but we assume you can somewhere define your own uint128_t */ + typedef uint128_t mp_word; +#endif -# define DIGIT_BIT 60 + #define DIGIT_BIT 60 #else /* this is the default case, 28-bit digits */ - + /* this is to make porting into LibTomCrypt easier :-) */ #ifndef CRYPT -# if defined(_MSC_VER) || defined(__BORLANDC__) - typedef unsigned __int64 ulong64; - typedef signed __int64 long64; -# else - typedef unsigned long long ulong64; - typedef signed long long long64; -# endif + typedef unsigned long long ulong64; + typedef signed long long long64; #endif #ifndef MP_DIGIT_DECLARED - typedef unsigned int mp_digit; + typedef uint32_t mp_digit; #define MP_DIGIT_DECLARED #endif - typedef ulong64 mp_word; + typedef ulong64 mp_word; -#ifdef MP_31BIT +#ifdef MP_31BIT /* this is an extension that uses 31-bit digits */ -# define DIGIT_BIT 31 + #define DIGIT_BIT 31 #else /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ -# define DIGIT_BIT 28 -# define MP_28BIT -#endif -#endif - -/* define heap macros */ -#if 0 /* these are macros in tclTomMathDecls.h */ -#ifndef CRYPT - /* default to libc stuff */ -# ifndef XMALLOC -# define XMALLOC malloc -# define XFREE free -# define XREALLOC realloc -# define XCALLOC calloc -# else - /* prototypes for our heap functions */ - extern void *XMALLOC(size_t n); - extern void *XREALLOC(void *p, size_t n); - extern void *XCALLOC(size_t n, size_t s); - extern void XFREE(void *p); -# endif + #define DIGIT_BIT 28 + #define MP_28BIT #endif #endif - /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ #ifndef DIGIT_BIT -# define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ + #define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */ + typedef uint_least32_t mp_min_u32; +#else + typedef mp_digit mp_min_u32; +#endif + +/* platforms that can use a better rand function */ +#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) + #define MP_USE_ALT_RAND 1 +#endif + +/* use arc4random on platforms that support it */ +#ifdef MP_USE_ALT_RAND + #define MP_GEN_RANDOM() arc4random() +#else + #define MP_GEN_RANDOM() rand() #endif #define MP_DIGIT_BIT DIGIT_BIT @@ -180,15 +169,15 @@ MODULE_SCOPE int KARATSUBA_MUL_CUTOFF, /* default precision */ #ifndef MP_PREC -# ifndef MP_LOW_MEM -# define MP_PREC 32 /* default digits of precision */ -# else -# define MP_PREC 8 /* default digits of precision */ -# endif + #ifndef MP_LOW_MEM + #define MP_PREC 32 /* default digits of precision */ + #else + #define MP_PREC 8 /* default digits of precision */ + #endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ -#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) +#define MP_WARRAY (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1)) /* the infamous mp_int structure */ #ifndef MP_INT_DECLARED @@ -209,9 +198,7 @@ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); #define SIGN(m) ((m)->sign) /* error code to char* string */ -/* -char *mp_error_to_string(int code); -*/ +const char *mp_error_to_string(int code); /* ---> init and deinit bignum functions <--- */ /* init a bignum */ @@ -256,8 +243,9 @@ int mp_init_size(mp_int *a, int size); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) -#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) -#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) +#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO) +#define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO) +#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) /* set to zero */ /* @@ -274,9 +262,25 @@ void mp_set(mp_int *a, mp_digit b); int mp_set_int(mp_int *a, unsigned long b); */ +/* set a platform dependent unsigned long value */ +/* +int mp_set_long(mp_int *a, unsigned long b); +*/ + +/* set a platform dependent unsigned long long value */ +/* +int mp_set_long_long(mp_int *a, unsigned long long b); +*/ + /* get a 32-bit value */ unsigned long mp_get_int(mp_int * a); +/* get a platform dependent unsigned long value */ +unsigned long mp_get_long(mp_int * a); + +/* get a platform dependent unsigned long long value */ +unsigned long long mp_get_long_long(mp_int * a); + /* initialize and set a digit */ /* int mp_init_set (mp_int * a, mp_digit b); @@ -294,7 +298,7 @@ int mp_copy(const mp_int *a, mp_int *b); /* inits and copies, a = b */ /* -int mp_init_copy(mp_int *a, mp_int *b); +int mp_init_copy(mp_int *a, const mp_int *b); */ /* trim unused digits */ @@ -302,6 +306,16 @@ int mp_init_copy(mp_int *a, mp_int *b); void mp_clamp(mp_int *a); */ +/* import binary data */ +/* +int mp_import(mp_int* rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op); +*/ + +/* export binary data */ +/* +int mp_export(void* rop, size_t* countp, int order, size_t size, int endian, size_t nails, mp_int* op); +*/ + /* ---> digit manipulation <--- */ /* right shift by "b" digits */ @@ -314,7 +328,7 @@ void mp_rshd(mp_int *a, int b); int mp_lshd(mp_int *a, int b); */ -/* c = a / 2**b */ +/* c = a / 2**b, implemented as c = a >> b */ /* int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d); */ @@ -324,7 +338,7 @@ int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d); int mp_div_2(mp_int *a, mp_int *b); */ -/* c = a * 2**b */ +/* c = a * 2**b, implemented as c = a << b */ /* int mp_mul_2d(const mp_int *a, int b, mp_int *c); */ @@ -334,7 +348,7 @@ int mp_mul_2d(const mp_int *a, int b, mp_int *c); int mp_mul_2(mp_int *a, mp_int *b); */ -/* c = a mod 2**d */ +/* c = a mod 2**b */ /* int mp_mod_2d(const mp_int *a, int b, mp_int *c); */ @@ -460,6 +474,9 @@ int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); /* int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); */ +/* +int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast); +*/ /* c = a mod b, 0 <= c < b */ /* @@ -515,12 +532,20 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c); /* int mp_n_root(mp_int *a, mp_digit b, mp_int *c); */ +/* +int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast); +*/ /* special sqrt algo */ /* int mp_sqrt(mp_int *arg, mp_int *ret); */ +/* special sqrt (mod prime) */ +/* +int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret); +*/ + /* is number a square? */ /* int mp_is_square(mp_int *arg, int *ret); @@ -623,7 +648,7 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); /* table of first PRIME_SIZE primes */ #if defined(BUILD_tcl) || !defined(_WIN32) -MODULE_SCOPE const mp_digit ltm_prime_tab[]; +MODULE_SCOPE const mp_digit ltm_prime_tab[PRIME_SIZE]; #endif /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ @@ -646,7 +671,7 @@ int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); */ /* This gives [for a given bit size] the number of trials required - * such that Miller-Rabin gives a prob of failure lower than 2^-96 + * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ /* int mp_prime_rabin_miller_trials(int size); @@ -673,7 +698,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); */ /* makes a truly random prime of a given size (bytes), - * call with bbs = 1 if you want it to be congruent to 3 mod 4 + * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself @@ -686,10 +711,9 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bits), * * Flags are as follows: - * + * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) - * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can @@ -742,15 +766,17 @@ int mp_toradix(mp_int *a, char *str, int radix); int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); */ /* -int mp_radix_size(mp_int *a, int radix, int *size); +int mp_radix_size(const mp_int *a, int radix, int *size); */ +#ifndef LTM_NO_FILE /* int mp_fread(mp_int *a, int radix, FILE *stream); */ /* int mp_fwrite(mp_int *a, int radix, FILE *stream); */ +#endif #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) @@ -764,69 +790,14 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream); #define mp_todecimal(M, S) mp_toradix((M), (S), 10) #define mp_tohex(M, S) mp_toradix((M), (S), 16) -/* lowlevel functions, do not call! */ -/* -int s_mp_add(mp_int *a, mp_int *b, mp_int *c); -*/ -/* -int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); -*/ -#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) -/* -int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -*/ -/* -int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -*/ -/* -int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -*/ -/* -int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -*/ -/* -int fast_s_mp_sqr(mp_int *a, mp_int *b); -*/ -/* -int s_mp_sqr(mp_int *a, mp_int *b); -*/ -/* -int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); -*/ -/* -int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); -*/ -/* -int mp_karatsuba_sqr(mp_int *a, mp_int *b); -*/ -/* -int mp_toom_sqr(mp_int *a, mp_int *b); -*/ -/* -int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); -*/ -/* -int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); -*/ -/* -int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -*/ -/* -int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); -*/ -/* -int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); -*/ -/* -void bn_reverse(unsigned char *s, int len); -*/ - -#if defined(BUILD_tcl) || !defined(_WIN32) -MODULE_SCOPE const char *mp_s_rmap; -#endif - #ifdef __cplusplus -} + } #endif #endif + + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ + diff --git a/generic/tclTomMathDecls.h b/generic/tclTomMathDecls.h index 2ce9d5a..209c486 100644 --- a/generic/tclTomMathDecls.h +++ b/generic/tclTomMathDecls.h @@ -73,6 +73,7 @@ #define mp_div_d TclBN_mp_div_d #define mp_exch TclBN_mp_exch #define mp_expt_d TclBN_mp_expt_d +#define mp_expt_d_ex TclBN_mp_expt_d_ex #define mp_grow TclBN_mp_grow #define mp_init TclBN_mp_init #define mp_init_copy TclBN_mp_init_copy @@ -190,7 +191,7 @@ EXTERN int TclBN_mp_grow(mp_int *a, int size); /* 21 */ EXTERN int TclBN_mp_init(mp_int *a); /* 22 */ -EXTERN int TclBN_mp_init_copy(mp_int *a, mp_int *b); +EXTERN int TclBN_mp_init_copy(mp_int *a, const mp_int *b); /* 23 */ EXTERN int TclBN_mp_init_multi(mp_int *a, ...); /* 24 */ @@ -216,7 +217,8 @@ EXTERN int TclBN_mp_neg(const mp_int *a, mp_int *b); /* 34 */ EXTERN int TclBN_mp_or(mp_int *a, mp_int *b, mp_int *c); /* 35 */ -EXTERN int TclBN_mp_radix_size(mp_int *a, int radix, int *size); +EXTERN int TclBN_mp_radix_size(const mp_int *a, int radix, + int *size); /* 36 */ EXTERN int TclBN_mp_read_radix(mp_int *a, const char *str, int radix); @@ -287,6 +289,9 @@ EXTERN void TclBNInitBignumFromWideInt(mp_int *bignum, /* 66 */ EXTERN void TclBNInitBignumFromWideUInt(mp_int *bignum, Tcl_WideUInt initVal); +/* 67 */ +EXTERN int TclBN_mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, + int fast); typedef struct TclTomMathStubs { int magic; @@ -314,7 +319,7 @@ typedef struct TclTomMathStubs { int (*tclBN_mp_expt_d) (mp_int *a, mp_digit b, mp_int *c); /* 19 */ int (*tclBN_mp_grow) (mp_int *a, int size); /* 20 */ int (*tclBN_mp_init) (mp_int *a); /* 21 */ - int (*tclBN_mp_init_copy) (mp_int *a, mp_int *b); /* 22 */ + int (*tclBN_mp_init_copy) (mp_int *a, const mp_int *b); /* 22 */ int (*tclBN_mp_init_multi) (mp_int *a, ...); /* 23 */ int (*tclBN_mp_init_set) (mp_int *a, mp_digit b); /* 24 */ int (*tclBN_mp_init_size) (mp_int *a, int size); /* 25 */ @@ -327,7 +332,7 @@ typedef struct TclTomMathStubs { int (*tclBN_mp_mul_2d) (const mp_int *a, int d, mp_int *p); /* 32 */ int (*tclBN_mp_neg) (const mp_int *a, mp_int *b); /* 33 */ int (*tclBN_mp_or) (mp_int *a, mp_int *b, mp_int *c); /* 34 */ - int (*tclBN_mp_radix_size) (mp_int *a, int radix, int *size); /* 35 */ + int (*tclBN_mp_radix_size) (const mp_int *a, int radix, int *size); /* 35 */ int (*tclBN_mp_read_radix) (mp_int *a, const char *str, int radix); /* 36 */ void (*tclBN_mp_rshd) (mp_int *a, int shift); /* 37 */ int (*tclBN_mp_shrink) (mp_int *a); /* 38 */ @@ -359,6 +364,7 @@ typedef struct TclTomMathStubs { void (*tclBNInitBignumFromLong) (mp_int *bignum, long initVal); /* 64 */ void (*tclBNInitBignumFromWideInt) (mp_int *bignum, Tcl_WideInt initVal); /* 65 */ void (*tclBNInitBignumFromWideUInt) (mp_int *bignum, Tcl_WideUInt initVal); /* 66 */ + int (*tclBN_mp_expt_d_ex) (mp_int *a, mp_digit b, mp_int *c, int fast); /* 67 */ } TclTomMathStubs; extern const TclTomMathStubs *tclTomMathStubsPtr; @@ -507,6 +513,8 @@ extern const TclTomMathStubs *tclTomMathStubsPtr; (tclTomMathStubsPtr->tclBNInitBignumFromWideInt) /* 65 */ #define TclBNInitBignumFromWideUInt \ (tclTomMathStubsPtr->tclBNInitBignumFromWideUInt) /* 66 */ +#define TclBN_mp_expt_d_ex \ + (tclTomMathStubsPtr->tclBN_mp_expt_d_ex) /* 67 */ #endif /* defined(USE_TCL_STUBS) */ diff --git a/libtommath/LICENSE b/libtommath/LICENSE index 5baa792..a75014d 100644 --- a/libtommath/LICENSE +++ b/libtommath/LICENSE @@ -1,4 +1,29 @@ -LibTomMath is hereby released into the Public Domain. +LibTomMath is licensed under DUAL licensing terms. --- Tom St Denis +Choose and use the license of your needs. +[LICENSE #1] + +LibTomMath is public domain. As should all quality software be. + +Tom St Denis + +[/LICENSE #1] + +[LICENSE #2] + + DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE + Version 2, December 2004 + + Copyright (C) 2004 Sam Hocevar <sam@hocevar.net> + + Everyone is permitted to copy and distribute verbatim or modified + copies of this license document, and changing it is allowed as long + as the name is changed. + + DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. You just DO WHAT THE FUCK YOU WANT TO. + +[/LICENSE #2] diff --git a/libtommath/bn.tex b/libtommath/bn.tex deleted file mode 100644 index e8eb994..0000000 --- a/libtommath/bn.tex +++ /dev/null @@ -1,1835 +0,0 @@ -\documentclass[b5paper]{book} -\usepackage{hyperref} -\usepackage{makeidx} -\usepackage{amssymb} -\usepackage{color} -\usepackage{alltt} -\usepackage{graphicx} -\usepackage{layout} -\def\union{\cup} -\def\intersect{\cap} -\def\getsrandom{\stackrel{\rm R}{\gets}} -\def\cross{\times} -\def\cat{\hspace{0.5em} \| \hspace{0.5em}} -\def\catn{$\|$} -\def\divides{\hspace{0.3em} | \hspace{0.3em}} -\def\nequiv{\not\equiv} -\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}} -\def\lcm{{\rm lcm}} -\def\gcd{{\rm gcd}} -\def\log{{\rm log}} -\def\ord{{\rm ord}} -\def\abs{{\mathit abs}} -\def\rep{{\mathit rep}} -\def\mod{{\mathit\ mod\ }} -\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})} -\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor} -\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil} -\def\Or{{\rm\ or\ }} -\def\And{{\rm\ and\ }} -\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}} -\def\implies{\Rightarrow} -\def\undefined{{\rm ``undefined"}} -\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}} -\let\oldphi\phi -\def\phi{\varphi} -\def\Pr{{\rm Pr}} -\newcommand{\str}[1]{{\mathbf{#1}}} -\def\F{{\mathbb F}} -\def\N{{\mathbb N}} -\def\Z{{\mathbb Z}} -\def\R{{\mathbb R}} -\def\C{{\mathbb C}} -\def\Q{{\mathbb Q}} -\definecolor{DGray}{gray}{0.5} -\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}} -\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}} -\def\gap{\vspace{0.5ex}} -\makeindex -\begin{document} -\frontmatter -\pagestyle{empty} -\title{LibTomMath User Manual \\ v0.39} -\author{Tom St Denis \\ tomstdenis@iahu.ca} -\maketitle -This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been -formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package. - -\vspace{10cm} - -\begin{flushright}Open Source. Open Academia. Open Minds. - -\mbox{ } - -Tom St Denis, - -Ontario, Canada -\end{flushright} - -\tableofcontents -\listoffigures -\mainmatter -\pagestyle{headings} -\chapter{Introduction} -\section{What is LibTomMath?} -LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating -large integer numbers. It was written in portable ISO C source code so that it will build on any platform with a conforming -C compiler. - -In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how -to implement ``bignum'' math. However, the resulting code has proven to be very useful. It has been used by numerous -universities, commercial and open source software developers. It has been used on a variety of platforms ranging from -Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines. - -\section{License} -As of the v0.25 the library source code has been placed in the public domain with every new release. As of the v0.28 -release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new -release as well. This textbook is meant to compliment the project by providing a more solid walkthrough of the development -algorithms used in the library. - -Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are not required to use LibTomMath.} are in the -public domain everyone is entitled to do with them as they see fit. - -\section{Building LibTomMath} - -LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC. However, the library will -also build in MSVC, Borland C out of the box. For any other ISO C compiler a makefile will have to be made by the end -developer. - -\subsection{Static Libraries} -To build as a static library for GCC issue the following -\begin{alltt} -make -\end{alltt} - -command. This will build the library and archive the object files in ``libtommath.a''. Now you link against -that and include ``tommath.h'' within your programs. Alternatively to build with MSVC issue the following -\begin{alltt} -nmake -f makefile.msvc -\end{alltt} - -This will build the library and archive the object files in ``tommath.lib''. This has been tested with MSVC -version 6.00 with service pack 5. - -\subsection{Shared Libraries} -To build as a shared library for GCC issue the following -\begin{alltt} -make -f makefile.shared -\end{alltt} -This requires the ``libtool'' package (common on most Linux/BSD systems). It will build LibTomMath as both shared -and static then install (by default) into /usr/lib as well as install the header files in /usr/include. The shared -library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''. Generally -you use libtool to link your application against the shared object. - -There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires -Cygwin to work with since it requires the auto-export/import functionality. The resulting DLL and import library -``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin. - -\subsection{Testing} -To build the library and the test harness type - -\begin{alltt} -make test -\end{alltt} - -This will build the library, ``test'' and ``mtest/mtest''. The ``test'' program will accept test vectors and verify the -results. ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI -is included in the package}. Simply pipe mtest into test using - -\begin{alltt} -mtest/mtest | test -\end{alltt} - -If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into -mtest. For example, if your PRNG program is called ``myprng'' simply invoke - -\begin{alltt} -myprng | mtest/mtest | test -\end{alltt} - -This will output a row of numbers that are increasing. Each column is a different test (such as addition, multiplication, etc) -that is being performed. The numbers represent how many times the test was invoked. If an error is detected the program -will exit with a dump of the relevent numbers it was working with. - -\section{Build Configuration} -LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''. -Each phase changes how the library is built and they are applied one after another respectively. - -To make the system more powerful you can tweak the build process. Classes are defined in the file -``tommath\_superclass.h''. By default, the symbol ``LTM\_ALL'' shall be defined which simply -instructs the system to build all of the functions. This is how LibTomMath used to be packaged. This will give you -access to every function LibTomMath offers. - -However, there are cases where such a build is not optional. For instance, you want to perform RSA operations. You -don't need the vast majority of the library to perform these operations. Aside from LTM\_ALL there is -another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt. Additional -classes can be defined base on the need of the user. - -\subsection{Build Depends} -In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs'' -which further define symbols. All of the symbols (technically they're macros $\ldots$) represent a given C source -file. For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''. When a define has been enabled the -function in the respective file will be compiled and linked into the library. Accordingly when the define -is absent the file will not be compiled and not contribute any size to the library. - -You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice). -This is to help resolve as many dependencies as possible. In the last pass the symbol LTM\_LAST will be defined. -This is useful for ``trims''. - -\subsection{Build Tweaks} -A tweak is an algorithm ``alternative''. For example, to provide tradeoffs (usually between size and space). -They can be enabled at any pass of the configuration phase. - -\begin{small} -\begin{center} -\begin{tabular}{|l|l|} -\hline \textbf{Define} & \textbf{Purpose} \\ -\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\ - & functional mp\_div() function \\ -\hline -\end{tabular} -\end{center} -\end{small} - -\subsection{Build Trims} -A trim is a manner of removing functionality from a function that is not required. For instance, to perform -RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed. -Build trims are meant to be defined on the last pass of the configuration which means they are to be defined -only if LTM\_LAST has been defined. - -\subsubsection{Moduli Related} -\begin{small} -\begin{center} -\begin{tabular}{|l|l|} -\hline \textbf{Restriction} & \textbf{Undefine} \\ -\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\ - & BN\_MP\_REDUCE\_C \\ - & BN\_MP\_REDUCE\_SETUP\_C \\ - & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\ - & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\ -\hline Exponentiation with random odd moduli & (The above plus the following) \\ - & BN\_MP\_REDUCE\_2K\_C \\ - & BN\_MP\_REDUCE\_2K\_SETUP\_C \\ - & BN\_MP\_REDUCE\_IS\_2K\_C \\ - & BN\_MP\_DR\_IS\_MODULUS\_C \\ - & BN\_MP\_DR\_REDUCE\_C \\ - & BN\_MP\_DR\_SETUP\_C \\ -\hline Modular inverse odd moduli only & BN\_MP\_INVMOD\_SLOW\_C \\ -\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\ -\hline -\end{tabular} -\end{center} -\end{small} - -\subsubsection{Operand Size Related} -\begin{small} -\begin{center} -\begin{tabular}{|l|l|} -\hline \textbf{Restriction} & \textbf{Undefine} \\ -\hline Moduli $\le 2560$ bits & BN\_MP\_MONTGOMERY\_REDUCE\_C \\ - & BN\_S\_MP\_MUL\_DIGS\_C \\ - & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\ - & BN\_S\_MP\_SQR\_C \\ -\hline Polynomial Schmolynomial & BN\_MP\_KARATSUBA\_MUL\_C \\ - & BN\_MP\_KARATSUBA\_SQR\_C \\ - & BN\_MP\_TOOM\_MUL\_C \\ - & BN\_MP\_TOOM\_SQR\_C \\ - -\hline -\end{tabular} -\end{center} -\end{small} - - -\section{Purpose of LibTomMath} -Unlike GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with -bleeding edge performance in mind. First and foremost LibTomMath was written to be entirely open. Not only is the -source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the -source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision -arithmetic techniques. - -LibTomMath was written to be an instructive collection of source code. This is why there are many comments, only one -function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed -increase. - -Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies -the library (beat that!). - -So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe. Let me tabulate what I think -are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}. - -\newpage\begin{figure}[here] -\begin{small} -\begin{center} -\begin{tabular}{|l|c|c|l|} -\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\ -\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 71.97$ \\ -\hline Commented function prototypes & X && GnuPG function names are cryptic. \\ -\hline Speed && X & LibTomMath is slower. \\ -\hline Totally free & X & & GPL has unfavourable restrictions.\\ -\hline Large function base & X & & GnuPG is barebones. \\ -\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\ -\hline Portable & X & & GnuPG requires configuration to build. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{LibTomMath Valuation} -\end{figure} - -It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application. -However, LibTomMath was written with cryptography in mind. It provides essentially all of the functions a cryptosystem -would require when working with large integers. - -So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your -own application but I think there are reasons not to. While LibTomMath is slower than libraries such as GnuMP it is -not normally significantly slower. On x86 machines the difference is normally a factor of two when performing modular -exponentiations. It depends largely on the processor, compiler and the moduli being used. - -Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern. However, -on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library -that is very flexible, complete and performs well in resource contrained environments. Fast RSA for example can -be performed with as little as 8KB of ram for data (again depending on build options). - -\chapter{Getting Started with LibTomMath} -\section{Building Programs} -In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically -libtommath.a). There is no library initialization required and the entire library is thread safe. - -\section{Return Codes} -There are three possible return codes a function may return. - -\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM} -\begin{figure}[here!] -\begin{center} -\begin{small} -\begin{tabular}{|l|l|} -\hline \textbf{Code} & \textbf{Meaning} \\ -\hline MP\_OKAY & The function succeeded. \\ -\hline MP\_VAL & The function input was invalid. \\ -\hline MP\_MEM & Heap memory exhausted. \\ -\hline &\\ -\hline MP\_YES & Response is yes. \\ -\hline MP\_NO & Response is no. \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Return Codes} -\end{figure} - -The last two codes listed are not actually ``return'ed'' by a function. They are placed in an integer (the caller must -provide the address of an integer it can store to) which the caller can access. To convert one of the three return codes -to a string use the following function. - -\index{mp\_error\_to\_string} -\begin{alltt} -char *mp_error_to_string(int code); -\end{alltt} - -This will return a pointer to a string which describes the given error code. It will not work for the return codes -MP\_YES and MP\_NO. - -\section{Data Types} -The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath. This data type is used to -organize all of the data required to manipulate the integer it represents. Within LibTomMath it has been prototyped -as the following. - -\index{mp\_int} -\begin{alltt} -typedef struct \{ - int used, alloc, sign; - mp_digit *dp; -\} mp_int; -\end{alltt} - -Where ``mp\_digit'' is a data type that represents individual digits of the integer. By default, an mp\_digit is the -ISO C ``unsigned long'' data type and each digit is $28-$bits long. The mp\_digit type can be configured to suit other -platforms by defining the appropriate macros. - -All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure. You must allocate memory to -hold the structure itself by yourself (whether off stack or heap it doesn't matter). The very first thing that must be -done to use an mp\_int is that it must be initialized. - -\section{Function Organization} - -The arithmetic functions of the library are all organized to have the same style prototype. That is source operands -are passed on the left and the destination is on the right. For instance, - -\begin{alltt} -mp_add(&a, &b, &c); /* c = a + b */ -mp_mul(&a, &a, &c); /* c = a * a */ -mp_div(&a, &b, &c, &d); /* c = [a/b], d = a mod b */ -\end{alltt} - -Another feature of the way the functions have been implemented is that source operands can be destination operands as well. -For instance, - -\begin{alltt} -mp_add(&a, &b, &b); /* b = a + b */ -mp_div(&a, &b, &a, &c); /* a = [a/b], c = a mod b */ -\end{alltt} - -This allows operands to be re-used which can make programming simpler. - -\section{Initialization} -\subsection{Single Initialization} -A single mp\_int can be initialized with the ``mp\_init'' function. - -\index{mp\_init} -\begin{alltt} -int mp_init (mp_int * a); -\end{alltt} - -This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int -represents the default integer which is zero. If the functions returns MP\_OKAY then the mp\_int is ready to be used -by the other LibTomMath functions. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number */ - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Single Free} -When you are finished with an mp\_int it is ideal to return the heap it used back to the system. The following function -provides this functionality. - -\index{mp\_clear} -\begin{alltt} -void mp_clear (mp_int * a); -\end{alltt} - -The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses. It sets the -pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations. -Is is legal to call mp\_clear() twice on the same mp\_int in a row. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number */ - - /* We're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Multiple Initializations} -Certain algorithms require more than one large integer. In these instances it is ideal to initialize all of the mp\_int -variables in an ``all or nothing'' fashion. That is, they are either all initialized successfully or they are all -not initialized. - -The mp\_init\_multi() function provides this functionality. - -\index{mp\_init\_multi} \index{mp\_clear\_multi} -\begin{alltt} -int mp_init_multi(mp_int *mp, ...); -\end{alltt} - -It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures. It will attempt to initialize them all -at once. If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them -are available for use. A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd -from the heap at the same time. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int num1, num2, num3; - int result; - - if ((result = mp_init_multi(&num1, - &num2, - &num3, NULL)) != MP\_OKAY) \{ - printf("Error initializing the numbers. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the numbers */ - - /* We're done with them. */ - mp_clear_multi(&num1, &num2, &num3, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Other Initializers} -To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided. - -\index{mp\_init\_copy} -\begin{alltt} -int mp_init_copy (mp_int * a, mp_int * b); -\end{alltt} - -This function will initialize $a$ and make it a copy of $b$ if all goes well. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int num1, num2; - int result; - - /* initialize and do work on num1 ... */ - - /* We want a copy of num1 in num2 now */ - if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{ - printf("Error initializing the copy. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now num2 is ready and contains a copy of num1 */ - - /* We're done with them. */ - mp_clear_multi(&num1, &num2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given -default number of digits. By default, all initializers allocate \textbf{MP\_PREC} digits. This function lets -you override this behaviour. - -\index{mp\_init\_size} -\begin{alltt} -int mp_init_size (mp_int * a, int size); -\end{alltt} - -The $size$ parameter must be greater than zero. If the function succeeds the mp\_int $a$ will be initialized -to have $size$ digits (which are all initially zero). - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - /* we need a 60-digit number */ - if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number */ - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\section{Maintenance Functions} - -\subsection{Reducing Memory Usage} -When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess -digits can be removed to return memory to the heap with the mp\_shrink() function. - -\index{mp\_shrink} -\begin{alltt} -int mp_shrink (mp_int * a); -\end{alltt} - -This will remove excess digits of the mp\_int $a$. If the operation fails the mp\_int should be intact without the -excess digits being removed. Note that you can use a shrunk mp\_int in further computations, however, such operations -will require heap operations which can be slow. It is not ideal to shrink mp\_int variables that you will further -modify in the system (unless you are seriously low on memory). - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number [e.g. pre-computation] */ - - /* We're done with it for now. */ - if ((result = mp_shrink(&number)) != MP_OKAY) \{ - printf("Error shrinking the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use it .... */ - - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Adding additional digits} - -Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent -the integer the mp\_int is meant to equal. The \textit{used} parameter dictates how many digits are significant, that is, -contribute to the value of the mp\_int. The \textit{alloc} parameter dictates how many digits are currently available in -the array. If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to -your desired size. - -\index{mp\_grow} -\begin{alltt} -int mp_grow (mp_int * a, int size); -\end{alltt} - -This will grow the array of digits of $a$ to $size$. If the \textit{alloc} parameter is already bigger than -$size$ the function will not do anything. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* use the number */ - - /* We need to add 20 digits to the number */ - if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{ - printf("Error growing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - - /* use the number */ - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\chapter{Basic Operations} -\section{Small Constants} -Setting mp\_ints to small constants is a relatively common operation. To accomodate these instances there are two -small constant assignment functions. The first function is used to set a single digit constant while the second sets -an ISO C style ``unsigned long'' constant. The reason for both functions is efficiency. Setting a single digit is quick but the -domain of a digit can change (it's always at least $0 \ldots 127$). - -\subsection{Single Digit} - -Setting a single digit can be accomplished with the following function. - -\index{mp\_set} -\begin{alltt} -void mp_set (mp_int * a, mp_digit b); -\end{alltt} - -This will zero the contents of $a$ and make it represent an integer equal to the value of $b$. Note that this -function has a return type of \textbf{void}. It cannot cause an error so it is safe to assume the function -succeeded. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number to 5 */ - mp_set(&number, 5); - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -\subsection{Long Constants} - -To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function -can be used. - -\index{mp\_set\_int} -\begin{alltt} -int mp_set_int (mp_int * a, unsigned long b); -\end{alltt} - -This will assign the value of the 32-bit variable $b$ to the mp\_int $a$. Unlike mp\_set() this function will always -accept a 32-bit input regardless of the size of a single digit. However, since the value may span several digits -this function can fail if it runs out of heap memory. - -To get the ``unsigned long'' copy of an mp\_int the following function can be used. - -\index{mp\_get\_int} -\begin{alltt} -unsigned long mp_get_int (mp_int * a); -\end{alltt} - -This will return the 32 least significant bits of the mp\_int $a$. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number to 654321 (note this is bigger than 127) */ - if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{ - printf("Error setting the value of the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - printf("number == \%lu", mp_get_int(&number)); - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -This should output the following if the program succeeds. - -\begin{alltt} -number == 654321 -\end{alltt} - -\subsection{Initialize and Setting Constants} -To both initialize and set small constants the following two functions are available. -\index{mp\_init\_set} \index{mp\_init\_set\_int} -\begin{alltt} -int mp_init_set (mp_int * a, mp_digit b); -int mp_init_set_int (mp_int * a, unsigned long b); -\end{alltt} - -Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values. - -\begin{alltt} -int main(void) -\{ - mp_int number1, number2; - int result; - - /* initialize and set a single digit */ - if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{ - printf("Error setting number1: \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* initialize and set a long */ - if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{ - printf("Error setting number2: \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* display */ - printf("Number1, Number2 == \%lu, \%lu", - mp_get_int(&number1), mp_get_int(&number2)); - - /* clear */ - mp_clear_multi(&number1, &number2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} - -If this program succeeds it shall output. -\begin{alltt} -Number1, Number2 == 100, 1023 -\end{alltt} - -\section{Comparisons} - -Comparisons in LibTomMath are always performed in a ``left to right'' fashion. There are three possible return codes -for any comparison. - -\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT} -\begin{figure}[here] -\begin{center} -\begin{tabular}{|c|c|} -\hline \textbf{Result Code} & \textbf{Meaning} \\ -\hline MP\_GT & $a > b$ \\ -\hline MP\_EQ & $a = b$ \\ -\hline MP\_LT & $a < b$ \\ -\hline -\end{tabular} -\end{center} -\caption{Comparison Codes for $a, b$} -\label{fig:CMP} -\end{figure} - -In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared. In this case $a$ is said to be ``to the left'' of -$b$. - -\subsection{Unsigned comparison} - -An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the -mp\_int structures. This is analogous to an absolute comparison. The function mp\_cmp\_mag() will compare two -mp\_int variables based on their digits only. - -\index{mp\_cmp\_mag} -\begin{alltt} -int mp_cmp_mag(mp_int * a, mp_int * b); -\end{alltt} -This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the -three compare codes listed in figure \ref{fig:CMP}. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number1, number2; - int result; - - if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{ - printf("Error initializing the numbers. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number1 to 5 */ - mp_set(&number1, 5); - - /* set the number2 to -6 */ - mp_set(&number2, 6); - if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{ - printf("Error negating number2. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - switch(mp_cmp_mag(&number1, &number2)) \{ - case MP_GT: printf("|number1| > |number2|"); break; - case MP_EQ: printf("|number1| = |number2|"); break; - case MP_LT: printf("|number1| < |number2|"); break; - \} - - /* we're done with it. */ - mp_clear_multi(&number1, &number2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes -successfully it should print the following. - -\begin{alltt} -|number1| < |number2| -\end{alltt} - -This is because $\vert -6 \vert = 6$ and obviously $5 < 6$. - -\subsection{Signed comparison} - -To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided. - -\index{mp\_cmp} -\begin{alltt} -int mp_cmp(mp_int * a, mp_int * b); -\end{alltt} - -This will compare $a$ to the left of $b$. It will first compare the signs of the two mp\_int variables. If they -differ it will return immediately based on their signs. If the signs are equal then it will compare the digits -individually. This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number1, number2; - int result; - - if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{ - printf("Error initializing the numbers. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number1 to 5 */ - mp_set(&number1, 5); - - /* set the number2 to -6 */ - mp_set(&number2, 6); - if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{ - printf("Error negating number2. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - switch(mp_cmp(&number1, &number2)) \{ - case MP_GT: printf("number1 > number2"); break; - case MP_EQ: printf("number1 = number2"); break; - case MP_LT: printf("number1 < number2"); break; - \} - - /* we're done with it. */ - mp_clear_multi(&number1, &number2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes -successfully it should print the following. - -\begin{alltt} -number1 > number2 -\end{alltt} - -\subsection{Single Digit} - -To compare a single digit against an mp\_int the following function has been provided. - -\index{mp\_cmp\_d} -\begin{alltt} -int mp_cmp_d(mp_int * a, mp_digit b); -\end{alltt} - -This will compare $a$ to the left of $b$ using a signed comparison. Note that it will always treat $b$ as -positive. This function is rather handy when you have to compare against small values such as $1$ (which often -comes up in cryptography). The function cannot fail and will return one of the tree compare condition codes -listed in figure \ref{fig:CMP}. - - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number to 5 */ - mp_set(&number, 5); - - switch(mp_cmp_d(&number, 7)) \{ - case MP_GT: printf("number > 7"); break; - case MP_EQ: printf("number = 7"); break; - case MP_LT: printf("number < 7"); break; - \} - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -If this program functions properly it will print out the following. - -\begin{alltt} -number < 7 -\end{alltt} - -\section{Logical Operations} - -Logical operations are operations that can be performed either with simple shifts or boolean operators such as -AND, XOR and OR directly. These operations are very quick. - -\subsection{Multiplication by two} - -Multiplications and divisions by any power of two can be performed with quick logical shifts either left or -right depending on the operation. - -When multiplying or dividing by two a special case routine can be used which are as follows. -\index{mp\_mul\_2} \index{mp\_div\_2} -\begin{alltt} -int mp_mul_2(mp_int * a, mp_int * b); -int mp_div_2(mp_int * a, mp_int * b); -\end{alltt} - -The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$. These functions are fast -since the shift counts and maskes are hardcoded into the routines. - -\begin{small} \begin{alltt} -int main(void) -\{ - mp_int number; - int result; - - if ((result = mp_init(&number)) != MP_OKAY) \{ - printf("Error initializing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the number to 5 */ - mp_set(&number, 5); - - /* multiply by two */ - if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{ - printf("Error multiplying the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - switch(mp_cmp_d(&number, 7)) \{ - case MP_GT: printf("2*number > 7"); break; - case MP_EQ: printf("2*number = 7"); break; - case MP_LT: printf("2*number < 7"); break; - \} - - /* now divide by two */ - if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{ - printf("Error dividing the number. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - switch(mp_cmp_d(&number, 7)) \{ - case MP_GT: printf("2*number/2 > 7"); break; - case MP_EQ: printf("2*number/2 = 7"); break; - case MP_LT: printf("2*number/2 < 7"); break; - \} - - /* we're done with it. */ - mp_clear(&number); - - return EXIT_SUCCESS; -\} -\end{alltt} \end{small} - -If this program is successful it will print out the following text. - -\begin{alltt} -2*number > 7 -2*number/2 < 7 -\end{alltt} - -Since $10 > 7$ and $5 < 7$. To multiply by a power of two the following function can be used. - -\index{mp\_mul\_2d} -\begin{alltt} -int mp_mul_2d(mp_int * a, int b, mp_int * c); -\end{alltt} - -This will multiply $a$ by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to -zero the function will copy $a$ to ``c'' without performing any further actions. - -To divide by a power of two use the following. - -\index{mp\_div\_2d} -\begin{alltt} -int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d); -\end{alltt} -Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the -function simply copies $a$ over to ``c'' and zeroes $d$. The variable $d$ may be passed as a \textbf{NULL} -value to signal that the remainder is not desired. - -\subsection{Polynomial Basis Operations} - -Strictly speaking the organization of the integers within the mp\_int structures is what is known as a -``polynomial basis''. This simply means a field element is stored by divisions of a radix. For example, if -$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be -the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$. - -To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place. The -following function provides this operation. - -\index{mp\_lshd} -\begin{alltt} -int mp_lshd (mp_int * a, int b); -\end{alltt} - -This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes -in the least significant digits. Similarly to divide by a power of $x$ the following function is provided. - -\index{mp\_rshd} -\begin{alltt} -void mp_rshd (mp_int * a, int b) -\end{alltt} -This will divide $a$ in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations -in place and no new digits are required to complete it. - -\subsection{AND, OR and XOR Operations} - -While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances. The -three functions are prototyped as follows. - -\index{mp\_or} \index{mp\_and} \index{mp\_xor} -\begin{alltt} -int mp_or (mp_int * a, mp_int * b, mp_int * c); -int mp_and (mp_int * a, mp_int * b, mp_int * c); -int mp_xor (mp_int * a, mp_int * b, mp_int * c); -\end{alltt} - -Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR. - -\section{Addition and Subtraction} - -To compute an addition or subtraction the following two functions can be used. - -\index{mp\_add} \index{mp\_sub} -\begin{alltt} -int mp_add (mp_int * a, mp_int * b, mp_int * c); -int mp_sub (mp_int * a, mp_int * b, mp_int * c) -\end{alltt} - -Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction. The operations are fully sign -aware. - -\section{Sign Manipulation} -\subsection{Negation} -\label{sec:NEG} -Simple integer negation can be performed with the following. - -\index{mp\_neg} -\begin{alltt} -int mp_neg (mp_int * a, mp_int * b); -\end{alltt} - -Which assigns $-a$ to $b$. - -\subsection{Absolute} -Simple integer absolutes can be performed with the following. - -\index{mp\_neg} -\begin{alltt} -int mp_abs (mp_int * a, mp_int * b); -\end{alltt} - -Which assigns $\vert a \vert$ to $b$. - -\section{Integer Division and Remainder} -To perform a complete and general integer division with remainder use the following function. - -\index{mp\_div} -\begin{alltt} -int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d); -\end{alltt} - -This divides $a$ by $b$ and stores the quotient in $c$ and $d$. The signed quotient is computed such that -$bc + d = a$. Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required. If -$b$ is zero the function returns \textbf{MP\_VAL}. - - -\chapter{Multiplication and Squaring} -\section{Multiplication} -A full signed integer multiplication can be performed with the following. -\index{mp\_mul} -\begin{alltt} -int mp_mul (mp_int * a, mp_int * b, mp_int * c); -\end{alltt} -Which assigns the full signed product $ab$ to $c$. This function actually breaks into one of four cases which are -specific multiplication routines optimized for given parameters. First there are the Toom-Cook multiplications which -should only be used with very large inputs. This is followed by the Karatsuba multiplications which are for moderate -sized inputs. Then followed by the Comba and baseline multipliers. - -Fortunately for the developer you don't really need to know this unless you really want to fine tune the system. mp\_mul() -will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called. - -\begin{alltt} -int main(void) -\{ - mp_int number1, number2; - int result; - - /* Initialize the numbers */ - if ((result = mp_init_multi(&number1, - &number2, NULL)) != MP_OKAY) \{ - printf("Error initializing the numbers. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* set the terms */ - if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{ - printf("Error setting number1. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{ - printf("Error setting number2. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* multiply them */ - if ((result = mp_mul(&number1, &number2, - &number1)) != MP_OKAY) \{ - printf("Error multiplying terms. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* display */ - printf("number1 * number2 == \%lu", mp_get_int(&number1)); - - /* free terms and return */ - mp_clear_multi(&number1, &number2, NULL); - - return EXIT_SUCCESS; -\} -\end{alltt} - -If this program succeeds it shall output the following. - -\begin{alltt} -number1 * number2 == 262911 -\end{alltt} - -\section{Squaring} -Since squaring can be performed faster than multiplication it is performed it's own function instead of just using -mp\_mul(). - -\index{mp\_sqr} -\begin{alltt} -int mp_sqr (mp_int * a, mp_int * b); -\end{alltt} - -Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring -algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms because -of the speed difference. - -\section{Tuning Polynomial Basis Routines} - -Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that -the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require -considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision -multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor -of 138). - -So why not always use Karatsuba or Toom-Cook? The simple answer is that they have so much overhead that they're not -actually faster than Comba until you hit distinct ``cutoff'' points. For Karatsuba with the default configuration, -GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4). That is, at -110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster. - -Toom-Cook has incredible overhead and is probably only useful for very large inputs. So far no known cutoff points -exist and for the most part I just set the cutoff points very high to make sure they're not called. - -A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points. This -can be built with GCC as follows - -\begin{alltt} -make XXX -\end{alltt} -Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}. - -\begin{figure}[here] -\begin{center} -\begin{small} -\begin{tabular}{|l|l|} -\hline \textbf{Value of XXX} & \textbf{Meaning} \\ -\hline tune & Builds portable tuning application \\ -\hline tune86 & Builds x86 (pentium and up) program for COFF \\ -\hline tune86c & Builds x86 program for Cygwin \\ -\hline tune86l & Builds x86 program for Linux (ELF format) \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Build Names for Tuning Programs} -\label{fig:tuning} -\end{figure} - -When the program is running it will output a series of measurements for different cutoff points. It will first find -good Karatsuba squaring and multiplication points. Then it proceeds to find Toom-Cook points. Note that the Toom-Cook -tuning takes a very long time as the cutoff points are likely to be very high. - -\chapter{Modular Reduction} - -Modular reduction is process of taking the remainder of one quantity divided by another. Expressed -as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$. - -\begin{equation} -a \equiv b \mbox{ (mod }c\mbox{)} -\label{eqn:mod} -\end{equation} - -Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly -fast reduction algorithms can be written for the limited range. - -Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation -algorithm mp\_exptmod when an appropriate modulus is detected. - -\section{Straight Division} -In order to effect an arbitrary modular reduction the following algorithm is provided. - -\index{mp\_mod} -\begin{alltt} -int mp_mod(mp_int *a, mp_int *b, mp_int *c); -\end{alltt} - -This reduces $a$ modulo $b$ and stores the result in $c$. The sign of $c$ shall agree with the sign -of $b$. This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$. - -\section{Barrett Reduction} - -Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve -a decent speedup over straight division. First a $\mu$ value must be precomputed with the following function. - -\index{mp\_reduce\_setup} -\begin{alltt} -int mp_reduce_setup(mp_int *a, mp_int *b); -\end{alltt} - -Given a modulus in $b$ this produces the required $\mu$ value in $a$. For any given modulus this only has to -be computed once. Modular reduction can now be performed with the following. - -\index{mp\_reduce} -\begin{alltt} -int mp_reduce(mp_int *a, mp_int *b, mp_int *c); -\end{alltt} - -This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$. $a$ must be in the range -$0 \le a < b^2$. - -\begin{alltt} -int main(void) -\{ - mp_int a, b, c, mu; - int result; - - /* initialize a,b to desired values, mp_init mu, - * c and set c to 1...we want to compute a^3 mod b - */ - - /* get mu value */ - if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{ - printf("Error getting mu. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* square a to get c = a^2 */ - if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{ - printf("Error squaring. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce `c' modulo b */ - if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* multiply a to get c = a^3 */ - if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce `c' modulo b */ - if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* c now equals a^3 mod b */ - - return EXIT_SUCCESS; -\} -\end{alltt} - -This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed. - -\section{Montgomery Reduction} - -Montgomery is a specialized reduction algorithm for any odd moduli. Like Barrett reduction a pre--computation -step is required. This is accomplished with the following. - -\index{mp\_montgomery\_setup} -\begin{alltt} -int mp_montgomery_setup(mp_int *a, mp_digit *mp); -\end{alltt} - -For the given odd moduli $a$ the precomputation value is placed in $mp$. The reduction is computed with the -following. - -\index{mp\_montgomery\_reduce} -\begin{alltt} -int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -\end{alltt} -This reduces $a$ in place modulo $m$ with the pre--computed value $mp$. $a$ must be in the range -$0 \le a < b^2$. - -Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit. With the default -setup for instance, the limit is $127$ digits ($3556$--bits). Note that this function is not limited to -$127$ digits just that it falls back to a baseline algorithm after that point. - -An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$ -where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$). - -To quickly calculate $R$ the following function was provided. - -\index{mp\_montgomery\_calc\_normalization} -\begin{alltt} -int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); -\end{alltt} -Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division. - -The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system. For -example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by -multiplying it by $R$. Consider the following code snippet. - -\begin{alltt} -int main(void) -\{ - mp_int a, b, c, R; - mp_digit mp; - int result; - - /* initialize a,b to desired values, - * mp_init R, c and set c to 1.... - */ - - /* get normalization */ - if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{ - printf("Error getting norm. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* get mp value */ - if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{ - printf("Error setting up montgomery. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* normalize `a' so now a is equal to aR */ - if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{ - printf("Error computing aR. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* square a to get c = a^2R^2 */ - if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{ - printf("Error squaring. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */ - if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* multiply a to get c = a^3R^2 */ - if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */ - if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */ - if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{ - printf("Error reducing. \%s", - mp_error_to_string(result)); - return EXIT_FAILURE; - \} - - /* c now equals a^3 mod b */ - - return EXIT_SUCCESS; -\} -\end{alltt} - -This particular example does not look too efficient but it demonstrates the point of the algorithm. By -normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$. This allows -a single final reduction to correct for the normalization and the fast reduction used within the algorithm. - -For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}. - -\section{Restricted Dimminished Radix} - -``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple -digit shifting and small multiplications. In this case the ``restricted'' variant refers to moduli of the -form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$). - -As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus. - -\index{mp\_dr\_setup} -\begin{alltt} -void mp_dr_setup(mp_int *a, mp_digit *d); -\end{alltt} - -This computes the value required for the modulus $a$ and stores it in $d$. This function cannot fail -and does not return any error codes. After the pre--computation a reduction can be performed with the -following. - -\index{mp\_dr\_reduce} -\begin{alltt} -int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); -\end{alltt} - -This reduces $a$ in place modulo $b$ with the pre--computed value $mp$. $b$ must be of a restricted -dimminished radix form and $a$ must be in the range $0 \le a < b^2$. Dimminished radix reductions are -much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time. - -Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or -BBS cryptographic purposes. This reduction algorithm is useful for Diffie-Hellman and ECC where fixed -primes are acceptable. - -Note that unlike Montgomery reduction there is no normalization process. The result of this function is -equal to the correct residue. - -\section{Unrestricted Dimminshed Radix} - -Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the -form $2^k - p$ for $0 < p < \beta$. In this sense the unrestricted reductions are more flexible as they -can be applied to a wider range of numbers. - -\index{mp\_reduce\_2k\_setup} -\begin{alltt} -int mp_reduce_2k_setup(mp_int *a, mp_digit *d); -\end{alltt} - -This will compute the required $d$ value for the given moduli $a$. - -\index{mp\_reduce\_2k} -\begin{alltt} -int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); -\end{alltt} - -This will reduce $a$ in place modulo $n$ with the pre--computed value $d$. From my experience this routine is -slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction. - -\chapter{Exponentiation} -\section{Single Digit Exponentiation} -\index{mp\_expt\_d} -\begin{alltt} -int mp_expt_d (mp_int * a, mp_digit b, mp_int * c) -\end{alltt} -This computes $c = a^b$ using a simple binary left-to-right algorithm. It is faster than repeated multiplications by -$a$ for all values of $b$ greater than three. - -\section{Modular Exponentiation} -\index{mp\_exptmod} -\begin{alltt} -int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) -\end{alltt} -This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm. This function -will automatically detect the fastest modular reduction technique to use during the operation. For negative values of -$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that -$gcd(G, P) = 1$. - -This function is actually a shell around the two internal exponentiation functions. This routine will automatically -detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used. Generally -moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery -and the other two algorithms. - -\section{Root Finding} -\index{mp\_n\_root} -\begin{alltt} -int mp_n_root (mp_int * a, mp_digit b, mp_int * c) -\end{alltt} -This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$. The implementation of this function is not -ideal for values of $b$ greater than three. It will work but become very slow. So unless you are working with very small -numbers (less than 1000 bits) I'd avoid $b > 3$ situations. Will return a positive root only for even roots and return -a root with the sign of the input for odd roots. For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$ -will return $-2$. - -This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since -the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large -values of $b$. If particularly large roots are required then a factor method could be used instead. For example, -$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply -$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$ - -\chapter{Prime Numbers} -\section{Trial Division} -\index{mp\_prime\_is\_divisible} -\begin{alltt} -int mp_prime_is_divisible (mp_int * a, int *result) -\end{alltt} -This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the -outcome in ``result''. That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is. Note that -if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently -the default is to set it to zero first.}. - -\section{Fermat Test} -\index{mp\_prime\_fermat} -\begin{alltt} -int mp_prime_fermat (mp_int * a, mp_int * b, int *result) -\end{alltt} -Performs a Fermat primality test to the base $b$. That is it computes $b^a \mbox{ mod }a$ and tests whether the value is -equal to $b$ or not. If the values are equal then $a$ is probably prime and $result$ is set to one. Otherwise $result$ -is set to zero. - -\section{Miller-Rabin Test} -\index{mp\_prime\_miller\_rabin} -\begin{alltt} -int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) -\end{alltt} -Performs a Miller-Rabin test to the base $b$ of $a$. This test is much stronger than the Fermat test and is very hard to -fool (besides with Carmichael numbers). If $a$ passes the test (therefore is probably prime) $result$ is set to one. -Otherwise $result$ is set to zero. - -Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of -Miller-Rabin are a subset of the failures of the Fermat test. - -\subsection{Required Number of Tests} -Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen -or so unique bases. However, it has been proven that the probability of failure goes down as the size of the input goes up. -This is why a simple function has been provided to help out. - -\index{mp\_prime\_rabin\_miller\_trials} -\begin{alltt} -int mp_prime_rabin_miller_trials(int size) -\end{alltt} -This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed -in bits. This comes in handy specially since larger numbers are slower to test. For example, a 512-bit number would -require ten tests whereas a 1024-bit number would only require four tests. - -You should always still perform a trial division before a Miller-Rabin test though. - -\section{Primality Testing} -\index{mp\_prime\_is\_prime} -\begin{alltt} -int mp_prime_is_prime (mp_int * a, int t, int *result) -\end{alltt} -This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$. -If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero. Note that $t$ is bounded by -$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$). - -\section{Next Prime} -\index{mp\_prime\_next\_prime} -\begin{alltt} -int mp_prime_next_prime(mp_int *a, int t, int bbs_style) -\end{alltt} -This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests. Set $bbs\_style$ to one if you -want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime. - -\section{Random Primes} -\index{mp\_prime\_random} -\begin{alltt} -int mp_prime_random(mp_int *a, int t, int size, int bbs, - ltm_prime_callback cb, void *dat) -\end{alltt} -This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass -$t$ rounds of tests. The ``ltm\_prime\_callback'' is a typedef for - -\begin{alltt} -typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); -\end{alltt} - -Which is a function that must read $len$ bytes (and return the amount stored) into $dst$. The $dat$ variable is simply -copied from the original input. It can be used to pass RNG context data to the callback. The function -mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there -is no skew on the least significant bits. - -\textit{Note:} As of v0.30 of the LibTomMath library this function has been deprecated. It is still available -but users are encouraged to use the new mp\_prime\_random\_ex() function instead. - -\subsection{Extended Generation} -\index{mp\_prime\_random\_ex} -\begin{alltt} -int mp_prime_random_ex(mp_int *a, int t, - int size, int flags, - ltm_prime_callback cb, void *dat); -\end{alltt} -This will generate a prime in $a$ using $t$ tests of the primality testing algorithms. The variable $size$ -specifies the bit length of the prime desired. The variable $flags$ specifies one of several options available -(see fig. \ref{fig:primeopts}) which can be OR'ed together. The callback parameters are used as in -mp\_prime\_random(). - -\begin{figure}[here] -\begin{center} -\begin{small} -\begin{tabular}{|r|l|} -\hline \textbf{Flag} & \textbf{Meaning} \\ -\hline LTM\_PRIME\_BBS & Make the prime congruent to $3$ modulo $4$ \\ -\hline LTM\_PRIME\_SAFE & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\ - & This option implies LTM\_PRIME\_BBS as well. \\ -\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\ - & Is forced to zero. \\ -\hline LTM\_PRIME\_2MSB\_ON & Makes sure that the bit adjacent to the most significant bit \\ - & Is forced to one. \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Primality Generation Options} -\label{fig:primeopts} -\end{figure} - -\chapter{Input and Output} -\section{ASCII Conversions} -\subsection{To ASCII} -\index{mp\_toradix} -\begin{alltt} -int mp_toradix (mp_int * a, char *str, int radix); -\end{alltt} -This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character -to terminate the string. Valid values of ``radix'' line in the range $[2, 64]$. To determine the size (exact) required -by the conversion before storing any data use the following function. - -\index{mp\_radix\_size} -\begin{alltt} -int mp_radix_size (mp_int * a, int radix, int *size) -\end{alltt} -This stores in ``size'' the number of characters (including space for the NUL terminator) required. Upon error this -function returns an error code and ``size'' will be zero. - -\subsection{From ASCII} -\index{mp\_read\_radix} -\begin{alltt} -int mp_read_radix (mp_int * a, char *str, int radix); -\end{alltt} -This will read the base-``radix'' NUL terminated string from ``str'' into $a$. It will stop reading when it reads a -character it does not recognize (which happens to include th NUL char... imagine that...). A single leading $-$ sign -can be used to denote a negative number. - -\section{Binary Conversions} - -Converting an mp\_int to and from binary is another keen idea. - -\index{mp\_unsigned\_bin\_size} -\begin{alltt} -int mp_unsigned_bin_size(mp_int *a); -\end{alltt} - -This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$. - -\index{mp\_to\_unsigned\_bin} -\begin{alltt} -int mp_to_unsigned_bin(mp_int *a, unsigned char *b); -\end{alltt} -This will store $a$ into the buffer $b$ in big--endian format. Fortunately this is exactly what DER (or is it ASN?) -requires. It does not store the sign of the integer. - -\index{mp\_read\_unsigned\_bin} -\begin{alltt} -int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c); -\end{alltt} -This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$. The resulting -integer $a$ will always be positive. - -For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the -previous functions. - -\begin{alltt} -int mp_signed_bin_size(mp_int *a); -int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); -int mp_to_signed_bin(mp_int *a, unsigned char *b); -\end{alltt} -They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero -byte depending on the sign. If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix -is non--zero. - -\chapter{Algebraic Functions} -\section{Extended Euclidean Algorithm} -\index{mp\_exteuclid} -\begin{alltt} -int mp_exteuclid(mp_int *a, mp_int *b, - mp_int *U1, mp_int *U2, mp_int *U3); -\end{alltt} - -This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds. - -\begin{equation} -a \cdot U1 + b \cdot U2 = U3 -\end{equation} - -Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired. - -\section{Greatest Common Divisor} -\index{mp\_gcd} -\begin{alltt} -int mp_gcd (mp_int * a, mp_int * b, mp_int * c) -\end{alltt} -This will compute the greatest common divisor of $a$ and $b$ and store it in $c$. - -\section{Least Common Multiple} -\index{mp\_lcm} -\begin{alltt} -int mp_lcm (mp_int * a, mp_int * b, mp_int * c) -\end{alltt} -This will compute the least common multiple of $a$ and $b$ and store it in $c$. - -\section{Jacobi Symbol} -\index{mp\_jacobi} -\begin{alltt} -int mp_jacobi (mp_int * a, mp_int * p, int *c) -\end{alltt} -This will compute the Jacobi symbol for $a$ with respect to $p$. If $p$ is prime this essentially computes the Legendre -symbol. The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$. If $p$ is prime -then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$. The result will be $0$ if $a$ divides $p$ -and the result will be $1$ if $a$ is a quadratic residue modulo $p$. - -\section{Modular Inverse} -\index{mp\_invmod} -\begin{alltt} -int mp_invmod (mp_int * a, mp_int * b, mp_int * c) -\end{alltt} -Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$. - -\section{Single Digit Functions} - -For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions - -\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d} -\begin{alltt} -int mp_add_d(mp_int *a, mp_digit b, mp_int *c); -int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); -int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); -int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); -int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); -\end{alltt} - -These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit. These -functions fairly handy if you have to work with relatively small numbers since you will not have to allocate -an entire mp\_int to store a number like $1$ or $2$. - -\input{bn.ind} - -\end{document} diff --git a/libtommath/bn_error.c b/libtommath/bn_error.c index 6393bb0..3abf1a7 100644 --- a/libtommath/bn_error.c +++ b/libtommath/bn_error.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_ERROR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,12 +12,12 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ static const struct { int code; - char *msg; + const char *msg; } msgs[] = { { MP_OKAY, "Successful" }, { MP_MEM, "Out of heap" }, @@ -25,7 +25,7 @@ static const struct { }; /* return a char * string for a given code */ -char *mp_error_to_string(int code) +const char *mp_error_to_string(int code) { int x; @@ -41,3 +41,7 @@ char *mp_error_to_string(int code) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_fast_mp_invmod.c b/libtommath/bn_fast_mp_invmod.c index fafd9dc..aa41098 100644 --- a/libtommath/bn_fast_mp_invmod.c +++ b/libtommath/bn_fast_mp_invmod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_FAST_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes the modular inverse via binary extended euclidean algorithm, @@ -27,7 +27,7 @@ int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) int res, neg; /* 2. [modified] b must be odd */ - if (mp_iseven (b) == 1) { + if (mp_iseven (b) == MP_YES) { return MP_VAL; } @@ -57,13 +57,13 @@ int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) top: /* 4. while u is even do */ - while (mp_iseven (&u) == 1) { + while (mp_iseven (&u) == MP_YES) { /* 4.1 u = u/2 */ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if B is odd then */ - if (mp_isodd (&B) == 1) { + if (mp_isodd (&B) == MP_YES) { if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { goto LBL_ERR; } @@ -75,13 +75,13 @@ top: } /* 5. while v is even do */ - while (mp_iseven (&v) == 1) { + while (mp_iseven (&v) == MP_YES) { /* 5.1 v = v/2 */ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if D is odd then */ - if (mp_isodd (&D) == 1) { + if (mp_isodd (&D) == MP_YES) { /* D = (D-x)/2 */ if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { goto LBL_ERR; @@ -115,7 +115,7 @@ top: } /* if not zero goto step 4 */ - if (mp_iszero (&u) == 0) { + if (mp_iszero (&u) == MP_NO) { goto top; } @@ -142,3 +142,7 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_fast_mp_montgomery_reduce.c b/libtommath/bn_fast_mp_montgomery_reduce.c index e941dc2..a63839d 100644 --- a/libtommath/bn_fast_mp_montgomery_reduce.c +++ b/libtommath/bn_fast_mp_montgomery_reduce.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes xR**-1 == x (mod N) via Montgomery Reduction @@ -32,7 +32,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) olduse = x->used; /* grow a as required */ - if (x->alloc < n->used + 1) { + if (x->alloc < (n->used + 1)) { if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { return res; } @@ -42,8 +42,8 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) * an array of double precision words W[...] */ { - register mp_word *_W; - register mp_digit *tmpx; + mp_word *_W; + mp_digit *tmpx; /* alias for the W[] array */ _W = W; @@ -57,7 +57,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) } /* zero the high words of W[a->used..m->used*2] */ - for (; ix < n->used * 2 + 1; ix++) { + for (; ix < ((n->used * 2) + 1); ix++) { *_W++ = 0; } } @@ -72,7 +72,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) * by casting the value down to a mp_digit. Note this requires * that W[ix-1] have the carry cleared (see after the inner loop) */ - register mp_digit mu; + mp_digit mu; mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); /* a = a + mu * m * b**i @@ -90,9 +90,9 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) * first m->used words of W[] have the carries fixed */ { - register int iy; - register mp_digit *tmpn; - register mp_word *_W; + int iy; + mp_digit *tmpn; + mp_word *_W; /* alias for the digits of the modulus */ tmpn = n->dp; @@ -115,8 +115,8 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) * significant digits we zeroed]. */ { - register mp_digit *tmpx; - register mp_word *_W, *_W1; + mp_digit *tmpx; + mp_word *_W, *_W1; /* nox fix rest of carries */ @@ -126,7 +126,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) /* alias for next word, where the carry goes */ _W = W + ++ix; - for (; ix <= n->used * 2 + 1; ix++) { + for (; ix <= ((n->used * 2) + 1); ix++) { *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); } @@ -143,7 +143,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) /* alias for shifted double precision result */ _W = W + n->used; - for (ix = 0; ix < n->used + 1; ix++) { + for (ix = 0; ix < (n->used + 1); ix++) { *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); } @@ -166,3 +166,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_fast_s_mp_mul_digs.c b/libtommath/bn_fast_s_mp_mul_digs.c index ab157b9..acd13b4 100644 --- a/libtommath/bn_fast_s_mp_mul_digs.c +++ b/libtommath/bn_fast_s_mp_mul_digs.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_FAST_S_MP_MUL_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Fast (comba) multiplier @@ -35,7 +35,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) { int olduse, res, pa, ix, iz; mp_digit W[MP_WARRAY]; - register mp_word _W; + mp_word _W; /* grow the destination as required */ if (c->alloc < digs) { @@ -78,16 +78,16 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* make next carry */ _W = _W >> ((mp_word)DIGIT_BIT); - } + } /* setup dest */ olduse = c->used; c->used = pa; { - register mp_digit *tmpc; + mp_digit *tmpc; tmpc = c->dp; - for (ix = 0; ix < pa+1; ix++) { + for (ix = 0; ix < (pa + 1); ix++) { /* now extract the previous digit [below the carry] */ *tmpc++ = W[ix]; } @@ -101,3 +101,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_fast_s_mp_mul_high_digs.c b/libtommath/bn_fast_s_mp_mul_high_digs.c index ec9f58a..b96cf60 100644 --- a/libtommath/bn_fast_s_mp_mul_high_digs.c +++ b/libtommath/bn_fast_s_mp_mul_high_digs.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* this is a modified version of fast_s_mul_digs that only produces @@ -75,7 +75,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) c->used = pa; { - register mp_digit *tmpc; + mp_digit *tmpc; tmpc = c->dp + digs; for (ix = digs; ix < pa; ix++) { @@ -92,3 +92,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_fast_s_mp_sqr.c b/libtommath/bn_fast_s_mp_sqr.c index 1abf24b..775c76f 100644 --- a/libtommath/bn_fast_s_mp_sqr.c +++ b/libtommath/bn_fast_s_mp_sqr.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_FAST_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* the jist of squaring... @@ -66,7 +66,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b) * we halve the distance since they approach at a rate of 2x * and we have to round because odd cases need to be executed */ - iy = MIN(iy, (ty-tx+1)>>1); + iy = MIN(iy, ((ty-tx)+1)>>1); /* execute loop */ for (iz = 0; iz < iy; iz++) { @@ -108,3 +108,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_2expt.c b/libtommath/bn_mp_2expt.c index a32572d..2845814 100644 --- a/libtommath/bn_mp_2expt.c +++ b/libtommath/bn_mp_2expt.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_2EXPT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes a = 2**b @@ -29,12 +29,12 @@ mp_2expt (mp_int * a, int b) mp_zero (a); /* grow a to accomodate the single bit */ - if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { + if ((res = mp_grow (a, (b / DIGIT_BIT) + 1)) != MP_OKAY) { return res; } /* set the used count of where the bit will go */ - a->used = b / DIGIT_BIT + 1; + a->used = (b / DIGIT_BIT) + 1; /* put the single bit in its place */ a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); @@ -42,3 +42,7 @@ mp_2expt (mp_int * a, int b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_abs.c b/libtommath/bn_mp_abs.c index dc51884..cc9c3db 100644 --- a/libtommath/bn_mp_abs.c +++ b/libtommath/bn_mp_abs.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_ABS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* b = |a| @@ -37,3 +37,7 @@ mp_abs (mp_int * a, mp_int * b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_add.c b/libtommath/bn_mp_add.c index d9b8fa5..236fc75 100644 --- a/libtommath/bn_mp_add.c +++ b/libtommath/bn_mp_add.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_ADD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* high level addition (handles signs) */ @@ -47,3 +47,7 @@ int mp_add (mp_int * a, mp_int * b, mp_int * c) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_add_d.c b/libtommath/bn_mp_add_d.c index aec8fc8..4d4e1df 100644 --- a/libtommath/bn_mp_add_d.c +++ b/libtommath/bn_mp_add_d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_ADD_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://libtom.org + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* single digit addition */ @@ -23,14 +23,14 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c) mp_digit *tmpa, *tmpc, mu; /* grow c as required */ - if (c->alloc < a->used + 1) { + if (c->alloc < (a->used + 1)) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } } /* if a is negative and |a| >= b, call c = |a| - b */ - if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) { + if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) { /* temporarily fix sign of a */ a->sign = MP_ZPOS; @@ -108,5 +108,5 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c) #endif /* $Source$ */ -/* $Revision: 0.41 $ */ -/* $Date: 2007-04-18 09:58:18 +0000 $ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_addmod.c b/libtommath/bn_mp_addmod.c index bff193f..825c928 100644 --- a/libtommath/bn_mp_addmod.c +++ b/libtommath/bn_mp_addmod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_ADDMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* d = a + b (mod c) */ @@ -35,3 +35,7 @@ mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_and.c b/libtommath/bn_mp_and.c index 02bef18..3b6b03e 100644 --- a/libtommath/bn_mp_and.c +++ b/libtommath/bn_mp_and.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_AND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* AND two ints together */ @@ -51,3 +51,7 @@ mp_and (mp_int * a, mp_int * b, mp_int * c) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_clamp.c b/libtommath/bn_mp_clamp.c index 74887bb..d4fb70d 100644 --- a/libtommath/bn_mp_clamp.c +++ b/libtommath/bn_mp_clamp.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_CLAMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* trim unused digits @@ -28,7 +28,7 @@ mp_clamp (mp_int * a) /* decrease used while the most significant digit is * zero. */ - while (a->used > 0 && a->dp[a->used - 1] == 0) { + while ((a->used > 0) && (a->dp[a->used - 1] == 0)) { --(a->used); } @@ -38,3 +38,7 @@ mp_clamp (mp_int * a) } } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_clear.c b/libtommath/bn_mp_clear.c index bd07e76..17ef9d5 100644 --- a/libtommath/bn_mp_clear.c +++ b/libtommath/bn_mp_clear.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_CLEAR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* clear one (frees) */ @@ -38,3 +38,7 @@ mp_clear (mp_int * a) } } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_clear_multi.c b/libtommath/bn_mp_clear_multi.c index c3ad7a8..441a200 100644 --- a/libtommath/bn_mp_clear_multi.c +++ b/libtommath/bn_mp_clear_multi.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_CLEAR_MULTI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ #include <stdarg.h> @@ -28,3 +28,7 @@ void mp_clear_multi(mp_int *mp, ...) va_end(args); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_cmp.c b/libtommath/bn_mp_cmp.c index 943249d..15179ca 100644 --- a/libtommath/bn_mp_cmp.c +++ b/libtommath/bn_mp_cmp.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_CMP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* compare two ints (signed)*/ @@ -37,3 +37,7 @@ mp_cmp (const mp_int * a, const mp_int * b) } } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_cmp_d.c b/libtommath/bn_mp_cmp_d.c index ecec091..0c9fc86 100644 --- a/libtommath/bn_mp_cmp_d.c +++ b/libtommath/bn_mp_cmp_d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_CMP_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* compare a digit */ @@ -38,3 +38,7 @@ int mp_cmp_d(const mp_int * a, mp_digit b) } } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_cmp_mag.c b/libtommath/bn_mp_cmp_mag.c index b23a191..a537608 100644 --- a/libtommath/bn_mp_cmp_mag.c +++ b/libtommath/bn_mp_cmp_mag.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_CMP_MAG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* compare maginitude of two ints (unsigned) */ @@ -49,3 +49,7 @@ int mp_cmp_mag (const mp_int * a, const mp_int * b) return MP_EQ; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_cnt_lsb.c b/libtommath/bn_mp_cnt_lsb.c index f205e8c..b638dc4 100644 --- a/libtommath/bn_mp_cnt_lsb.c +++ b/libtommath/bn_mp_cnt_lsb.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_CNT_LSB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ static const int lnz[16] = { @@ -26,12 +26,12 @@ int mp_cnt_lsb(const mp_int *a) mp_digit q, qq; /* easy out */ - if (mp_iszero(a) == 1) { + if (mp_iszero(a) == MP_YES) { return 0; } /* scan lower digits until non-zero */ - for (x = 0; x < a->used && a->dp[x] == 0; x++); + for (x = 0; (x < a->used) && (a->dp[x] == 0); x++) {} q = a->dp[x]; x *= DIGIT_BIT; @@ -47,3 +47,7 @@ int mp_cnt_lsb(const mp_int *a) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_copy.c b/libtommath/bn_mp_copy.c index ffbc0d4..c15f961 100644 --- a/libtommath/bn_mp_copy.c +++ b/libtommath/bn_mp_copy.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_COPY_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* copy, b = a */ @@ -35,7 +35,7 @@ mp_copy (const mp_int * a, mp_int * b) /* zero b and copy the parameters over */ { - register mp_digit *tmpa, *tmpb; + mp_digit *tmpa, *tmpb; /* pointer aliases */ @@ -62,3 +62,7 @@ mp_copy (const mp_int * a, mp_int * b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_count_bits.c b/libtommath/bn_mp_count_bits.c index 00d364e..47aa569 100644 --- a/libtommath/bn_mp_count_bits.c +++ b/libtommath/bn_mp_count_bits.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_COUNT_BITS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* returns the number of bits in an int */ @@ -39,3 +39,7 @@ mp_count_bits (const mp_int * a) return r; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_div.c b/libtommath/bn_mp_div.c index de4ca04..3ca5d7f 100644 --- a/libtommath/bn_mp_div.c +++ b/libtommath/bn_mp_div.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_DIV_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ #ifdef BN_MP_DIV_SMALL @@ -24,7 +24,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) int res, n, n2; /* is divisor zero ? */ - if (mp_iszero (b) == 1) { + if (mp_iszero (b) == MP_YES) { return MP_VAL; } @@ -40,9 +40,9 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) } return res; } - + /* init our temps */ - if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { + if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { return res; } @@ -50,7 +50,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) mp_set(&tq, 1); n = mp_count_bits(a) - mp_count_bits(b); if (((res = mp_abs(a, &ta)) != MP_OKAY) || - ((res = mp_abs(b, &tb)) != MP_OKAY) || + ((res = mp_abs(b, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { goto LBL_ERR; @@ -71,7 +71,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) /* now q == quotient and ta == remainder */ n = a->sign; - n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); + n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; if (c != NULL) { mp_exch(c, &q); c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; @@ -87,17 +87,17 @@ LBL_ERR: #else -/* integer signed division. +/* integer signed division. * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * - * Note that the description in HAC is horribly - * incomplete. For example, it doesn't consider - * the case where digits are removed from 'x' in - * the inner loop. It also doesn't consider the + * Note that the description in HAC is horribly + * incomplete. For example, it doesn't consider + * the case where digits are removed from 'x' in + * the inner loop. It also doesn't consider the * case that y has fewer than three digits, etc.. * - * The overall algorithm is as described as + * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) @@ -106,7 +106,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) int res, n, t, i, norm, neg; /* is divisor zero ? */ - if (mp_iszero (b) == 1) { + if (mp_iszero (b) == MP_YES) { return MP_VAL; } @@ -187,51 +187,52 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) continue; } - /* step 3.1 if xi == yt then set q{i-t-1} to b-1, + /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { - q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); + q.dp[(i - t) - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); } else { mp_word tmp; tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); tmp |= ((mp_word) x.dp[i - 1]); tmp /= ((mp_word) y.dp[t]); - if (tmp > (mp_word) MP_MASK) + if (tmp > (mp_word) MP_MASK) { tmp = MP_MASK; - q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); + } + q.dp[(i - t) - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); } - /* while (q{i-t-1} * (yt * b + y{t-1})) > - xi * b**2 + xi-1 * b + xi-2 - - do q{i-t-1} -= 1; + /* while (q{i-t-1} * (yt * b + y{t-1})) > + xi * b**2 + xi-1 * b + xi-2 + + do q{i-t-1} -= 1; */ - q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; + q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1) & MP_MASK; do { - q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; + q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1) & MP_MASK; /* find left hand */ mp_zero (&t1); - t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; + t1.dp[0] = ((t - 1) < 0) ? 0 : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; - if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { + if ((res = mp_mul_d (&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } /* find right hand */ - t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; - t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; + t2.dp[0] = ((i - 2) < 0) ? 0 : x.dp[i - 2]; + t2.dp[1] = ((i - 1) < 0) ? 0 : x.dp[i - 1]; t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp_mag(&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ - if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { + if ((res = mp_mul_d (&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) { goto LBL_Y; } - if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { + if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } @@ -244,23 +245,23 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) if ((res = mp_copy (&y, &t1)) != MP_OKAY) { goto LBL_Y; } - if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { + if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } - q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; + q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1UL) & MP_MASK; } } - /* now q is the quotient and x is the remainder - * [which we have to normalize] + /* now q is the quotient and x is the remainder + * [which we have to normalize] */ - + /* get sign before writing to c */ - x.sign = x.used == 0 ? MP_ZPOS : a->sign; + x.sign = (x.used == 0) ? MP_ZPOS : a->sign; if (c != NULL) { mp_clamp (&q); @@ -269,7 +270,9 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) } if (d != NULL) { - mp_div_2d (&x, norm, &x, NULL); + if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) { + goto LBL_Y; + } mp_exch (&x, d); } @@ -286,3 +289,7 @@ LBL_Q:mp_clear (&q); #endif #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_div_2.c b/libtommath/bn_mp_div_2.c index 186a959..d2a213f 100644 --- a/libtommath/bn_mp_div_2.c +++ b/libtommath/bn_mp_div_2.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_DIV_2_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* b = a/2 */ @@ -30,7 +30,7 @@ int mp_div_2(mp_int * a, mp_int * b) oldused = b->used; b->used = a->used; { - register mp_digit r, rr, *tmpa, *tmpb; + mp_digit r, rr, *tmpa, *tmpb; /* source alias */ tmpa = a->dp + b->used - 1; @@ -62,3 +62,7 @@ int mp_div_2(mp_int * a, mp_int * b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_div_2d.c b/libtommath/bn_mp_div_2d.c index d7b7e05..49d7479 100644 --- a/libtommath/bn_mp_div_2d.c +++ b/libtommath/bn_mp_div_2d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_DIV_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ @@ -58,7 +58,7 @@ int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d) /* shift any bit count < DIGIT_BIT */ D = (mp_digit) (b % DIGIT_BIT); if (D != 0) { - register mp_digit *tmpc, mask, shift; + mp_digit *tmpc, mask, shift; /* mask */ mask = (((mp_digit)1) << D) - 1; @@ -91,3 +91,7 @@ int mp_div_2d (const mp_int * a, int b, mp_int * c, mp_int * d) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_div_3.c b/libtommath/bn_mp_div_3.c index 79a9816..c2b76fb 100644 --- a/libtommath/bn_mp_div_3.c +++ b/libtommath/bn_mp_div_3.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_DIV_3_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* divide by three (based on routine from MPI and the GMP manual) */ @@ -73,3 +73,7 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_div_d.c b/libtommath/bn_mp_div_d.c index af18d0a..7dc0904 100644 --- a/libtommath/bn_mp_div_d.c +++ b/libtommath/bn_mp_div_d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_DIV_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ static int s_is_power_of_two(mp_digit b, int *p) @@ -20,7 +20,7 @@ static int s_is_power_of_two(mp_digit b, int *p) int x; /* quick out - if (b & (b-1)) isn't zero, b isn't a power of two */ - if ((b==0) || (b & (b-1))) { + if ((b == 0) || ((b & (b-1)) != 0)) { return 0; } for (x = 1; x < DIGIT_BIT; x++) { @@ -46,7 +46,7 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) } /* quick outs */ - if (b == 1 || mp_iszero(a) == 1) { + if ((b == 1) || (mp_iszero(a) == MP_YES)) { if (d != NULL) { *d = 0; } @@ -108,3 +108,7 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_dr_is_modulus.c b/libtommath/bn_mp_dr_is_modulus.c index 8ad31dc..599d929 100644 --- a/libtommath/bn_mp_dr_is_modulus.c +++ b/libtommath/bn_mp_dr_is_modulus.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_DR_IS_MODULUS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines if a number is a valid DR modulus */ @@ -37,3 +37,7 @@ int mp_dr_is_modulus(mp_int *a) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_dr_reduce.c b/libtommath/bn_mp_dr_reduce.c index 8337591..2273c79 100644 --- a/libtommath/bn_mp_dr_reduce.c +++ b/libtommath/bn_mp_dr_reduce.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_DR_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reduce "x" in place modulo "n" using the Diminished Radix algorithm. @@ -40,7 +40,7 @@ mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k) m = n->used; /* ensure that "x" has at least 2m digits */ - if (x->alloc < m + m) { + if (x->alloc < (m + m)) { if ((err = mp_grow (x, m + m)) != MP_OKAY) { return err; } @@ -62,7 +62,7 @@ top: /* compute (x mod B**m) + k * [x/B**m] inline and inplace */ for (i = 0; i < m; i++) { - r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu; + r = (((mp_word)*tmpx2++) * (mp_word)k) + *tmpx1 + mu; *tmpx1++ = (mp_digit)(r & MP_MASK); mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT)); } @@ -82,9 +82,15 @@ top: * Each successive "recursion" makes the input smaller and smaller. */ if (mp_cmp_mag (x, n) != MP_LT) { - s_mp_sub(x, n, x); + if ((err = s_mp_sub(x, n, x)) != MP_OKAY) { + return err; + } goto top; } return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_dr_setup.c b/libtommath/bn_mp_dr_setup.c index de00e2d..1bccb2b 100644 --- a/libtommath/bn_mp_dr_setup.c +++ b/libtommath/bn_mp_dr_setup.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_DR_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines the setup value */ @@ -26,3 +26,7 @@ void mp_dr_setup(mp_int *a, mp_digit *d) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_exch.c b/libtommath/bn_mp_exch.c index b7bd186..634193b 100644 --- a/libtommath/bn_mp_exch.c +++ b/libtommath/bn_mp_exch.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_EXCH_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* swap the elements of two integers, for cases where you can't simply swap the @@ -28,3 +28,7 @@ mp_exch (mp_int * a, mp_int * b) *b = t; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_export.c b/libtommath/bn_mp_export.c new file mode 100644 index 0000000..ac4c2f9 --- /dev/null +++ b/libtommath/bn_mp_export.c @@ -0,0 +1,88 @@ +#include <tommath_private.h> +#ifdef BN_MP_EXPORT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org + */ + +/* based on gmp's mpz_export. + * see http://gmplib.org/manual/Integer-Import-and-Export.html + */ +int mp_export(void* rop, size_t* countp, int order, size_t size, + int endian, size_t nails, mp_int* op) { + int result; + size_t odd_nails, nail_bytes, i, j, bits, count; + unsigned char odd_nail_mask; + + mp_int t; + + if ((result = mp_init_copy(&t, op)) != MP_OKAY) { + return result; + } + + if (endian == 0) { + union { + unsigned int i; + char c[4]; + } lint; + lint.i = 0x01020304; + + endian = (lint.c[0] == 4) ? -1 : 1; + } + + odd_nails = (nails % 8); + odd_nail_mask = 0xff; + for (i = 0; i < odd_nails; ++i) { + odd_nail_mask ^= (1 << (7 - i)); + } + nail_bytes = nails / 8; + + bits = mp_count_bits(&t); + count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0); + + for (i = 0; i < count; ++i) { + for (j = 0; j < size; ++j) { + unsigned char* byte = ( + (unsigned char*)rop + + (((order == -1) ? i : ((count - 1) - i)) * size) + + ((endian == -1) ? j : ((size - 1) - j)) + ); + + if (j >= (size - nail_bytes)) { + *byte = 0; + continue; + } + + *byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF)); + + if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) { + mp_clear(&t); + return result; + } + } + } + + mp_clear(&t); + + if (countp != NULL) { + *countp = count; + } + + return MP_OKAY; +} + +#endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_expt_d.c b/libtommath/bn_mp_expt_d.c index 132f480..61c5a1d 100644 --- a/libtommath/bn_mp_expt_d.c +++ b/libtommath/bn_mp_expt_d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_EXPT_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,42 +12,17 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ -/* calculate c = a**b using a square-multiply algorithm */ +/* wrapper function for mp_expt_d_ex() */ int mp_expt_d (mp_int * a, mp_digit b, mp_int * c) { - int res, x; - mp_int g; - - if ((res = mp_init_copy (&g, a)) != MP_OKAY) { - return res; - } - - /* set initial result */ - mp_set (c, 1); - - for (x = 0; x < (int) DIGIT_BIT; x++) { - /* square */ - if ((res = mp_sqr (c, c)) != MP_OKAY) { - mp_clear (&g); - return res; - } - - /* if the bit is set multiply */ - if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) { - if ((res = mp_mul (c, &g, c)) != MP_OKAY) { - mp_clear (&g); - return res; - } - } - - /* shift to next bit */ - b <<= 1; - } - - mp_clear (&g); - return MP_OKAY; + return mp_expt_d_ex(a, b, c, 0); } + #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_expt_d_ex.c b/libtommath/bn_mp_expt_d_ex.c new file mode 100644 index 0000000..649d224 --- /dev/null +++ b/libtommath/bn_mp_expt_d_ex.c @@ -0,0 +1,83 @@ +#include <tommath_private.h> +#ifdef BN_MP_EXPT_D_EX_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org + */ + +/* calculate c = a**b using a square-multiply algorithm */ +int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast) +{ + int res; + unsigned int x; + + mp_int g; + + if ((res = mp_init_copy (&g, a)) != MP_OKAY) { + return res; + } + + /* set initial result */ + mp_set (c, 1); + + if (fast != 0) { + while (b > 0) { + /* if the bit is set multiply */ + if ((b & 1) != 0) { + if ((res = mp_mul (c, &g, c)) != MP_OKAY) { + mp_clear (&g); + return res; + } + } + + /* square */ + if (b > 1) { + if ((res = mp_sqr (&g, &g)) != MP_OKAY) { + mp_clear (&g); + return res; + } + } + + /* shift to next bit */ + b >>= 1; + } + } + else { + for (x = 0; x < DIGIT_BIT; x++) { + /* square */ + if ((res = mp_sqr (c, c)) != MP_OKAY) { + mp_clear (&g); + return res; + } + + /* if the bit is set multiply */ + if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) { + if ((res = mp_mul (c, &g, c)) != MP_OKAY) { + mp_clear (&g); + return res; + } + } + + /* shift to next bit */ + b <<= 1; + } + } /* if ... else */ + + mp_clear (&g); + return MP_OKAY; +} +#endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_exptmod.c b/libtommath/bn_mp_exptmod.c index b7d9fb7..0973e44 100644 --- a/libtommath/bn_mp_exptmod.c +++ b/libtommath/bn_mp_exptmod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ @@ -89,7 +89,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) /* if the modulus is odd or dr != 0 use the montgomery method */ #ifdef BN_MP_EXPTMOD_FAST_C - if (mp_isodd (P) == 1 || dr != 0) { + if ((mp_isodd (P) == MP_YES) || (dr != 0)) { return mp_exptmod_fast (G, X, P, Y, dr); } else { #endif @@ -106,3 +106,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_exptmod_fast.c b/libtommath/bn_mp_exptmod_fast.c index 1902e79..8d280bd 100644 --- a/libtommath/bn_mp_exptmod_fast.c +++ b/libtommath/bn_mp_exptmod_fast.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_EXPTMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 @@ -96,8 +96,8 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode /* automatically pick the comba one if available (saves quite a few calls/ifs) */ #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C - if (((P->used * 2 + 1) < MP_WARRAY) && - P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + if ((((P->used * 2) + 1) < MP_WARRAY) && + (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { redux = fast_mp_montgomery_reduce; } else #endif @@ -219,12 +219,12 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ - if (mode == 0 && y == 0) { + if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ - if (mode == 1 && y == 0) { + if ((mode == 1) && (y == 0)) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { goto LBL_RES; } @@ -266,7 +266,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode } /* if bits remain then square/multiply */ - if (mode == 2 && bitcpy > 0) { + if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { @@ -314,3 +314,8 @@ LBL_M: return err; } #endif + + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_exteuclid.c b/libtommath/bn_mp_exteuclid.c index 2e69ce1..fbbd92c 100644 --- a/libtommath/bn_mp_exteuclid.c +++ b/libtommath/bn_mp_exteuclid.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_EXTEUCLID_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,10 +12,10 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ -/* Extended euclidean algorithm of (a, b) produces +/* Extended euclidean algorithm of (a, b) produces a*u1 + b*u2 = u3 */ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) @@ -61,9 +61,9 @@ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) /* make sure U3 >= 0 */ if (u3.sign == MP_NEG) { - mp_neg(&u1, &u1); - mp_neg(&u2, &u2); - mp_neg(&u3, &u3); + if ((err = mp_neg(&u1, &u1)) != MP_OKAY) { goto _ERR; } + if ((err = mp_neg(&u2, &u2)) != MP_OKAY) { goto _ERR; } + if ((err = mp_neg(&u3, &u3)) != MP_OKAY) { goto _ERR; } } /* copy result out */ @@ -76,3 +76,7 @@ _ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL return err; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_fread.c b/libtommath/bn_mp_fread.c index 44e1ea8..a4fa8c9 100644 --- a/libtommath/bn_mp_fread.c +++ b/libtommath/bn_mp_fread.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_FREAD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* read a bigint from a file stream in ASCII */ @@ -61,3 +61,7 @@ int mp_fread(mp_int *a, int radix, FILE *stream) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_fwrite.c b/libtommath/bn_mp_fwrite.c index b0ec29e..90f1fc5 100644 --- a/libtommath/bn_mp_fwrite.c +++ b/libtommath/bn_mp_fwrite.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_FWRITE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ int mp_fwrite(mp_int *a, int radix, FILE *stream) @@ -46,3 +46,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_gcd.c b/libtommath/bn_mp_gcd.c index 68cfa03..16acfd9 100644 --- a/libtommath/bn_mp_gcd.c +++ b/libtommath/bn_mp_gcd.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_GCD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Greatest Common Divisor using the binary method */ @@ -70,7 +70,7 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c) } } - while (mp_iszero(&v) == 0) { + while (mp_iszero(&v) == MP_NO) { /* make sure v is the largest */ if (mp_cmp_mag(&u, &v) == MP_GT) { /* swap u and v to make sure v is >= u */ @@ -99,3 +99,7 @@ LBL_U:mp_clear (&v); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_get_int.c b/libtommath/bn_mp_get_int.c index 762cb23..99fb850 100644 --- a/libtommath/bn_mp_get_int.c +++ b/libtommath/bn_mp_get_int.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_GET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,25 +12,25 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* get the lower 32-bits of an mp_int */ -unsigned long mp_get_int(mp_int * a) +unsigned long mp_get_int(mp_int * a) { int i; - unsigned long res; + mp_min_u32 res; if (a->used == 0) { return 0; } /* get number of digits of the lsb we have to read */ - i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1; + i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; /* get most significant digit of result */ res = DIGIT(a,i); - + while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a,i); } @@ -39,3 +39,7 @@ unsigned long mp_get_int(mp_int * a) return res & 0xFFFFFFFFUL; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_get_long.c b/libtommath/bn_mp_get_long.c new file mode 100644 index 0000000..7c3d0fe --- /dev/null +++ b/libtommath/bn_mp_get_long.c @@ -0,0 +1,41 @@ +#include <tommath_private.h> +#ifdef BN_MP_GET_LONG_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org + */ + +/* get the lower unsigned long of an mp_int, platform dependent */ +unsigned long mp_get_long(mp_int * a) +{ + int i; + unsigned long res; + + if (a->used == 0) { + return 0; + } + + /* get number of digits of the lsb we have to read */ + i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; + + /* get most significant digit of result */ + res = DIGIT(a,i); + +#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32) + while (--i >= 0) { + res = (res << DIGIT_BIT) | DIGIT(a,i); + } +#endif + return res; +} +#endif diff --git a/libtommath/bn_mp_get_long_long.c b/libtommath/bn_mp_get_long_long.c new file mode 100644 index 0000000..4b959e6 --- /dev/null +++ b/libtommath/bn_mp_get_long_long.c @@ -0,0 +1,41 @@ +#include <tommath_private.h> +#ifdef BN_MP_GET_LONG_LONG_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org + */ + +/* get the lower unsigned long long of an mp_int, platform dependent */ +unsigned long long mp_get_long_long (mp_int * a) +{ + int i; + unsigned long long res; + + if (a->used == 0) { + return 0; + } + + /* get number of digits of the lsb we have to read */ + i = MIN(a->used,(int)(((sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1; + + /* get most significant digit of result */ + res = DIGIT(a,i); + +#if DIGIT_BIT < 64 + while (--i >= 0) { + res = (res << DIGIT_BIT) | DIGIT(a,i); + } +#endif + return res; +} +#endif diff --git a/libtommath/bn_mp_grow.c b/libtommath/bn_mp_grow.c index b5b2407..cbdcfed 100644 --- a/libtommath/bn_mp_grow.c +++ b/libtommath/bn_mp_grow.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_GROW_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* grow as required */ @@ -51,3 +51,7 @@ int mp_grow (mp_int * a, int size) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_import.c b/libtommath/bn_mp_import.c new file mode 100644 index 0000000..dd4b8e6 --- /dev/null +++ b/libtommath/bn_mp_import.c @@ -0,0 +1,73 @@ +#include <tommath_private.h> +#ifdef BN_MP_IMPORT_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org + */ + +/* based on gmp's mpz_import. + * see http://gmplib.org/manual/Integer-Import-and-Export.html + */ +int mp_import(mp_int* rop, size_t count, int order, size_t size, + int endian, size_t nails, const void* op) { + int result; + size_t odd_nails, nail_bytes, i, j; + unsigned char odd_nail_mask; + + mp_zero(rop); + + if (endian == 0) { + union { + unsigned int i; + char c[4]; + } lint; + lint.i = 0x01020304; + + endian = (lint.c[0] == 4) ? -1 : 1; + } + + odd_nails = (nails % 8); + odd_nail_mask = 0xff; + for (i = 0; i < odd_nails; ++i) { + odd_nail_mask ^= (1 << (7 - i)); + } + nail_bytes = nails / 8; + + for (i = 0; i < count; ++i) { + for (j = 0; j < (size - nail_bytes); ++j) { + unsigned char byte = *( + (unsigned char*)op + + (((order == 1) ? i : ((count - 1) - i)) * size) + + ((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes)) + ); + + if ( + (result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) { + return result; + } + + rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte; + rop->used += 1; + } + } + + mp_clamp(rop); + + return MP_OKAY; +} + +#endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_init.c b/libtommath/bn_mp_init.c index ddb2d07..7a57730 100644 --- a/libtommath/bn_mp_init.c +++ b/libtommath/bn_mp_init.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_INIT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* init a new mp_int */ @@ -40,3 +40,7 @@ int mp_init (mp_int * a) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_init_copy.c b/libtommath/bn_mp_init_copy.c index 2410a9f..33b0e82 100644 --- a/libtommath/bn_mp_init_copy.c +++ b/libtommath/bn_mp_init_copy.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_INIT_COPY_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,17 +12,21 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* creates "a" then copies b into it */ -int mp_init_copy (mp_int * a, mp_int * b) +int mp_init_copy (mp_int * a, const mp_int * b) { int res; - if ((res = mp_init (a)) != MP_OKAY) { + if ((res = mp_init_size (a, b->used)) != MP_OKAY) { return res; } return mp_copy (b, a); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_init_multi.c b/libtommath/bn_mp_init_multi.c index 44e3fe6..52220a3 100644 --- a/libtommath/bn_mp_init_multi.c +++ b/libtommath/bn_mp_init_multi.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_INIT_MULTI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ #include <stdarg.h> @@ -37,7 +37,7 @@ int mp_init_multi(mp_int *mp, ...) /* now start cleaning up */ cur_arg = mp; va_start(clean_args, mp); - while (n--) { + while (n-- != 0) { mp_clear(cur_arg); cur_arg = va_arg(clean_args, mp_int*); } @@ -53,3 +53,7 @@ int mp_init_multi(mp_int *mp, ...) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_init_set.c b/libtommath/bn_mp_init_set.c index dc08867..c337e50 100644 --- a/libtommath/bn_mp_init_set.c +++ b/libtommath/bn_mp_init_set.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_INIT_SET_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* initialize and set a digit */ @@ -26,3 +26,7 @@ int mp_init_set (mp_int * a, mp_digit b) return err; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_init_set_int.c b/libtommath/bn_mp_init_set_int.c index 56b27e0..c88f14e 100644 --- a/libtommath/bn_mp_init_set_int.c +++ b/libtommath/bn_mp_init_set_int.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_INIT_SET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* initialize and set a digit */ @@ -25,3 +25,7 @@ int mp_init_set_int (mp_int * a, unsigned long b) return mp_set_int(a, b); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_init_size.c b/libtommath/bn_mp_init_size.c index 8ed2c2a..e1d1b51 100644 --- a/libtommath/bn_mp_init_size.c +++ b/libtommath/bn_mp_init_size.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_INIT_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* init an mp_init for a given size */ @@ -42,3 +42,7 @@ int mp_init_size (mp_int * a, int size) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_invmod.c b/libtommath/bn_mp_invmod.c index fdb6c88..44951e5 100644 --- a/libtommath/bn_mp_invmod.c +++ b/libtommath/bn_mp_invmod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_INVMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,28 +12,32 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* hac 14.61, pp608 */ int mp_invmod (mp_int * a, mp_int * b, mp_int * c) { /* b cannot be negative */ - if (b->sign == MP_NEG || mp_iszero(b) == 1) { + if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) { return MP_VAL; } #ifdef BN_FAST_MP_INVMOD_C /* if the modulus is odd we can use a faster routine instead */ - if (mp_isodd (b) == 1) { + if (mp_isodd (b) == MP_YES) { return fast_mp_invmod (a, b, c); } #endif #ifdef BN_MP_INVMOD_SLOW_C return mp_invmod_slow(a, b, c); -#endif - +#else return MP_VAL; +#endif } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_invmod_slow.c b/libtommath/bn_mp_invmod_slow.c index e079819..a21f947 100644 --- a/libtommath/bn_mp_invmod_slow.c +++ b/libtommath/bn_mp_invmod_slow.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_INVMOD_SLOW_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* hac 14.61, pp608 */ @@ -22,7 +22,7 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) int res; /* b cannot be negative */ - if (b->sign == MP_NEG || mp_iszero(b) == 1) { + if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) { return MP_VAL; } @@ -41,7 +41,7 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) } /* 2. [modified] if x,y are both even then return an error! */ - if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { + if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) { res = MP_VAL; goto LBL_ERR; } @@ -58,13 +58,13 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) top: /* 4. while u is even do */ - while (mp_iseven (&u) == 1) { + while (mp_iseven (&u) == MP_YES) { /* 4.1 u = u/2 */ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { goto LBL_ERR; } /* 4.2 if A or B is odd then */ - if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { + if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) { /* A = (A+y)/2, B = (B-x)/2 */ if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { goto LBL_ERR; @@ -83,13 +83,13 @@ top: } /* 5. while v is even do */ - while (mp_iseven (&v) == 1) { + while (mp_iseven (&v) == MP_YES) { /* 5.1 v = v/2 */ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { goto LBL_ERR; } /* 5.2 if C or D is odd then */ - if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { + if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) { /* C = (C+y)/2, D = (D-x)/2 */ if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { goto LBL_ERR; @@ -137,7 +137,7 @@ top: } /* if not zero goto step 4 */ - if (mp_iszero (&u) == 0) + if (mp_iszero (&u) == MP_NO) goto top; /* now a = C, b = D, gcd == g*v */ @@ -169,3 +169,7 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_is_square.c b/libtommath/bn_mp_is_square.c index 926b449..9f065ef 100644 --- a/libtommath/bn_mp_is_square.c +++ b/libtommath/bn_mp_is_square.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_IS_SQUARE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Check if remainders are possible squares - fast exclude non-squares */ @@ -82,13 +82,13 @@ int mp_is_square(mp_int *arg,int *ret) * free "t" so the easiest way is to goto ERR. We know that res * is already equal to MP_OKAY from the mp_mod call */ - if ( (1L<<(r%11)) & 0x5C4L ) goto ERR; - if ( (1L<<(r%13)) & 0x9E4L ) goto ERR; - if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR; - if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR; - if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR; - if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR; - if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR; + if (((1L<<(r%11)) & 0x5C4L) != 0L) goto ERR; + if (((1L<<(r%13)) & 0x9E4L) != 0L) goto ERR; + if (((1L<<(r%17)) & 0x5CE8L) != 0L) goto ERR; + if (((1L<<(r%19)) & 0x4F50CL) != 0L) goto ERR; + if (((1L<<(r%23)) & 0x7ACCA0L) != 0L) goto ERR; + if (((1L<<(r%29)) & 0xC2EDD0CL) != 0L) goto ERR; + if (((1L<<(r%31)) & 0x6DE2B848L) != 0L) goto ERR; /* Final check - is sqr(sqrt(arg)) == arg ? */ if ((res = mp_sqrt(arg,&t)) != MP_OKAY) { @@ -103,3 +103,7 @@ ERR:mp_clear(&t); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_jacobi.c b/libtommath/bn_mp_jacobi.c index 1644698..3c114e3 100644 --- a/libtommath/bn_mp_jacobi.c +++ b/libtommath/bn_mp_jacobi.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_JACOBI_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,27 +12,39 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes the jacobi c = (a | n) (or Legendre if n is prime) * HAC pp. 73 Algorithm 2.149 + * HAC is wrong here, as the special case of (0 | 1) is not + * handled correctly. */ -int mp_jacobi (mp_int * a, mp_int * p, int *c) +int mp_jacobi (mp_int * a, mp_int * n, int *c) { mp_int a1, p1; int k, s, r, res; mp_digit residue; - /* if p <= 0 return MP_VAL */ - if (mp_cmp_d(p, 0) != MP_GT) { + /* if a < 0 return MP_VAL */ + if (mp_isneg(a) == MP_YES) { return MP_VAL; } - /* step 1. if a == 0, return 0 */ - if (mp_iszero (a) == 1) { - *c = 0; - return MP_OKAY; + /* if n <= 0 return MP_VAL */ + if (mp_cmp_d(n, 0) != MP_GT) { + return MP_VAL; + } + + /* step 1. handle case of a == 0 */ + if (mp_iszero (a) == MP_YES) { + /* special case of a == 0 and n == 1 */ + if (mp_cmp_d (n, 1) == MP_EQ) { + *c = 1; + } else { + *c = 0; + } + return MP_OKAY; } /* step 2. if a == 1, return 1 */ @@ -64,17 +76,17 @@ int mp_jacobi (mp_int * a, mp_int * p, int *c) s = 1; } else { /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */ - residue = p->dp[0] & 7; + residue = n->dp[0] & 7; - if (residue == 1 || residue == 7) { + if ((residue == 1) || (residue == 7)) { s = 1; - } else if (residue == 3 || residue == 5) { + } else if ((residue == 3) || (residue == 5)) { s = -1; } } /* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */ - if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { + if ( ((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) { s = -s; } @@ -83,7 +95,7 @@ int mp_jacobi (mp_int * a, mp_int * p, int *c) *c = s; } else { /* n1 = n mod a1 */ - if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) { + if ((res = mp_mod (n, &a1, &p1)) != MP_OKAY) { goto LBL_P1; } if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) { @@ -99,3 +111,7 @@ LBL_A1:mp_clear (&a1); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_karatsuba_mul.c b/libtommath/bn_mp_karatsuba_mul.c index 0d62b9b..d65e37e 100644 --- a/libtommath/bn_mp_karatsuba_mul.c +++ b/libtommath/bn_mp_karatsuba_mul.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_KARATSUBA_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* c = |a| * |b| using Karatsuba Multiplication using @@ -82,8 +82,8 @@ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) y1.used = b->used - B; { - register int x; - register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; + int x; + mp_digit *tmpa, *tmpb, *tmpx, *tmpy; /* we copy the digits directly instead of using higher level functions * since we also need to shift the digits @@ -161,3 +161,7 @@ ERR: return err; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_karatsuba_sqr.c b/libtommath/bn_mp_karatsuba_sqr.c index 829405a..739840d 100644 --- a/libtommath/bn_mp_karatsuba_sqr.c +++ b/libtommath/bn_mp_karatsuba_sqr.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_KARATSUBA_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Karatsuba squaring, computes b = a*a using three @@ -52,8 +52,8 @@ int mp_karatsuba_sqr (mp_int * a, mp_int * b) goto X0X0; { - register int x; - register mp_digit *dst, *src; + int x; + mp_digit *dst, *src; src = a->dp; @@ -115,3 +115,7 @@ ERR: return err; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_lcm.c b/libtommath/bn_mp_lcm.c index 1d53921..3bff571 100644 --- a/libtommath/bn_mp_lcm.c +++ b/libtommath/bn_mp_lcm.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_LCM_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes least common multiple as |a*b|/(a, b) */ @@ -54,3 +54,7 @@ LBL_T: return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_lshd.c b/libtommath/bn_mp_lshd.c index ce1e63b..f6f800f 100644 --- a/libtommath/bn_mp_lshd.c +++ b/libtommath/bn_mp_lshd.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_LSHD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shift left a certain amount of digits */ @@ -26,14 +26,14 @@ int mp_lshd (mp_int * a, int b) } /* grow to fit the new digits */ - if (a->alloc < a->used + b) { + if (a->alloc < (a->used + b)) { if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { return res; } } { - register mp_digit *top, *bottom; + mp_digit *top, *bottom; /* increment the used by the shift amount then copy upwards */ a->used += b; @@ -42,7 +42,7 @@ int mp_lshd (mp_int * a, int b) top = a->dp + a->used - 1; /* base */ - bottom = a->dp + a->used - 1 - b; + bottom = (a->dp + a->used - 1) - b; /* much like mp_rshd this is implemented using a sliding window * except the window goes the otherway around. Copying from @@ -61,3 +61,7 @@ int mp_lshd (mp_int * a, int b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_mod.c b/libtommath/bn_mp_mod.c index 98e155e..b67467d 100644 --- a/libtommath/bn_mp_mod.c +++ b/libtommath/bn_mp_mod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,10 +12,10 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ -/* c = a mod b, 0 <= c < b */ +/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */ int mp_mod (mp_int * a, mp_int * b, mp_int * c) { @@ -31,14 +31,18 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c) return res; } - if (t.sign != b->sign) { - res = mp_add (b, &t, c); - } else { + if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) { res = MP_OKAY; mp_exch (&t, c); + } else { + res = mp_add (b, &t, c); } mp_clear (&t); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_mod_2d.c b/libtommath/bn_mp_mod_2d.c index 0170f65..954d64f 100644 --- a/libtommath/bn_mp_mod_2d.c +++ b/libtommath/bn_mp_mod_2d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MOD_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* calc a value mod 2**b */ @@ -39,7 +39,7 @@ mp_mod_2d (const mp_int * a, int b, mp_int * c) } /* zero digits above the last digit of the modulus */ - for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { + for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) { c->dp[x] = 0; } /* clear the digit that is not completely outside/inside the modulus */ @@ -49,3 +49,7 @@ mp_mod_2d (const mp_int * a, int b, mp_int * c) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_mod_d.c b/libtommath/bn_mp_mod_d.c index f642ee8..d8722f0 100644 --- a/libtommath/bn_mp_mod_d.c +++ b/libtommath/bn_mp_mod_d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MOD_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ int @@ -21,3 +21,7 @@ mp_mod_d (mp_int * a, mp_digit b, mp_digit * c) return mp_div_d(a, b, NULL, c); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_montgomery_calc_normalization.c b/libtommath/bn_mp_montgomery_calc_normalization.c index 0748762..ea87cbd 100644 --- a/libtommath/bn_mp_montgomery_calc_normalization.c +++ b/libtommath/bn_mp_montgomery_calc_normalization.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* @@ -29,7 +29,7 @@ int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) bits = mp_count_bits (b) % DIGIT_BIT; if (b->used > 1) { - if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { + if ((res = mp_2expt (a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) { return res; } } else { @@ -53,3 +53,7 @@ int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_montgomery_reduce.c b/libtommath/bn_mp_montgomery_reduce.c index bc6abb8..af2cc58 100644 --- a/libtommath/bn_mp_montgomery_reduce.c +++ b/libtommath/bn_mp_montgomery_reduce.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MONTGOMERY_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes xR**-1 == x (mod N) via Montgomery Reduction */ @@ -28,10 +28,10 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) * than the available columns [255 per default] since carries * are fixed up in the inner loop. */ - digs = n->used * 2 + 1; + digs = (n->used * 2) + 1; if ((digs < MP_WARRAY) && - n->used < - (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + (n->used < + (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { return fast_mp_montgomery_reduce (x, n, rho); } @@ -52,13 +52,13 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) * following inner loop to reduce the * input one digit at a time */ - mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK); + mu = (mp_digit) (((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK); /* a = a + mu * m * b**i */ { - register int iy; - register mp_digit *tmpn, *tmpx, u; - register mp_word r; + int iy; + mp_digit *tmpn, *tmpx, u; + mp_word r; /* alias for digits of the modulus */ tmpn = n->dp; @@ -72,8 +72,8 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) /* Multiply and add in place */ for (iy = 0; iy < n->used; iy++) { /* compute product and sum */ - r = ((mp_word)mu) * ((mp_word)*tmpn++) + - ((mp_word) u) + ((mp_word) * tmpx); + r = ((mp_word)mu * (mp_word)*tmpn++) + + (mp_word) u + (mp_word) *tmpx; /* get carry */ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); @@ -85,7 +85,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) /* propagate carries upwards as required*/ - while (u) { + while (u != 0) { *tmpx += u; u = *tmpx >> DIGIT_BIT; *tmpx++ &= MP_MASK; @@ -112,3 +112,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_montgomery_setup.c b/libtommath/bn_mp_montgomery_setup.c index b8e1887..264a2bd 100644 --- a/libtommath/bn_mp_montgomery_setup.c +++ b/libtommath/bn_mp_montgomery_setup.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MONTGOMERY_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* setups the montgomery reduction stuff */ @@ -36,20 +36,24 @@ mp_montgomery_setup (mp_int * n, mp_digit * rho) } x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ - x *= 2 - b * x; /* here x*a==1 mod 2**8 */ + x *= 2 - (b * x); /* here x*a==1 mod 2**8 */ #if !defined(MP_8BIT) - x *= 2 - b * x; /* here x*a==1 mod 2**16 */ + x *= 2 - (b * x); /* here x*a==1 mod 2**16 */ #endif #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) - x *= 2 - b * x; /* here x*a==1 mod 2**32 */ + x *= 2 - (b * x); /* here x*a==1 mod 2**32 */ #endif #ifdef MP_64BIT - x *= 2 - b * x; /* here x*a==1 mod 2**64 */ + x *= 2 - (b * x); /* here x*a==1 mod 2**64 */ #endif /* rho = -1/m mod b */ - *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; + *rho = (mp_digit)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_mul.c b/libtommath/bn_mp_mul.c index fc024be..ea53d5e 100644 --- a/libtommath/bn_mp_mul.c +++ b/libtommath/bn_mp_mul.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* high level multiplication (handles sign) */ @@ -44,19 +44,24 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c) #ifdef BN_FAST_S_MP_MUL_DIGS_C if ((digs < MP_WARRAY) && - MIN(a->used, b->used) <= - (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + (MIN(a->used, b->used) <= + (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { res = fast_s_mp_mul_digs (a, b, c, digs); } else #endif + { #ifdef BN_S_MP_MUL_DIGS_C res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ #else res = MP_VAL; #endif - + } } c->sign = (c->used > 0) ? neg : MP_ZPOS; return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_mul_2.c b/libtommath/bn_mp_mul_2.c index 2ca6022..9c72c7f 100644 --- a/libtommath/bn_mp_mul_2.c +++ b/libtommath/bn_mp_mul_2.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MUL_2_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* b = a*2 */ @@ -21,7 +21,7 @@ int mp_mul_2(mp_int * a, mp_int * b) int x, res, oldused; /* grow to accomodate result */ - if (b->alloc < a->used + 1) { + if (b->alloc < (a->used + 1)) { if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { return res; } @@ -31,7 +31,7 @@ int mp_mul_2(mp_int * a, mp_int * b) b->used = a->used; { - register mp_digit r, rr, *tmpa, *tmpb; + mp_digit r, rr, *tmpa, *tmpb; /* alias for source */ tmpa = a->dp; @@ -76,3 +76,7 @@ int mp_mul_2(mp_int * a, mp_int * b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_mul_2d.c b/libtommath/bn_mp_mul_2d.c index 4ac2e4e..e9b284e 100644 --- a/libtommath/bn_mp_mul_2d.c +++ b/libtommath/bn_mp_mul_2d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MUL_2D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shift left by a certain bit count */ @@ -28,8 +28,8 @@ int mp_mul_2d (const mp_int * a, int b, mp_int * c) } } - if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { - if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { + if (c->alloc < (int)(c->used + (b / DIGIT_BIT) + 1)) { + if ((res = mp_grow (c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) { return res; } } @@ -44,8 +44,8 @@ int mp_mul_2d (const mp_int * a, int b, mp_int * c) /* shift any bit count < DIGIT_BIT */ d = (mp_digit) (b % DIGIT_BIT); if (d != 0) { - register mp_digit *tmpc, shift, mask, r, rr; - register int x; + mp_digit *tmpc, shift, mask, r, rr; + int x; /* bitmask for carries */ mask = (((mp_digit)1) << d) - 1; @@ -79,3 +79,7 @@ int mp_mul_2d (const mp_int * a, int b, mp_int * c) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_mul_d.c b/libtommath/bn_mp_mul_d.c index ba45a0c..e77da5d 100644 --- a/libtommath/bn_mp_mul_d.c +++ b/libtommath/bn_mp_mul_d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MUL_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* multiply by a digit */ @@ -24,7 +24,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c) int ix, res, olduse; /* make sure c is big enough to hold a*b */ - if (c->alloc < a->used + 1) { + if (c->alloc < (a->used + 1)) { if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { return res; } @@ -48,7 +48,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c) /* compute columns */ for (ix = 0; ix < a->used; ix++) { /* compute product and carry sum for this term */ - r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); + r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b); /* mask off higher bits to get a single digit */ *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); @@ -73,3 +73,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_mulmod.c b/libtommath/bn_mp_mulmod.c index 649b717..5ea88ef 100644 --- a/libtommath/bn_mp_mulmod.c +++ b/libtommath/bn_mp_mulmod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_MULMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* d = a * b (mod c) */ @@ -34,3 +34,7 @@ int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_n_root.c b/libtommath/bn_mp_n_root.c index b2700a8..a14ee67 100644 --- a/libtommath/bn_mp_n_root.c +++ b/libtommath/bn_mp_n_root.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_N_ROOT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,117 +12,19 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ -/* find the n'th root of an integer - * - * Result found such that (c)**b <= a and (c+1)**b > a - * - * This algorithm uses Newton's approximation - * x[i+1] = x[i] - f(x[i])/f'(x[i]) - * which will find the root in log(N) time where - * each step involves a fair bit. This is not meant to - * find huge roots [square and cube, etc]. +/* wrapper function for mp_n_root_ex() + * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a */ int mp_n_root (mp_int * a, mp_digit b, mp_int * c) { - mp_int t1, t2, t3; - int res, neg; - - /* input must be positive if b is even */ - if ((b & 1) == 0 && a->sign == MP_NEG) { - return MP_VAL; - } - - if ((res = mp_init (&t1)) != MP_OKAY) { - return res; - } - - if ((res = mp_init (&t2)) != MP_OKAY) { - goto LBL_T1; - } - - if ((res = mp_init (&t3)) != MP_OKAY) { - goto LBL_T2; - } - - /* if a is negative fudge the sign but keep track */ - neg = a->sign; - a->sign = MP_ZPOS; - - /* t2 = 2 */ - mp_set (&t2, 2); - - do { - /* t1 = t2 */ - if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { - goto LBL_T3; - } - - /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ - - /* t3 = t1**(b-1) */ - if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { - goto LBL_T3; - } - - /* numerator */ - /* t2 = t1**b */ - if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { - goto LBL_T3; - } - - /* t2 = t1**b - a */ - if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { - goto LBL_T3; - } - - /* denominator */ - /* t3 = t1**(b-1) * b */ - if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { - goto LBL_T3; - } - - /* t3 = (t1**b - a)/(b * t1**(b-1)) */ - if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { - goto LBL_T3; - } - - if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { - goto LBL_T3; - } - } while (mp_cmp (&t1, &t2) != MP_EQ); - - /* result can be off by a few so check */ - for (;;) { - if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { - goto LBL_T3; - } - - if (mp_cmp (&t2, a) == MP_GT) { - if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { - goto LBL_T3; - } - } else { - break; - } - } - - /* reset the sign of a first */ - a->sign = neg; - - /* set the result */ - mp_exch (&t1, c); - - /* set the sign of the result */ - c->sign = neg; - - res = MP_OKAY; - -LBL_T3:mp_clear (&t3); -LBL_T2:mp_clear (&t2); -LBL_T1:mp_clear (&t1); - return res; + return mp_n_root_ex(a, b, c, 0); } + #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_n_root_ex.c b/libtommath/bn_mp_n_root_ex.c new file mode 100644 index 0000000..79d1dfb --- /dev/null +++ b/libtommath/bn_mp_n_root_ex.c @@ -0,0 +1,132 @@ +#include <tommath_private.h> +#ifdef BN_MP_N_ROOT_EX_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org + */ + +/* find the n'th root of an integer + * + * Result found such that (c)**b <= a and (c+1)**b > a + * + * This algorithm uses Newton's approximation + * x[i+1] = x[i] - f(x[i])/f'(x[i]) + * which will find the root in log(N) time where + * each step involves a fair bit. This is not meant to + * find huge roots [square and cube, etc]. + */ +int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast) +{ + mp_int t1, t2, t3; + int res, neg; + + /* input must be positive if b is even */ + if (((b & 1) == 0) && (a->sign == MP_NEG)) { + return MP_VAL; + } + + if ((res = mp_init (&t1)) != MP_OKAY) { + return res; + } + + if ((res = mp_init (&t2)) != MP_OKAY) { + goto LBL_T1; + } + + if ((res = mp_init (&t3)) != MP_OKAY) { + goto LBL_T2; + } + + /* if a is negative fudge the sign but keep track */ + neg = a->sign; + a->sign = MP_ZPOS; + + /* t2 = 2 */ + mp_set (&t2, 2); + + do { + /* t1 = t2 */ + if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { + goto LBL_T3; + } + + /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ + + /* t3 = t1**(b-1) */ + if ((res = mp_expt_d_ex (&t1, b - 1, &t3, fast)) != MP_OKAY) { + goto LBL_T3; + } + + /* numerator */ + /* t2 = t1**b */ + if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { + goto LBL_T3; + } + + /* t2 = t1**b - a */ + if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { + goto LBL_T3; + } + + /* denominator */ + /* t3 = t1**(b-1) * b */ + if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { + goto LBL_T3; + } + + /* t3 = (t1**b - a)/(b * t1**(b-1)) */ + if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { + goto LBL_T3; + } + + if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { + goto LBL_T3; + } + } while (mp_cmp (&t1, &t2) != MP_EQ); + + /* result can be off by a few so check */ + for (;;) { + if ((res = mp_expt_d_ex (&t1, b, &t2, fast)) != MP_OKAY) { + goto LBL_T3; + } + + if (mp_cmp (&t2, a) == MP_GT) { + if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { + goto LBL_T3; + } + } else { + break; + } + } + + /* reset the sign of a first */ + a->sign = neg; + + /* set the result */ + mp_exch (&t1, c); + + /* set the sign of the result */ + c->sign = neg; + + res = MP_OKAY; + +LBL_T3:mp_clear (&t3); +LBL_T2:mp_clear (&t2); +LBL_T1:mp_clear (&t1); + return res; +} +#endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_neg.c b/libtommath/bn_mp_neg.c index 07fb148..952a991 100644 --- a/libtommath/bn_mp_neg.c +++ b/libtommath/bn_mp_neg.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_NEG_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* b = -a */ @@ -34,3 +34,7 @@ int mp_neg (const mp_int * a, mp_int * b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_or.c b/libtommath/bn_mp_or.c index aa5b1bd..b7f2e4f 100644 --- a/libtommath/bn_mp_or.c +++ b/libtommath/bn_mp_or.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_OR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* OR two ints together */ @@ -44,3 +44,7 @@ int mp_or (mp_int * a, mp_int * b, mp_int * c) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_prime_fermat.c b/libtommath/bn_mp_prime_fermat.c index 7b9b12e..9dc9e85 100644 --- a/libtommath/bn_mp_prime_fermat.c +++ b/libtommath/bn_mp_prime_fermat.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_PRIME_FERMAT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* performs one Fermat test. @@ -56,3 +56,7 @@ LBL_T:mp_clear (&t); return err; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_prime_is_divisible.c b/libtommath/bn_mp_prime_is_divisible.c index 710c967..5854f08 100644 --- a/libtommath/bn_mp_prime_is_divisible.c +++ b/libtommath/bn_mp_prime_is_divisible.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_PRIME_IS_DIVISIBLE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines if an integers is divisible by one @@ -44,3 +44,7 @@ int mp_prime_is_divisible (mp_int * a, int *result) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_prime_is_prime.c b/libtommath/bn_mp_prime_is_prime.c index ce225a3..be5ebe4 100644 --- a/libtommath/bn_mp_prime_is_prime.c +++ b/libtommath/bn_mp_prime_is_prime.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_PRIME_IS_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* performs a variable number of rounds of Miller-Rabin @@ -31,7 +31,7 @@ int mp_prime_is_prime (mp_int * a, int t, int *result) *result = MP_NO; /* valid value of t? */ - if (t <= 0 || t > PRIME_SIZE) { + if ((t <= 0) || (t > PRIME_SIZE)) { return MP_VAL; } @@ -77,3 +77,7 @@ LBL_B:mp_clear (&b); return err; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_prime_miller_rabin.c b/libtommath/bn_mp_prime_miller_rabin.c index c5185b8..7b5c8d2 100644 --- a/libtommath/bn_mp_prime_miller_rabin.c +++ b/libtommath/bn_mp_prime_miller_rabin.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_PRIME_MILLER_RABIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Miller-Rabin test of "a" to the base of "b" as described in @@ -67,10 +67,10 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) } /* if y != 1 and y != n1 do */ - if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { + if ((mp_cmp_d (&y, 1) != MP_EQ) && (mp_cmp (&y, &n1) != MP_EQ)) { j = 1; /* while j <= s-1 and y != n1 */ - while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { + while ((j <= (s - 1)) && (mp_cmp (&y, &n1) != MP_EQ)) { if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { goto LBL_Y; } @@ -97,3 +97,7 @@ LBL_N1:mp_clear (&n1); return err; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_prime_next_prime.c b/libtommath/bn_mp_prime_next_prime.c index 2433e8c..9951dc3 100644 --- a/libtommath/bn_mp_prime_next_prime.c +++ b/libtommath/bn_mp_prime_next_prime.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_PRIME_NEXT_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* finds the next prime after the number "a" using "t" trials @@ -22,12 +22,12 @@ */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) { - int err, res, x, y; + int err, res = MP_NO, x, y; mp_digit res_tab[PRIME_SIZE], step, kstep; mp_int b; /* ensure t is valid */ - if (t <= 0 || t > PRIME_SIZE) { + if ((t <= 0) || (t > PRIME_SIZE)) { return MP_VAL; } @@ -84,7 +84,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; }; } } else { - if (mp_iseven(a) == 1) { + if (mp_iseven(a) == MP_YES) { /* force odd */ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { return err; @@ -129,7 +129,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) y = 1; } } - } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep)); + } while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep))); /* add the step */ if ((err = mp_add_d(a, step, a)) != MP_OKAY) { @@ -137,7 +137,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) } /* if didn't pass sieve and step == MAX then skip test */ - if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) { + if ((y == 1) && (step >= ((((mp_digit)1) << DIGIT_BIT) - kstep))) { continue; } @@ -164,3 +164,7 @@ LBL_ERR: } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_prime_rabin_miller_trials.c b/libtommath/bn_mp_prime_rabin_miller_trials.c index e57a43c..bca4229 100644 --- a/libtommath/bn_mp_prime_rabin_miller_trials.c +++ b/libtommath/bn_mp_prime_rabin_miller_trials.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ @@ -46,3 +46,7 @@ int mp_prime_rabin_miller_trials(int size) #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_prime_random_ex.c b/libtommath/bn_mp_prime_random_ex.c index a37477e..1efc4fc 100644 --- a/libtommath/bn_mp_prime_random_ex.c +++ b/libtommath/bn_mp_prime_random_ex.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_PRIME_RANDOM_EX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* makes a truly random prime of a given size (bits), @@ -21,7 +21,6 @@ * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) - * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can @@ -37,12 +36,12 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback int res, err, bsize, maskOR_msb_offset; /* sanity check the input */ - if (size <= 1 || t <= 0) { + if ((size <= 1) || (t <= 0)) { return MP_VAL; } /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */ - if (flags & LTM_PRIME_SAFE) { + if ((flags & LTM_PRIME_SAFE) != 0) { flags |= LTM_PRIME_BBS; } @@ -61,13 +60,13 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback /* calc the maskOR_msb */ maskOR_msb = 0; maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; - if (flags & LTM_PRIME_2MSB_ON) { + if ((flags & LTM_PRIME_2MSB_ON) != 0) { maskOR_msb |= 0x80 >> ((9 - size) & 7); } /* get the maskOR_lsb */ maskOR_lsb = 1; - if (flags & LTM_PRIME_BBS) { + if ((flags & LTM_PRIME_BBS) != 0) { maskOR_lsb |= 3; } @@ -95,7 +94,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback continue; } - if (flags & LTM_PRIME_SAFE) { + if ((flags & LTM_PRIME_SAFE) != 0) { /* see if (a-1)/2 is prime */ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; } if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; } @@ -105,7 +104,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback } } while (res == MP_NO); - if (flags & LTM_PRIME_SAFE) { + if ((flags & LTM_PRIME_SAFE) != 0) { /* restore a to the original value */ if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; } if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; } @@ -119,3 +118,7 @@ error: #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_radix_size.c b/libtommath/bn_mp_radix_size.c index 9d95c48..d4a02e8 100644 --- a/libtommath/bn_mp_radix_size.c +++ b/libtommath/bn_mp_radix_size.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_RADIX_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,11 +12,11 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://libtom.org + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* returns size of ASCII reprensentation */ -int mp_radix_size (mp_int * a, int radix, int *size) +int mp_radix_size (const mp_int * a, int radix, int *size) { int res, digs; mp_int t; @@ -24,14 +24,8 @@ int mp_radix_size (mp_int * a, int radix, int *size) *size = 0; - /* special case for binary */ - if (radix == 2) { - *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1; - return MP_OKAY; - } - /* make sure the radix is in range */ - if (radix < 2 || radix > 64) { + if ((radix < 2) || (radix > 64)) { return MP_VAL; } @@ -40,6 +34,12 @@ int mp_radix_size (mp_int * a, int radix, int *size) return MP_OKAY; } + /* special case for binary */ + if (radix == 2) { + *size = mp_count_bits (a) + ((a->sign == MP_NEG) ? 1 : 0) + 1; + return MP_OKAY; + } + /* digs is the digit count */ digs = 0; @@ -74,5 +74,5 @@ int mp_radix_size (mp_int * a, int radix, int *size) #endif /* $Source$ */ -/* $Revision: 0.41 $ */ -/* $Date: 2007-04-18 09:58:18 +0000 $ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_radix_smap.c b/libtommath/bn_mp_radix_smap.c index 7aeb375..d1c75ad 100644 --- a/libtommath/bn_mp_radix_smap.c +++ b/libtommath/bn_mp_radix_smap.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_RADIX_SMAP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,9 +12,13 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* chars used in radix conversions */ const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_rand.c b/libtommath/bn_mp_rand.c index 17c1fbe..4c9610d 100644 --- a/libtommath/bn_mp_rand.c +++ b/libtommath/bn_mp_rand.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_RAND_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* makes a pseudo-random int of a given size */ @@ -29,7 +29,7 @@ mp_rand (mp_int * a, int digits) /* first place a random non-zero digit */ do { - d = ((mp_digit) abs (rand ())) & MP_MASK; + d = ((mp_digit) abs (MP_GEN_RANDOM())) & MP_MASK; } while (d == 0); if ((res = mp_add_d (a, d, a)) != MP_OKAY) { @@ -41,7 +41,7 @@ mp_rand (mp_int * a, int digits) return res; } - if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) { + if ((res = mp_add_d (a, ((mp_digit) abs (MP_GEN_RANDOM())), a)) != MP_OKAY) { return res; } } @@ -49,3 +49,7 @@ mp_rand (mp_int * a, int digits) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_read_radix.c b/libtommath/bn_mp_read_radix.c index 4b92589..93ccd3b 100644 --- a/libtommath/bn_mp_read_radix.c +++ b/libtommath/bn_mp_read_radix.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_READ_RADIX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* read a string [ASCII] in a given radix */ @@ -25,7 +25,7 @@ int mp_read_radix (mp_int * a, const char *str, int radix) mp_zero(a); /* make sure the radix is ok */ - if (radix < 2 || radix > 64) { + if ((radix < 2) || (radix > 64)) { return MP_VAL; } @@ -43,12 +43,12 @@ int mp_read_radix (mp_int * a, const char *str, int radix) mp_zero (a); /* process each digit of the string */ - while (*str) { - /* if the radix < 36 the conversion is case insensitive + while (*str != '\0') { + /* if the radix <= 36 the conversion is case insensitive * this allows numbers like 1AB and 1ab to represent the same value * [e.g. in hex] */ - ch = (char) ((radix < 36) ? toupper ((unsigned char) *str) : *str); + ch = (radix <= 36) ? (char)toupper((unsigned char)*str) : *str; for (y = 0; y < 64; y++) { if (ch == mp_s_rmap[y]) { break; @@ -80,9 +80,13 @@ int mp_read_radix (mp_int * a, const char *str, int radix) } /* set the sign only if a != 0 */ - if (mp_iszero(a) != 1) { + if (mp_iszero(a) != MP_YES) { a->sign = neg; } return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_read_signed_bin.c b/libtommath/bn_mp_read_signed_bin.c index 3ee8556..a4d4760 100644 --- a/libtommath/bn_mp_read_signed_bin.c +++ b/libtommath/bn_mp_read_signed_bin.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_READ_SIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* read signed bin, big endian, first byte is 0==positive or 1==negative */ @@ -35,3 +35,7 @@ int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_read_unsigned_bin.c b/libtommath/bn_mp_read_unsigned_bin.c index caf5be0..e8e5df8 100644 --- a/libtommath/bn_mp_read_unsigned_bin.c +++ b/libtommath/bn_mp_read_unsigned_bin.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_READ_UNSIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reads a unsigned char array, assumes the msb is stored first [big endian] */ @@ -37,15 +37,19 @@ int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) } #ifndef MP_8BIT - a->dp[0] |= *b++; - a->used += 1; + a->dp[0] |= *b++; + a->used += 1; #else - a->dp[0] = (*b & MP_MASK); - a->dp[1] |= ((*b++ >> 7U) & 1); - a->used += 2; + a->dp[0] = (*b & MP_MASK); + a->dp[1] |= ((*b++ >> 7U) & 1); + a->used += 2; #endif } mp_clamp (a); return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_reduce.c b/libtommath/bn_mp_reduce.c index 4375e4e..e2c3a58 100644 --- a/libtommath/bn_mp_reduce.c +++ b/libtommath/bn_mp_reduce.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_REDUCE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,10 +12,10 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ -/* reduces x mod m, assumes 0 < x < m**2, mu is +/* reduces x mod m, assumes 0 < x < m**2, mu is * precomputed via mp_reduce_setup. * From HAC pp.604 Algorithm 14.42 */ @@ -30,10 +30,10 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) } /* q1 = x / b**(k-1) */ - mp_rshd (&q, um - 1); + mp_rshd (&q, um - 1); /* according to HAC this optimization is ok */ - if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { + if (((mp_digit) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { goto CLEANUP; } @@ -46,8 +46,8 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { goto CLEANUP; } -#else - { +#else + { res = MP_VAL; goto CLEANUP; } @@ -55,7 +55,7 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) } /* q3 = q2 / b**(k+1) */ - mp_rshd (&q, um + 1); + mp_rshd (&q, um + 1); /* x = x mod b**(k+1), quick (no division) */ if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { @@ -87,10 +87,14 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) goto CLEANUP; } } - + CLEANUP: mp_clear (&q); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_reduce_2k.c b/libtommath/bn_mp_reduce_2k.c index 428f2ff..2876a75 100644 --- a/libtommath/bn_mp_reduce_2k.c +++ b/libtommath/bn_mp_reduce_2k.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_REDUCE_2K_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reduces a modulo n where n is of the form 2**p - d */ @@ -20,38 +20,44 @@ int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) { mp_int q; int p, res; - + if ((res = mp_init(&q)) != MP_OKAY) { return res; } - - p = mp_count_bits(n); + + p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto ERR; } - + if (d != 1) { /* q = q * d */ - if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { + if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { goto ERR; } } - + /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto ERR; } - + if (mp_cmp_mag(a, n) != MP_LT) { - s_mp_sub(a, n, a); + if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { + goto ERR; + } goto top; } - + ERR: mp_clear(&q); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_reduce_2k_l.c b/libtommath/bn_mp_reduce_2k_l.c index 8e52efa..3225214 100644 --- a/libtommath/bn_mp_reduce_2k_l.c +++ b/libtommath/bn_mp_reduce_2k_l.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_REDUCE_2K_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,10 +12,10 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ -/* reduces a modulo n where n is of the form 2**p - d +/* reduces a modulo n where n is of the form 2**p - d This differs from reduce_2k since "d" can be larger than a single digit. */ @@ -23,36 +23,42 @@ int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) { mp_int q; int p, res; - + if ((res = mp_init(&q)) != MP_OKAY) { return res; } - - p = mp_count_bits(n); + + p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto ERR; } - + /* q = q * d */ - if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { + if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { goto ERR; } - + /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto ERR; } - + if (mp_cmp_mag(a, n) != MP_LT) { - s_mp_sub(a, n, a); + if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { + goto ERR; + } goto top; } - + ERR: mp_clear(&q); return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_reduce_2k_setup.c b/libtommath/bn_mp_reduce_2k_setup.c index ac043f6..545051e 100644 --- a/libtommath/bn_mp_reduce_2k_setup.c +++ b/libtommath/bn_mp_reduce_2k_setup.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_REDUCE_2K_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines the setup value */ @@ -41,3 +41,7 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_reduce_2k_setup_l.c b/libtommath/bn_mp_reduce_2k_setup_l.c index b59a1ed..59132dd 100644 --- a/libtommath/bn_mp_reduce_2k_setup_l.c +++ b/libtommath/bn_mp_reduce_2k_setup_l.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_REDUCE_2K_SETUP_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines the setup value */ @@ -38,3 +38,7 @@ ERR: return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_reduce_is_2k.c b/libtommath/bn_mp_reduce_is_2k.c index 4655fcf..784947b 100644 --- a/libtommath/bn_mp_reduce_is_2k.c +++ b/libtommath/bn_mp_reduce_is_2k.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_REDUCE_IS_2K_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines if mp_reduce_2k can be used */ @@ -46,3 +46,7 @@ int mp_reduce_is_2k(mp_int *a) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_reduce_is_2k_l.c b/libtommath/bn_mp_reduce_is_2k_l.c index 7b57865..c193f39 100644 --- a/libtommath/bn_mp_reduce_is_2k_l.c +++ b/libtommath/bn_mp_reduce_is_2k_l.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_REDUCE_IS_2K_L_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* determines if reduce_2k_l can be used */ @@ -38,3 +38,7 @@ int mp_reduce_is_2k_l(mp_int *a) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_reduce_setup.c b/libtommath/bn_mp_reduce_setup.c index d8cefd9..f97eed5 100644 --- a/libtommath/bn_mp_reduce_setup.c +++ b/libtommath/bn_mp_reduce_setup.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_REDUCE_SETUP_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* pre-calculate the value required for Barrett reduction @@ -28,3 +28,7 @@ int mp_reduce_setup (mp_int * a, mp_int * b) return mp_div (a, b, a, NULL); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_rshd.c b/libtommath/bn_mp_rshd.c index e6095b3..77b0f6c 100644 --- a/libtommath/bn_mp_rshd.c +++ b/libtommath/bn_mp_rshd.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_RSHD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shift right a certain amount of digits */ @@ -32,7 +32,7 @@ void mp_rshd (mp_int * a, int b) } { - register mp_digit *bottom, *top; + mp_digit *bottom, *top; /* shift the digits down */ @@ -66,3 +66,7 @@ void mp_rshd (mp_int * a, int b) a->used -= b; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_set.c b/libtommath/bn_mp_set.c index c32fc42..cac48ea 100644 --- a/libtommath/bn_mp_set.c +++ b/libtommath/bn_mp_set.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SET_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* set to a digit */ @@ -23,3 +23,7 @@ void mp_set (mp_int * a, mp_digit b) a->used = (a->dp[0] != 0) ? 1 : 0; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_set_int.c b/libtommath/bn_mp_set_int.c index b0fc344..5aa59d5 100644 --- a/libtommath/bn_mp_set_int.c +++ b/libtommath/bn_mp_set_int.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SET_INT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* set a 32-bit const */ @@ -42,3 +42,7 @@ int mp_set_int (mp_int * a, unsigned long b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_set_long.c b/libtommath/bn_mp_set_long.c new file mode 100644 index 0000000..281fce7 --- /dev/null +++ b/libtommath/bn_mp_set_long.c @@ -0,0 +1,24 @@ +#include <tommath_private.h> +#ifdef BN_MP_SET_LONG_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org + */ + +/* set a platform dependent unsigned long int */ +MP_SET_XLONG(mp_set_long, unsigned long) +#endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_set_long_long.c b/libtommath/bn_mp_set_long_long.c new file mode 100644 index 0000000..3c4b01a --- /dev/null +++ b/libtommath/bn_mp_set_long_long.c @@ -0,0 +1,24 @@ +#include <tommath_private.h> +#ifdef BN_MP_SET_LONG_LONG_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org + */ + +/* set a platform dependent unsigned long long int */ +MP_SET_XLONG(mp_set_long_long, unsigned long long) +#endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_shrink.c b/libtommath/bn_mp_shrink.c index bfdf93a..1ad2ede 100644 --- a/libtommath/bn_mp_shrink.c +++ b/libtommath/bn_mp_shrink.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SHRINK_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* shrink a bignum */ @@ -21,8 +21,9 @@ int mp_shrink (mp_int * a) mp_digit *tmp; int used = 1; - if(a->used > 0) + if(a->used > 0) { used = a->used; + } if (a->alloc != used) { if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) { @@ -34,3 +35,7 @@ int mp_shrink (mp_int * a) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_signed_bin_size.c b/libtommath/bn_mp_signed_bin_size.c index 8f88e76..0e760a6 100644 --- a/libtommath/bn_mp_signed_bin_size.c +++ b/libtommath/bn_mp_signed_bin_size.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SIGNED_BIN_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* get the size for an signed equivalent */ @@ -21,3 +21,7 @@ int mp_signed_bin_size (mp_int * a) return 1 + mp_unsigned_bin_size (a); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_sqr.c b/libtommath/bn_mp_sqr.c index 3938537..ad2099b 100644 --- a/libtommath/bn_mp_sqr.c +++ b/libtommath/bn_mp_sqr.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* computes b = a*a */ @@ -29,26 +29,32 @@ mp_sqr (mp_int * a, mp_int * b) } else #endif #ifdef BN_MP_KARATSUBA_SQR_C -if (a->used >= KARATSUBA_SQR_CUTOFF) { + if (a->used >= KARATSUBA_SQR_CUTOFF) { res = mp_karatsuba_sqr (a, b); } else #endif { #ifdef BN_FAST_S_MP_SQR_C /* can we use the fast comba multiplier? */ - if ((a->used * 2 + 1) < MP_WARRAY && - a->used < - (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { + if ((((a->used * 2) + 1) < MP_WARRAY) && + (a->used < + (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) { res = fast_s_mp_sqr (a, b); } else #endif + { #ifdef BN_S_MP_SQR_C res = s_mp_sqr (a, b); #else res = MP_VAL; #endif + } } b->sign = MP_ZPOS; return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_sqrmod.c b/libtommath/bn_mp_sqrmod.c index 6f90772..2f9463d 100644 --- a/libtommath/bn_mp_sqrmod.c +++ b/libtommath/bn_mp_sqrmod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SQRMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* c = a * a (mod b) */ @@ -35,3 +35,7 @@ mp_sqrmod (mp_int * a, mp_int * b, mp_int * c) return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_sqrt.c b/libtommath/bn_mp_sqrt.c index 016b8ba..7c9d25d 100644 --- a/libtommath/bn_mp_sqrt.c +++ b/libtommath/bn_mp_sqrt.c @@ -1,5 +1,4 @@ -#include <tommath.h> - +#include <tommath_private.h> #ifdef BN_MP_SQRT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -13,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ #ifndef NO_FLOATING_POINT @@ -140,3 +139,7 @@ E2: mp_clear(&t1); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_sqrtmod_prime.c b/libtommath/bn_mp_sqrtmod_prime.c new file mode 100644 index 0000000..968729e --- /dev/null +++ b/libtommath/bn_mp_sqrtmod_prime.c @@ -0,0 +1,124 @@ +#include <tommath_private.h> +#ifdef BN_MP_SQRTMOD_PRIME_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library is free for all purposes without any express + * guarantee it works. + */ + +/* Tonelli-Shanks algorithm + * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm + * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html + * + */ + +int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) +{ + int res, legendre; + mp_int t1, C, Q, S, Z, M, T, R, two; + mp_digit i; + + /* first handle the simple cases */ + if (mp_cmp_d(n, 0) == MP_EQ) { + mp_zero(ret); + return MP_OKAY; + } + if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */ + if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res; + if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */ + + if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { + return res; + } + + /* SPECIAL CASE: if prime mod 4 == 3 + * compute directly: res = n^(prime+1)/4 mod prime + * Handbook of Applied Cryptography algorithm 3.36 + */ + if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup; + if (i == 3) { + if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup; + res = MP_OKAY; + goto cleanup; + } + + /* NOW: Tonelli-Shanks algorithm */ + + /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ + if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup; + if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup; + /* Q = prime - 1 */ + mp_zero(&S); + /* S = 0 */ + while (mp_iseven(&Q) != MP_NO) { + if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup; + /* Q = Q / 2 */ + if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup; + /* S = S + 1 */ + } + + /* find a Z such that the Legendre symbol (Z|prime) == -1 */ + if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup; + /* Z = 2 */ + while(1) { + if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup; + if (legendre == -1) break; + if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup; + /* Z = Z + 1 */ + } + + if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup; + /* C = Z ^ Q mod prime */ + if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup; + /* t1 = (Q + 1) / 2 */ + if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = n ^ ((Q + 1) / 2) mod prime */ + if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup; + /* T = n ^ Q mod prime */ + if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup; + /* M = S */ + if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup; + + res = MP_VAL; + while (1) { + if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup; + i = 0; + while (1) { + if (mp_cmp_d(&t1, 1) == MP_EQ) break; + if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; + i++; + } + if (i == 0) { + if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup; + res = MP_OKAY; + goto cleanup; + } + if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup; + if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = 2 ^ (M - i - 1) */ + if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup; + /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ + if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup; + /* C = (t1 * t1) mod prime */ + if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup; + /* R = (R * t1) mod prime */ + if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup; + /* T = (T * C) mod prime */ + mp_set(&M, i); + /* M = i */ + } + +cleanup: + mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); + return res; +} + +#endif diff --git a/libtommath/bn_mp_sub.c b/libtommath/bn_mp_sub.c index 13cb43e..0d616c2 100644 --- a/libtommath/bn_mp_sub.c +++ b/libtommath/bn_mp_sub.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SUB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* high level subtraction (handles signs) */ @@ -53,3 +53,7 @@ mp_sub (mp_int * a, mp_int * b, mp_int * c) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_sub_d.c b/libtommath/bn_mp_sub_d.c index b1e4e3f..f5a932f 100644 --- a/libtommath/bn_mp_sub_d.c +++ b/libtommath/bn_mp_sub_d.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SUB_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* single digit subtraction */ @@ -23,7 +23,7 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c) int res, ix, oldused; /* grow c as required */ - if (c->alloc < a->used + 1) { + if (c->alloc < (a->used + 1)) { if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) { return res; } @@ -49,7 +49,7 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c) tmpc = c->dp; /* if a <= b simply fix the single digit */ - if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) { + if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) { if (a->used == 1) { *tmpc++ = b - *tmpa; } else { @@ -67,13 +67,13 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c) /* subtract first digit */ *tmpc = *tmpa++ - b; - mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); + mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1); *tmpc++ &= MP_MASK; /* handle rest of the digits */ for (ix = 1; ix < a->used; ix++) { *tmpc = *tmpa++ - mu; - mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1); + mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1); *tmpc++ &= MP_MASK; } } @@ -87,3 +87,7 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_submod.c b/libtommath/bn_mp_submod.c index 7461678..87e0889 100644 --- a/libtommath/bn_mp_submod.c +++ b/libtommath/bn_mp_submod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_SUBMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* d = a - b (mod c) */ @@ -36,3 +36,7 @@ mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_to_signed_bin.c b/libtommath/bn_mp_to_signed_bin.c index 7871921..e9289ea 100644 --- a/libtommath/bn_mp_to_signed_bin.c +++ b/libtommath/bn_mp_to_signed_bin.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_TO_SIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* store in signed [big endian] format */ @@ -23,7 +23,11 @@ int mp_to_signed_bin (mp_int * a, unsigned char *b) if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) { return res; } - b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1); + b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1; return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_to_signed_bin_n.c b/libtommath/bn_mp_to_signed_bin_n.c index 8da9961..d4fe6e6 100644 --- a/libtommath/bn_mp_to_signed_bin_n.c +++ b/libtommath/bn_mp_to_signed_bin_n.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_TO_SIGNED_BIN_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* store in signed [big endian] format */ @@ -25,3 +25,7 @@ int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen) return mp_to_signed_bin(a, b); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_to_unsigned_bin.c b/libtommath/bn_mp_to_unsigned_bin.c index 9496398..d3ef46f 100644 --- a/libtommath/bn_mp_to_unsigned_bin.c +++ b/libtommath/bn_mp_to_unsigned_bin.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_TO_UNSIGNED_BIN_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* store in unsigned [big endian] format */ @@ -26,7 +26,7 @@ int mp_to_unsigned_bin (mp_int * a, unsigned char *b) } x = 0; - while (mp_iszero (&t) == 0) { + while (mp_iszero (&t) == MP_NO) { #ifndef MP_8BIT b[x++] = (unsigned char) (t.dp[0] & 255); #else @@ -42,3 +42,7 @@ int mp_to_unsigned_bin (mp_int * a, unsigned char *b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_to_unsigned_bin_n.c b/libtommath/bn_mp_to_unsigned_bin_n.c index 4f2a31d..2da13cc 100644 --- a/libtommath/bn_mp_to_unsigned_bin_n.c +++ b/libtommath/bn_mp_to_unsigned_bin_n.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_TO_UNSIGNED_BIN_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* store in unsigned [big endian] format */ @@ -25,3 +25,7 @@ int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen) return mp_to_unsigned_bin(a, b); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_toom_mul.c b/libtommath/bn_mp_toom_mul.c index 9daefbd..4731f8f 100644 --- a/libtommath/bn_mp_toom_mul.c +++ b/libtommath/bn_mp_toom_mul.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_TOOM_MUL_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,31 +12,31 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ -/* multiplication using the Toom-Cook 3-way algorithm +/* multiplication using the Toom-Cook 3-way algorithm * - * Much more complicated than Karatsuba but has a lower - * asymptotic running time of O(N**1.464). This algorithm is - * only particularly useful on VERY large inputs + * Much more complicated than Karatsuba but has a lower + * asymptotic running time of O(N**1.464). This algorithm is + * only particularly useful on VERY large inputs * (we're talking 1000s of digits here...). */ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) { mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2; int res, B; - + /* init temps */ - if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, - &a0, &a1, &a2, &b0, &b1, + if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, + &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) { return res; } - + /* B */ B = MIN(a->used, b->used) / 3; - + /* a = a2 * B**2 + a1 * B + a0 */ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { goto ERR; @@ -46,13 +46,15 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) goto ERR; } mp_rshd(&a1, B); - mp_mod_2d(&a1, DIGIT_BIT * B, &a1); + if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) { + goto ERR; + } if ((res = mp_copy(a, &a2)) != MP_OKAY) { goto ERR; } mp_rshd(&a2, B*2); - + /* b = b2 * B**2 + b1 * B + b0 */ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) { goto ERR; @@ -62,23 +64,23 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) goto ERR; } mp_rshd(&b1, B); - mp_mod_2d(&b1, DIGIT_BIT * B, &b1); + (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1); if ((res = mp_copy(b, &b2)) != MP_OKAY) { goto ERR; } mp_rshd(&b2, B*2); - + /* w0 = a0*b0 */ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) { goto ERR; } - + /* w4 = a2 * b2 */ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) { goto ERR; } - + /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { goto ERR; @@ -92,7 +94,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { goto ERR; } - + if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) { goto ERR; } @@ -105,11 +107,11 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) { goto ERR; } - + if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) { goto ERR; } - + /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { goto ERR; @@ -123,7 +125,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto ERR; } - + if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) { goto ERR; } @@ -136,11 +138,11 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { goto ERR; } - + if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) { goto ERR; } - + /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { @@ -158,123 +160,127 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) { goto ERR; } - - /* now solve the matrix - + + /* now solve the matrix + 0 0 0 0 1 1 2 4 8 16 1 1 1 1 1 16 8 4 2 1 1 0 0 0 0 - - using 12 subtractions, 4 shifts, - 2 small divisions and 1 small multiplication + + using 12 subtractions, 4 shifts, + 2 small divisions and 1 small multiplication */ - - /* r1 - r4 */ - if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3 - r0 */ - if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { - goto ERR; - } - /* r1/2 */ - if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3/2 */ - if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { - goto ERR; - } - /* r2 - r0 - r4 */ - if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { - goto ERR; - } - /* r1 - r2 */ - if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3 - r2 */ - if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { - goto ERR; - } - /* r1 - 8r0 */ - if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3 - 8r4 */ - if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { - goto ERR; - } - /* 3r2 - r1 - r3 */ - if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { - goto ERR; - } - /* r1 - r2 */ - if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3 - r2 */ - if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { - goto ERR; - } - /* r1/3 */ - if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { - goto ERR; - } - /* r3/3 */ - if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { - goto ERR; - } - - /* at this point shift W[n] by B*n */ - if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { - goto ERR; - } - - if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { - goto ERR; - } - + + /* r1 - r4 */ + if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r0 */ + if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1/2 */ + if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3/2 */ + if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { + goto ERR; + } + /* r2 - r0 - r4 */ + if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { + goto ERR; + } + /* r1 - r2 */ + if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r2 */ + if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1 - 8r0 */ + if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - 8r4 */ + if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { + goto ERR; + } + /* 3r2 - r1 - r3 */ + if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { + goto ERR; + } + /* r1 - r2 */ + if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r2 */ + if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1/3 */ + if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { + goto ERR; + } + /* r3/3 */ + if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { + goto ERR; + } + + /* at this point shift W[n] by B*n */ + if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { + goto ERR; + } + ERR: - mp_clear_multi(&w0, &w1, &w2, &w3, &w4, - &a0, &a1, &a2, &b0, &b1, - &b2, &tmp1, &tmp2, NULL); - return res; -} - + mp_clear_multi(&w0, &w1, &w2, &w3, &w4, + &a0, &a1, &a2, &b0, &b1, + &b2, &tmp1, &tmp2, NULL); + return res; +} + #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_toom_sqr.c b/libtommath/bn_mp_toom_sqr.c index 9e3f79c..69b69d4 100644 --- a/libtommath/bn_mp_toom_sqr.c +++ b/libtommath/bn_mp_toom_sqr.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_TOOM_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* squaring using Toom-Cook 3-way algorithm */ @@ -39,7 +39,9 @@ mp_toom_sqr(mp_int *a, mp_int *b) goto ERR; } mp_rshd(&a1, B); - mp_mod_2d(&a1, DIGIT_BIT * B, &a1); + if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) { + goto ERR; + } if ((res = mp_copy(a, &a2)) != MP_OKAY) { goto ERR; @@ -115,108 +117,112 @@ mp_toom_sqr(mp_int *a, mp_int *b) using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication. */ - /* r1 - r4 */ - if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3 - r0 */ - if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { - goto ERR; - } - /* r1/2 */ - if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3/2 */ - if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { - goto ERR; - } - /* r2 - r0 - r4 */ - if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { - goto ERR; - } - /* r1 - r2 */ - if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3 - r2 */ - if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { - goto ERR; - } - /* r1 - 8r0 */ - if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3 - 8r4 */ - if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { - goto ERR; - } - /* 3r2 - r1 - r3 */ - if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { - goto ERR; - } - /* r1 - r2 */ - if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { - goto ERR; - } - /* r3 - r2 */ - if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { - goto ERR; - } - /* r1/3 */ - if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { - goto ERR; - } - /* r3/3 */ - if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { - goto ERR; - } - - /* at this point shift W[n] by B*n */ - if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { - goto ERR; - } - - if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { - goto ERR; - } - if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { - goto ERR; - } + /* r1 - r4 */ + if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r0 */ + if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1/2 */ + if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3/2 */ + if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) { + goto ERR; + } + /* r2 - r0 - r4 */ + if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) { + goto ERR; + } + /* r1 - r2 */ + if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r2 */ + if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1 - 8r0 */ + if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - 8r4 */ + if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) { + goto ERR; + } + /* 3r2 - r1 - r3 */ + if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) { + goto ERR; + } + /* r1 - r2 */ + if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) { + goto ERR; + } + /* r3 - r2 */ + if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) { + goto ERR; + } + /* r1/3 */ + if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) { + goto ERR; + } + /* r3/3 */ + if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { + goto ERR; + } + + /* at this point shift W[n] by B*n */ + if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { + goto ERR; + } + + if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) { + goto ERR; + } + if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) { + goto ERR; + } ERR: - mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); - return res; + mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL); + return res; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_toradix.c b/libtommath/bn_mp_toradix.c index 132743e..f04352d 100644 --- a/libtommath/bn_mp_toradix.c +++ b/libtommath/bn_mp_toradix.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_TORADIX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* stores a bignum as a ASCII string in a given radix (2..64) */ @@ -24,12 +24,12 @@ int mp_toradix (mp_int * a, char *str, int radix) char *_s = str; /* check range of the radix */ - if (radix < 2 || radix > 64) { + if ((radix < 2) || (radix > 64)) { return MP_VAL; } /* quick out if its zero */ - if (mp_iszero(a) == 1) { + if (mp_iszero(a) == MP_YES) { *str++ = '0'; *str = '\0'; return MP_OKAY; @@ -47,7 +47,7 @@ int mp_toradix (mp_int * a, char *str, int radix) } digs = 0; - while (mp_iszero (&t) == 0) { + while (mp_iszero (&t) == MP_NO) { if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { mp_clear (&t); return res; @@ -69,3 +69,7 @@ int mp_toradix (mp_int * a, char *str, int radix) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_toradix_n.c b/libtommath/bn_mp_toradix_n.c index dedce71..19b61d7 100644 --- a/libtommath/bn_mp_toradix_n.c +++ b/libtommath/bn_mp_toradix_n.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_TORADIX_N_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* stores a bignum as a ASCII string in a given radix (2..64) @@ -27,7 +27,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) char *_s = str; /* check range of the maxlen, radix */ - if (maxlen < 2 || radix < 2 || radix > 64) { + if ((maxlen < 2) || (radix < 2) || (radix > 64)) { return MP_VAL; } @@ -56,7 +56,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) } digs = 0; - while (mp_iszero (&t) == 0) { + while (mp_iszero (&t) == MP_NO) { if (--maxlen < 1) { /* no more room */ break; @@ -82,3 +82,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_unsigned_bin_size.c b/libtommath/bn_mp_unsigned_bin_size.c index 58c18fb..0312625 100644 --- a/libtommath/bn_mp_unsigned_bin_size.c +++ b/libtommath/bn_mp_unsigned_bin_size.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_UNSIGNED_BIN_SIZE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,13 +12,17 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* get the size for an unsigned equivalent */ int mp_unsigned_bin_size (mp_int * a) { int size = mp_count_bits (a); - return (size / 8 + ((size & 7) != 0 ? 1 : 0)); + return (size / 8) + (((size & 7) != 0) ? 1 : 0); } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_xor.c b/libtommath/bn_mp_xor.c index 432f42e..3c2ba9e 100644 --- a/libtommath/bn_mp_xor.c +++ b/libtommath/bn_mp_xor.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_XOR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* XOR two ints together */ @@ -45,3 +45,7 @@ mp_xor (mp_int * a, mp_int * b, mp_int * c) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_mp_zero.c b/libtommath/bn_mp_zero.c index d697a60..21365ed 100644 --- a/libtommath/bn_mp_zero.c +++ b/libtommath/bn_mp_zero.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_MP_ZERO_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* set to zero */ @@ -30,3 +30,7 @@ void mp_zero (mp_int * a) } } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_prime_tab.c b/libtommath/bn_prime_tab.c index c47c8bd..ae727a4 100644 --- a/libtommath/bn_prime_tab.c +++ b/libtommath/bn_prime_tab.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_PRIME_TAB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ const mp_digit ltm_prime_tab[] = { 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, @@ -55,3 +55,7 @@ const mp_digit ltm_prime_tab[] = { #endif }; #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_reverse.c b/libtommath/bn_reverse.c index 9d7fd29..fc6eb2d 100644 --- a/libtommath/bn_reverse.c +++ b/libtommath/bn_reverse.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_REVERSE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* reverse an array, used for radix code */ @@ -33,3 +33,7 @@ bn_reverse (unsigned char *s, int len) } } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_s_mp_add.c b/libtommath/bn_s_mp_add.c index 7527bf8..c2ad649 100644 --- a/libtommath/bn_s_mp_add.c +++ b/libtommath/bn_s_mp_add.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_S_MP_ADD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* low level addition, based on HAC pp.594, Algorithm 14.7 */ @@ -36,7 +36,7 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c) } /* init result */ - if (c->alloc < max + 1) { + if (c->alloc < (max + 1)) { if ((res = mp_grow (c, max + 1)) != MP_OKAY) { return res; } @@ -47,8 +47,8 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c) c->used = max + 1; { - register mp_digit u, *tmpa, *tmpb, *tmpc; - register int i; + mp_digit u, *tmpa, *tmpb, *tmpc; + int i; /* alias for digit pointers */ @@ -103,3 +103,7 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_s_mp_exptmod.c b/libtommath/bn_s_mp_exptmod.c index ff6bd54..63e1b1e 100644 --- a/libtommath/bn_s_mp_exptmod.c +++ b/libtommath/bn_s_mp_exptmod.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_S_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ #ifdef MP_LOW_MEM #define TAB_SIZE 32 @@ -164,12 +164,12 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ - if (mode == 0 && y == 0) { + if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ - if (mode == 1 && y == 0) { + if ((mode == 1) && (y == 0)) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { goto LBL_RES; } @@ -211,7 +211,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) } /* if bits remain then square/multiply */ - if (mode == 2 && bitcpy > 0) { + if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { @@ -246,3 +246,7 @@ LBL_M: return err; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_s_mp_mul_digs.c b/libtommath/bn_s_mp_mul_digs.c index 401f32e..bd8553d 100644 --- a/libtommath/bn_s_mp_mul_digs.c +++ b/libtommath/bn_s_mp_mul_digs.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_S_MP_MUL_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* multiplies |a| * |b| and only computes upto digs digits of result @@ -29,8 +29,8 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* can we use the fast multiplier? */ if (((digs) < MP_WARRAY) && - MIN (a->used, b->used) < - (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + (MIN (a->used, b->used) < + (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { return fast_s_mp_mul_digs (a, b, c, digs); } @@ -61,9 +61,9 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* compute the columns of the output and propagate the carry */ for (iy = 0; iy < pb; iy++) { /* compute the column as a mp_word */ - r = ((mp_word)*tmpt) + - ((mp_word)tmpx) * ((mp_word)*tmpy++) + - ((mp_word) u); + r = (mp_word)*tmpt + + ((mp_word)tmpx * (mp_word)*tmpy++) + + (mp_word)u; /* the new column is the lower part of the result */ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); @@ -72,7 +72,7 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); } /* set carry if it is placed below digs */ - if (ix + iy < digs) { + if ((ix + iy) < digs) { *tmpt = u; } } @@ -84,3 +84,7 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_s_mp_mul_high_digs.c b/libtommath/bn_s_mp_mul_high_digs.c index f4dca76..153cea44 100644 --- a/libtommath/bn_s_mp_mul_high_digs.c +++ b/libtommath/bn_s_mp_mul_high_digs.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_S_MP_MUL_HIGH_DIGS_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* multiplies |a| * |b| and does not compute the lower digs digits @@ -30,7 +30,7 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* can we use the fast multiplier? */ #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C if (((a->used + b->used + 1) < MP_WARRAY) - && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { + && (MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { return fast_s_mp_mul_high_digs (a, b, c, digs); } #endif @@ -57,9 +57,9 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) for (iy = digs - ix; iy < pb; iy++) { /* calculate the double precision result */ - r = ((mp_word)*tmpt) + - ((mp_word)tmpx) * ((mp_word)*tmpy++) + - ((mp_word) u); + r = (mp_word)*tmpt + + ((mp_word)tmpx * (mp_word)*tmpy++) + + (mp_word)u; /* get the lower part */ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); @@ -75,3 +75,7 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_s_mp_sqr.c b/libtommath/bn_s_mp_sqr.c index 464663f..68c95bc 100644 --- a/libtommath/bn_s_mp_sqr.c +++ b/libtommath/bn_s_mp_sqr.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ @@ -24,18 +24,18 @@ int s_mp_sqr (mp_int * a, mp_int * b) mp_digit u, tmpx, *tmpt; pa = a->used; - if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { + if ((res = mp_init_size (&t, (2 * pa) + 1)) != MP_OKAY) { return res; } /* default used is maximum possible size */ - t.used = 2*pa + 1; + t.used = (2 * pa) + 1; for (ix = 0; ix < pa; ix++) { /* first calculate the digit at 2*ix */ /* calculate double precision result */ - r = ((mp_word) t.dp[2*ix]) + - ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); + r = (mp_word)t.dp[2*ix] + + ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]); /* store lower part in result */ t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); @@ -47,7 +47,7 @@ int s_mp_sqr (mp_int * a, mp_int * b) tmpx = a->dp[ix]; /* alias for where to store the results */ - tmpt = t.dp + (2*ix + 1); + tmpt = t.dp + ((2 * ix) + 1); for (iy = ix + 1; iy < pa; iy++) { /* first calculate the product */ @@ -78,3 +78,7 @@ int s_mp_sqr (mp_int * a, mp_int * b) return MP_OKAY; } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bn_s_mp_sub.c b/libtommath/bn_s_mp_sub.c index 328c9e5..c0ea556 100644 --- a/libtommath/bn_s_mp_sub.c +++ b/libtommath/bn_s_mp_sub.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BN_S_MP_SUB_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ @@ -35,8 +35,8 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c) c->used = max; { - register mp_digit u, *tmpa, *tmpb, *tmpc; - register int i; + mp_digit u, *tmpa, *tmpb, *tmpc; + int i; /* alias for digit pointers */ tmpa = a->dp; @@ -47,14 +47,14 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c) u = 0; for (i = 0; i < min; i++) { /* T[i] = A[i] - B[i] - U */ - *tmpc = *tmpa++ - *tmpb++ - u; + *tmpc = (*tmpa++ - *tmpb++) - u; /* U = carry bit of T[i] * Note this saves performing an AND operation since * if a carry does occur it will propagate all the way to the * MSB. As a result a single shift is enough to get the carry */ - u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); + u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1)); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; @@ -66,7 +66,7 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c) *tmpc = *tmpa++ - u; /* U = carry bit of T[i] */ - u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); + u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1)); /* Clear carry from T[i] */ *tmpc++ &= MP_MASK; @@ -83,3 +83,7 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c) } #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/bncore.c b/libtommath/bncore.c index eb95a2e..9552714 100644 --- a/libtommath/bncore.c +++ b/libtommath/bncore.c @@ -1,4 +1,4 @@ -#include <tommath.h> +#include <tommath_private.h> #ifdef BNCORE_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * @@ -12,7 +12,7 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://libtom.org */ /* Known optimal configurations @@ -30,3 +30,7 @@ int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsub TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */ TOOM_SQR_CUTOFF = 400; #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/booker.pl b/libtommath/booker.pl deleted file mode 100644 index df8b30d..0000000 --- a/libtommath/booker.pl +++ /dev/null @@ -1,265 +0,0 @@ -#!/bin/perl -# -#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file -# -#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put -# -#EXAM,file -# -#This preprocessor will then open "file" and insert it as a verbatim copy. -# -#Tom St Denis - -#get graphics type -if (shift =~ /PDF/) { - $graph = ""; -} else { - $graph = ".ps"; -} - -open(IN,"<tommath.src") or die "Can't open source file"; -open(OUT,">tommath.tex") or die "Can't open destination file"; - -print "Scanning for sections\n"; -$chapter = $section = $subsection = 0; -$x = 0; -while (<IN>) { - print "."; - if (!(++$x % 80)) { print "\n"; } - #update the headings - if (~($_ =~ /\*/)) { - if ($_ =~ /\\chapter{.+}/) { - ++$chapter; - $section = $subsection = 0; - } elsif ($_ =~ /\\section{.+}/) { - ++$section; - $subsection = 0; - } elsif ($_ =~ /\\subsection{.+}/) { - ++$subsection; - } - } - - if ($_ =~ m/MARK/) { - @m = split(",",$_); - chomp(@m[1]); - $index1{@m[1]} = $chapter; - $index2{@m[1]} = $section; - $index3{@m[1]} = $subsection; - } -} -close(IN); - -open(IN,"<tommath.src") or die "Can't open source file"; -$readline = $wroteline = 0; -$srcline = 0; - -while (<IN>) { - ++$readline; - ++$srcline; - - if ($_ =~ m/MARK/) { - } elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) { - if ($_ =~ m/EXAM/) { - $skipheader = 1; - } else { - $skipheader = 0; - } - - # EXAM,file - chomp($_); - @m = split(",",$_); - open(SRC,"<$m[1]") or die "Error:$srcline:Can't open source file $m[1]"; - - print "$srcline:Inserting $m[1]:"; - - $line = 0; - $tmp = $m[1]; - $tmp =~ s/_/"\\_"/ge; - print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n"; - $wroteline += 5; - - if ($skipheader == 1) { - # scan till next end of comment, e.g. skip license - while (<SRC>) { - $text[$line++] = $_; - last if ($_ =~ /math\.libtomcrypt\.org/); - } - <SRC>; - } - - $inline = 0; - while (<SRC>) { - next if ($_ =~ /\$Source/); - next if ($_ =~ /\$Revision/); - next if ($_ =~ /\$Date/); - $text[$line++] = $_; - ++$inline; - chomp($_); - $_ =~ s/\t/" "/ge; - $_ =~ s/{/"^{"/ge; - $_ =~ s/}/"^}"/ge; - $_ =~ s/\\/'\symbol{92}'/ge; - $_ =~ s/\^/"\\"/ge; - - printf OUT ("%03d ", $line); - for ($x = 0; $x < length($_); $x++) { - print OUT chr(vec($_, $x, 8)); - if ($x == 75) { - print OUT "\n "; - ++$wroteline; - } - } - print OUT "\n"; - ++$wroteline; - } - $totlines = $line; - print OUT "\\end{alltt}\n\\end{small}\n"; - close(SRC); - print "$inline lines\n"; - $wroteline += 2; - } elsif ($_ =~ m/@\d+,.+@/) { - # line contains [number,text] - # e.g. @14,for (ix = 0)@ - $txt = $_; - while ($txt =~ m/@\d+,.+@/) { - @m = split("@",$txt); # splits into text, one, two - @parms = split(",",$m[1]); # splits one,two into two elements - - # now search from $parms[0] down for $parms[1] - $found1 = 0; - $found2 = 0; - for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) { - if ($text[$i] =~ m/\Q$parms[1]\E/) { - $foundline1 = $i + 1; - $found1 = 1; - } - } - - # now search backwards - for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) { - if ($text[$i] =~ m/\Q$parms[1]\E/) { - $foundline2 = $i + 1; - $found2 = 1; - } - } - - # now use the closest match or the first if tied - if ($found1 == 1 && $found2 == 0) { - $found = 1; - $foundline = $foundline1; - } elsif ($found1 == 0 && $found2 == 1) { - $found = 1; - $foundline = $foundline2; - } elsif ($found1 == 1 && $found2 == 1) { - $found = 1; - if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) { - $foundline = $foundline1; - } else { - $foundline = $foundline2; - } - } else { - $found = 0; - } - - # if found replace - if ($found == 1) { - $delta = $parms[0] - $foundline; - print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n"; - $_ =~ s/@\Q$m[1]\E@/$foundline/; - } else { - print "ERROR: The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n"; - } - - # remake the rest of the line - $cnt = @m; - $txt = ""; - for ($i = 2; $i < $cnt; $i++) { - $txt = $txt . $m[$i] . "@"; - } - } - print OUT $_; - ++$wroteline; - } elsif ($_ =~ /~.+~/) { - # line contains a ~text~ pair used to refer to indexing :-) - $txt = $_; - while ($txt =~ /~.+~/) { - @m = split("~", $txt); - - # word is the second position - $word = @m[1]; - $a = $index1{$word}; - $b = $index2{$word}; - $c = $index3{$word}; - - # if chapter (a) is zero it wasn't found - if ($a == 0) { - print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n"; - } else { - # format the tag as x, x.y or x.y.z depending on the values - $str = $a; - $str = $str . ".$b" if ($b != 0); - $str = $str . ".$c" if ($c != 0); - - if ($b == 0 && $c == 0) { - # its a chapter - if ($a <= 10) { - if ($a == 1) { - $str = "chapter one"; - } elsif ($a == 2) { - $str = "chapter two"; - } elsif ($a == 3) { - $str = "chapter three"; - } elsif ($a == 4) { - $str = "chapter four"; - } elsif ($a == 5) { - $str = "chapter five"; - } elsif ($a == 6) { - $str = "chapter six"; - } elsif ($a == 7) { - $str = "chapter seven"; - } elsif ($a == 8) { - $str = "chapter eight"; - } elsif ($a == 9) { - $str = "chapter nine"; - } elsif ($a == 10) { - $str = "chapter ten"; - } - } else { - $str = "chapter " . $str; - } - } else { - $str = "section " . $str if ($b != 0 && $c == 0); - $str = "sub-section " . $str if ($b != 0 && $c != 0); - } - - #substitute - $_ =~ s/~\Q$word\E~/$str/; - - print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n"; - } - - # remake rest of the line - $cnt = @m; - $txt = ""; - for ($i = 2; $i < $cnt; $i++) { - $txt = $txt . $m[$i] . "~"; - } - } - print OUT $_; - ++$wroteline; - } elsif ($_ =~ m/FIGU/) { - # FIGU,file,caption - chomp($_); - @m = split(",", $_); - print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n"; - print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n"; - $wroteline += 4; - } else { - print OUT $_; - ++$wroteline; - } -} -print "Read $readline lines, wrote $wroteline lines\n"; - -close (OUT); -close (IN); diff --git a/libtommath/callgraph.txt b/libtommath/callgraph.txt index 2efcf24..e98a910 100644 --- a/libtommath/callgraph.txt +++ b/libtommath/callgraph.txt @@ -1,249 +1,140 @@ -BN_PRIME_TAB_C - - -BN_MP_SQRT_C -+--->BN_MP_N_ROOT_C -| +--->BN_MP_INIT_C -| +--->BN_MP_SET_C -| | +--->BN_MP_ZERO_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_EXPT_D_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_SQR_C -| | | +--->BN_MP_TOOM_SQR_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_MUL_2_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_3_C -| | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_KARATSUBA_SQR_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_FAST_S_MP_SQR_C +BN_MP_KARATSUBA_MUL_C ++--->BN_MP_MUL_C +| +--->BN_MP_TOOM_MUL_C +| | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SQR_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_MUL_C -| | | +--->BN_MP_TOOM_MUL_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_MUL_2_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_3_C -| | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_KARATSUBA_MUL_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C -| | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_MUL_DIGS_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| +--->BN_MP_MUL_C -| | +--->BN_MP_TOOM_MUL_C -| | | +--->BN_MP_INIT_MULTI_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MUL_2_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_2D_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_3_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLEAR_MULTI_C -| | | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_KARATSUBA_MUL_C -| | | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_MP_DIV_3_C | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C +| | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +| +--->BN_FAST_S_MP_MUL_DIGS_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_INIT_SIZE_C +| +--->BN_MP_INIT_C ++--->BN_MP_CLAMP_C ++--->BN_S_MP_ADD_C +| +--->BN_MP_GROW_C ++--->BN_MP_ADD_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C ++--->BN_MP_LSHD_C +| +--->BN_MP_GROW_C +| +--->BN_MP_RSHD_C +| | +--->BN_MP_ZERO_C ++--->BN_MP_CLEAR_C + + +BN_MP_ZERO_C + + +BN_MP_SET_C ++--->BN_MP_ZERO_C + + +BN_MP_TO_SIGNED_BIN_C ++--->BN_MP_TO_UNSIGNED_BIN_C +| +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_MUL_D_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_C + + +BN_S_MP_SUB_C ++--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C + + +BN_MP_JACOBI_C ++--->BN_MP_CMP_D_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_CNT_LSB_C ++--->BN_MP_DIV_2D_C +| +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_MOD_2D_C | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_RSHD_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C ++--->BN_MP_MOD_C | +--->BN_MP_DIV_C | | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_ZERO_C | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_SET_C | | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_ABS_C | | +--->BN_MP_MUL_2D_C @@ -252,6 +143,13 @@ BN_MP_SQRT_C | | | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C @@ -259,42 +157,481 @@ BN_MP_SQRT_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C ++--->BN_MP_CLEAR_C + + +BN_MP_INIT_COPY_C ++--->BN_MP_INIT_SIZE_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C + + +BN_MP_ABS_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C + + +BN_MP_RADIX_SMAP_C + + +BN_MP_EXCH_C + + +BN_MP_EXPORT_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_DIV_2D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_RSHD_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C + + +BN_MP_TO_UNSIGNED_BIN_N_C ++--->BN_MP_UNSIGNED_BIN_SIZE_C +| +--->BN_MP_COUNT_BITS_C ++--->BN_MP_TO_UNSIGNED_BIN_C +| +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_C + + +BN_MP_TO_SIGNED_BIN_N_C ++--->BN_MP_SIGNED_BIN_SIZE_C +| +--->BN_MP_UNSIGNED_BIN_SIZE_C +| | +--->BN_MP_COUNT_BITS_C ++--->BN_MP_TO_SIGNED_BIN_C +| +--->BN_MP_TO_UNSIGNED_BIN_C +| | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C | | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C + + +BN_MP_LCM_C ++--->BN_MP_INIT_MULTI_C +| +--->BN_MP_INIT_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_GCD_C +| +--->BN_MP_ABS_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| +--->BN_MP_CNT_LSB_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_MP_EXCH_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_MUL_2D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_CMP_MAG_C ++--->BN_MP_DIV_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_SET_C +| +--->BN_MP_COUNT_BITS_C +| +--->BN_MP_ABS_C +| +--->BN_MP_MUL_2D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_C +| +--->BN_MP_SUB_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_INIT_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_INIT_C +| +--->BN_MP_INIT_COPY_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| +--->BN_MP_RSHD_C +| +--->BN_MP_MUL_D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_MUL_C +| +--->BN_MP_TOOM_MUL_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_CLEAR_MULTI_C | | | +--->BN_MP_CLEAR_C +| +--->BN_MP_KARATSUBA_MUL_C | | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_CLEAR_C +| +--->BN_FAST_S_MP_MUL_DIGS_C +| | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -| +--->BN_MP_CMP_C ++--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_CLEAR_C + + +BN_MP_CMP_MAG_C + + +BN_MP_PRIME_RABIN_MILLER_TRIALS_C + + +BN_MP_MUL_2D_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_GROW_C ++--->BN_MP_LSHD_C +| +--->BN_MP_RSHD_C +| | +--->BN_MP_ZERO_C ++--->BN_MP_CLAMP_C + + +BN_MP_MUL_C ++--->BN_MP_TOOM_MUL_C +| +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_INIT_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_RSHD_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_MUL_2_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CMP_MAG_C -| +--->BN_MP_SUB_D_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_SUB_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_DIV_2_C | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_MUL_2D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_MUL_D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_DIV_3_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_KARATSUBA_MUL_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_CLAMP_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ADD_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| +--->BN_MP_CLEAR_C ++--->BN_FAST_S_MP_MUL_DIGS_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_S_MP_MUL_DIGS_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_C + + +BN_MP_SQR_C ++--->BN_MP_TOOM_SQR_C +| +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_INIT_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_RSHD_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_MUL_2_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_SUB_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C +| +--->BN_MP_DIV_2_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_MUL_2D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_MUL_D_C +| | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C +| +--->BN_MP_DIV_3_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_KARATSUBA_SQR_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_CLAMP_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| +--->BN_MP_ADD_C +| | +--->BN_MP_CMP_MAG_C +| +--->BN_MP_CLEAR_C ++--->BN_FAST_S_MP_SQR_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_S_MP_SQR_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_CLAMP_C | +--->BN_MP_EXCH_C | +--->BN_MP_CLEAR_C + + +BN_MP_INIT_C + + +BN_MP_2EXPT_C +--->BN_MP_ZERO_C ++--->BN_MP_GROW_C + + +BN_MP_SIGNED_BIN_SIZE_C ++--->BN_MP_UNSIGNED_BIN_SIZE_C +| +--->BN_MP_COUNT_BITS_C + + +BN_MP_OR_C +--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C -+--->BN_MP_RSHD_C ++--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C + + +BN_MP_MOD_C ++--->BN_MP_INIT_C +--->BN_MP_DIV_C | +--->BN_MP_CMP_MAG_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C +| +--->BN_MP_ZERO_C | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_CLEAR_C | +--->BN_MP_SET_C @@ -303,6 +640,7 @@ BN_MP_SQRT_C | +--->BN_MP_MUL_2D_C | | +--->BN_MP_GROW_C | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C | +--->BN_MP_CMP_C | +--->BN_MP_SUB_C @@ -323,19 +661,25 @@ BN_MP_SQRT_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C | +--->BN_MP_EXCH_C | +--->BN_MP_CLEAR_MULTI_C | | +--->BN_MP_CLEAR_C | +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_INIT_COPY_C | +--->BN_MP_LSHD_C | | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| +--->BN_MP_RSHD_C | +--->BN_MP_MUL_D_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C | +--->BN_MP_CLAMP_C | +--->BN_MP_CLEAR_C ++--->BN_MP_CLEAR_C ++--->BN_MP_EXCH_C +--->BN_MP_ADD_C | +--->BN_S_MP_ADD_C | | +--->BN_MP_GROW_C @@ -344,134 +688,933 @@ BN_MP_SQRT_C | +--->BN_S_MP_SUB_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_DIV_2_C + + +BN_MP_DIV_C ++--->BN_MP_CMP_MAG_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_ZERO_C ++--->BN_MP_INIT_MULTI_C +| +--->BN_MP_INIT_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_SET_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_ABS_C ++--->BN_MP_MUL_2D_C | +--->BN_MP_GROW_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_RSHD_C | +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_MAG_C ++--->BN_MP_CMP_C ++--->BN_MP_SUB_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_ADD_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_DIV_2D_C +| +--->BN_MP_INIT_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_RSHD_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_INIT_SIZE_C +| +--->BN_MP_INIT_C ++--->BN_MP_INIT_C ++--->BN_MP_INIT_COPY_C ++--->BN_MP_LSHD_C +| +--->BN_MP_GROW_C +| +--->BN_MP_RSHD_C ++--->BN_MP_RSHD_C ++--->BN_MP_MUL_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLAMP_C +--->BN_MP_CLEAR_C -BN_MP_CMP_D_C - - -BN_MP_EXCH_C +BN_MP_INIT_SET_C ++--->BN_MP_INIT_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C -BN_MP_IS_SQUARE_C -+--->BN_MP_MOD_D_C -| +--->BN_MP_DIV_D_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_INIT_C -| | | +--->BN_MP_MOD_2D_C +BN_MP_PRIME_IS_PRIME_C ++--->BN_MP_CMP_D_C ++--->BN_MP_PRIME_IS_DIVISIBLE_C +| +--->BN_MP_MOD_D_C +| | +--->BN_MP_DIV_D_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_INIT_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_INIT_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_INIT_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_C ++--->BN_MP_INIT_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C ++--->BN_MP_PRIME_MILLER_RABIN_C +| +--->BN_MP_INIT_COPY_C | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -+--->BN_MP_INIT_SET_INT_C -| +--->BN_MP_INIT_C -| +--->BN_MP_SET_INT_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C +| | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C +| +--->BN_MP_SUB_D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_D_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_MOD_C -| +--->BN_MP_INIT_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C +| +--->BN_MP_CNT_LSB_C +| +--->BN_MP_DIV_2D_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_EXPTMOD_C +| | +--->BN_MP_INVMOD_C +| | | +--->BN_FAST_MP_INVMOD_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_MOD_C +| | | | | +--->BN_MP_DIV_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_COUNT_BITS_C +| | | | | | +--->BN_MP_ABS_C +| | | | | | +--->BN_MP_MUL_2D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_LSHD_C +| | | | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_C +| | | | | | +--->BN_MP_SUB_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_MUL_D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_INVMOD_SLOW_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_MOD_C +| | | | | +--->BN_MP_DIV_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_MP_COPY_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_COUNT_BITS_C +| | | | | | +--->BN_MP_ABS_C +| | | | | | +--->BN_MP_MUL_2D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_LSHD_C +| | | | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_C +| | | | | | +--->BN_MP_SUB_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_MUL_D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_CLEAR_C | | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_REDUCE_IS_2K_L_C +| | +--->BN_S_MP_EXPTMOD_C +| | | +--->BN_MP_COUNT_BITS_C +| | | +--->BN_MP_REDUCE_SETUP_C +| | | | +--->BN_MP_2EXPT_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_DIV_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_C +| | | | | +--->BN_MP_SUB_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_MUL_D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_REDUCE_C | | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MUL_C +| | | | | +--->BN_MP_TOOM_MUL_C +| | | | | | +--->BN_MP_INIT_MULTI_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | | +--->BN_MP_COPY_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_COPY_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_MUL_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_SUB_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_2D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_3_C +| | | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_KARATSUBA_MUL_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_S_MP_MUL_HIGH_DIGS_C +| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_REDUCE_2K_SETUP_L_C +| | | | +--->BN_MP_2EXPT_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_REDUCE_2K_L_C +| | | | +--->BN_MP_MUL_C +| | | | | +--->BN_MP_TOOM_MUL_C +| | | | | | +--->BN_MP_INIT_MULTI_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | | +--->BN_MP_COPY_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_COPY_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_MUL_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_SUB_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_2D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_3_C +| | | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_KARATSUBA_MUL_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MOD_C +| | | | +--->BN_MP_DIV_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_C +| | | | | +--->BN_MP_SUB_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_MUL_D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_SQR_C +| | | | +--->BN_MP_TOOM_SQR_C +| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_MUL_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_SUB_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_3_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_KARATSUBA_SQR_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_FAST_S_MP_SQR_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SQR_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_MUL_C +| | | | +--->BN_MP_TOOM_MUL_C +| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_MUL_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_SUB_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_3_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_KARATSUBA_MUL_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_DR_IS_MODULUS_C +| | +--->BN_MP_REDUCE_IS_2K_C +| | | +--->BN_MP_REDUCE_2K_C +| | | | +--->BN_MP_COUNT_BITS_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_EXPTMOD_FAST_C +| | | +--->BN_MP_COUNT_BITS_C +| | | +--->BN_MP_MONTGOMERY_SETUP_C +| | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_MONTGOMERY_REDUCE_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_DR_SETUP_C +| | | +--->BN_MP_DR_REDUCE_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_GET_INT_C -+--->BN_MP_SQRT_C -| +--->BN_MP_N_ROOT_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_SET_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_EXPT_D_C -| | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_REDUCE_2K_SETUP_C +| | | | +--->BN_MP_2EXPT_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_REDUCE_2K_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C +| | | | +--->BN_MP_2EXPT_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MULMOD_C +| | | | +--->BN_MP_MUL_C +| | | | | +--->BN_MP_TOOM_MUL_C +| | | | | | +--->BN_MP_INIT_MULTI_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | | +--->BN_MP_COPY_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_COPY_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_MUL_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_SUB_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_2D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_3_C +| | | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_KARATSUBA_MUL_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_MOD_C +| | | | | +--->BN_MP_DIV_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_MP_COPY_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_INIT_MULTI_C +| | | | | | +--->BN_MP_MUL_2D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_LSHD_C +| | | | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_C +| | | | | | +--->BN_MP_SUB_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_MUL_D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MOD_C +| | | | +--->BN_MP_DIV_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_C +| | | | | +--->BN_MP_SUB_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_MUL_D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_SQR_C | | | | +--->BN_MP_TOOM_SQR_C | | | | | +--->BN_MP_INIT_MULTI_C -| | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_MOD_2D_C | | | | | | +--->BN_MP_ZERO_C | | | | | | +--->BN_MP_CLAMP_C @@ -509,43 +1652,327 @@ BN_MP_IS_SQUARE_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_EXCH_C -| | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_KARATSUBA_SQR_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_FAST_S_MP_SQR_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SQR_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_MUL_C +| | | | +--->BN_MP_TOOM_MUL_C +| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_MUL_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_SUB_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_2D_C | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_3_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_KARATSUBA_MUL_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_EXCH_C +| +--->BN_MP_CMP_C +| | +--->BN_MP_CMP_MAG_C +| +--->BN_MP_SQRMOD_C +| | +--->BN_MP_SQR_C +| | | +--->BN_MP_TOOM_SQR_C +| | | | +--->BN_MP_INIT_MULTI_C | | | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_FAST_S_MP_SQR_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_SQR_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_KARATSUBA_SQR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_FAST_S_MP_SQR_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SQR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_MOD_C +| | | +--->BN_MP_DIV_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_COUNT_BITS_C +| | | | +--->BN_MP_ABS_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_CLEAR_C + + +BN_FAST_S_MP_SQR_C ++--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C + + +BN_MP_UNSIGNED_BIN_SIZE_C ++--->BN_MP_COUNT_BITS_C + + +BN_MP_INIT_SIZE_C ++--->BN_MP_INIT_C + + +BN_FAST_S_MP_MUL_DIGS_C ++--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C + + +BN_MP_REDUCE_IS_2K_L_C + + +BN_MP_REDUCE_IS_2K_C ++--->BN_MP_REDUCE_2K_C +| +--->BN_MP_INIT_C +| +--->BN_MP_COUNT_BITS_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_MUL_D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_COUNT_BITS_C + + +BN_MP_SUB_C ++--->BN_S_MP_ADD_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_MAG_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C + + +BN_MP_REDUCE_2K_SETUP_C ++--->BN_MP_INIT_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_2EXPT_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_GROW_C ++--->BN_MP_CLEAR_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C + + +BN_MP_DIV_2D_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_ZERO_C ++--->BN_MP_INIT_C ++--->BN_MP_MOD_2D_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLEAR_C ++--->BN_MP_RSHD_C ++--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C + + +BN_MP_DR_REDUCE_C ++--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C ++--->BN_MP_CMP_MAG_C ++--->BN_S_MP_SUB_C + + +BN_MP_SQRT_C ++--->BN_MP_N_ROOT_C +| +--->BN_MP_N_ROOT_EX_C +| | +--->BN_MP_INIT_C +| | +--->BN_MP_SET_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_EXPT_D_EX_C +| | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_MUL_C | | | | +--->BN_MP_TOOM_MUL_C | | | | | +--->BN_MP_INIT_MULTI_C +| | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_MOD_2D_C | | | | | | +--->BN_MP_ZERO_C | | | | | | +--->BN_MP_CLAMP_C @@ -583,32 +2010,96 @@ BN_MP_IS_SQUARE_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_SQR_C +| | | | +--->BN_MP_TOOM_SQR_C +| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_MUL_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_SUB_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_3_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_KARATSUBA_SQR_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C | | | | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_FAST_S_MP_SQR_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_MUL_DIGS_C +| | | | +--->BN_S_MP_SQR_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_EXCH_C @@ -661,18 +2152,14 @@ BN_MP_IS_SQUARE_C | | | +--->BN_MP_KARATSUBA_MUL_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CMP_MAG_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -744,74 +2231,78 @@ BN_MP_IS_SQUARE_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_COUNT_BITS_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_INIT_SIZE_C ++--->BN_MP_ZERO_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_RSHD_C ++--->BN_MP_DIV_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_SET_C +| +--->BN_MP_COUNT_BITS_C +| +--->BN_MP_ABS_C +| +--->BN_MP_MUL_2D_C +| | +--->BN_MP_GROW_C | | +--->BN_MP_LSHD_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_C +| +--->BN_MP_SUB_C +| | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C | +--->BN_MP_ADD_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_DIV_2_C -| | +--->BN_MP_GROW_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_EXCH_C | +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_MUL_D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLAMP_C | +--->BN_MP_CLEAR_C -+--->BN_MP_SQR_C -| +--->BN_MP_TOOM_SQR_C ++--->BN_MP_ADD_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_DIV_2_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_MAG_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C + + +BN_MP_MULMOD_C ++--->BN_MP_INIT_C ++--->BN_MP_MUL_C +| +--->BN_MP_TOOM_MUL_C | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_INIT_C | | | +--->BN_MP_CLEAR_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_ZERO_C @@ -852,7 +2343,6 @@ BN_MP_IS_SQUARE_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_DIV_3_C | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_C @@ -860,498 +2350,81 @@ BN_MP_IS_SQUARE_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_CLEAR_MULTI_C | | | +--->BN_MP_CLEAR_C -| +--->BN_MP_KARATSUBA_SQR_C +| +--->BN_MP_KARATSUBA_MUL_C | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | +--->BN_S_MP_ADD_C +| | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_ADD_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C | | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_SQR_C +| +--->BN_FAST_S_MP_MUL_DIGS_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_SQR_C +| +--->BN_S_MP_MUL_DIGS_C | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -+--->BN_MP_CMP_MAG_C +--->BN_MP_CLEAR_C - - -BN_MP_NEG_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C - - -BN_MP_EXPTMOD_C -+--->BN_MP_INIT_C -+--->BN_MP_INVMOD_C -| +--->BN_FAST_MP_INVMOD_C -| | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_CLEAR_C ++--->BN_MP_MOD_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_MOD_C -| | | +--->BN_MP_DIV_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_SET_C -| | | | +--->BN_MP_COUNT_BITS_C -| | | | +--->BN_MP_ABS_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2D_C -| | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CLEAR_C -| | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_COPY_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_SET_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_CMP_D_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| +--->BN_MP_INVMOD_SLOW_C +| | +--->BN_MP_ZERO_C | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_MOD_C -| | | +--->BN_MP_DIV_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_SET_C -| | | | +--->BN_MP_COUNT_BITS_C -| | | | +--->BN_MP_ABS_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2D_C -| | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CLEAR_C -| | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_COPY_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C | | +--->BN_MP_SET_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_CMP_D_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_C -+--->BN_MP_ABS_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_CLEAR_MULTI_C -+--->BN_MP_REDUCE_IS_2K_L_C -+--->BN_S_MP_EXPTMOD_C -| +--->BN_MP_COUNT_BITS_C -| +--->BN_MP_REDUCE_SETUP_C -| | +--->BN_MP_2EXPT_C -| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_DIV_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_SET_C -| | | +--->BN_MP_MUL_2D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2D_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_COPY_C | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_MUL_D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_REDUCE_C -| | +--->BN_MP_INIT_COPY_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_C -| | | +--->BN_MP_TOOM_MUL_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_COPY_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_MUL_2_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_3_C -| | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_KARATSUBA_MUL_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_MUL_DIGS_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | +--->BN_S_MP_MUL_HIGH_DIGS_C -| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_MUL_DIGS_C -| | | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_CMP_C | | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_D_C -| | +--->BN_MP_SET_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_REDUCE_2K_SETUP_L_C -| | +--->BN_MP_2EXPT_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_GROW_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_REDUCE_2K_L_C | | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| | +--->BN_MP_MUL_C -| | | +--->BN_MP_TOOM_MUL_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_COPY_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_MUL_2_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_3_C -| | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_KARATSUBA_MUL_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C -| | | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_MUL_DIGS_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_ADD_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C @@ -1359,14 +2432,23 @@ BN_MP_EXPTMOD_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C + + +BN_MP_INVMOD_C ++--->BN_FAST_MP_INVMOD_C +| +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_INIT_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C | +--->BN_MP_MOD_C +| | +--->BN_MP_INIT_C | | +--->BN_MP_DIV_C | | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_SET_C +| | | +--->BN_MP_COUNT_BITS_C +| | | +--->BN_MP_ABS_C | | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C @@ -1390,10 +2472,13 @@ BN_MP_EXPTMOD_C | | | +--->BN_MP_DIV_2D_C | | | | +--->BN_MP_MOD_2D_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_INIT_COPY_C | | | +--->BN_MP_LSHD_C @@ -1404,6 +2489,9 @@ BN_MP_EXPTMOD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C @@ -1412,164 +2500,12 @@ BN_MP_EXPTMOD_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_SQR_C -| | +--->BN_MP_TOOM_SQR_C -| | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MUL_2_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_2D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_3_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_KARATSUBA_SQR_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | +--->BN_FAST_S_MP_SQR_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SQR_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| +--->BN_MP_MUL_C -| | +--->BN_MP_TOOM_MUL_C -| | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MUL_2_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_2D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_3_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_KARATSUBA_MUL_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_MUL_DIGS_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C | +--->BN_MP_SET_C | | +--->BN_MP_ZERO_C -| +--->BN_MP_EXCH_C -+--->BN_MP_DR_IS_MODULUS_C -+--->BN_MP_REDUCE_IS_2K_C -| +--->BN_MP_REDUCE_2K_C -| | +--->BN_MP_COUNT_BITS_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_DIV_2_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_SUB_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C @@ -1577,50 +2513,10 @@ BN_MP_EXPTMOD_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_COUNT_BITS_C -+--->BN_MP_EXPTMOD_FAST_C -| +--->BN_MP_COUNT_BITS_C -| +--->BN_MP_MONTGOMERY_SETUP_C -| +--->BN_FAST_MP_MONTGOMERY_REDUCE_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| +--->BN_MP_MONTGOMERY_REDUCE_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| +--->BN_MP_DR_SETUP_C -| +--->BN_MP_DR_REDUCE_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_C | | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| +--->BN_MP_REDUCE_2K_SETUP_C -| | +--->BN_MP_2EXPT_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_GROW_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_REDUCE_2K_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_D_C +| +--->BN_MP_ADD_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C @@ -1628,154 +2524,23 @@ BN_MP_EXPTMOD_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C -| | +--->BN_MP_2EXPT_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_SET_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_MULMOD_C -| | +--->BN_MP_MUL_C -| | | +--->BN_MP_TOOM_MUL_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_COPY_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_MUL_2_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_3_C -| | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_KARATSUBA_MUL_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C -| | | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_MUL_DIGS_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | +--->BN_MP_MOD_C -| | | +--->BN_MP_DIV_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | +--->BN_MP_SET_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2D_C -| | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_COPY_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| +--->BN_MP_SET_C -| | +--->BN_MP_ZERO_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_INVMOD_SLOW_C +| +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_INIT_C +| | +--->BN_MP_CLEAR_C | +--->BN_MP_MOD_C +| | +--->BN_MP_INIT_C | | +--->BN_MP_DIV_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_COUNT_BITS_C +| | | +--->BN_MP_ABS_C | | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C @@ -1799,10 +2564,13 @@ BN_MP_EXPTMOD_C | | | +--->BN_MP_DIV_2D_C | | | | +--->BN_MP_MOD_2D_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_INIT_COPY_C | | | +--->BN_MP_LSHD_C @@ -1813,6 +2581,9 @@ BN_MP_EXPTMOD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C @@ -1821,169 +2592,60 @@ BN_MP_EXPTMOD_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C -| +--->BN_MP_SQR_C -| | +--->BN_MP_TOOM_SQR_C -| | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MUL_2_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_2D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_3_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_KARATSUBA_SQR_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | +--->BN_FAST_S_MP_SQR_C +| +--->BN_MP_SET_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_DIV_2_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SQR_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| +--->BN_MP_MUL_C -| | +--->BN_MP_TOOM_MUL_C -| | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MUL_2_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_2D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_3_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_KARATSUBA_MUL_C -| | | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | +--->BN_FAST_S_MP_MUL_DIGS_C +| +--->BN_MP_SUB_C +| | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_MUL_DIGS_C -| | | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C +| +--->BN_MP_CMP_C +| | +--->BN_MP_CMP_MAG_C +| +--->BN_MP_CMP_D_C +| +--->BN_MP_CMP_MAG_C | +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_CLEAR_C -BN_MP_OR_C +BN_MP_PRIME_MILLER_RABIN_C ++--->BN_MP_CMP_D_C +--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C - - -BN_MP_ZERO_C - - -BN_MP_GROW_C - - -BN_MP_COUNT_BITS_C - - -BN_MP_PRIME_FERMAT_C -+--->BN_MP_CMP_D_C -+--->BN_MP_INIT_C ++--->BN_MP_SUB_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_ADD_D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CNT_LSB_C ++--->BN_MP_DIV_2D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_RSHD_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +--->BN_MP_EXPTMOD_C | +--->BN_MP_INVMOD_C | | +--->BN_FAST_MP_INVMOD_C @@ -2018,18 +2680,10 @@ BN_MP_PRIME_FERMAT_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_DIV_2D_C -| | | | | | +--->BN_MP_MOD_2D_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CLEAR_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_CLEAR_MULTI_C | | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_INIT_COPY_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -2040,6 +2694,7 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -2048,7 +2703,6 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_SET_C | | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_DIV_2_C @@ -2107,18 +2761,10 @@ BN_MP_PRIME_FERMAT_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_DIV_2D_C -| | | | | | +--->BN_MP_MOD_2D_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CLEAR_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_CLEAR_MULTI_C | | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_INIT_COPY_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -2129,6 +2775,7 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -2137,7 +2784,6 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_SET_C @@ -2206,15 +2852,8 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2D_C -| | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_COPY_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -2224,9 +2863,6 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_REDUCE_C -| | | +--->BN_MP_INIT_COPY_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MUL_C @@ -2276,18 +2912,14 @@ BN_MP_PRIME_FERMAT_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | +--->BN_FAST_S_MP_MUL_DIGS_C @@ -2352,15 +2984,6 @@ BN_MP_PRIME_FERMAT_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_REDUCE_2K_L_C -| | | +--->BN_MP_DIV_2D_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_MUL_C | | | | +--->BN_MP_TOOM_MUL_C | | | | | +--->BN_MP_INIT_MULTI_C @@ -2410,18 +3033,14 @@ BN_MP_PRIME_FERMAT_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -2468,15 +3087,8 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2D_C -| | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_COPY_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -2485,6 +3097,7 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C | | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C @@ -2493,7 +3106,6 @@ BN_MP_PRIME_FERMAT_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_SQR_C @@ -2541,22 +3153,16 @@ BN_MP_PRIME_FERMAT_C | | | +--->BN_MP_KARATSUBA_SQR_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C | | | | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | +--->BN_FAST_S_MP_SQR_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -2609,18 +3215,14 @@ BN_MP_PRIME_FERMAT_C | | | +--->BN_MP_KARATSUBA_MUL_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CMP_MAG_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -2639,15 +3241,6 @@ BN_MP_PRIME_FERMAT_C | +--->BN_MP_REDUCE_IS_2K_C | | +--->BN_MP_REDUCE_2K_C | | | +--->BN_MP_COUNT_BITS_C -| | | +--->BN_MP_DIV_2D_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -2690,15 +3283,6 @@ BN_MP_PRIME_FERMAT_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_REDUCE_2K_C -| | | +--->BN_MP_DIV_2D_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -2771,18 +3355,14 @@ BN_MP_PRIME_FERMAT_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -2822,15 +3402,8 @@ BN_MP_PRIME_FERMAT_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_DIV_2D_C -| | | | | | +--->BN_MP_MOD_2D_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_INIT_COPY_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -2839,6 +3412,7 @@ BN_MP_PRIME_FERMAT_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -2847,7 +3421,6 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | +--->BN_MP_SET_C | | | +--->BN_MP_ZERO_C | | +--->BN_MP_MOD_C @@ -2877,15 +3450,8 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2D_C -| | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_COPY_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -2894,6 +3460,7 @@ BN_MP_PRIME_FERMAT_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C | | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C @@ -2902,7 +3469,6 @@ BN_MP_PRIME_FERMAT_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_SQR_C @@ -2950,22 +3516,16 @@ BN_MP_PRIME_FERMAT_C | | | +--->BN_MP_KARATSUBA_SQR_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C | | | | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | +--->BN_FAST_S_MP_SQR_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -3018,18 +3578,14 @@ BN_MP_PRIME_FERMAT_C | | | +--->BN_MP_KARATSUBA_MUL_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CMP_MAG_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -3044,312 +3600,87 @@ BN_MP_PRIME_FERMAT_C | | +--->BN_MP_EXCH_C +--->BN_MP_CMP_C | +--->BN_MP_CMP_MAG_C -+--->BN_MP_CLEAR_C - - -BN_MP_SUBMOD_C -+--->BN_MP_INIT_C -+--->BN_MP_SUB_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_CLEAR_C -+--->BN_MP_MOD_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_COUNT_BITS_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C ++--->BN_MP_SQRMOD_C +| +--->BN_MP_SQR_C +| | +--->BN_MP_TOOM_SQR_C +| | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C - - -BN_MP_MOD_2D_C -+--->BN_MP_ZERO_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C - - -BN_MP_TORADIX_N_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_DIV_D_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_DIV_3_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_INIT_SIZE_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_C - - -BN_MP_CMP_C -+--->BN_MP_CMP_MAG_C - - -BNCORE_C - - -BN_MP_TORADIX_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_DIV_D_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_DIV_3_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_INIT_SIZE_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_C - - -BN_MP_ADD_D_C -+--->BN_MP_GROW_C -+--->BN_MP_SUB_D_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CLAMP_C - - -BN_MP_DIV_3_C -+--->BN_MP_INIT_SIZE_C -| +--->BN_MP_INIT_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C - - -BN_FAST_S_MP_MUL_DIGS_C -+--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C - - -BN_MP_SQRMOD_C -+--->BN_MP_INIT_C -+--->BN_MP_SQR_C -| +--->BN_MP_TOOM_SQR_C -| | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MUL_2_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_KARATSUBA_SQR_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| +--->BN_MP_KARATSUBA_SQR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_ADD_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_SQR_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_SQR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_C -+--->BN_MP_MOD_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_COUNT_BITS_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_FAST_S_MP_SQR_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SQR_C +| | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C - - -BN_MP_INVMOD_C -+--->BN_FAST_MP_INVMOD_C -| +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C | +--->BN_MP_MOD_C -| | +--->BN_MP_INIT_C | | +--->BN_MP_DIV_C | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_SET_C | | | +--->BN_MP_COUNT_BITS_C | | | +--->BN_MP_ABS_C @@ -3358,7 +3689,6 @@ BN_MP_INVMOD_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_C | | | +--->BN_MP_SUB_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C @@ -3373,18 +3703,9 @@ BN_MP_INVMOD_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2D_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_MULTI_C -| | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_COPY_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_RSHD_C @@ -3393,8 +3714,7 @@ BN_MP_INVMOD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C @@ -3403,114 +3723,234 @@ BN_MP_INVMOD_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C + + +BN_MP_READ_UNSIGNED_BIN_C ++--->BN_MP_GROW_C ++--->BN_MP_ZERO_C ++--->BN_MP_MUL_2D_C +| +--->BN_MP_COPY_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_RSHD_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLAMP_C + + +BN_MP_N_ROOT_C ++--->BN_MP_N_ROOT_EX_C +| +--->BN_MP_INIT_C | +--->BN_MP_SET_C | | +--->BN_MP_ZERO_C -| +--->BN_MP_DIV_2_C +| +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_C -| | +--->BN_MP_CMP_MAG_C -| +--->BN_MP_CMP_D_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_CLEAR_C -+--->BN_MP_INVMOD_SLOW_C -| +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_MOD_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_DIV_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_SET_C -| | | +--->BN_MP_COUNT_BITS_C -| | | +--->BN_MP_ABS_C -| | | +--->BN_MP_MUL_2D_C +| +--->BN_MP_EXPT_D_EX_C +| | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_MUL_C +| | | +--->BN_MP_TOOM_MUL_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_KARATSUBA_MUL_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_FAST_S_MP_MUL_DIGS_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_SQR_C +| | | +--->BN_MP_TOOM_SQR_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_KARATSUBA_SQR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_FAST_S_MP_SQR_C +| | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_C -| | | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_SQR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| +--->BN_MP_MUL_C +| | +--->BN_MP_TOOM_MUL_C +| | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_ADD_C +| | | +--->BN_MP_SUB_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2D_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_DIV_2_C +| | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_MULTI_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_COPY_C -| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_KARATSUBA_MUL_C +| | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_SET_C -| | +--->BN_MP_ZERO_C -| +--->BN_MP_DIV_2_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_FAST_S_MP_MUL_DIGS_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_MUL_DIGS_C +| | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C | +--->BN_MP_SUB_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C @@ -3519,41 +3959,14 @@ BN_MP_INVMOD_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_C -| | +--->BN_MP_CMP_MAG_C -| +--->BN_MP_CMP_D_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_CLEAR_C - - -BN_MP_AND_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C +| +--->BN_MP_MUL_D_C | | +--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C - - -BN_MP_MUL_D_C -+--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C - - -BN_FAST_MP_INVMOD_C -+--->BN_MP_INIT_MULTI_C -| +--->BN_MP_INIT_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_MOD_C -| +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C | +--->BN_MP_DIV_C | | +--->BN_MP_CMP_MAG_C | | +--->BN_MP_ZERO_C -| | +--->BN_MP_SET_C +| | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_CLEAR_C | | +--->BN_MP_COUNT_BITS_C | | +--->BN_MP_ABS_C | | +--->BN_MP_MUL_2D_C @@ -3562,13 +3975,6 @@ BN_FAST_MP_INVMOD_C | | | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C @@ -3592,127 +3998,189 @@ BN_FAST_MP_INVMOD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLEAR_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_C | | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_DIV_2_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_SUB_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_C -| +--->BN_MP_CMP_MAG_C -+--->BN_MP_CMP_D_C -+--->BN_MP_ADD_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C +| +--->BN_MP_SUB_D_C | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_D_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_EXCH_C | +--->BN_MP_CLEAR_C -BN_MP_FWRITE_C -+--->BN_MP_RADIX_SIZE_C -| +--->BN_MP_COUNT_BITS_C -| +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_DIV_D_C +BN_MP_EXPT_D_EX_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C ++--->BN_MP_MUL_C +| +--->BN_MP_TOOM_MUL_C +| | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_DIV_2D_C +| | +--->BN_MP_RSHD_C | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MOD_2D_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C | | +--->BN_MP_DIV_3_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +| +--->BN_MP_KARATSUBA_MUL_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_CLEAR_C +| +--->BN_FAST_S_MP_MUL_DIGS_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_MUL_DIGS_C | | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_TORADIX_C -| +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_DIV_D_C ++--->BN_MP_CLEAR_C ++--->BN_MP_SQR_C +| +--->BN_MP_TOOM_SQR_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_DIV_2D_C +| | +--->BN_MP_RSHD_C | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MOD_2D_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C | | +--->BN_MP_DIV_3_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_KARATSUBA_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C +| +--->BN_FAST_S_MP_SQR_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_SQR_C | | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_CLEAR_C - - -BN_S_MP_SQR_C -+--->BN_MP_INIT_SIZE_C -| +--->BN_MP_INIT_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C -BN_MP_N_ROOT_C -+--->BN_MP_INIT_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_EXPT_D_C +BN_MP_EXPT_D_C ++--->BN_MP_EXPT_D_EX_C | +--->BN_MP_INIT_COPY_C -| +--->BN_MP_SQR_C -| | +--->BN_MP_TOOM_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| +--->BN_MP_SET_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_MUL_C +| | +--->BN_MP_TOOM_MUL_C | | | +--->BN_MP_INIT_MULTI_C | | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MUL_2_C @@ -3752,41 +4220,41 @@ BN_MP_N_ROOT_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLEAR_MULTI_C | | | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_KARATSUBA_SQR_C +| | +--->BN_MP_KARATSUBA_MUL_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C | | | | +--->BN_MP_CMP_MAG_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_RSHD_C | | | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLEAR_C -| | +--->BN_FAST_S_MP_SQR_C +| | +--->BN_FAST_S_MP_MUL_DIGS_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SQR_C +| | +--->BN_S_MP_MUL_DIGS_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_C | +--->BN_MP_CLEAR_C -| +--->BN_MP_MUL_C -| | +--->BN_MP_TOOM_MUL_C +| +--->BN_MP_SQR_C +| | +--->BN_MP_TOOM_SQR_C | | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MUL_2_C @@ -3824,122 +4292,51 @@ BN_MP_N_ROOT_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_KARATSUBA_MUL_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_MP_KARATSUBA_SQR_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -+--->BN_MP_MUL_C -| +--->BN_MP_TOOM_MUL_C -| | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | +--->BN_FAST_S_MP_SQR_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C +| | +--->BN_S_MP_SQR_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| +--->BN_MP_KARATSUBA_MUL_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_MUL_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -+--->BN_MP_SUB_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C + + +BN_MP_XOR_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_MUL_D_C ++--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C + + +BN_MP_REDUCE_SETUP_C ++--->BN_MP_2EXPT_C +| +--->BN_MP_ZERO_C | +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C +--->BN_MP_DIV_C | +--->BN_MP_CMP_MAG_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C | +--->BN_MP_ZERO_C | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_INIT_C | | +--->BN_MP_CLEAR_C +| +--->BN_MP_SET_C | +--->BN_MP_COUNT_BITS_C | +--->BN_MP_ABS_C | +--->BN_MP_MUL_2D_C @@ -3948,6 +4345,13 @@ BN_MP_N_ROOT_C | | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C | +--->BN_MP_CMP_C +| +--->BN_MP_SUB_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | +--->BN_MP_ADD_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C @@ -3956,6 +4360,7 @@ BN_MP_N_ROOT_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C | +--->BN_MP_DIV_2D_C +| | +--->BN_MP_INIT_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLEAR_C @@ -3966,65 +4371,30 @@ BN_MP_N_ROOT_C | +--->BN_MP_CLEAR_MULTI_C | | +--->BN_MP_CLEAR_C | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_INIT_C | +--->BN_MP_INIT_COPY_C | +--->BN_MP_LSHD_C | | +--->BN_MP_GROW_C | | +--->BN_MP_RSHD_C | +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_CMP_C -| +--->BN_MP_CMP_MAG_C -+--->BN_MP_SUB_D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_ADD_D_C +| +--->BN_MP_MUL_D_C +| | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C | +--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C -BN_MP_PRIME_RABIN_MILLER_TRIALS_C +BN_MP_RSHD_C ++--->BN_MP_ZERO_C -BN_MP_RADIX_SIZE_C -+--->BN_MP_COUNT_BITS_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_DIV_D_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_DIV_3_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_INIT_SIZE_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_C +BN_MP_NEG_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C -BN_MP_READ_SIGNED_BIN_C -+--->BN_MP_READ_UNSIGNED_BIN_C -| +--->BN_MP_GROW_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_MUL_2D_C -| | +--->BN_MP_COPY_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLAMP_C +BN_MP_SHRINK_C BN_MP_PRIME_RANDOM_EX_C @@ -4069,6 +4439,7 @@ BN_MP_PRIME_RANDOM_EX_C | | +--->BN_MP_ZERO_C | +--->BN_MP_PRIME_MILLER_RABIN_C | | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C | | +--->BN_MP_SUB_D_C @@ -4134,6 +4505,7 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | | +--->BN_MP_CLAMP_C | | | | | | | +--->BN_MP_CLEAR_C | | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_EXCH_C | | | | | | +--->BN_MP_ADD_C | | | | | | | +--->BN_S_MP_ADD_C | | | | | | | | +--->BN_MP_GROW_C @@ -4142,7 +4514,6 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_DIV_2_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C @@ -4212,6 +4583,7 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | | +--->BN_MP_CLAMP_C | | | | | | | +--->BN_MP_CLEAR_C | | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_EXCH_C | | | | | | +--->BN_MP_ADD_C | | | | | | | +--->BN_S_MP_ADD_C | | | | | | | | +--->BN_MP_GROW_C @@ -4220,7 +4592,6 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_COPY_C | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_DIV_2_C @@ -4346,18 +4717,14 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_SUB_C -| | | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_ADD_C -| | | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_LSHD_C | | | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C @@ -4469,18 +4836,14 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_SUB_C -| | | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_ADD_C -| | | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_LSHD_C | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_RSHD_C @@ -4536,6 +4899,7 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C @@ -4544,7 +4908,6 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_COPY_C | | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_SQR_C @@ -4592,22 +4955,16 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | +--->BN_MP_KARATSUBA_SQR_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_RSHD_C | | | | | | | | +--->BN_MP_ZERO_C | | | | | | +--->BN_MP_ADD_C | | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_FAST_S_MP_SQR_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C @@ -4660,18 +5017,14 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_RSHD_C @@ -4800,18 +5153,14 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_SUB_C -| | | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_ADD_C -| | | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_LSHD_C | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_RSHD_C @@ -4860,6 +5209,7 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_CLAMP_C | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C | | | | | | +--->BN_MP_ADD_C | | | | | | | +--->BN_S_MP_ADD_C | | | | | | | | +--->BN_MP_GROW_C @@ -4868,7 +5218,6 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | +--->BN_MP_GROW_C | | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_MOD_C | | | | | +--->BN_MP_DIV_C | | | | | | +--->BN_MP_CMP_MAG_C @@ -4906,6 +5255,7 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C @@ -4914,7 +5264,6 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_COPY_C | | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_SQR_C @@ -4962,22 +5311,16 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | +--->BN_MP_KARATSUBA_SQR_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_RSHD_C | | | | | | | | +--->BN_MP_ZERO_C | | | | | | +--->BN_MP_ADD_C | | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_FAST_S_MP_SQR_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C @@ -5030,18 +5373,14 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_RSHD_C @@ -5110,22 +5449,16 @@ BN_MP_PRIME_RANDOM_EX_C | | | | +--->BN_MP_KARATSUBA_SQR_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C | | | | | | | +--->BN_MP_ZERO_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_FAST_S_MP_SQR_C | | | | | +--->BN_MP_GROW_C @@ -5175,6 +5508,7 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -5183,7 +5517,6 @@ BN_MP_PRIME_RANDOM_EX_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C | +--->BN_MP_CLEAR_C +--->BN_MP_SUB_D_C @@ -5201,19 +5534,62 @@ BN_MP_PRIME_RANDOM_EX_C | +--->BN_MP_CLAMP_C -BN_MP_KARATSUBA_SQR_C -+--->BN_MP_INIT_SIZE_C -| +--->BN_MP_INIT_C +BN_MP_CMP_D_C + + +BN_MP_DR_IS_MODULUS_C + + +BN_MP_IMPORT_C ++--->BN_MP_ZERO_C ++--->BN_MP_MUL_2D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_GROW_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_RSHD_C +| +--->BN_MP_CLAMP_C +--->BN_MP_CLAMP_C -+--->BN_MP_SQR_C -| +--->BN_MP_TOOM_SQR_C + + +BN_MP_COUNT_BITS_C + + +BN_MP_FREAD_C ++--->BN_MP_ZERO_C ++--->BN_MP_MUL_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_ADD_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_SUB_D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_D_C + + +BN_MP_REDUCE_2K_L_C ++--->BN_MP_INIT_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_DIV_2D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_RSHD_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C ++--->BN_MP_MUL_C +| +--->BN_MP_TOOM_MUL_C | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_INIT_C | | | +--->BN_MP_CLEAR_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_RSHD_C @@ -5223,106 +5599,793 @@ BN_MP_KARATSUBA_SQR_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_DIV_2_C | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_MUL_2D_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_MUL_D_C | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_CLEAR_MULTI_C | | | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_SQR_C +| +--->BN_MP_KARATSUBA_MUL_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_CLEAR_C +| +--->BN_FAST_S_MP_MUL_DIGS_C | | +--->BN_MP_GROW_C -| +--->BN_S_MP_SQR_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -+--->BN_MP_SUB_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C +--->BN_S_MP_ADD_C | +--->BN_MP_GROW_C -+--->BN_MP_LSHD_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_MAG_C ++--->BN_S_MP_SUB_C | +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C -| | +--->BN_MP_ZERO_C -+--->BN_MP_ADD_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLEAR_C + + +BN_MP_AND_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C +--->BN_MP_CLEAR_C -BN_MP_INIT_COPY_C +BN_MP_SQRMOD_C ++--->BN_MP_INIT_C ++--->BN_MP_SQR_C +| +--->BN_MP_TOOM_SQR_C +| | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +| +--->BN_MP_KARATSUBA_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_CLEAR_C +| +--->BN_FAST_S_MP_SQR_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_CLEAR_C ++--->BN_MP_MOD_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C + + +BN_MP_DIV_D_C +--->BN_MP_COPY_C | +--->BN_MP_GROW_C ++--->BN_MP_DIV_2D_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_INIT_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_RSHD_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C ++--->BN_MP_DIV_3_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_INIT_SIZE_C +| +--->BN_MP_INIT_C ++--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C -BN_MP_CLAMP_C +BN_MP_INIT_MULTI_C ++--->BN_MP_INIT_C ++--->BN_MP_CLEAR_C -BN_MP_TOOM_SQR_C -+--->BN_MP_INIT_MULTI_C -| +--->BN_MP_INIT_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_MOD_2D_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_COPY_C +BN_S_MP_EXPTMOD_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_INIT_C ++--->BN_MP_CLEAR_C ++--->BN_MP_REDUCE_SETUP_C +| +--->BN_MP_2EXPT_C +| | +--->BN_MP_ZERO_C | | +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_REDUCE_C +| +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| +--->BN_MP_RSHD_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_MUL_C +| | +--->BN_MP_TOOM_MUL_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_KARATSUBA_MUL_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_MUL_DIGS_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| +--->BN_S_MP_MUL_HIGH_DIGS_C +| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_SUB_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_D_C +| +--->BN_MP_SET_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_C +| | +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_REDUCE_2K_SETUP_L_C +| +--->BN_MP_2EXPT_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_GROW_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_REDUCE_2K_L_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_MUL_C +| | +--->BN_MP_TOOM_MUL_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_KARATSUBA_MUL_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_MUL_DIGS_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_MOD_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +--->BN_MP_COPY_C | +--->BN_MP_GROW_C -+--->BN_MP_RSHD_C -| +--->BN_MP_ZERO_C +--->BN_MP_SQR_C +| +--->BN_MP_TOOM_SQR_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C | +--->BN_MP_KARATSUBA_SQR_C | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C +| +--->BN_FAST_S_MP_SQR_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C ++--->BN_MP_MUL_C +| +--->BN_MP_TOOM_MUL_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_KARATSUBA_MUL_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_ADD_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_SQR_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| +--->BN_FAST_S_MP_MUL_DIGS_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_SQR_C +| +--->BN_S_MP_MUL_DIGS_C | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C ++--->BN_MP_EXCH_C + + +BN_MP_MONTGOMERY_CALC_NORMALIZATION_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_2EXPT_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_GROW_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C +--->BN_MP_MUL_2_C | +--->BN_MP_GROW_C -+--->BN_MP_ADD_C ++--->BN_MP_CMP_MAG_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C + + +BN_MP_MONTGOMERY_SETUP_C + + +BN_FAST_MP_INVMOD_C ++--->BN_MP_INIT_MULTI_C +| +--->BN_MP_INIT_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_MOD_C +| +--->BN_MP_INIT_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C ++--->BN_MP_DIV_2_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_SUB_C | +--->BN_S_MP_ADD_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C @@ -5330,7 +6393,10 @@ BN_MP_TOOM_SQR_C | +--->BN_S_MP_SUB_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_SUB_C ++--->BN_MP_CMP_C +| +--->BN_MP_CMP_MAG_C ++--->BN_MP_CMP_D_C ++--->BN_MP_ADD_C | +--->BN_S_MP_ADD_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C @@ -5338,38 +6404,713 @@ BN_MP_TOOM_SQR_C | +--->BN_S_MP_SUB_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_DIV_2_C -| +--->BN_MP_GROW_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_CLEAR_C + + +BN_MP_TO_UNSIGNED_BIN_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_DIV_2D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_MOD_2D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_RSHD_C | +--->BN_MP_CLAMP_C -+--->BN_MP_MUL_2D_C +| +--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C + + +BN_MP_CLEAR_MULTI_C ++--->BN_MP_CLEAR_C + + +BNCORE_C + + +BN_MP_TORADIX_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_DIV_D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_DIV_3_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_CLEAR_C + + +BN_MP_EXPTMOD_FAST_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_INIT_C ++--->BN_MP_CLEAR_C ++--->BN_MP_MONTGOMERY_SETUP_C ++--->BN_FAST_MP_MONTGOMERY_REDUCE_C | +--->BN_MP_GROW_C -| +--->BN_MP_LSHD_C +| +--->BN_MP_RSHD_C +| | +--->BN_MP_ZERO_C | +--->BN_MP_CLAMP_C -+--->BN_MP_MUL_D_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C ++--->BN_MP_MONTGOMERY_REDUCE_C | +--->BN_MP_GROW_C | +--->BN_MP_CLAMP_C -+--->BN_MP_DIV_3_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C +| +--->BN_MP_RSHD_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C ++--->BN_MP_DR_SETUP_C ++--->BN_MP_DR_REDUCE_C +| +--->BN_MP_GROW_C | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C ++--->BN_MP_REDUCE_2K_SETUP_C +| +--->BN_MP_2EXPT_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_GROW_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_REDUCE_2K_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_MUL_D_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C +| +--->BN_MP_2EXPT_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_SET_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_MUL_2_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_MULMOD_C +| +--->BN_MP_MUL_C +| | +--->BN_MP_TOOM_MUL_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_KARATSUBA_MUL_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_MUL_DIGS_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| +--->BN_MP_MOD_C +| | +--->BN_MP_DIV_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_ABS_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C ++--->BN_MP_MOD_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C | +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_SQR_C +| +--->BN_MP_TOOM_SQR_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_KARATSUBA_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C +| +--->BN_FAST_S_MP_SQR_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C ++--->BN_MP_MUL_C +| +--->BN_MP_TOOM_MUL_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_KARATSUBA_MUL_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| +--->BN_FAST_S_MP_MUL_DIGS_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C ++--->BN_MP_EXCH_C + + +BN_MP_MUL_D_C ++--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C + + +BN_MP_SET_LONG_LONG_C + + +BN_MP_DIV_2_C ++--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C + + +BN_ERROR_C + + +BN_MP_RAND_C ++--->BN_MP_ZERO_C ++--->BN_MP_ADD_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_SUB_D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLAMP_C +--->BN_MP_LSHD_C | +--->BN_MP_GROW_C -+--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_CLEAR_C +| +--->BN_MP_RSHD_C -BN_MP_MOD_C +BN_S_MP_SQR_C ++--->BN_MP_INIT_SIZE_C +| +--->BN_MP_INIT_C ++--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C + + +BN_MP_CMP_C ++--->BN_MP_CMP_MAG_C + + +BN_MP_N_ROOT_EX_C +--->BN_MP_INIT_C -+--->BN_MP_DIV_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_EXPT_D_EX_C +| +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_MUL_C +| | +--->BN_MP_TOOM_MUL_C +| | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_KARATSUBA_MUL_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_MUL_DIGS_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_SQR_C +| | +--->BN_MP_TOOM_SQR_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_KARATSUBA_SQR_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | +--->BN_FAST_S_MP_SQR_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_SQR_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C ++--->BN_MP_MUL_C +| +--->BN_MP_TOOM_MUL_C +| | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +| +--->BN_MP_KARATSUBA_MUL_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_CLEAR_C +| +--->BN_FAST_S_MP_MUL_DIGS_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_SUB_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C | +--->BN_MP_CMP_MAG_C -| +--->BN_MP_COPY_C +| +--->BN_S_MP_SUB_C | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_MUL_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_DIV_C +| +--->BN_MP_CMP_MAG_C | +--->BN_MP_ZERO_C | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_CLEAR_C -| +--->BN_MP_SET_C | +--->BN_MP_COUNT_BITS_C | +--->BN_MP_ABS_C | +--->BN_MP_MUL_2D_C @@ -5378,13 +7119,6 @@ BN_MP_MOD_C | | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C | +--->BN_MP_CMP_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C | +--->BN_MP_ADD_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C @@ -5408,70 +7142,156 @@ BN_MP_MOD_C | | +--->BN_MP_GROW_C | | +--->BN_MP_RSHD_C | +--->BN_MP_RSHD_C -| +--->BN_MP_MUL_D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C | +--->BN_MP_CLAMP_C | +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_C -+--->BN_MP_ADD_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_C | +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C ++--->BN_MP_SUB_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_ADD_D_C | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLAMP_C +--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C -BN_MP_INIT_C +BN_MP_PRIME_IS_DIVISIBLE_C ++--->BN_MP_MOD_D_C +| +--->BN_MP_DIV_D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C -BN_MP_TOOM_MUL_C -+--->BN_MP_INIT_MULTI_C -| +--->BN_MP_INIT_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_MOD_2D_C +BN_MP_INIT_SET_INT_C ++--->BN_MP_INIT_C ++--->BN_MP_SET_INT_C | +--->BN_MP_ZERO_C -| +--->BN_MP_COPY_C +| +--->BN_MP_MUL_2D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C | +--->BN_MP_CLAMP_C -+--->BN_MP_COPY_C + + +BN_MP_DIV_3_C ++--->BN_MP_INIT_SIZE_C +| +--->BN_MP_INIT_C ++--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C + + +BN_MP_MONTGOMERY_REDUCE_C ++--->BN_FAST_MP_MONTGOMERY_REDUCE_C | +--->BN_MP_GROW_C +| +--->BN_MP_RSHD_C +| | +--->BN_MP_ZERO_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C ++--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C +--->BN_MP_RSHD_C | +--->BN_MP_ZERO_C -+--->BN_MP_MUL_C -| +--->BN_MP_KARATSUBA_MUL_C -| | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C -| | +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_MAG_C ++--->BN_S_MP_SUB_C + + +BN_MP_INVMOD_SLOW_C ++--->BN_MP_INIT_MULTI_C +| +--->BN_MP_INIT_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_MOD_C +| +--->BN_MP_INIT_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C | | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_MUL_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -+--->BN_MP_MUL_2_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C ++--->BN_MP_COPY_C | +--->BN_MP_GROW_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C ++--->BN_MP_DIV_2_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C +--->BN_MP_ADD_C | +--->BN_S_MP_ADD_C | | +--->BN_MP_GROW_C @@ -5488,257 +7308,176 @@ BN_MP_TOOM_MUL_C | +--->BN_S_MP_SUB_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_DIV_2_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_MUL_2D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_LSHD_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_MUL_D_C ++--->BN_MP_CMP_C +| +--->BN_MP_CMP_MAG_C ++--->BN_MP_CMP_D_C ++--->BN_MP_CMP_MAG_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_CLEAR_C + + +BN_S_MP_ADD_C ++--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C + + +BN_MP_READ_SIGNED_BIN_C ++--->BN_MP_READ_UNSIGNED_BIN_C | +--->BN_MP_GROW_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_MUL_2D_C +| | +--->BN_MP_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C | +--->BN_MP_CLAMP_C -+--->BN_MP_DIV_3_C + + +BN_MP_MOD_D_C ++--->BN_MP_DIV_D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_INIT_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_DIV_3_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_INIT_C | +--->BN_MP_CLAMP_C | +--->BN_MP_EXCH_C | +--->BN_MP_CLEAR_C -+--->BN_MP_LSHD_C -| +--->BN_MP_GROW_C -+--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_CLEAR_C -BN_MP_PRIME_IS_PRIME_C +BN_MP_SQRTMOD_PRIME_C +--->BN_MP_CMP_D_C -+--->BN_MP_PRIME_IS_DIVISIBLE_C -| +--->BN_MP_MOD_D_C -| | +--->BN_MP_DIV_D_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_DIV_2D_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_INIT_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_DIV_3_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_INIT_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C -+--->BN_MP_INIT_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_PRIME_MILLER_RABIN_C ++--->BN_MP_ZERO_C ++--->BN_MP_JACOBI_C | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| +--->BN_MP_SUB_D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C | +--->BN_MP_CNT_LSB_C | +--->BN_MP_DIV_2D_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLEAR_C | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -| +--->BN_MP_EXPTMOD_C -| | +--->BN_MP_INVMOD_C -| | | +--->BN_FAST_MP_INVMOD_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_COPY_C +| +--->BN_MP_MOD_C +| | +--->BN_MP_DIV_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_COUNT_BITS_C +| | | +--->BN_MP_ABS_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_MOD_C -| | | | | +--->BN_MP_DIV_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_MP_ZERO_C -| | | | | | +--->BN_MP_COUNT_BITS_C -| | | | | | +--->BN_MP_ABS_C -| | | | | | +--->BN_MP_MUL_2D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_LSHD_C -| | | | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C -| | | | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | | | +--->BN_MP_CLEAR_C -| | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_MUL_D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CLEAR_C -| | | | | +--->BN_MP_CLEAR_C -| | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_INVMOD_SLOW_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | | +--->BN_MP_CLEAR_C -| | | | +--->BN_MP_MOD_C -| | | | | +--->BN_MP_DIV_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_MP_COPY_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_ZERO_C -| | | | | | +--->BN_MP_COUNT_BITS_C -| | | | | | +--->BN_MP_ABS_C -| | | | | | +--->BN_MP_MUL_2D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_LSHD_C -| | | | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C -| | | | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | | | +--->BN_MP_CLEAR_C -| | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_MUL_D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CLEAR_C -| | | | | +--->BN_MP_CLEAR_C -| | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_COPY_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_ABS_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_INIT_MULTI_C +| +--->BN_MP_INIT_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_MOD_D_C +| +--->BN_MP_DIV_D_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_ADD_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_SUB_D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_DIV_2_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_EXPTMOD_C +| +--->BN_MP_INIT_C +| +--->BN_MP_INVMOD_C +| | +--->BN_FAST_MP_INVMOD_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_REDUCE_IS_2K_L_C -| | +--->BN_S_MP_EXPTMOD_C -| | | +--->BN_MP_COUNT_BITS_C -| | | +--->BN_MP_REDUCE_SETUP_C -| | | | +--->BN_MP_2EXPT_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_MOD_C | | | | +--->BN_MP_DIV_C | | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_MP_COPY_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_SET_C +| | | | | +--->BN_MP_COUNT_BITS_C +| | | | | +--->BN_MP_ABS_C | | | | | +--->BN_MP_MUL_2D_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C @@ -5759,8 +7498,18 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2D_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_INIT_COPY_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -5769,109 +7518,9 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_REDUCE_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_MUL_C -| | | | | +--->BN_MP_TOOM_MUL_C -| | | | | | +--->BN_MP_INIT_MULTI_C -| | | | | | +--->BN_MP_MOD_2D_C -| | | | | | | +--->BN_MP_ZERO_C -| | | | | | | +--->BN_MP_COPY_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_COPY_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_MUL_2_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_DIV_2_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_MUL_2D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_MUL_D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_DIV_3_C -| | | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_EXCH_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_KARATSUBA_MUL_C -| | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_MUL_DIGS_C -| | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_S_MP_MUL_HIGH_DIGS_C -| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_COPY_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_MUL_DIGS_C -| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -5880,91 +7529,18 @@ BN_MP_PRIME_IS_PRIME_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_REDUCE_2K_SETUP_L_C -| | | | +--->BN_MP_2EXPT_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CMP_MAG_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_REDUCE_2K_L_C -| | | | +--->BN_MP_MUL_C -| | | | | +--->BN_MP_TOOM_MUL_C -| | | | | | +--->BN_MP_INIT_MULTI_C -| | | | | | +--->BN_MP_MOD_2D_C -| | | | | | | +--->BN_MP_ZERO_C -| | | | | | | +--->BN_MP_COPY_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_COPY_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_ZERO_C -| | | | | | +--->BN_MP_MUL_2_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_DIV_2_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_MUL_2D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_MUL_D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_DIV_3_C -| | | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_EXCH_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_KARATSUBA_MUL_C -| | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_RSHD_C -| | | | | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_MUL_DIGS_C -| | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C @@ -5972,13 +7548,18 @@ BN_MP_PRIME_IS_PRIME_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INVMOD_SLOW_C | | | +--->BN_MP_MOD_C | | | | +--->BN_MP_DIV_C | | | | | +--->BN_MP_CMP_MAG_C | | | | | +--->BN_MP_COPY_C | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_SET_C +| | | | | +--->BN_MP_COUNT_BITS_C +| | | | | +--->BN_MP_ABS_C | | | | | +--->BN_MP_MUL_2D_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C @@ -5999,8 +7580,18 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2D_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_INIT_COPY_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -6009,6 +7600,9 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -6017,17 +7611,98 @@ BN_MP_PRIME_IS_PRIME_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_SQR_C -| | | | +--->BN_MP_TOOM_SQR_C -| | | | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_ABS_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| +--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_REDUCE_IS_2K_L_C +| +--->BN_S_MP_EXPTMOD_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_REDUCE_SETUP_C +| | | +--->BN_MP_2EXPT_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_DIV_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_SET_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C | | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_ZERO_C | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_REDUCE_C +| | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_MUL_C +| | | | +--->BN_MP_TOOM_MUL_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_COPY_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_MUL_2_C | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C @@ -6046,9 +7721,6 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_DIV_2_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_MUL_2D_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C @@ -6062,40 +7734,95 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_KARATSUBA_SQR_C +| | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_ZERO_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_FAST_S_MP_SQR_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_FAST_S_MP_MUL_DIGS_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_SQR_C +| | | | +--->BN_S_MP_MUL_DIGS_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_EXCH_C +| | | +--->BN_S_MP_MUL_HIGH_DIGS_C +| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_MUL_DIGS_C +| | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_REDUCE_2K_SETUP_L_C +| | | +--->BN_MP_2EXPT_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_REDUCE_2K_L_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_MUL_C | | | | +--->BN_MP_TOOM_MUL_C -| | | | | +--->BN_MP_INIT_MULTI_C | | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_COPY_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C | | | | | +--->BN_MP_MUL_2_C | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C @@ -6114,9 +7841,6 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_DIV_2_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_MUL_2D_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C @@ -6133,22 +7857,17 @@ BN_MP_PRIME_IS_PRIME_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_ZERO_C | | | | +--->BN_FAST_S_MP_MUL_DIGS_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C @@ -6156,56 +7875,58 @@ BN_MP_PRIME_IS_PRIME_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_DR_IS_MODULUS_C -| | +--->BN_MP_REDUCE_IS_2K_C -| | | +--->BN_MP_REDUCE_2K_C -| | | | +--->BN_MP_COUNT_BITS_C -| | | | +--->BN_MP_MUL_D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_COUNT_BITS_C -| | +--->BN_MP_EXPTMOD_FAST_C -| | | +--->BN_MP_COUNT_BITS_C -| | | +--->BN_MP_MONTGOMERY_SETUP_C -| | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_MONTGOMERY_REDUCE_C +| | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_DR_SETUP_C -| | | +--->BN_MP_DR_REDUCE_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MOD_C +| | | +--->BN_MP_DIV_C | | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_REDUCE_2K_SETUP_C -| | | | +--->BN_MP_2EXPT_C -| | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_COPY_C | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_SET_C +| | | | +--->BN_MP_MUL_2D_C | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_RSHD_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_REDUCE_2K_C +| | | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_MUL_D_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C @@ -6213,172 +7934,70 @@ BN_MP_PRIME_IS_PRIME_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C -| | | | +--->BN_MP_2EXPT_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_GROW_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_SQR_C +| | | +--->BN_MP_TOOM_SQR_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_MUL_2_C | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MULMOD_C -| | | | +--->BN_MP_MUL_C -| | | | | +--->BN_MP_TOOM_MUL_C -| | | | | | +--->BN_MP_INIT_MULTI_C -| | | | | | +--->BN_MP_MOD_2D_C -| | | | | | | +--->BN_MP_ZERO_C -| | | | | | | +--->BN_MP_COPY_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_COPY_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_ZERO_C -| | | | | | +--->BN_MP_MUL_2_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_DIV_2_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_MUL_2D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_MUL_D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_DIV_3_C -| | | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_MP_EXCH_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_KARATSUBA_MUL_C -| | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_RSHD_C -| | | | | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_S_MP_MUL_DIGS_C -| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_MOD_C -| | | | | +--->BN_MP_DIV_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_MP_COPY_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_ZERO_C -| | | | | | +--->BN_MP_INIT_MULTI_C -| | | | | | +--->BN_MP_MUL_2D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_LSHD_C -| | | | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C -| | | | | | +--->BN_MP_INIT_SIZE_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_MUL_D_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_MOD_C -| | | | +--->BN_MP_DIV_C | | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_MP_COPY_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_INIT_MULTI_C -| | | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | | +--->BN_MP_RSHD_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_CMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C -| | | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_KARATSUBA_SQR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_MUL_D_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_FAST_S_MP_SQR_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SQR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | +--->BN_MP_MUL_C +| | | +--->BN_MP_TOOM_MUL_C +| | | | +--->BN_MP_MOD_2D_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -6387,17 +8006,139 @@ BN_MP_PRIME_IS_PRIME_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_KARATSUBA_MUL_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_COPY_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_DR_IS_MODULUS_C +| +--->BN_MP_REDUCE_IS_2K_C +| | +--->BN_MP_REDUCE_2K_C +| | | +--->BN_MP_COUNT_BITS_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_SQR_C -| | | | +--->BN_MP_TOOM_SQR_C -| | | | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_COUNT_BITS_C +| +--->BN_MP_EXPTMOD_FAST_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_MONTGOMERY_SETUP_C +| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | +--->BN_MP_MONTGOMERY_REDUCE_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | +--->BN_MP_DR_SETUP_C +| | +--->BN_MP_DR_REDUCE_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | +--->BN_MP_REDUCE_2K_SETUP_C +| | | +--->BN_MP_2EXPT_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_REDUCE_2K_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C +| | | +--->BN_MP_2EXPT_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_MULMOD_C +| | | +--->BN_MP_MUL_C +| | | | +--->BN_MP_TOOM_MUL_C | | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_COPY_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C | | | | | +--->BN_MP_MUL_2_C | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C @@ -6416,9 +8157,6 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_DIV_2_C -| | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_MUL_2D_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C @@ -6432,117 +8170,138 @@ BN_MP_PRIME_IS_PRIME_C | | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_KARATSUBA_SQR_C +| | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_FAST_S_MP_SQR_C +| | | | +--->BN_FAST_S_MP_MUL_DIGS_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_SQR_C +| | | | +--->BN_S_MP_MUL_DIGS_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_MUL_C -| | | | +--->BN_MP_TOOM_MUL_C -| | | | | +--->BN_MP_INIT_MULTI_C -| | | | | +--->BN_MP_MOD_2D_C -| | | | | | +--->BN_MP_ZERO_C -| | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_MOD_C +| | | | +--->BN_MP_DIV_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_MP_COPY_C | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_SET_C +| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_C +| | | | | +--->BN_MP_SUB_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C +| | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_DIV_2_C -| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_DIV_2D_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_RSHD_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_INIT_COPY_C +| | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_LSHD_C -| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_RSHD_C | | | | | +--->BN_MP_MUL_D_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_DIV_3_C -| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_EXCH_C -| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_KARATSUBA_MUL_C -| | | | | +--->BN_MP_INIT_SIZE_C -| | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_MOD_C +| | | +--->BN_MP_DIV_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C -| | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C -| | | | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_FAST_S_MP_MUL_DIGS_C -| | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_MUL_DIGS_C -| | | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| +--->BN_MP_CMP_C -| | +--->BN_MP_CMP_MAG_C -| +--->BN_MP_SQRMOD_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_SQR_C | | | +--->BN_MP_TOOM_SQR_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_MOD_2D_C -| | | | | +--->BN_MP_ZERO_C -| | | | | +--->BN_MP_COPY_C -| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_MUL_2_C | | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_ADD_C @@ -6561,9 +8320,6 @@ BN_MP_PRIME_IS_PRIME_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_DIV_2_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_MUL_2D_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C @@ -6575,31 +8331,20 @@ BN_MP_PRIME_IS_PRIME_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_EXCH_C -| | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLEAR_MULTI_C -| | | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_KARATSUBA_SQR_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C -| | | | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLEAR_C | | | +--->BN_FAST_S_MP_SQR_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -6607,157 +8352,83 @@ BN_MP_PRIME_IS_PRIME_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_MOD_C -| | | +--->BN_MP_DIV_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_INIT_MULTI_C -| | | | +--->BN_MP_COUNT_BITS_C -| | | | +--->BN_MP_ABS_C -| | | | +--->BN_MP_MUL_2D_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_LSHD_C -| | | | | | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_C +| | | +--->BN_MP_TOOM_MUL_C +| | | | +--->BN_MP_MOD_2D_C | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_SUB_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_MULTI_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_MUL_2D_C | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_MUL_D_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_KARATSUBA_MUL_C +| | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_C - - -BN_MP_COPY_C -+--->BN_MP_GROW_C - - -BN_S_MP_SUB_C -+--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C - - -BN_MP_READ_UNSIGNED_BIN_C -+--->BN_MP_GROW_C -+--->BN_MP_ZERO_C -+--->BN_MP_MUL_2D_C -| +--->BN_MP_COPY_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CLAMP_C - - -BN_MP_EXPTMOD_FAST_C -+--->BN_MP_COUNT_BITS_C -+--->BN_MP_INIT_C -+--->BN_MP_CLEAR_C -+--->BN_MP_MONTGOMERY_SETUP_C -+--->BN_FAST_MP_MONTGOMERY_REDUCE_C -| +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C -| | +--->BN_MP_ZERO_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -+--->BN_MP_MONTGOMERY_REDUCE_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C ++--->BN_MP_COPY_C | +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_RSHD_C -| | +--->BN_MP_ZERO_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -+--->BN_MP_DR_SETUP_C -+--->BN_MP_DR_REDUCE_C ++--->BN_MP_SUB_D_C | +--->BN_MP_GROW_C | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -+--->BN_MP_REDUCE_2K_SETUP_C -| +--->BN_MP_2EXPT_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_GROW_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_REDUCE_2K_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_MUL_D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C -| +--->BN_MP_2EXPT_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_SET_C -| | +--->BN_MP_ZERO_C -| +--->BN_MP_MUL_2_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C ++--->BN_MP_SET_INT_C +| +--->BN_MP_MUL_2D_C | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_MULMOD_C -| +--->BN_MP_MUL_C -| | +--->BN_MP_TOOM_MUL_C -| | | +--->BN_MP_INIT_MULTI_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_SQRMOD_C +| +--->BN_MP_INIT_C +| +--->BN_MP_SQR_C +| | +--->BN_MP_TOOM_SQR_C | | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MUL_2_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_ADD_C @@ -6776,9 +8447,6 @@ BN_MP_EXPTMOD_FAST_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C @@ -6790,43 +8458,38 @@ BN_MP_EXPTMOD_FAST_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_KARATSUBA_MUL_C +| | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_KARATSUBA_SQR_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_FAST_S_MP_SQR_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_S_MP_SQR_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C | +--->BN_MP_MOD_C | | +--->BN_MP_DIV_C | | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_SET_C +| | | +--->BN_MP_COUNT_BITS_C | | | +--->BN_MP_ABS_C | | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C @@ -6866,582 +8529,144 @@ BN_MP_EXPTMOD_FAST_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_MOD_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C ++--->BN_MP_MULMOD_C +| +--->BN_MP_INIT_C +| +--->BN_MP_MUL_C +| | +--->BN_MP_TOOM_MUL_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_SQR_C -| +--->BN_MP_TOOM_SQR_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_MUL_2_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_KARATSUBA_SQR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_ADD_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| +--->BN_FAST_S_MP_SQR_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_SQR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -+--->BN_MP_MUL_C -| +--->BN_MP_TOOM_MUL_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_KARATSUBA_MUL_C +| | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_FAST_S_MP_MUL_DIGS_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C +| | +--->BN_S_MP_MUL_DIGS_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_KARATSUBA_MUL_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| +--->BN_FAST_S_MP_MUL_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -+--->BN_MP_EXCH_C - - -BN_MP_TO_UNSIGNED_BIN_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_DIV_2D_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_MOD_2D_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C - - -BN_MP_SET_INT_C -+--->BN_MP_ZERO_C -+--->BN_MP_MUL_2D_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_GROW_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CLAMP_C - - -BN_MP_MOD_D_C -+--->BN_MP_DIV_D_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_DIV_3_C -| | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C - - -BN_MP_SQR_C -+--->BN_MP_TOOM_SQR_C -| +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_MOD_2D_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C -| | +--->BN_MP_ZERO_C -| +--->BN_MP_MUL_2_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_DIV_2_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_MUL_2D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_MUL_D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_DIV_3_C -| | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_CLEAR_C -+--->BN_MP_KARATSUBA_SQR_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| +--->BN_MP_ADD_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_CLEAR_C -+--->BN_FAST_S_MP_SQR_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_S_MP_SQR_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C - - -BN_MP_MULMOD_C -+--->BN_MP_INIT_C -+--->BN_MP_MUL_C -| +--->BN_MP_TOOM_MUL_C -| | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_MOD_C +| | +--->BN_MP_DIV_C | | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_COUNT_BITS_C +| | | +--->BN_MP_ABS_C +| | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| +--->BN_MP_KARATSUBA_MUL_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_MUL_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_C -+--->BN_MP_MOD_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_COUNT_BITS_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_COPY_C | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C - - -BN_MP_DIV_2D_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_ZERO_C -+--->BN_MP_INIT_C -+--->BN_MP_MOD_2D_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CLEAR_C -+--->BN_MP_RSHD_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C - - -BN_S_MP_ADD_C -+--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C ++--->BN_MP_SET_C ++--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_CLEAR_C -BN_FAST_S_MP_SQR_C +BN_FAST_S_MP_MUL_HIGH_DIGS_C +--->BN_MP_GROW_C +--->BN_MP_CLAMP_C -BN_S_MP_MUL_DIGS_C -+--->BN_FAST_S_MP_MUL_DIGS_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_INIT_SIZE_C -| +--->BN_MP_INIT_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C - - -BN_MP_XOR_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C - - -BN_MP_RADIX_SMAP_C - - -BN_MP_DR_IS_MODULUS_C - - -BN_MP_MONTGOMERY_CALC_NORMALIZATION_C -+--->BN_MP_COUNT_BITS_C -+--->BN_MP_2EXPT_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_GROW_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_MUL_2_C -| +--->BN_MP_GROW_C -+--->BN_MP_CMP_MAG_C -+--->BN_S_MP_SUB_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C - - -BN_MP_SUB_C -+--->BN_S_MP_ADD_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_MAG_C -+--->BN_S_MP_SUB_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C - - -BN_MP_INIT_MULTI_C -+--->BN_MP_INIT_C -+--->BN_MP_CLEAR_C - - -BN_S_MP_MUL_HIGH_DIGS_C -+--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_INIT_SIZE_C -| +--->BN_MP_INIT_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C +BN_REVERSE_C BN_MP_PRIME_NEXT_PRIME_C @@ -7483,6 +8708,7 @@ BN_MP_PRIME_NEXT_PRIME_C | +--->BN_MP_CLAMP_C +--->BN_MP_PRIME_MILLER_RABIN_C | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | +--->BN_MP_CNT_LSB_C @@ -7543,6 +8769,7 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C @@ -7551,7 +8778,6 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_DIV_2_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C @@ -7621,6 +8847,7 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C @@ -7629,7 +8856,6 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_COPY_C | | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_DIV_2_C @@ -7755,18 +8981,14 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C | | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C @@ -7878,18 +9100,14 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_RSHD_C @@ -7945,6 +9163,7 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -7953,7 +9172,6 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_SQR_C @@ -8001,22 +9219,16 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | +--->BN_MP_KARATSUBA_SQR_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C | | | | | | | +--->BN_MP_ZERO_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C | | | | +--->BN_FAST_S_MP_SQR_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C @@ -8069,18 +9281,14 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -8209,18 +9417,14 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | | +--->BN_MP_INIT_SIZE_C | | | | | | +--->BN_MP_CLAMP_C -| | | | | | +--->BN_MP_SUB_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C -| | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | | +--->BN_S_MP_SUB_C -| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_ADD_C -| | | | | | | +--->BN_S_MP_ADD_C -| | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | | +--->BN_S_MP_SUB_C | | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_LSHD_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_RSHD_C @@ -8269,6 +9473,7 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_S_MP_ADD_C | | | | | | | +--->BN_MP_GROW_C @@ -8277,7 +9482,6 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_MOD_C | | | | +--->BN_MP_DIV_C | | | | | +--->BN_MP_CMP_MAG_C @@ -8315,6 +9519,7 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -8323,7 +9528,6 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_SQR_C @@ -8371,22 +9575,16 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | +--->BN_MP_KARATSUBA_SQR_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C | | | | | | | +--->BN_MP_ZERO_C | | | | | +--->BN_MP_ADD_C | | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C | | | | +--->BN_FAST_S_MP_SQR_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C @@ -8439,18 +9637,14 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -8519,22 +9713,16 @@ BN_MP_PRIME_NEXT_PRIME_C | | | +--->BN_MP_KARATSUBA_SQR_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C | | | | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLEAR_C | | | +--->BN_FAST_S_MP_SQR_C | | | | +--->BN_MP_GROW_C @@ -8584,6 +9772,7 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C | | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C @@ -8592,88 +9781,50 @@ BN_MP_PRIME_NEXT_PRIME_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C | +--->BN_MP_CLEAR_C +--->BN_MP_CLEAR_C -BN_MP_SIGNED_BIN_SIZE_C -+--->BN_MP_UNSIGNED_BIN_SIZE_C -| +--->BN_MP_COUNT_BITS_C - - -BN_MP_INVMOD_SLOW_C +BN_MP_TOOM_MUL_C +--->BN_MP_INIT_MULTI_C | +--->BN_MP_INIT_C | +--->BN_MP_CLEAR_C -+--->BN_MP_MOD_C -| +--->BN_MP_INIT_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_COUNT_BITS_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C ++--->BN_MP_MOD_2D_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_RSHD_C +| +--->BN_MP_ZERO_C ++--->BN_MP_MUL_C +| +--->BN_MP_KARATSUBA_MUL_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C +| | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C +| | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C +| +--->BN_FAST_S_MP_MUL_DIGS_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_MUL_DIGS_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_DIV_2_C ++--->BN_MP_MUL_2_C | +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C +--->BN_MP_ADD_C | +--->BN_S_MP_ADD_C | | +--->BN_MP_GROW_C @@ -8690,194 +9841,143 @@ BN_MP_INVMOD_SLOW_C | +--->BN_S_MP_SUB_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_C -| +--->BN_MP_CMP_MAG_C -+--->BN_MP_CMP_D_C -+--->BN_MP_CMP_MAG_C -+--->BN_MP_EXCH_C ++--->BN_MP_DIV_2_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_MUL_2D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_LSHD_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_MUL_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_DIV_3_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_LSHD_C +| +--->BN_MP_GROW_C +--->BN_MP_CLEAR_MULTI_C | +--->BN_MP_CLEAR_C -BN_MP_LCM_C -+--->BN_MP_INIT_MULTI_C -| +--->BN_MP_INIT_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_GCD_C -| +--->BN_MP_ABS_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_CNT_LSB_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_MP_EXCH_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_MUL_2D_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C +BN_MP_CNT_LSB_C + + +BN_MP_CLAMP_C + + +BN_MP_SUB_D_C ++--->BN_MP_GROW_C ++--->BN_MP_ADD_D_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLAMP_C + + +BN_MP_ADD_C ++--->BN_S_MP_ADD_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C +--->BN_MP_CMP_MAG_C -+--->BN_MP_DIV_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C + + +BN_MP_REDUCE_2K_C ++--->BN_MP_INIT_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_DIV_2D_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C | +--->BN_MP_ZERO_C -| +--->BN_MP_SET_C -| +--->BN_MP_COUNT_BITS_C -| +--->BN_MP_ABS_C -| +--->BN_MP_MUL_2D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C +| +--->BN_MP_MOD_2D_C | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C -| +--->BN_MP_INIT_C -| +--->BN_MP_INIT_COPY_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C +| +--->BN_MP_CLEAR_C | +--->BN_MP_RSHD_C -| +--->BN_MP_MUL_D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_MUL_C -| +--->BN_MP_TOOM_MUL_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C ++--->BN_MP_MUL_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_S_MP_ADD_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_MAG_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLEAR_C + + +BN_MP_REDUCE_C ++--->BN_MP_REDUCE_SETUP_C +| +--->BN_MP_2EXPT_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C +| | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C -| | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_MULTI_C | | | +--->BN_MP_CLEAR_C -| +--->BN_MP_KARATSUBA_MUL_C | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_INIT_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C +| | +--->BN_MP_INIT_C +| | +--->BN_MP_INIT_COPY_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_MUL_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -+--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_CLEAR_C - - -BN_MP_REDUCE_2K_L_C -+--->BN_MP_INIT_C -+--->BN_MP_COUNT_BITS_C -+--->BN_MP_DIV_2D_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C ++--->BN_MP_RSHD_C | +--->BN_MP_ZERO_C -| +--->BN_MP_MOD_2D_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C +--->BN_MP_MUL_C | +--->BN_MP_TOOM_MUL_C | | +--->BN_MP_INIT_MULTI_C @@ -8889,8 +9989,6 @@ BN_MP_REDUCE_2K_L_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C | | +--->BN_MP_MUL_2_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_ADD_C @@ -8931,22 +10029,16 @@ BN_MP_REDUCE_2K_L_C | +--->BN_MP_KARATSUBA_MUL_C | | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C | | +--->BN_MP_CLEAR_C | +--->BN_FAST_S_MP_MUL_DIGS_C | | +--->BN_MP_GROW_C @@ -8956,215 +10048,131 @@ BN_MP_REDUCE_2K_L_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -+--->BN_S_MP_ADD_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_MAG_C -+--->BN_S_MP_SUB_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CLEAR_C - - -BN_REVERSE_C - - -BN_MP_PRIME_IS_DIVISIBLE_C -+--->BN_MP_MOD_D_C -| +--->BN_MP_DIV_D_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_INIT_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_DIV_3_C -| | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C - - -BN_MP_SET_C -+--->BN_MP_ZERO_C - - -BN_MP_GCD_C -+--->BN_MP_ABS_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_ZERO_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_CNT_LSB_C -+--->BN_MP_DIV_2D_C -| +--->BN_MP_COPY_C ++--->BN_S_MP_MUL_HIGH_DIGS_C +| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C | | +--->BN_MP_GROW_C -| +--->BN_MP_MOD_2D_C | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_RSHD_C +| +--->BN_MP_INIT_SIZE_C | +--->BN_MP_CLAMP_C | +--->BN_MP_EXCH_C -+--->BN_MP_CMP_MAG_C -+--->BN_MP_EXCH_C -+--->BN_S_MP_SUB_C +| +--->BN_MP_CLEAR_C ++--->BN_FAST_S_MP_MUL_HIGH_DIGS_C | +--->BN_MP_GROW_C | +--->BN_MP_CLAMP_C -+--->BN_MP_MUL_2D_C ++--->BN_MP_MOD_2D_C +| +--->BN_MP_ZERO_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C -| +--->BN_MP_GROW_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CLEAR_C - - -BN_MP_REDUCE_2K_SETUP_L_C -+--->BN_MP_INIT_C -+--->BN_MP_2EXPT_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_GROW_C -+--->BN_MP_COUNT_BITS_C -+--->BN_S_MP_SUB_C -| +--->BN_MP_GROW_C | +--->BN_MP_CLAMP_C -+--->BN_MP_CLEAR_C - - -BN_MP_READ_RADIX_C -+--->BN_MP_ZERO_C -+--->BN_MP_MUL_D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_ADD_D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_SUB_D_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLAMP_C - - -BN_FAST_S_MP_MUL_HIGH_DIGS_C -+--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C - - -BN_FAST_MP_MONTGOMERY_REDUCE_C -+--->BN_MP_GROW_C -+--->BN_MP_RSHD_C -| +--->BN_MP_ZERO_C -+--->BN_MP_CLAMP_C -+--->BN_MP_CMP_MAG_C -+--->BN_S_MP_SUB_C - - -BN_MP_DIV_D_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_DIV_2D_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_INIT_C -| +--->BN_MP_MOD_2D_C ++--->BN_S_MP_MUL_DIGS_C +| +--->BN_FAST_S_MP_MUL_DIGS_C +| | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_DIV_3_C | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C | +--->BN_MP_CLAMP_C | +--->BN_MP_EXCH_C | +--->BN_MP_CLEAR_C -+--->BN_MP_INIT_SIZE_C -| +--->BN_MP_INIT_C -+--->BN_MP_CLAMP_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C - - -BN_MP_REDUCE_2K_SETUP_C -+--->BN_MP_INIT_C -+--->BN_MP_COUNT_BITS_C -+--->BN_MP_2EXPT_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_GROW_C -+--->BN_MP_CLEAR_C -+--->BN_S_MP_SUB_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C - - -BN_MP_INIT_SET_C -+--->BN_MP_INIT_C ++--->BN_MP_SUB_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_D_C +--->BN_MP_SET_C | +--->BN_MP_ZERO_C - - -BN_MP_REDUCE_2K_C -+--->BN_MP_INIT_C -+--->BN_MP_COUNT_BITS_C -+--->BN_MP_DIV_2D_C -| +--->BN_MP_COPY_C ++--->BN_MP_LSHD_C +| +--->BN_MP_GROW_C ++--->BN_MP_ADD_C +| +--->BN_S_MP_ADD_C | | +--->BN_MP_GROW_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_MOD_2D_C | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_MUL_D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_S_MP_ADD_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_MAG_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_CMP_C +| +--->BN_MP_CMP_MAG_C +--->BN_S_MP_SUB_C | +--->BN_MP_GROW_C | +--->BN_MP_CLAMP_C +--->BN_MP_CLEAR_C -BN_ERROR_C - - -BN_MP_EXPT_D_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_SQR_C -| +--->BN_MP_TOOM_SQR_C +BN_MP_EXPTMOD_C ++--->BN_MP_INIT_C ++--->BN_MP_INVMOD_C +| +--->BN_FAST_MP_INVMOD_C | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MOD_C +| | | +--->BN_MP_DIV_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_SET_C +| | | | +--->BN_MP_COUNT_BITS_C +| | | | +--->BN_MP_ABS_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SET_C | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C +| | +--->BN_MP_DIV_2_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -9172,7 +10180,10 @@ BN_MP_EXPT_D_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C +| | +--->BN_MP_CMP_C +| | | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_CMP_D_C +| | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -9180,199 +10191,495 @@ BN_MP_EXPT_D_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +| +--->BN_MP_INVMOD_SLOW_C +| | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_MOD_C +| | | +--->BN_MP_DIV_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_SET_C +| | | | +--->BN_MP_COUNT_BITS_C +| | | | +--->BN_MP_ABS_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C +| | +--->BN_MP_SET_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_DIV_2_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| +--->BN_MP_KARATSUBA_SQR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C +| | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_SQR_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_SQR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_CMP_D_C +| | +--->BN_MP_CMP_MAG_C | | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C +| | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C +--->BN_MP_CLEAR_C -+--->BN_MP_MUL_C -| +--->BN_MP_TOOM_MUL_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_MOD_2D_C ++--->BN_MP_ABS_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_CLEAR_MULTI_C ++--->BN_MP_REDUCE_IS_2K_L_C ++--->BN_S_MP_EXPTMOD_C +| +--->BN_MP_COUNT_BITS_C +| +--->BN_MP_REDUCE_SETUP_C +| | +--->BN_MP_2EXPT_C | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_DIV_C +| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_CMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_REDUCE_C +| | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_C +| | | +--->BN_MP_TOOM_MUL_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_KARATSUBA_MUL_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_FAST_S_MP_MUL_DIGS_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C +| | | +--->BN_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | +--->BN_S_MP_MUL_HIGH_DIGS_C +| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C +| | +--->BN_MP_MOD_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C +| | +--->BN_S_MP_MUL_DIGS_C +| | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_KARATSUBA_MUL_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C | | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_D_C +| | +--->BN_MP_SET_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| +--->BN_FAST_S_MP_MUL_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C - - -BN_S_MP_EXPTMOD_C -+--->BN_MP_COUNT_BITS_C -+--->BN_MP_INIT_C -+--->BN_MP_CLEAR_C -+--->BN_MP_REDUCE_SETUP_C -| +--->BN_MP_2EXPT_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_COPY_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_REDUCE_2K_SETUP_L_C +| | +--->BN_MP_2EXPT_C +| | | +--->BN_MP_ZERO_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C +| | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_REDUCE_2K_L_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_MUL_C +| | | +--->BN_MP_TOOM_MUL_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_KARATSUBA_MUL_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_MOD_C +| | +--->BN_MP_DIV_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_SET_C +| | | +--->BN_MP_MUL_2D_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_CMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_SQR_C +| | +--->BN_MP_TOOM_SQR_C +| | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_MP_KARATSUBA_SQR_C +| | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | +--->BN_FAST_S_MP_SQR_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_REDUCE_C -| +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C -| | +--->BN_MP_ZERO_C +| | +--->BN_S_MP_SQR_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C | +--->BN_MP_MUL_C | | +--->BN_MP_TOOM_MUL_C | | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MUL_2_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_ADD_C @@ -9407,24 +10714,21 @@ BN_S_MP_EXPTMOD_C | | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLEAR_MULTI_C | | +--->BN_MP_KARATSUBA_MUL_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CMP_MAG_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C | | +--->BN_FAST_S_MP_MUL_DIGS_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C @@ -9432,29 +10736,25 @@ BN_S_MP_EXPTMOD_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| +--->BN_S_MP_MUL_HIGH_DIGS_C -| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_MOD_2D_C +| +--->BN_MP_SET_C | | +--->BN_MP_ZERO_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_FAST_S_MP_MUL_DIGS_C +| +--->BN_MP_EXCH_C ++--->BN_MP_DR_IS_MODULUS_C ++--->BN_MP_REDUCE_IS_2K_C +| +--->BN_MP_REDUCE_2K_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_MUL_D_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| +--->BN_MP_SUB_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C @@ -9462,12 +10762,50 @@ BN_S_MP_EXPTMOD_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_D_C -| +--->BN_MP_SET_C -| | +--->BN_MP_ZERO_C -| +--->BN_MP_LSHD_C +| +--->BN_MP_COUNT_BITS_C ++--->BN_MP_EXPTMOD_FAST_C +| +--->BN_MP_COUNT_BITS_C +| +--->BN_MP_MONTGOMERY_SETUP_C +| +--->BN_FAST_MP_MONTGOMERY_REDUCE_C | | +--->BN_MP_GROW_C -| +--->BN_MP_ADD_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| +--->BN_MP_MONTGOMERY_REDUCE_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| +--->BN_MP_DR_SETUP_C +| +--->BN_MP_DR_REDUCE_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| +--->BN_MP_REDUCE_2K_SETUP_C +| | +--->BN_MP_2EXPT_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_REDUCE_2K_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C @@ -9475,38 +10813,204 @@ BN_S_MP_EXPTMOD_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_C +| +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C +| | +--->BN_MP_2EXPT_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_SET_C +| | | +--->BN_MP_ZERO_C +| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_REDUCE_2K_SETUP_L_C -| +--->BN_MP_2EXPT_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_GROW_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_REDUCE_2K_L_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_COPY_C +| | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| +--->BN_MP_MULMOD_C +| | +--->BN_MP_MUL_C +| | | +--->BN_MP_TOOM_MUL_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_COPY_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MUL_2_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_3_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_KARATSUBA_MUL_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_MUL_DIGS_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | +--->BN_MP_MOD_C +| | | +--->BN_MP_DIV_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | +--->BN_MP_SET_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_SUB_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_MUL_D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| +--->BN_MP_SET_C | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MOD_2D_C +| +--->BN_MP_MOD_C +| | +--->BN_MP_DIV_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_COPY_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -| +--->BN_MP_MUL_C -| | +--->BN_MP_TOOM_MUL_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_SQR_C +| | +--->BN_MP_TOOM_SQR_C | | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MUL_2_C @@ -9543,22 +11047,79 @@ BN_S_MP_EXPTMOD_C | | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_KARATSUBA_MUL_C +| | +--->BN_MP_KARATSUBA_SQR_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | +--->BN_FAST_S_MP_SQR_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_S_MP_SQR_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| +--->BN_MP_MUL_C +| | +--->BN_MP_TOOM_MUL_C +| | | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_MUL_2_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CMP_MAG_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_SUB_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CMP_MAG_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_2_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_2D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_D_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_DIV_3_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_GROW_C +| | +--->BN_MP_KARATSUBA_MUL_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_ADD_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_RSHD_C @@ -9570,143 +11131,90 @@ BN_S_MP_EXPTMOD_C | | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C + + +BN_MP_LSHD_C ++--->BN_MP_GROW_C ++--->BN_MP_RSHD_C +| +--->BN_MP_ZERO_C + + +BN_MP_ADD_D_C ++--->BN_MP_GROW_C ++--->BN_MP_SUB_D_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLAMP_C + + +BN_MP_GET_LONG_C + + +BN_MP_GET_LONG_LONG_C + + +BN_MP_CLEAR_C + + +BN_MP_EXTEUCLID_C ++--->BN_MP_INIT_MULTI_C +| +--->BN_MP_INIT_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_SET_C +| +--->BN_MP_ZERO_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_DIV_C | +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_COUNT_BITS_C +| +--->BN_MP_ABS_C +| +--->BN_MP_MUL_2D_C | | +--->BN_MP_GROW_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C -+--->BN_MP_MOD_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C +| +--->BN_MP_CMP_C +| +--->BN_MP_SUB_C +| | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C +| | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C | +--->BN_MP_ADD_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_SQR_C -| +--->BN_MP_TOOM_SQR_C -| | +--->BN_MP_INIT_MULTI_C +| +--->BN_MP_DIV_2D_C +| | +--->BN_MP_INIT_C | | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLEAR_C | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| | +--->BN_MP_MUL_2_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_KARATSUBA_SQR_C -| | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | +--->BN_MP_ADD_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| +--->BN_FAST_S_MP_SQR_C +| | +--->BN_MP_EXCH_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_INIT_C +| +--->BN_MP_INIT_COPY_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_RSHD_C +| +--->BN_MP_RSHD_C +| +--->BN_MP_MUL_D_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_SQR_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_CLEAR_C +--->BN_MP_MUL_C | +--->BN_MP_TOOM_MUL_C -| | +--->BN_MP_INIT_MULTI_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_CLAMP_C @@ -9742,76 +11250,63 @@ BN_S_MP_EXPTMOD_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_DIV_3_C | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_CLEAR_MULTI_C +| | | +--->BN_MP_CLEAR_C | +--->BN_MP_KARATSUBA_MUL_C | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_CLEAR_C | +--->BN_FAST_S_MP_MUL_DIGS_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C | +--->BN_S_MP_MUL_DIGS_C | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_EXCH_C - - -BN_MP_ABS_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C - - -BN_MP_INIT_SET_INT_C -+--->BN_MP_INIT_C -+--->BN_MP_SET_INT_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_MUL_2D_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_SUB_C +| +--->BN_S_MP_ADD_C | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLAMP_C - - -BN_MP_SUB_D_C -+--->BN_MP_GROW_C -+--->BN_MP_ADD_D_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_NEG_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_MULTI_C +| +--->BN_MP_CLEAR_C -BN_MP_TO_SIGNED_BIN_C -+--->BN_MP_TO_UNSIGNED_BIN_C -| +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C +BN_MP_TORADIX_N_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_DIV_D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C | +--->BN_MP_DIV_2D_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C | | +--->BN_MP_ZERO_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_CLAMP_C @@ -9819,21 +11314,28 @@ BN_MP_TO_SIGNED_BIN_C | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C +| +--->BN_MP_DIV_3_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C | +--->BN_MP_CLEAR_C ++--->BN_MP_CLEAR_C -BN_MP_DIV_2_C -+--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C - - -BN_MP_REDUCE_IS_2K_C -+--->BN_MP_REDUCE_2K_C -| +--->BN_MP_INIT_C -| +--->BN_MP_COUNT_BITS_C +BN_MP_RADIX_SIZE_C ++--->BN_MP_COUNT_BITS_C ++--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C ++--->BN_MP_DIV_D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C | +--->BN_MP_DIV_2D_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C | | +--->BN_MP_ZERO_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_CLAMP_C @@ -9841,185 +11343,85 @@ BN_MP_REDUCE_IS_2K_C | | +--->BN_MP_RSHD_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -| +--->BN_MP_MUL_D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C +| +--->BN_MP_DIV_3_C +| | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_INIT_SIZE_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C | +--->BN_MP_CLEAR_C -+--->BN_MP_COUNT_BITS_C - - -BN_MP_INIT_SIZE_C -+--->BN_MP_INIT_C ++--->BN_MP_CLEAR_C -BN_MP_DIV_C -+--->BN_MP_CMP_MAG_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_ZERO_C -+--->BN_MP_INIT_MULTI_C -| +--->BN_MP_INIT_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_SET_C -+--->BN_MP_COUNT_BITS_C -+--->BN_MP_ABS_C -+--->BN_MP_MUL_2D_C +BN_S_MP_MUL_HIGH_DIGS_C ++--->BN_FAST_S_MP_MUL_HIGH_DIGS_C | +--->BN_MP_GROW_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_C -+--->BN_MP_SUB_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_ADD_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_DIV_2D_C -| +--->BN_MP_INIT_C -| +--->BN_MP_MOD_2D_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_RSHD_C | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_CLEAR_C +--->BN_MP_INIT_SIZE_C | +--->BN_MP_INIT_C -+--->BN_MP_INIT_C -+--->BN_MP_INIT_COPY_C -+--->BN_MP_LSHD_C -| +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C -+--->BN_MP_RSHD_C -+--->BN_MP_MUL_D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C +--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C +--->BN_MP_CLEAR_C -BN_MP_CLEAR_C - - -BN_MP_MONTGOMERY_REDUCE_C -+--->BN_FAST_MP_MONTGOMERY_REDUCE_C +BN_MP_SET_INT_C ++--->BN_MP_ZERO_C ++--->BN_MP_MUL_2D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C | +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C -| | +--->BN_MP_ZERO_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_RSHD_C | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -+--->BN_MP_GROW_C +--->BN_MP_CLAMP_C -+--->BN_MP_RSHD_C -| +--->BN_MP_ZERO_C -+--->BN_MP_CMP_MAG_C -+--->BN_S_MP_SUB_C -BN_MP_MUL_2_C -+--->BN_MP_GROW_C +BN_MP_DR_SETUP_C -BN_MP_UNSIGNED_BIN_SIZE_C -+--->BN_MP_COUNT_BITS_C +BN_MP_MUL_2_C ++--->BN_MP_GROW_C -BN_MP_ADDMOD_C -+--->BN_MP_INIT_C -+--->BN_MP_ADD_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_CLEAR_C -+--->BN_MP_MOD_C -| +--->BN_MP_DIV_C -| | +--->BN_MP_CMP_MAG_C +BN_MP_FWRITE_C ++--->BN_MP_RADIX_SIZE_C +| +--->BN_MP_COUNT_BITS_C +| +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_SET_C -| | +--->BN_MP_COUNT_BITS_C -| | +--->BN_MP_ABS_C -| | +--->BN_MP_MUL_2D_C +| +--->BN_MP_DIV_D_C +| | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C | | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_TORADIX_C +| +--->BN_MP_INIT_COPY_C | | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_LSHD_C +| | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_MUL_D_C +| +--->BN_MP_DIV_D_C +| | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C - - -BN_MP_ADD_C -+--->BN_S_MP_ADD_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_MAG_C -+--->BN_S_MP_SUB_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C - - -BN_MP_TO_SIGNED_BIN_N_C -+--->BN_MP_SIGNED_BIN_SIZE_C -| +--->BN_MP_UNSIGNED_BIN_SIZE_C -| | +--->BN_MP_COUNT_BITS_C -+--->BN_MP_TO_SIGNED_BIN_C -| +--->BN_MP_TO_UNSIGNED_BIN_C -| | +--->BN_MP_INIT_COPY_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C | | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_CLAMP_C @@ -10027,71 +11429,92 @@ BN_MP_TO_SIGNED_BIN_N_C | | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_CLAMP_C +| | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C +| +--->BN_MP_CLEAR_C -BN_MP_REDUCE_IS_2K_L_C +BN_MP_GROW_C -BN_MP_RAND_C +BN_MP_READ_RADIX_C +--->BN_MP_ZERO_C ++--->BN_MP_MUL_D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C +--->BN_MP_ADD_D_C | +--->BN_MP_GROW_C | +--->BN_MP_SUB_D_C | | +--->BN_MP_CLAMP_C | +--->BN_MP_CLAMP_C -+--->BN_MP_LSHD_C -| +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C - -BN_MP_CNT_LSB_C - - -BN_MP_2EXPT_C -+--->BN_MP_ZERO_C -+--->BN_MP_GROW_C - -BN_MP_RSHD_C -+--->BN_MP_ZERO_C +BN_S_MP_MUL_DIGS_C ++--->BN_FAST_S_MP_MUL_DIGS_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_INIT_SIZE_C +| +--->BN_MP_INIT_C ++--->BN_MP_CLAMP_C ++--->BN_MP_EXCH_C ++--->BN_MP_CLEAR_C -BN_MP_SHRINK_C +BN_PRIME_TAB_C -BN_MP_TO_UNSIGNED_BIN_N_C -+--->BN_MP_UNSIGNED_BIN_SIZE_C -| +--->BN_MP_COUNT_BITS_C -+--->BN_MP_TO_UNSIGNED_BIN_C -| +--->BN_MP_INIT_COPY_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_DIV_2D_C +BN_MP_IS_SQUARE_C ++--->BN_MP_MOD_D_C +| +--->BN_MP_DIV_D_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_MOD_2D_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_DIV_3_C +| | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_CLEAR_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C - - -BN_MP_REDUCE_C -+--->BN_MP_REDUCE_SETUP_C -| +--->BN_MP_2EXPT_C +| | +--->BN_MP_CLEAR_C ++--->BN_MP_INIT_SET_INT_C +| +--->BN_MP_INIT_C +| +--->BN_MP_SET_INT_C | | +--->BN_MP_ZERO_C -| | +--->BN_MP_GROW_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_MOD_C +| +--->BN_MP_INIT_C | +--->BN_MP_DIV_C | | +--->BN_MP_CMP_MAG_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_ZERO_C | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_INIT_C | | | +--->BN_MP_CLEAR_C | | +--->BN_MP_SET_C | | +--->BN_MP_COUNT_BITS_C @@ -10117,7 +11540,6 @@ BN_MP_REDUCE_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_DIV_2D_C -| | | +--->BN_MP_INIT_C | | | +--->BN_MP_MOD_2D_C | | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CLEAR_C @@ -10128,8 +11550,6 @@ BN_MP_REDUCE_C | | +--->BN_MP_CLEAR_MULTI_C | | | +--->BN_MP_CLEAR_C | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C -| | +--->BN_MP_INIT_C | | +--->BN_MP_INIT_COPY_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C @@ -10140,173 +11560,300 @@ BN_MP_REDUCE_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLEAR_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_RSHD_C -| +--->BN_MP_ZERO_C -+--->BN_MP_MUL_C -| +--->BN_MP_TOOM_MUL_C -| | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_COPY_C +| +--->BN_MP_CLEAR_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_MUL_2_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_CLAMP_C ++--->BN_MP_GET_INT_C ++--->BN_MP_SQRT_C +| +--->BN_MP_N_ROOT_C +| | +--->BN_MP_N_ROOT_EX_C +| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_SET_C +| | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_EXPT_D_EX_C +| | | | +--->BN_MP_INIT_COPY_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_MUL_C +| | | | | +--->BN_MP_TOOM_MUL_C +| | | | | | +--->BN_MP_INIT_MULTI_C +| | | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_MUL_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_SUB_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_2D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_3_C +| | | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_EXCH_C +| | | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_KARATSUBA_MUL_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_SQR_C +| | | | | +--->BN_MP_TOOM_SQR_C +| | | | | | +--->BN_MP_INIT_MULTI_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_MUL_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_SUB_C +| | | | | | | +--->BN_S_MP_ADD_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | | +--->BN_S_MP_SUB_C +| | | | | | | | +--->BN_MP_GROW_C +| | | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_2_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_2D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_MUL_D_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_DIV_3_C +| | | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | +--->BN_MP_KARATSUBA_SQR_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_RSHD_C +| | | | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_ADD_C +| | | | | | | +--->BN_MP_CMP_MAG_C +| | | | | +--->BN_FAST_S_MP_SQR_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SQR_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | +--->BN_MP_MUL_C +| | | | +--->BN_MP_TOOM_MUL_C +| | | | | +--->BN_MP_INIT_MULTI_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_MUL_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_SUB_C +| | | | | | +--->BN_S_MP_ADD_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_2D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_MUL_D_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_3_C +| | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_KARATSUBA_MUL_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_ADD_C +| | | | | | +--->BN_MP_CMP_MAG_C +| | | | | | +--->BN_S_MP_SUB_C +| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | | +--->BN_MP_ZERO_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_FAST_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_S_MP_MUL_DIGS_C +| | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_SUB_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C +| | | +--->BN_MP_DIV_C +| | | | +--->BN_MP_CMP_MAG_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_INIT_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_COUNT_BITS_C +| | | | +--->BN_MP_ABS_C +| | | | +--->BN_MP_MUL_2D_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_LSHD_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_ADD_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_CLEAR_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_EXCH_C +| | | | +--->BN_MP_CLEAR_MULTI_C +| | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_LSHD_C +| | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_CMP_C +| | | | +--->BN_MP_CMP_MAG_C +| | | +--->BN_MP_SUB_D_C | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ADD_D_C +| | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_2_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_2D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_MUL_D_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_DIV_3_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_CLEAR_C -| +--->BN_MP_KARATSUBA_MUL_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_INIT_COPY_C | | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C +| | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_MUL_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -+--->BN_S_MP_MUL_HIGH_DIGS_C -| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_INIT_SIZE_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C -+--->BN_FAST_S_MP_MUL_HIGH_DIGS_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_MOD_2D_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_S_MP_MUL_DIGS_C -| +--->BN_FAST_S_MP_MUL_DIGS_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_INIT_SIZE_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_SUB_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_D_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_LSHD_C -| +--->BN_MP_GROW_C -+--->BN_MP_ADD_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_C -| +--->BN_MP_CMP_MAG_C -+--->BN_S_MP_SUB_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CLEAR_C - - -BN_MP_MUL_2D_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_GROW_C -+--->BN_MP_LSHD_C | +--->BN_MP_RSHD_C -| | +--->BN_MP_ZERO_C -+--->BN_MP_CLAMP_C - - -BN_MP_GET_INT_C - - -BN_MP_JACOBI_C -+--->BN_MP_CMP_D_C -+--->BN_MP_INIT_COPY_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -+--->BN_MP_CNT_LSB_C -+--->BN_MP_DIV_2D_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_MOD_2D_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_RSHD_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_MOD_C | +--->BN_MP_DIV_C | | +--->BN_MP_CMP_MAG_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ZERO_C | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_CLEAR_C | | +--->BN_MP_SET_C @@ -10315,7 +11862,6 @@ BN_MP_JACOBI_C | | +--->BN_MP_MUL_2D_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_RSHD_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CMP_C | | +--->BN_MP_SUB_C @@ -10332,20 +11878,23 @@ BN_MP_JACOBI_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_CLEAR_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_MULTI_C | | | +--->BN_MP_CLEAR_C | | +--->BN_MP_INIT_SIZE_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_RSHD_C | | +--->BN_MP_MUL_D_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_CLEAR_C -| +--->BN_MP_CLEAR_C | +--->BN_MP_ADD_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C @@ -10354,160 +11903,24 @@ BN_MP_JACOBI_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_C - - -BN_MP_CLEAR_MULTI_C -+--->BN_MP_CLEAR_C - - -BN_MP_MUL_C -+--->BN_MP_TOOM_MUL_C -| +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_MOD_2D_C -| | +--->BN_MP_ZERO_C -| | +--->BN_MP_COPY_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_COPY_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_RSHD_C -| | +--->BN_MP_ZERO_C -| +--->BN_MP_MUL_2_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C | +--->BN_MP_DIV_2_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -| +--->BN_MP_MUL_2D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_MUL_D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_DIV_3_C -| | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_CLEAR_C -+--->BN_MP_KARATSUBA_MUL_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | +--->BN_MP_CMP_MAG_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| | | +--->BN_MP_ZERO_C -| +--->BN_MP_CLEAR_C -+--->BN_FAST_S_MP_MUL_DIGS_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_S_MP_MUL_DIGS_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C -| +--->BN_MP_CLAMP_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_C - - -BN_MP_EXTEUCLID_C -+--->BN_MP_INIT_MULTI_C -| +--->BN_MP_INIT_C -| +--->BN_MP_CLEAR_C -+--->BN_MP_SET_C -| +--->BN_MP_ZERO_C -+--->BN_MP_COPY_C -| +--->BN_MP_GROW_C -+--->BN_MP_DIV_C | +--->BN_MP_CMP_MAG_C -| +--->BN_MP_ZERO_C -| +--->BN_MP_COUNT_BITS_C -| +--->BN_MP_ABS_C -| +--->BN_MP_MUL_2D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_C -| +--->BN_MP_SUB_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SUB_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C -| | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C | +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_MULTI_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C -| +--->BN_MP_INIT_C -| +--->BN_MP_INIT_COPY_C -| +--->BN_MP_LSHD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| +--->BN_MP_RSHD_C -| +--->BN_MP_MUL_D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLAMP_C | +--->BN_MP_CLEAR_C -+--->BN_MP_MUL_C -| +--->BN_MP_TOOM_MUL_C ++--->BN_MP_SQR_C +| +--->BN_MP_TOOM_SQR_C +| | +--->BN_MP_INIT_MULTI_C +| | | +--->BN_MP_INIT_C +| | | +--->BN_MP_CLEAR_C | | +--->BN_MP_MOD_2D_C | | | +--->BN_MP_ZERO_C +| | | +--->BN_MP_COPY_C +| | | | +--->BN_MP_GROW_C | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_RSHD_C | | | +--->BN_MP_ZERO_C | | +--->BN_MP_MUL_2_C @@ -10548,137 +11961,120 @@ BN_MP_EXTEUCLID_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_CLEAR_MULTI_C | | | +--->BN_MP_CLEAR_C -| +--->BN_MP_KARATSUBA_MUL_C +| +--->BN_MP_KARATSUBA_SQR_C | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_SUB_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_ZERO_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C | | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_MUL_DIGS_C +| +--->BN_FAST_S_MP_SQR_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C +| +--->BN_S_MP_SQR_C | | +--->BN_MP_INIT_SIZE_C | | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -+--->BN_MP_SUB_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -+--->BN_MP_NEG_C -+--->BN_MP_EXCH_C -+--->BN_MP_CLEAR_MULTI_C -| +--->BN_MP_CLEAR_C - - -BN_MP_DR_REDUCE_C -+--->BN_MP_GROW_C -+--->BN_MP_CLAMP_C +--->BN_MP_CMP_MAG_C -+--->BN_S_MP_SUB_C ++--->BN_MP_CLEAR_C -BN_MP_FREAD_C -+--->BN_MP_ZERO_C -+--->BN_MP_MUL_D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_ADD_D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_SUB_D_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLAMP_C -+--->BN_MP_CMP_D_C +BN_MP_COPY_C ++--->BN_MP_GROW_C -BN_MP_REDUCE_SETUP_C -+--->BN_MP_2EXPT_C +BN_MP_TOOM_SQR_C ++--->BN_MP_INIT_MULTI_C +| +--->BN_MP_INIT_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_MOD_2D_C | +--->BN_MP_ZERO_C -| +--->BN_MP_GROW_C -+--->BN_MP_DIV_C -| +--->BN_MP_CMP_MAG_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_RSHD_C | +--->BN_MP_ZERO_C -| +--->BN_MP_INIT_MULTI_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_CLEAR_C -| +--->BN_MP_SET_C -| +--->BN_MP_COUNT_BITS_C -| +--->BN_MP_ABS_C -| +--->BN_MP_MUL_2D_C -| | +--->BN_MP_GROW_C -| | +--->BN_MP_LSHD_C -| | | +--->BN_MP_RSHD_C ++--->BN_MP_SQR_C +| +--->BN_MP_KARATSUBA_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C -| +--->BN_MP_CMP_C -| +--->BN_MP_SUB_C | | +--->BN_S_MP_ADD_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C | | +--->BN_S_MP_SUB_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_ADD_C -| | +--->BN_S_MP_ADD_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SUB_C +| | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| +--->BN_MP_DIV_2D_C -| | +--->BN_MP_INIT_C -| | +--->BN_MP_MOD_2D_C -| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_ADD_C +| | | +--->BN_MP_CMP_MAG_C | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_RSHD_C +| +--->BN_FAST_S_MP_SQR_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_SQR_C +| | +--->BN_MP_INIT_SIZE_C +| | | +--->BN_MP_INIT_C | | +--->BN_MP_CLAMP_C | | +--->BN_MP_EXCH_C -| +--->BN_MP_EXCH_C -| +--->BN_MP_CLEAR_MULTI_C | | +--->BN_MP_CLEAR_C -| +--->BN_MP_INIT_SIZE_C -| | +--->BN_MP_INIT_C -| +--->BN_MP_INIT_C -| +--->BN_MP_INIT_COPY_C -| +--->BN_MP_LSHD_C ++--->BN_MP_MUL_2_C +| +--->BN_MP_GROW_C ++--->BN_MP_ADD_C +| +--->BN_S_MP_ADD_C | | +--->BN_MP_GROW_C -| | +--->BN_MP_RSHD_C -| +--->BN_MP_RSHD_C -| +--->BN_MP_MUL_D_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_SUB_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C | | +--->BN_MP_GROW_C | | +--->BN_MP_CLAMP_C ++--->BN_MP_DIV_2_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_MUL_2D_C +| +--->BN_MP_GROW_C +| +--->BN_MP_LSHD_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_MUL_D_C +| +--->BN_MP_GROW_C | +--->BN_MP_CLAMP_C ++--->BN_MP_DIV_3_C +| +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_C +| +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_CLEAR_C ++--->BN_MP_LSHD_C +| +--->BN_MP_GROW_C ++--->BN_MP_CLEAR_MULTI_C | +--->BN_MP_CLEAR_C -BN_MP_MONTGOMERY_SETUP_C - - -BN_MP_KARATSUBA_MUL_C -+--->BN_MP_MUL_C -| +--->BN_MP_TOOM_MUL_C +BN_MP_KARATSUBA_SQR_C ++--->BN_MP_INIT_SIZE_C +| +--->BN_MP_INIT_C ++--->BN_MP_CLAMP_C ++--->BN_MP_SQR_C +| +--->BN_MP_TOOM_SQR_C | | +--->BN_MP_INIT_MULTI_C | | | +--->BN_MP_INIT_C | | | +--->BN_MP_CLEAR_C @@ -10686,7 +12082,6 @@ BN_MP_KARATSUBA_MUL_C | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_RSHD_C @@ -10696,86 +12091,55 @@ BN_MP_KARATSUBA_MUL_C | | +--->BN_MP_ADD_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_SUB_C | | | +--->BN_S_MP_ADD_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_CMP_MAG_C | | | +--->BN_S_MP_SUB_C | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_DIV_2_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_MUL_2D_C | | | +--->BN_MP_GROW_C | | | +--->BN_MP_LSHD_C -| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_MUL_D_C | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C | | +--->BN_MP_DIV_3_C -| | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_INIT_C -| | | +--->BN_MP_CLAMP_C | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_CLEAR_C | | +--->BN_MP_LSHD_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_CLEAR_MULTI_C | | | +--->BN_MP_CLEAR_C -| +--->BN_FAST_S_MP_MUL_DIGS_C +| +--->BN_FAST_S_MP_SQR_C | | +--->BN_MP_GROW_C -| | +--->BN_MP_CLAMP_C -| +--->BN_S_MP_MUL_DIGS_C -| | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_INIT_C -| | +--->BN_MP_CLAMP_C +| +--->BN_S_MP_SQR_C | | +--->BN_MP_EXCH_C | | +--->BN_MP_CLEAR_C -+--->BN_MP_INIT_SIZE_C -| +--->BN_MP_INIT_C -+--->BN_MP_CLAMP_C -+--->BN_MP_SUB_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C -+--->BN_MP_ADD_C -| +--->BN_S_MP_ADD_C -| | +--->BN_MP_GROW_C -| +--->BN_MP_CMP_MAG_C -| +--->BN_S_MP_SUB_C -| | +--->BN_MP_GROW_C ++--->BN_S_MP_ADD_C +| +--->BN_MP_GROW_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C +--->BN_MP_LSHD_C | +--->BN_MP_GROW_C | +--->BN_MP_RSHD_C | | +--->BN_MP_ZERO_C ++--->BN_MP_ADD_C +| +--->BN_MP_CMP_MAG_C +--->BN_MP_CLEAR_C -BN_MP_LSHD_C -+--->BN_MP_GROW_C -+--->BN_MP_RSHD_C -| +--->BN_MP_ZERO_C - - -BN_MP_PRIME_MILLER_RABIN_C -+--->BN_MP_CMP_D_C +BN_MP_GCD_C ++--->BN_MP_ABS_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +--->BN_MP_INIT_COPY_C +| +--->BN_MP_INIT_SIZE_C | +--->BN_MP_COPY_C | | +--->BN_MP_GROW_C -+--->BN_MP_SUB_D_C -| +--->BN_MP_GROW_C -| +--->BN_MP_ADD_D_C -| | +--->BN_MP_CLAMP_C -| +--->BN_MP_CLAMP_C +--->BN_MP_CNT_LSB_C +--->BN_MP_DIV_2D_C | +--->BN_MP_COPY_C @@ -10787,6 +12151,165 @@ BN_MP_PRIME_MILLER_RABIN_C | +--->BN_MP_RSHD_C | +--->BN_MP_CLAMP_C | +--->BN_MP_EXCH_C ++--->BN_MP_CMP_MAG_C ++--->BN_MP_EXCH_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_MUL_2D_C +| +--->BN_MP_COPY_C +| | +--->BN_MP_GROW_C +| +--->BN_MP_GROW_C +| +--->BN_MP_LSHD_C +| | +--->BN_MP_RSHD_C +| | | +--->BN_MP_ZERO_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLEAR_C + + +BN_MP_MOD_2D_C ++--->BN_MP_ZERO_C ++--->BN_MP_COPY_C +| +--->BN_MP_GROW_C ++--->BN_MP_CLAMP_C + + +BN_FAST_MP_MONTGOMERY_REDUCE_C ++--->BN_MP_GROW_C ++--->BN_MP_RSHD_C +| +--->BN_MP_ZERO_C ++--->BN_MP_CLAMP_C ++--->BN_MP_CMP_MAG_C ++--->BN_S_MP_SUB_C + + +BN_MP_SUBMOD_C ++--->BN_MP_INIT_C ++--->BN_MP_SUB_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_CLEAR_C ++--->BN_MP_MOD_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | +--->BN_MP_ADD_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C +| +--->BN_MP_ADD_C +| | +--->BN_S_MP_ADD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_S_MP_SUB_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C + + +BN_MP_GET_INT_C + + +BN_MP_SET_LONG_C + + +BN_MP_ADDMOD_C ++--->BN_MP_INIT_C ++--->BN_MP_ADD_C +| +--->BN_S_MP_ADD_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_CMP_MAG_C +| +--->BN_S_MP_SUB_C +| | +--->BN_MP_GROW_C +| | +--->BN_MP_CLAMP_C ++--->BN_MP_CLEAR_C ++--->BN_MP_MOD_C +| +--->BN_MP_DIV_C +| | +--->BN_MP_CMP_MAG_C +| | +--->BN_MP_COPY_C +| | | +--->BN_MP_GROW_C +| | +--->BN_MP_ZERO_C +| | +--->BN_MP_INIT_MULTI_C +| | +--->BN_MP_SET_C +| | +--->BN_MP_COUNT_BITS_C +| | +--->BN_MP_ABS_C +| | +--->BN_MP_MUL_2D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_LSHD_C +| | | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CMP_C +| | +--->BN_MP_SUB_C +| | | +--->BN_S_MP_ADD_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_S_MP_SUB_C +| | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_DIV_2D_C +| | | +--->BN_MP_MOD_2D_C +| | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_RSHD_C +| | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C +| | +--->BN_MP_EXCH_C +| | +--->BN_MP_CLEAR_MULTI_C +| | +--->BN_MP_INIT_SIZE_C +| | +--->BN_MP_INIT_COPY_C +| | +--->BN_MP_LSHD_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_RSHD_C +| | +--->BN_MP_RSHD_C +| | +--->BN_MP_MUL_D_C +| | | +--->BN_MP_GROW_C +| | | +--->BN_MP_CLAMP_C +| | +--->BN_MP_CLAMP_C +| +--->BN_MP_EXCH_C + + +BN_MP_PRIME_FERMAT_C ++--->BN_MP_CMP_D_C ++--->BN_MP_INIT_C +--->BN_MP_EXPTMOD_C | +--->BN_MP_INVMOD_C | | +--->BN_FAST_MP_INVMOD_C @@ -10821,10 +12344,18 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2D_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_CLEAR_MULTI_C | | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_INIT_COPY_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -10835,6 +12366,7 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -10843,7 +12375,6 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_SET_C | | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_DIV_2_C @@ -10902,10 +12433,18 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2D_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_CLEAR_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_CLEAR_MULTI_C | | | | | | +--->BN_MP_CLEAR_C | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_INIT_COPY_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -10916,6 +12455,7 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLEAR_C | | | | +--->BN_MP_CLEAR_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -10924,7 +12464,6 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_COPY_C | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_SET_C @@ -10993,8 +12532,15 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -11004,6 +12550,10 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_REDUCE_C +| | | +--->BN_MP_INIT_COPY_C +| | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C | | | +--->BN_MP_RSHD_C | | | | +--->BN_MP_ZERO_C | | | +--->BN_MP_MUL_C @@ -11053,18 +12603,14 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | +--->BN_FAST_S_MP_MUL_DIGS_C @@ -11129,6 +12675,15 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_REDUCE_2K_L_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_MUL_C | | | | +--->BN_MP_TOOM_MUL_C | | | | | +--->BN_MP_INIT_MULTI_C @@ -11178,18 +12733,14 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -11236,8 +12787,15 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -11246,6 +12804,7 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C | | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C @@ -11254,7 +12813,6 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_SQR_C @@ -11302,22 +12860,16 @@ BN_MP_PRIME_MILLER_RABIN_C | | | +--->BN_MP_KARATSUBA_SQR_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C | | | | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | +--->BN_FAST_S_MP_SQR_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -11370,18 +12922,14 @@ BN_MP_PRIME_MILLER_RABIN_C | | | +--->BN_MP_KARATSUBA_MUL_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CMP_MAG_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -11400,6 +12948,15 @@ BN_MP_PRIME_MILLER_RABIN_C | +--->BN_MP_REDUCE_IS_2K_C | | +--->BN_MP_REDUCE_2K_C | | | +--->BN_MP_COUNT_BITS_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -11442,6 +12999,15 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C | | +--->BN_MP_REDUCE_2K_C +| | | +--->BN_MP_DIV_2D_C +| | | | +--->BN_MP_COPY_C +| | | | | +--->BN_MP_GROW_C +| | | | +--->BN_MP_ZERO_C +| | | | +--->BN_MP_MOD_2D_C +| | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_RSHD_C +| | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | +--->BN_MP_MUL_D_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -11514,18 +13080,14 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | +--->BN_MP_KARATSUBA_MUL_C | | | | | +--->BN_MP_INIT_SIZE_C | | | | | +--->BN_MP_CLAMP_C -| | | | | +--->BN_MP_SUB_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C -| | | | | | +--->BN_MP_CMP_MAG_C -| | | | | | +--->BN_S_MP_SUB_C -| | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_ADD_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_ADD_C -| | | | | | +--->BN_S_MP_ADD_C -| | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CMP_MAG_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C +| | | | | +--->BN_S_MP_SUB_C +| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -11565,8 +13127,15 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | | +--->BN_S_MP_SUB_C | | | | | | | +--->BN_MP_GROW_C | | | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_DIV_2D_C +| | | | | | +--->BN_MP_MOD_2D_C +| | | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_RSHD_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_EXCH_C | | | | | +--->BN_MP_INIT_SIZE_C +| | | | | +--->BN_MP_INIT_COPY_C | | | | | +--->BN_MP_LSHD_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_RSHD_C @@ -11575,6 +13144,7 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_S_MP_ADD_C | | | | | | +--->BN_MP_GROW_C @@ -11583,7 +13153,6 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C | | +--->BN_MP_SET_C | | | +--->BN_MP_ZERO_C | | +--->BN_MP_MOD_C @@ -11613,8 +13182,15 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C | | | | | | +--->BN_MP_CLAMP_C +| | | | +--->BN_MP_DIV_2D_C +| | | | | +--->BN_MP_MOD_2D_C +| | | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_RSHD_C +| | | | | +--->BN_MP_CLAMP_C +| | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_EXCH_C | | | | +--->BN_MP_INIT_SIZE_C +| | | | +--->BN_MP_INIT_COPY_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -11623,6 +13199,7 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C | | | | +--->BN_MP_CLAMP_C +| | | +--->BN_MP_EXCH_C | | | +--->BN_MP_ADD_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C @@ -11631,7 +13208,6 @@ BN_MP_PRIME_MILLER_RABIN_C | | | | +--->BN_S_MP_SUB_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C | | +--->BN_MP_COPY_C | | | +--->BN_MP_GROW_C | | +--->BN_MP_SQR_C @@ -11679,22 +13255,16 @@ BN_MP_PRIME_MILLER_RABIN_C | | | +--->BN_MP_KARATSUBA_SQR_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | | +--->BN_S_MP_ADD_C | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C | | | | | | +--->BN_MP_ZERO_C | | | | +--->BN_MP_ADD_C | | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C | | | +--->BN_FAST_S_MP_SQR_C | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_CLAMP_C @@ -11747,18 +13317,14 @@ BN_MP_PRIME_MILLER_RABIN_C | | | +--->BN_MP_KARATSUBA_MUL_C | | | | +--->BN_MP_INIT_SIZE_C | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_SUB_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CMP_MAG_C -| | | | | +--->BN_S_MP_SUB_C -| | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_ADD_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_ADD_C -| | | | | +--->BN_S_MP_ADD_C -| | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_CMP_MAG_C | | | | | +--->BN_S_MP_SUB_C | | | | | | +--->BN_MP_GROW_C +| | | | +--->BN_S_MP_SUB_C +| | | | | +--->BN_MP_GROW_C | | | | +--->BN_MP_LSHD_C | | | | | +--->BN_MP_GROW_C | | | | | +--->BN_MP_RSHD_C @@ -11773,141 +13339,18 @@ BN_MP_PRIME_MILLER_RABIN_C | | +--->BN_MP_EXCH_C +--->BN_MP_CMP_C | +--->BN_MP_CMP_MAG_C -+--->BN_MP_SQRMOD_C -| +--->BN_MP_SQR_C -| | +--->BN_MP_TOOM_SQR_C -| | | +--->BN_MP_INIT_MULTI_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_MOD_2D_C -| | | | +--->BN_MP_ZERO_C -| | | | +--->BN_MP_COPY_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_MUL_2_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_2_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_2D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_MUL_D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_DIV_3_C -| | | | +--->BN_MP_INIT_SIZE_C -| | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_MP_EXCH_C -| | | | +--->BN_MP_CLEAR_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLEAR_MULTI_C -| | | | +--->BN_MP_CLEAR_C -| | +--->BN_MP_KARATSUBA_SQR_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_MP_CMP_MAG_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLEAR_C -| | +--->BN_FAST_S_MP_SQR_C -| | | +--->BN_MP_GROW_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_S_MP_SQR_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_C -| +--->BN_MP_CLEAR_C -| +--->BN_MP_MOD_C -| | +--->BN_MP_DIV_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_MP_COPY_C -| | | | +--->BN_MP_GROW_C -| | | +--->BN_MP_ZERO_C -| | | +--->BN_MP_INIT_MULTI_C -| | | +--->BN_MP_SET_C -| | | +--->BN_MP_COUNT_BITS_C -| | | +--->BN_MP_ABS_C -| | | +--->BN_MP_MUL_2D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_LSHD_C -| | | | | +--->BN_MP_RSHD_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_SUB_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_ADD_C -| | | | +--->BN_S_MP_ADD_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | | +--->BN_S_MP_SUB_C -| | | | | +--->BN_MP_GROW_C -| | | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_EXCH_C -| | | +--->BN_MP_CLEAR_MULTI_C -| | | +--->BN_MP_INIT_SIZE_C -| | | +--->BN_MP_LSHD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_RSHD_C -| | | +--->BN_MP_MUL_D_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_ADD_C -| | | +--->BN_S_MP_ADD_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | | +--->BN_MP_CMP_MAG_C -| | | +--->BN_S_MP_SUB_C -| | | | +--->BN_MP_GROW_C -| | | | +--->BN_MP_CLAMP_C -| | +--->BN_MP_EXCH_C +--->BN_MP_CLEAR_C -BN_MP_DR_SETUP_C - - -BN_MP_CMP_MAG_C +BN_MP_REDUCE_2K_SETUP_L_C ++--->BN_MP_INIT_C ++--->BN_MP_2EXPT_C +| +--->BN_MP_ZERO_C +| +--->BN_MP_GROW_C ++--->BN_MP_COUNT_BITS_C ++--->BN_S_MP_SUB_C +| +--->BN_MP_GROW_C +| +--->BN_MP_CLAMP_C ++--->BN_MP_CLEAR_C diff --git a/libtommath/changes.txt b/libtommath/changes.txt index 4fc0913..d70d589 100644 --- a/libtommath/changes.txt +++ b/libtommath/changes.txt @@ -1,11 +1,32 @@ +Feb 5th, 2016 +v1.0.0 + -- Bump to 1.0.0 + -- Dirkjan Bussink provided a faster version of mp_expt_d() + -- Moritz Lenz contributed a fix to mp_mod() + and provided mp_get_long() and mp_set_long() + -- Fixed bugs in mp_read_radix(), mp_radix_size + Thanks to shameister, Gerhard R, + -- Christopher Brown provided mp_export() and mp_import() + -- Improvements in the code of mp_init_copy() + Thanks to ramkumarkoppu, + -- lomereiter provided mp_balance_mul() + -- Alexander Boström from the heimdal project contributed patches to + mp_prime_next_prime() and mp_invmod() and added a mp_isneg() macro + -- Fix build issues for Linux x32 ABI + -- Added mp_get_long_long() and mp_set_long_long() + -- Carlin provided a patch to use arc4random() instead of rand() + on platforms where it is supported + -- Karel Miko provided mp_sqrtmod_prime() + + July 23rd, 2010 v0.42.0 -- Fix for mp_prime_next_prime() bug when checking generated prime -- allow mp_shrink to shrink initialized, but empty MPI's - -- Added project and solution files for Visual Studio 2005 and Visual Studio 2008. + -- Added project and solution files for Visual Studio 2005 and Visual Studio 2008. March 10th, 2007 -v0.41 -- Wolfgang Ehrhardt suggested a quick fix to mp_div_d() which makes the detection of powers of two quicker. +v0.41 -- Wolfgang Ehrhardt suggested a quick fix to mp_div_d() which makes the detection of powers of two quicker. -- [CRI] Added libtommath.dsp for Visual C++ users. December 24th, 2006 @@ -22,11 +43,11 @@ v0.39 -- Jim Wigginton pointed out my Montgomery examples in figures 6.4 and 6. Jan 26th, 2006 v0.38 -- broken makefile.shared fixed -- removed some carry stores that were not required [updated text] - + November 18th, 2005 v0.37 -- [Don Porter] reported on a TCL list [HEY SEND ME BUGREPORTS ALREADY!!!] that mp_add_d() would compute -0 with some inputs. Fixed. -- [rinick@gmail.com] reported the makefile.bcc was messed up. Fixed. - -- [Kevin Kenny] reported some issues with mp_toradix_n(). Now it doesn't require a min of 3 chars of output. + -- [Kevin Kenny] reported some issues with mp_toradix_n(). Now it doesn't require a min of 3 chars of output. -- Made the make command renamable. Wee August 1st, 2005 @@ -36,8 +57,8 @@ v0.36 -- LTM_PRIME_2MSB_ON was fixed and the "OFF" flag was removed. -- Ported LTC patch to fix the prime_random_ex() function to get the bitsize correct [and the maskOR flags] -- Kevin Kenny pointed out a stray // -- David Hulton pointed out a typo in the textbook [mp_montgomery_setup() pseudo-code] - -- Neal Hamilton (Elliptic Semiconductor) pointed out that my Karatsuba notation was backwards and that I could use - unsigned operations in the routine. + -- Neal Hamilton (Elliptic Semiconductor) pointed out that my Karatsuba notation was backwards and that I could use + unsigned operations in the routine. -- Paul Schmidt pointed out a linking error in mp_exptmod() when BN_S_MP_EXPTMOD_C is undefined (and another for read_radix) -- Updated makefiles to be way more flexible @@ -48,7 +69,7 @@ v0.35 -- Stupid XOR function missing line again... oops. -- [Wolfgang Ehrhardt] Suggested a fix for mp_reduce() which avoided underruns. ;-) -- mp_rand() would emit one too many digits and it was possible to get a 0 out of it ... oops -- Added montgomery to the testing to make sure it handles 1..10 digit moduli correctly - -- Fixed bug in comba that would lead to possible erroneous outputs when "pa < digs" + -- Fixed bug in comba that would lead to possible erroneous outputs when "pa < digs" -- Fixed bug in mp_toradix_size for "0" [Kevin Kenny] -- Updated chapters 1-5 of the textbook ;-) It now talks about the new comba code! @@ -59,7 +80,7 @@ v0.34 -- Fixed two more small errors in mp_prime_random_ex() -- Added "large" diminished radix support. Speeds up things like DSA where the moduli is of the form 2^k - P for some P < 2^(k/2) or so Actually is faster than Montgomery on my AMD64 (and probably much faster on a P4) -- Updated the manual a bit - -- Ok so I haven't done the textbook work yet... My current freelance gig has landed me in France till the + -- Ok so I haven't done the textbook work yet... My current freelance gig has landed me in France till the end of Feb/05. Once I get back I'll have tons of free time and I plan to go to town on the book. As of this release the API will freeze. At least until the book catches up with all the changes. I welcome bug reports but new algorithms will have to wait. @@ -76,7 +97,7 @@ v0.33 -- Fixed "small" variant for mp_div() which would munge with negative div October 29th, 2004 v0.32 -- Added "makefile.shared" for shared object support -- Added more to the build options/configs in the manual - -- Started the Depends framework, wrote dep.pl to scan deps and + -- Started the Depends framework, wrote dep.pl to scan deps and produce "callgraph.txt" ;-) -- Wrote SC_RSA_1 which will enable close to the minimum required to perform RSA on 32-bit [or 64-bit] platforms with LibTomCrypt @@ -84,7 +105,7 @@ v0.32 -- Added "makefile.shared" for shared object support you want to use as your mp_div() at build time. Saves roughly 8KB or so. -- Renamed a few files and changed some comments to make depends system work better. (No changes to function names) - -- Merged in new Combas that perform 2 reads per inner loop instead of the older + -- Merged in new Combas that perform 2 reads per inner loop instead of the older 3reads/2writes per inner loop of the old code. Really though if you want speed learn to use TomsFastMath ;-) @@ -113,8 +134,8 @@ v0.30 -- Added "mp_toradix_n" which stores upto "n-1" least significant digits call. -- Removed /etclib directory [um LibTomPoly deprecates this]. -- Fixed mp_mod() so the sign of the result agrees with the sign of the modulus. - ++ N.B. My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org - website. + ++ N.B. My semester is almost up so expect updates to the textbook to be posted to the libtomcrypt.org + website. Jan 25th, 2004 v0.29 ++ Note: "Henrik" from the v0.28 changelog refers to Henrik Goldman ;-) diff --git a/libtommath/dep.pl b/libtommath/dep.pl deleted file mode 100644 index c39e27e..0000000 --- a/libtommath/dep.pl +++ /dev/null @@ -1,123 +0,0 @@ -#!/usr/bin/perl -# -# Walk through source, add labels and make classes -# -#use strict; - -my %deplist; - -#open class file and write preamble -open(CLASS, ">tommath_class.h") or die "Couldn't open tommath_class.h for writing\n"; -print CLASS "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined(LTM2)\n#define LTM3\n#endif\n#if defined(LTM1)\n#define LTM2\n#endif\n#define LTM1\n\n#if defined(LTM_ALL)\n"; - -foreach my $filename (glob "bn*.c") { - my $define = $filename; - -print "Processing $filename\n"; - - # convert filename to upper case so we can use it as a define - $define =~ tr/[a-z]/[A-Z]/; - $define =~ tr/\./_/; - print CLASS "#define $define\n"; - - # now copy text and apply #ifdef as required - my $apply = 0; - open(SRC, "<$filename"); - open(OUT, ">tmp"); - - # first line will be the #ifdef - my $line = <SRC>; - if ($line =~ /include/) { - print OUT $line; - } else { - print OUT "#include <tommath.h>\n#ifdef $define\n$line"; - $apply = 1; - } - while (<SRC>) { - if (!($_ =~ /tommath\.h/)) { - print OUT $_; - } - } - if ($apply == 1) { - print OUT "#endif\n"; - } - close SRC; - close OUT; - - unlink($filename); - rename("tmp", $filename); -} -print CLASS "#endif\n\n"; - -# now do classes - -foreach my $filename (glob "bn*.c") { - open(SRC, "<$filename") or die "Can't open source file!\n"; - - # convert filename to upper case so we can use it as a define - $filename =~ tr/[a-z]/[A-Z]/; - $filename =~ tr/\./_/; - - print CLASS "#if defined($filename)\n"; - my $list = $filename; - - # scan for mp_* and make classes - while (<SRC>) { - my $line = $_; - while ($line =~ m/(fast_)*(s_)*mp\_[a-z_0-9]*/) { - $line = $'; - # now $& is the match, we want to skip over LTM keywords like - # mp_int, mp_word, mp_digit - if (!($& eq "mp_digit") && !($& eq "mp_word") && !($& eq "mp_int")) { - my $a = $&; - $a =~ tr/[a-z]/[A-Z]/; - $a = "BN_" . $a . "_C"; - if (!($list =~ /$a/)) { - print CLASS " #define $a\n"; - } - $list = $list . "," . $a; - } - } - } - @deplist{$filename} = $list; - - print CLASS "#endif\n\n"; - close SRC; -} - -print CLASS "#ifdef LTM3\n#define LTM_LAST\n#endif\n#include <tommath_superclass.h>\n#include <tommath_class.h>\n#else\n#define LTM_LAST\n#endif\n"; -close CLASS; - -#now let's make a cool call graph... - -open(OUT,">callgraph.txt"); -$indent = 0; -foreach (keys %deplist) { - $list = ""; - draw_func(@deplist{$_}); - print OUT "\n\n"; -} -close(OUT); - -sub draw_func() -{ - my @funcs = split(",", $_[0]); - if ($list =~ /@funcs[0]/) { - return; - } else { - $list = $list . @funcs[0]; - } - if ($indent == 0) { } - elsif ($indent >= 1) { print OUT "| " x ($indent - 1) . "+--->"; } - print OUT @funcs[0] . "\n"; - shift @funcs; - my $temp = $list; - foreach my $i (@funcs) { - ++$indent; - draw_func(@deplist{$i}); - --$indent; - } - $list = $temp; -} - - diff --git a/libtommath/gen.pl b/libtommath/gen.pl deleted file mode 100644 index 7236591..0000000 --- a/libtommath/gen.pl +++ /dev/null @@ -1,17 +0,0 @@ -#!/usr/bin/perl -w -# -# Generates a "single file" you can use to quickly -# add the whole source without any makefile troubles -# -use strict; - -open( OUT, ">mpi.c" ) or die "Couldn't open mpi.c for writing: $!"; -foreach my $filename (glob "bn*.c") { - open( SRC, "<$filename" ) or die "Couldn't open $filename for reading: $!"; - print OUT "/* Start: $filename */\n"; - print OUT while <SRC>; - print OUT "\n/* End: $filename */\n\n"; - close SRC or die "Error closing $filename after reading: $!"; -} -print OUT "\n/* EOF */\n"; -close OUT or die "Error closing mpi.c after writing: $!";
\ No newline at end of file diff --git a/libtommath/makefile b/libtommath/makefile index 70de306..f90971c 100644 --- a/libtommath/makefile +++ b/libtommath/makefile @@ -2,98 +2,66 @@ # #Tom St Denis -#version of library -VERSION=0.42.0 - -CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare - -ifndef MAKE - MAKE=make -endif - -ifndef IGNORE_SPEED - -#for speed -CFLAGS += -O3 -funroll-loops - -#for size -#CFLAGS += -Os - -#x86 optimizations [should be valid for any GCC install though] -CFLAGS += -fomit-frame-pointer - -#debug -#CFLAGS += -g3 - -endif - -#install as this user -ifndef INSTALL_GROUP - GROUP=wheel +ifeq ($V,1) +silent= else - GROUP=$(INSTALL_GROUP) +silent=@ endif -ifndef INSTALL_USER - USER=root -else - USER=$(INSTALL_USER) +%.o: %.c +ifneq ($V,1) + @echo " * ${CC} $@" endif + ${silent} ${CC} -c ${CFLAGS} $^ -o $@ #default files to install ifndef LIBNAME LIBNAME=libtommath.a endif -default: ${LIBNAME} - -HEADERS=tommath.h tommath_class.h tommath_superclass.h - -#LIBPATH-The directory for libtommath to be installed to. -#INCPATH-The directory to install the header files for libtommath. -#DATAPATH-The directory to install the pdf docs. -DESTDIR= -LIBPATH=/usr/lib -INCPATH=/usr/include -DATAPATH=/usr/share/doc/libtommath/pdf - -OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \ -bn_mp_clamp.o bn_mp_zero.o bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \ -bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \ -bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \ -bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \ -bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \ -bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \ -bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \ -bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \ -bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \ -bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \ -bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \ -bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \ -bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \ -bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \ -bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \ -bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \ -bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \ -bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \ -bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \ -bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \ -bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \ -bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \ -bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \ -bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \ -bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \ -bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o +coverage: LIBNAME:=-Wl,--whole-archive $(LIBNAME) -Wl,--no-whole-archive + +include makefile.include + +LCOV_ARGS=--directory . + +#START_INS +OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ +bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ +bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ +bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \ +bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \ +bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \ +bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \ +bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \ +bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \ +bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \ +bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \ +bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \ +bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \ +bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ +bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \ +bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \ +bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \ +bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \ +bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \ +bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \ +bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \ +bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \ +bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \ +bn_s_mp_sqr.o bn_s_mp_sub.o + +#END_INS $(LIBNAME): $(OBJECTS) $(AR) $(ARFLAGS) $@ $(OBJECTS) - ranlib $@ + $(RANLIB) $@ #make a profiled library (takes a while!!!) # # This will build the library with profile generation # then run the test demo and rebuild the library. -# +# # So far I've seen improvements in the MP math profiled: make CFLAGS="$(CFLAGS) -fprofile-arcs -DTESTING" timing @@ -101,35 +69,42 @@ profiled: rm -f *.a *.o ltmtest make CFLAGS="$(CFLAGS) -fbranch-probabilities" -#make a single object profiled library +#make a single object profiled library profiled_single: perl gen.pl $(CC) $(CFLAGS) -fprofile-arcs -DTESTING -c mpi.c -o mpi.o - $(CC) $(CFLAGS) -DTESTING -DTIMER demo/timing.c mpi.o -o ltmtest + $(CC) $(CFLAGS) -DTESTING -DTIMER demo/timing.c mpi.o -lgcov -o ltmtest ./ltmtest rm -f *.o ltmtest $(CC) $(CFLAGS) -fbranch-probabilities -DTESTING -c mpi.c -o mpi.o $(AR) $(ARFLAGS) $(LIBNAME) mpi.o - ranlib $(LIBNAME) + ranlib $(LIBNAME) install: $(LIBNAME) - install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH) - install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH) - install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH) - install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH) + install -d $(DESTDIR)$(LIBPATH) + install -d $(DESTDIR)$(INCPATH) + install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH) + install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH) test: $(LIBNAME) demo/demo.o - $(CC) $(CFLAGS) demo/demo.o $(LIBNAME) -o test - -mtest: test - cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest - + $(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test + +test_standalone: $(LIBNAME) demo/demo.o + $(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test + +.PHONY: mtest +mtest: + cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LFLAGS) -o mtest + timing: $(LIBNAME) - $(CC) $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME) -o ltmtest + $(CC) $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME) $(LFLAGS) -o ltmtest + +coveralls: coverage + cpp-coveralls # makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think] docdvi: tommath.src - cd pics ; MAKE=${MAKE} ${MAKE} + cd pics ; MAKE=${MAKE} ${MAKE} echo "hello" > tommath.ind perl booker.pl latex tommath > /dev/null @@ -139,17 +114,37 @@ docdvi: tommath.src # poster, makes the single page PDF poster poster: poster.tex + cp poster.tex poster.bak + touch --reference=poster.tex poster.bak + (printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y poster.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > poster-deterministic.tex + printf "%s\n" "\pdfinfo{" >> poster-deterministic.tex + printf "%s\n" " /CreationDate (\fixedpdfdate)" >> poster-deterministic.tex + printf "%s\n}\n" " /ModDate (\fixedpdfdate)" >> poster-deterministic.tex + cat poster.tex >> poster-deterministic.tex + mv poster-deterministic.tex poster.tex + touch --reference=poster.bak poster.tex pdflatex poster - rm -f poster.aux poster.log + sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' poster.pdf + mv poster.bak poster.tex + rm -f poster.aux poster.log poster.out # makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files docs: docdvi dvipdf tommath rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg cd pics ; MAKE=${MAKE} ${MAKE} clean - + #LTM user manual mandvi: bn.tex + cp bn.tex bn.bak + touch --reference=bn.tex bn.bak + (printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y bn.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > bn-deterministic.tex + printf "%s\n" "\pdfinfo{" >> bn-deterministic.tex + printf "%s\n" " /CreationDate (\fixedpdfdate)" >> bn-deterministic.tex + printf "%s\n}\n" " /ModDate (\fixedpdfdate)" >> bn-deterministic.tex + cat bn.tex >> bn-deterministic.tex + mv bn-deterministic.tex bn.tex + touch --reference=bn.bak bn.tex echo "hello" > bn.ind latex bn > /dev/null latex bn > /dev/null @@ -159,28 +154,36 @@ mandvi: bn.tex #LTM user manual [pdf] manual: mandvi pdflatex bn >/dev/null + sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' bn.pdf + mv bn.bak bn.tex rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc -pretty: +pretty: perl pretty.build -clean: - rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \ - *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la - rm -rf .libs - cd etc ; MAKE=${MAKE} ${MAKE} clean - cd pics ; MAKE=${MAKE} ${MAKE} clean - -#zipup the project (take that!) +#\zipup the project (take that!) no_oops: clean - cd .. ; cvs commit + cd .. ; cvs commit echo Scanning for scratch/dirty files find . -type f | grep -v CVS | xargs -n 1 bash mess.sh -zipup: clean manual poster docs - perl gen.pl ; mv mpi.c pre_gen/ ; \ - cd .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \ - cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; \ - tar -c libtommath-$(VERSION)/* | bzip2 -9vvc > ltm-$(VERSION).tar.bz2 ; \ - zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/* ; \ - mv -f ltm* ~ ; rm -rf libtommath-$(VERSION) +.PHONY: pre_gen +pre_gen: + perl gen.pl + sed -e 's/[[:blank:]]*$$//' mpi.c > pre_gen/mpi.c + rm mpi.c + +zipup: + rm -rf ../libtommath-$(VERSION) \ + && rm -f ../ltm-$(VERSION).zip ../ltm-$(VERSION).zip.asc ../ltm-$(VERSION).tar.xz ../ltm-$(VERSION).tar.xz.asc + git archive HEAD --prefix=libtommath-$(VERSION)/ > ../libtommath-$(VERSION).tar + cd .. ; tar xf libtommath-$(VERSION).tar + MAKE=${MAKE} ${MAKE} -C ../libtommath-$(VERSION) clean manual poster docs + tar -c ../libtommath-$(VERSION)/* | xz -9 > ../ltm-$(VERSION).tar.xz + find ../libtommath-$(VERSION)/ -type f -exec unix2dos -q {} \; + cd .. ; zip -9r ltm-$(VERSION).zip libtommath-$(VERSION) + gpg -b -a ../ltm-$(VERSION).tar.xz && gpg -b -a ../ltm-$(VERSION).zip + +new_file: + bash updatemakes.sh + perl dep.pl diff --git a/libtommath/makefile.bcc b/libtommath/makefile.bcc index 67743d9..a0cfd74 100644 --- a/libtommath/makefile.bcc +++ b/libtommath/makefile.bcc @@ -7,33 +7,35 @@ LIB = tlib CC = bcc32 CFLAGS = -c -O2 -I. -OBJECTS=bncore.obj bn_mp_init.obj bn_mp_clear.obj bn_mp_exch.obj bn_mp_grow.obj bn_mp_shrink.obj \ -bn_mp_clamp.obj bn_mp_zero.obj bn_mp_set.obj bn_mp_set_int.obj bn_mp_init_size.obj bn_mp_copy.obj \ -bn_mp_init_copy.obj bn_mp_abs.obj bn_mp_neg.obj bn_mp_cmp_mag.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \ -bn_mp_rshd.obj bn_mp_lshd.obj bn_mp_mod_2d.obj bn_mp_div_2d.obj bn_mp_mul_2d.obj bn_mp_div_2.obj \ -bn_mp_mul_2.obj bn_s_mp_add.obj bn_s_mp_sub.obj bn_fast_s_mp_mul_digs.obj bn_s_mp_mul_digs.obj \ -bn_fast_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_s_mp_sqr.obj \ -bn_mp_add.obj bn_mp_sub.obj bn_mp_karatsuba_mul.obj bn_mp_mul.obj bn_mp_karatsuba_sqr.obj \ -bn_mp_sqr.obj bn_mp_div.obj bn_mp_mod.obj bn_mp_add_d.obj bn_mp_sub_d.obj bn_mp_mul_d.obj \ -bn_mp_div_d.obj bn_mp_mod_d.obj bn_mp_expt_d.obj bn_mp_addmod.obj bn_mp_submod.obj \ -bn_mp_mulmod.obj bn_mp_sqrmod.obj bn_mp_gcd.obj bn_mp_lcm.obj bn_fast_mp_invmod.obj bn_mp_invmod.obj \ -bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_mp_montgomery_reduce.obj \ -bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \ -bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \ -bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj \ -bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \ -bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \ -bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \ -bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \ -bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \ -bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \ -bn_mp_reduce_2k_l.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_2k_setup_l.obj \ -bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \ -bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \ -bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \ -bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \ -bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj \ -bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin_n.obj +#START_INS +OBJECTS=bncore.obj bn_error.obj bn_fast_mp_invmod.obj bn_fast_mp_montgomery_reduce.obj bn_fast_s_mp_mul_digs.obj \ +bn_fast_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj \ +bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \ +bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj \ +bn_mp_div.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj bn_mp_dr_setup.obj bn_mp_exch.obj \ +bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj \ +bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj \ +bn_mp_grow.obj bn_mp_import.obj bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj \ +bn_mp_init_set_int.obj bn_mp_init_size.obj bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj \ +bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj bn_mp_karatsuba_sqr.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod_2d.obj \ +bn_mp_mod.obj bn_mp_mod_d.obj bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj \ +bn_mp_montgomery_setup.obj bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_neg.obj \ +bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_is_divisible.obj \ +bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \ +bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj \ +bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce_2k.obj \ +bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj bn_mp_reduce.obj \ +bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj bn_mp_set_int.obj \ +bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj \ +bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_toom_mul.obj \ +bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj \ +bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj \ +bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj bn_s_mp_mul_high_digs.obj \ +bn_s_mp_sqr.obj bn_s_mp_sub.obj + +#END_INS + +HEADERS=tommath.h tommath_class.h tommath_superclass.h TARGET = libtommath.lib diff --git a/libtommath/makefile.cygwin_dll b/libtommath/makefile.cygwin_dll index 85b10c7..59acad3 100644 --- a/libtommath/makefile.cygwin_dll +++ b/libtommath/makefile.cygwin_dll @@ -8,37 +8,39 @@ CFLAGS += -I./ -Wall -W -Wshadow -O3 -funroll-loops -mno-cygwin #x86 optimizations [should be valid for any GCC install though] -CFLAGS += -fomit-frame-pointer +CFLAGS += -fomit-frame-pointer default: windll -OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \ -bn_mp_clamp.o bn_mp_zero.o bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \ -bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \ -bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \ -bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \ -bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \ -bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \ -bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \ -bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \ -bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \ -bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \ -bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \ -bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \ -bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \ -bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \ -bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \ -bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \ -bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \ -bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \ -bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \ -bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \ -bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \ -bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \ -bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \ -bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \ -bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \ -bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o +#START_INS +OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ +bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ +bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ +bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \ +bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \ +bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \ +bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \ +bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \ +bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \ +bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \ +bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \ +bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \ +bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \ +bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ +bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \ +bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \ +bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \ +bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \ +bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \ +bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \ +bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \ +bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \ +bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \ +bn_s_mp_sqr.o bn_s_mp_sub.o + +#END_INS + +HEADERS=tommath.h tommath_class.h tommath_superclass.h # make a Windows DLL via Cygwin windll: $(OBJECTS) diff --git a/libtommath/makefile.icc b/libtommath/makefile.icc index cf70ab0..1563802 100644 --- a/libtommath/makefile.icc +++ b/libtommath/makefile.icc @@ -11,7 +11,7 @@ CFLAGS += -I./ # -ax? specifies make code specifically for ? but compatible with IA-32 # -x? specifies compile solely for ? [not specifically IA-32 compatible] # -# where ? is +# where ? is # K - PIII # W - first P4 [Williamette] # N - P4 Northwood @@ -29,7 +29,6 @@ default: libtommath.a #default files to install LIBNAME=libtommath.a -HEADERS=tommath.h #LIBPATH-The directory for libtomcrypt to be installed to. #INCPATH-The directory to install the header files for libtommath. @@ -39,33 +38,35 @@ LIBPATH=/usr/lib INCPATH=/usr/include DATAPATH=/usr/share/doc/libtommath/pdf -OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \ -bn_mp_clamp.o bn_mp_zero.o bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \ -bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \ -bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \ -bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \ -bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \ -bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \ -bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \ -bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \ -bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \ -bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \ -bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \ -bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \ -bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \ -bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \ -bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \ -bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \ -bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \ -bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \ -bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \ -bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \ -bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \ -bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \ -bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \ -bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \ -bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \ -bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o +#START_INS +OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ +bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ +bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ +bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \ +bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \ +bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \ +bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \ +bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \ +bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \ +bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \ +bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \ +bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \ +bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \ +bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ +bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \ +bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \ +bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \ +bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \ +bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \ +bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \ +bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \ +bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \ +bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \ +bn_s_mp_sqr.o bn_s_mp_sub.o + +#END_INS + +HEADERS=tommath.h tommath_class.h tommath_superclass.h libtommath.a: $(OBJECTS) $(AR) $(ARFLAGS) libtommath.a $(OBJECTS) @@ -75,7 +76,7 @@ libtommath.a: $(OBJECTS) # # This will build the library with profile generation # then run the test demo and rebuild the library. -# +# # So far I've seen improvements in the MP math profiled: make -f makefile.icc CFLAGS="$(CFLAGS) -prof_gen -DTESTING" timing @@ -83,7 +84,7 @@ profiled: rm -f *.a *.o ltmtest make -f makefile.icc CFLAGS="$(CFLAGS) -prof_use" -#make a single object profiled library +#make a single object profiled library profiled_single: perl gen.pl $(CC) $(CFLAGS) -prof_gen -DTESTING -c mpi.c -o mpi.o @@ -92,7 +93,7 @@ profiled_single: rm -f *.o ltmtest $(CC) $(CFLAGS) -prof_use -ip -DTESTING -c mpi.c -o mpi.o $(AR) $(ARFLAGS) libtommath.a mpi.o - ranlib libtommath.a + ranlib libtommath.a install: libtommath.a install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH) @@ -102,10 +103,10 @@ install: libtommath.a test: libtommath.a demo/demo.o $(CC) demo/demo.o libtommath.a -o test - -mtest: test + +mtest: test cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest - + timing: libtommath.a $(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest diff --git a/libtommath/makefile.msvc b/libtommath/makefile.msvc index 5edebec..a47aadd 100644 --- a/libtommath/makefile.msvc +++ b/libtommath/makefile.msvc @@ -6,33 +6,33 @@ CFLAGS = /I. /Ox /DWIN32 /W3 /Fo$@ default: library -OBJECTS=bncore.obj bn_mp_init.obj bn_mp_clear.obj bn_mp_exch.obj bn_mp_grow.obj bn_mp_shrink.obj \ -bn_mp_clamp.obj bn_mp_zero.obj bn_mp_set.obj bn_mp_set_int.obj bn_mp_init_size.obj bn_mp_copy.obj \ -bn_mp_init_copy.obj bn_mp_abs.obj bn_mp_neg.obj bn_mp_cmp_mag.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \ -bn_mp_rshd.obj bn_mp_lshd.obj bn_mp_mod_2d.obj bn_mp_div_2d.obj bn_mp_mul_2d.obj bn_mp_div_2.obj \ -bn_mp_mul_2.obj bn_s_mp_add.obj bn_s_mp_sub.obj bn_fast_s_mp_mul_digs.obj bn_s_mp_mul_digs.obj \ -bn_fast_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_s_mp_sqr.obj \ -bn_mp_add.obj bn_mp_sub.obj bn_mp_karatsuba_mul.obj bn_mp_mul.obj bn_mp_karatsuba_sqr.obj \ -bn_mp_sqr.obj bn_mp_div.obj bn_mp_mod.obj bn_mp_add_d.obj bn_mp_sub_d.obj bn_mp_mul_d.obj \ -bn_mp_div_d.obj bn_mp_mod_d.obj bn_mp_expt_d.obj bn_mp_addmod.obj bn_mp_submod.obj \ -bn_mp_mulmod.obj bn_mp_sqrmod.obj bn_mp_gcd.obj bn_mp_lcm.obj bn_fast_mp_invmod.obj bn_mp_invmod.obj \ -bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_mp_montgomery_reduce.obj \ -bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \ -bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \ -bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj \ -bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \ -bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \ -bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \ -bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \ -bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \ -bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \ -bn_mp_reduce_2k_l.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_2k_setup_l.obj \ -bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \ -bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \ -bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \ -bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \ -bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj \ -bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin_n.obj +#START_INS +OBJECTS=bncore.obj bn_error.obj bn_fast_mp_invmod.obj bn_fast_mp_montgomery_reduce.obj bn_fast_s_mp_mul_digs.obj \ +bn_fast_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj \ +bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \ +bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj \ +bn_mp_div.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj bn_mp_dr_setup.obj bn_mp_exch.obj \ +bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj \ +bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj \ +bn_mp_grow.obj bn_mp_import.obj bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj \ +bn_mp_init_set_int.obj bn_mp_init_size.obj bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj \ +bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj bn_mp_karatsuba_sqr.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod_2d.obj \ +bn_mp_mod.obj bn_mp_mod_d.obj bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj \ +bn_mp_montgomery_setup.obj bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_neg.obj \ +bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_is_divisible.obj \ +bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \ +bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj \ +bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce_2k.obj \ +bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj bn_mp_reduce.obj \ +bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj bn_mp_set_int.obj \ +bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj \ +bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_toom_mul.obj \ +bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj \ +bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj \ +bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj bn_s_mp_mul_high_digs.obj \ +bn_s_mp_sqr.obj bn_s_mp_sub.obj + +#END_INS HEADERS=tommath.h tommath_class.h tommath_superclass.h diff --git a/libtommath/makefile.shared b/libtommath/makefile.shared index f17bbbd..559720e 100644 --- a/libtommath/makefile.shared +++ b/libtommath/makefile.shared @@ -1,102 +1,71 @@ #Makefile for GCC # #Tom St Denis -VERSION=0:41 - -CC = libtool --mode=compile --tag=CC gcc - -CFLAGS += -I./ -Wall -W -Wshadow -Wsign-compare - -ifndef IGNORE_SPEED - -#for speed -CFLAGS += -O3 -funroll-loops - -#for size -#CFLAGS += -Os - -#x86 optimizations [should be valid for any GCC install though] -CFLAGS += -fomit-frame-pointer - -endif - -#install as this user -ifndef INSTALL_GROUP - GROUP=wheel -else - GROUP=$(INSTALL_GROUP) -endif - -ifndef INSTALL_USER - USER=root -else - USER=$(INSTALL_USER) -endif - -default: libtommath.la #default files to install ifndef LIBNAME LIBNAME=libtommath.la endif -ifndef LIBNAME_S - LIBNAME_S=libtommath.a -endif -HEADERS=tommath.h tommath_class.h tommath_superclass.h - -#LIBPATH-The directory for libtommath to be installed to. -#INCPATH-The directory to install the header files for libtommath. -#DATAPATH-The directory to install the pdf docs. -DESTDIR= -LIBPATH=/usr/lib -INCPATH=/usr/include -DATAPATH=/usr/share/doc/libtommath/pdf -OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \ -bn_mp_clamp.o bn_mp_zero.o bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \ -bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \ -bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \ -bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \ -bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \ -bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \ -bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \ -bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \ -bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \ -bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \ -bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \ -bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \ -bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o \ -bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \ -bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \ -bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \ -bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \ -bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \ -bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \ -bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \ -bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \ -bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \ -bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \ -bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \ -bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \ -bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o +include makefile.include + +LT ?= libtool +LTCOMPILE = $(LT) --mode=compile --tag=CC $(CC) + +LCOV_ARGS=--directory .libs --directory . + +#START_INS +OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \ +bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \ +bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \ +bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \ +bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \ +bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \ +bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \ +bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \ +bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \ +bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \ +bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \ +bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \ +bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \ +bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \ +bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \ +bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \ +bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \ +bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \ +bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \ +bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \ +bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \ +bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \ +bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \ +bn_s_mp_sqr.o bn_s_mp_sub.o + +#END_INS objs: $(OBJECTS) +.c.o: + $(LTCOMPILE) $(CFLAGS) $(LDFLAGS) -o $@ -c $< + $(LIBNAME): $(OBJECTS) - libtool --mode=link gcc *.lo -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION) + $(LT) --mode=link --tag=CC $(CC) $(LDFLAGS) *.lo -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO) install: $(LIBNAME) - install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH) - libtool --mode=install install -c $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME) - install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH) - install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH) + install -d $(DESTDIR)$(LIBPATH) + install -d $(DESTDIR)$(INCPATH) + $(LT) --mode=install install -c $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME) + install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH) test: $(LIBNAME) demo/demo.o - gcc $(CFLAGS) -c demo/demo.c -o demo/demo.o - libtool --mode=link gcc -o test demo/demo.o $(LIBNAME_S) - -mtest: test - cd mtest ; gcc $(CFLAGS) mtest.c -o mtest - + $(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o + $(LT) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME) + +test_standalone: $(LIBNAME) demo/demo.o + $(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o + $(LT) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME) + +mtest: + cd mtest ; $(CC) $(CFLAGS) $(LDFLAGS) mtest.c -o mtest + timing: $(LIBNAME) - gcc $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME_S) -o ltmtest + $(LT) --mode=link $(CC) $(CFLAGS) $(LDFLAGS) -DTIMER demo/timing.c $(LIBNAME) -o ltmtest diff --git a/libtommath/mess.sh b/libtommath/mess.sh deleted file mode 100644 index bf639ce..0000000 --- a/libtommath/mess.sh +++ /dev/null @@ -1,4 +0,0 @@ -#!/bin/bash -if cvs log $1 >/dev/null 2>/dev/null; then exit 0; else echo "$1 shouldn't be here" ; exit 1; fi - - diff --git a/libtommath/poster.tex b/libtommath/poster.tex deleted file mode 100644 index e7388f4..0000000 --- a/libtommath/poster.tex +++ /dev/null @@ -1,35 +0,0 @@ -\documentclass[landscape,11pt]{article} -\usepackage{amsmath, amssymb} -\usepackage{hyperref} -\begin{document} -\hspace*{-3in} -\begin{tabular}{llllll} -$c = a + b$ & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$ & {\tt mp\_mul\_2(\&a, \&b)} & \\ -$c = a - b$ & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\ -$c = ab $ & {\tt mp\_mul(\&a, \&b, \&c)} & $c = 2^ba$ & {\tt mp\_mul\_2d(\&a, b, \&c)} \\ -$b = a^2 $ & {\tt mp\_sqr(\&a, \&b)} & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\ -$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $ & {\tt mp\_mod\_2d(\&a, b, \&c)} \\ - && \\ -$a = b $ & {\tt mp\_set\_int(\&a, b)} & $c = a \vee b$ & {\tt mp\_or(\&a, \&b, \&c)} \\ -$b = a $ & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$ & {\tt mp\_and(\&a, \&b, \&c)} \\ - && $c = a \oplus b$ & {\tt mp\_xor(\&a, \&b, \&c)} \\ - & \\ -$b = -a $ & {\tt mp\_neg(\&a, \&b)} & $d = a + b \mod c$ & {\tt mp\_addmod(\&a, \&b, \&c, \&d)} \\ -$b = |a| $ & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$ & {\tt mp\_submod(\&a, \&b, \&c, \&d)} \\ - && $d = ab \mod c$ & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)} \\ -Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$ & {\tt mp\_sqrmod(\&a, \&b, \&c)} \\ -Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$ & {\tt mp\_invmod(\&a, \&b, \&c)} \\ -Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\ -Is Odd ? & {\tt mp\_isodd(\&a)} \\ -&\\ -$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\ -$buf \leftarrow a$ & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\ -$a \leftarrow buf[0..len-1]$ & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\ -&\\ -$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)} & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\ -$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\ -&\\ -Greater Than & MP\_GT & Equal To & MP\_EQ \\ -Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\ -\end{tabular} -\end{document} diff --git a/libtommath/pretty.build b/libtommath/pretty.build deleted file mode 100644 index a708b8a..0000000 --- a/libtommath/pretty.build +++ /dev/null @@ -1,66 +0,0 @@ -#!/bin/perl -w -# -# Cute little builder for perl -# Total waste of development time... -# -# This will build all the object files and then the archive .a file -# requires GCC, GNU make and a sense of humour. -# -# Tom St Denis -use strict; - -my $count = 0; -my $starttime = time; -my $rate = 0; -print "Scanning for source files...\n"; -foreach my $filename (glob "*.c") { - ++$count; -} -print "Source files to build: $count\nBuilding...\n"; -my $i = 0; -my $lines = 0; -my $filesbuilt = 0; -foreach my $filename (glob "*.c") { - printf("Building %3.2f%%, ", (++$i/$count)*100.0); - if ($i % 4 == 0) { print "/, "; } - if ($i % 4 == 1) { print "-, "; } - if ($i % 4 == 2) { print "\\, "; } - if ($i % 4 == 3) { print "|, "; } - if ($rate > 0) { - my $tleft = ($count - $i) / $rate; - my $tsec = $tleft%60; - my $tmin = ($tleft/60)%60; - my $thour = ($tleft/3600)%60; - printf("%2d:%02d:%02d left, ", $thour, $tmin, $tsec); - } - my $cnt = ($i/$count)*30.0; - my $x = 0; - print "["; - for (; $x < $cnt; $x++) { print "#"; } - for (; $x < 30; $x++) { print " "; } - print "]\r"; - my $tmp = $filename; - $tmp =~ s/\.c/".o"/ge; - if (open(SRC, "<$tmp")) { - close SRC; - } else { - !system("make $tmp > /dev/null 2>/dev/null") or die "\nERROR: Failed to make $tmp!!!\n"; - open( SRC, "<$filename" ) or die "Couldn't open $filename for reading: $!"; - ++$lines while (<SRC>); - close SRC or die "Error closing $filename after reading: $!"; - ++$filesbuilt; - } - - # update timer - if (time != $starttime) { - my $delay = time - $starttime; - $rate = $i/$delay; - } -} - -# finish building the library -printf("\nFinished building source (%d seconds, %3.2f files per second).\n", time - $starttime, $rate); -print "Compiled approximately $filesbuilt files and $lines lines of code.\n"; -print "Doing final make (building archive...)\n"; -!system("make > /dev/null 2>/dev/null") or die "\nERROR: Failed to perform last make command!!!\n"; -print "done.\n";
\ No newline at end of file diff --git a/libtommath/tommath.h b/libtommath/tommath.h index 4b3a76f..1793ed0 100644 --- a/libtommath/tommath.h +++ b/libtommath/tommath.h @@ -10,46 +10,27 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com + * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com */ #ifndef BN_H_ #define BN_H_ #include <stdio.h> -#include <string.h> #include <stdlib.h> -#include <ctype.h> +#include <stdint.h> #include <limits.h> #include <tommath_class.h> -#ifndef MIN -# define MIN(x,y) ((x)<(y)?(x):(y)) -#endif - -#ifndef MAX -# define MAX(x,y) ((x)>(y)?(x):(y)) -#endif - #ifdef __cplusplus extern "C" { - -/* C++ compilers don't like assigning void * to mp_digit * */ -#define OPT_CAST(x) (x *) - -#else - -/* C on the other hand doesn't care */ -#define OPT_CAST(x) - #endif - /* detect 64-bit mode if possible */ -#if defined(__x86_64__) -# if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) -# define MP_64BIT -# endif +#if defined(__x86_64__) + #if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT)) + #define MP_64BIT + #endif #endif /* some default configurations. @@ -61,70 +42,78 @@ extern "C" { * [any size beyond that is ok provided it doesn't overflow the data type] */ #ifdef MP_8BIT - typedef unsigned char mp_digit; - typedef unsigned short mp_word; + typedef uint8_t mp_digit; + typedef uint16_t mp_word; +#define MP_SIZEOF_MP_DIGIT 1 +#ifdef DIGIT_BIT +#error You must not define DIGIT_BIT when using MP_8BIT +#endif #elif defined(MP_16BIT) - typedef unsigned short mp_digit; - typedef unsigned long mp_word; + typedef uint16_t mp_digit; + typedef uint32_t mp_word; +#define MP_SIZEOF_MP_DIGIT 2 +#ifdef DIGIT_BIT +#error You must not define DIGIT_BIT when using MP_16BIT +#endif #elif defined(MP_64BIT) /* for GCC only on supported platforms */ #ifndef CRYPT - typedef unsigned long long ulong64; - typedef signed long long long64; + typedef unsigned long long ulong64; + typedef signed long long long64; #endif - typedef unsigned long mp_digit; - typedef unsigned long mp_word __attribute__ ((mode(TI))); + typedef ulong64 mp_digit; +#if defined(_WIN32) + typedef unsigned __int128 mp_word; +#elif defined(__GNUC__) + typedef unsigned long mp_word __attribute__ ((mode(TI))); +#else + /* it seems you have a problem + * but we assume you can somewhere define your own uint128_t */ + typedef uint128_t mp_word; +#endif -# define DIGIT_BIT 60 + #define DIGIT_BIT 60 #else /* this is the default case, 28-bit digits */ - + /* this is to make porting into LibTomCrypt easier :-) */ #ifndef CRYPT -# if defined(_MSC_VER) || defined(__BORLANDC__) - typedef unsigned __int64 ulong64; - typedef signed __int64 long64; -# else - typedef unsigned long long ulong64; - typedef signed long long long64; -# endif + typedef unsigned long long ulong64; + typedef signed long long long64; #endif - typedef unsigned long mp_digit; - typedef ulong64 mp_word; + typedef uint32_t mp_digit; + typedef ulong64 mp_word; -#ifdef MP_31BIT +#ifdef MP_31BIT /* this is an extension that uses 31-bit digits */ -# define DIGIT_BIT 31 + #define DIGIT_BIT 31 #else /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ -# define DIGIT_BIT 28 -# define MP_28BIT -#endif + #define DIGIT_BIT 28 + #define MP_28BIT #endif - -/* define heap macros */ -#ifndef CRYPT - /* default to libc stuff */ -# ifndef XMALLOC -# define XMALLOC malloc -# define XFREE free -# define XREALLOC realloc -# define XCALLOC calloc -# else - /* prototypes for our heap functions */ - extern void *XMALLOC(size_t n); - extern void *XREALLOC(void *p, size_t n); - extern void *XCALLOC(size_t n, size_t s); - extern void XFREE(void *p); -# endif #endif - /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ #ifndef DIGIT_BIT -# define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ + #define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1)) /* bits per digit */ + typedef uint_least32_t mp_min_u32; +#else + typedef mp_digit mp_min_u32; +#endif + +/* platforms that can use a better rand function */ +#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) + #define MP_USE_ALT_RAND 1 +#endif + +/* use arc4random on platforms that support it */ +#ifdef MP_USE_ALT_RAND + #define MP_GEN_RANDOM() arc4random() +#else + #define MP_GEN_RANDOM() rand() #endif #define MP_DIGIT_BIT DIGIT_BIT @@ -165,15 +154,15 @@ extern int KARATSUBA_MUL_CUTOFF, /* default precision */ #ifndef MP_PREC -# ifndef MP_LOW_MEM -# define MP_PREC 32 /* default digits of precision */ -# else -# define MP_PREC 8 /* default digits of precision */ -# endif + #ifndef MP_LOW_MEM + #define MP_PREC 32 /* default digits of precision */ + #else + #define MP_PREC 8 /* default digits of precision */ + #endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ -#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) +#define MP_WARRAY (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1)) /* the infamous mp_int structure */ typedef struct { @@ -190,7 +179,7 @@ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); #define SIGN(m) ((m)->sign) /* error code to char* string */ -char *mp_error_to_string(int code); +const char *mp_error_to_string(int code); /* ---> init and deinit bignum functions <--- */ /* init a bignum */ @@ -219,8 +208,9 @@ int mp_init_size(mp_int *a, int size); /* ---> Basic Manipulations <--- */ #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) -#define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) -#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) +#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO) +#define mp_isodd(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO) +#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO) /* set to zero */ void mp_zero(mp_int *a); @@ -231,9 +221,21 @@ void mp_set(mp_int *a, mp_digit b); /* set a 32-bit const */ int mp_set_int(mp_int *a, unsigned long b); +/* set a platform dependent unsigned long value */ +int mp_set_long(mp_int *a, unsigned long b); + +/* set a platform dependent unsigned long long value */ +int mp_set_long_long(mp_int *a, unsigned long long b); + /* get a 32-bit value */ unsigned long mp_get_int(mp_int * a); +/* get a platform dependent unsigned long value */ +unsigned long mp_get_long(mp_int * a); + +/* get a platform dependent unsigned long long value */ +unsigned long long mp_get_long_long(mp_int * a); + /* initialize and set a digit */ int mp_init_set (mp_int * a, mp_digit b); @@ -244,11 +246,17 @@ int mp_init_set_int (mp_int * a, unsigned long b); int mp_copy(const mp_int *a, mp_int *b); /* inits and copies, a = b */ -int mp_init_copy(mp_int *a, mp_int *b); +int mp_init_copy(mp_int *a, const mp_int *b); /* trim unused digits */ void mp_clamp(mp_int *a); +/* import binary data */ +int mp_import(mp_int* rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op); + +/* export binary data */ +int mp_export(void* rop, size_t* countp, int order, size_t size, int endian, size_t nails, mp_int* op); + /* ---> digit manipulation <--- */ /* right shift by "b" digits */ @@ -257,19 +265,19 @@ void mp_rshd(mp_int *a, int b); /* left shift by "b" digits */ int mp_lshd(mp_int *a, int b); -/* c = a / 2**b */ +/* c = a / 2**b, implemented as c = a >> b */ int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d); /* b = a/2 */ int mp_div_2(mp_int *a, mp_int *b); -/* c = a * 2**b */ +/* c = a * 2**b, implemented as c = a << b */ int mp_mul_2d(const mp_int *a, int b, mp_int *c); /* b = a*2 */ int mp_mul_2(mp_int *a, mp_int *b); -/* c = a mod 2**d */ +/* c = a mod 2**b */ int mp_mod_2d(const mp_int *a, int b, mp_int *c); /* computes a = 2**b */ @@ -347,6 +355,7 @@ int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); /* c = a**b */ int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); +int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast); /* c = a mod b, 0 <= c < b */ int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); @@ -382,10 +391,14 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c); * returns error if a < 0 and b is even */ int mp_n_root(mp_int *a, mp_digit b, mp_int *c); +int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast); /* special sqrt algo */ int mp_sqrt(mp_int *arg, mp_int *ret); +/* special sqrt (mod prime) */ +int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret); + /* is number a square? */ int mp_is_square(mp_int *arg, int *ret); @@ -453,7 +466,7 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); #endif /* table of first PRIME_SIZE primes */ -extern const mp_digit ltm_prime_tab[]; +extern const mp_digit ltm_prime_tab[PRIME_SIZE]; /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ int mp_prime_is_divisible(mp_int *a, int *result); @@ -469,7 +482,7 @@ int mp_prime_fermat(mp_int *a, mp_int *b, int *result); int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); /* This gives [for a given bit size] the number of trials required - * such that Miller-Rabin gives a prob of failure lower than 2^-96 + * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ int mp_prime_rabin_miller_trials(int size); @@ -490,7 +503,7 @@ int mp_prime_is_prime(mp_int *a, int t, int *result); int mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bytes), - * call with bbs = 1 if you want it to be congruent to 3 mod 4 + * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself @@ -503,10 +516,9 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bits), * * Flags are as follows: - * + * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) - * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero * LTM_PRIME_2MSB_ON - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can @@ -532,10 +544,12 @@ int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); int mp_read_radix(mp_int *a, const char *str, int radix); int mp_toradix(mp_int *a, char *str, int radix); int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); -int mp_radix_size(mp_int *a, int radix, int *size); +int mp_radix_size(const mp_int *a, int radix, int *size); +#ifndef LTM_NO_FILE int mp_fread(mp_int *a, int radix, FILE *stream); int mp_fwrite(mp_int *a, int radix, FILE *stream); +#endif #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) #define mp_raw_size(mp) mp_signed_bin_size(mp) @@ -549,31 +563,13 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream); #define mp_todecimal(M, S) mp_toradix((M), (S), 10) #define mp_tohex(M, S) mp_toradix((M), (S), 16) -/* lowlevel functions, do not call! */ -int s_mp_add(mp_int *a, mp_int *b, mp_int *c); -int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); -#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) -int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int fast_s_mp_sqr(mp_int *a, mp_int *b); -int s_mp_sqr(mp_int *a, mp_int *b); -int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); -int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); -int mp_karatsuba_sqr(mp_int *a, mp_int *b); -int mp_toom_sqr(mp_int *a, mp_int *b); -int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); -int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); -int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); -int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); -void bn_reverse(unsigned char *s, int len); - -extern const char *mp_s_rmap; - #ifdef __cplusplus -} + } #endif #endif + + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/tommath.src b/libtommath/tommath.src deleted file mode 100644 index 4065822..0000000 --- a/libtommath/tommath.src +++ /dev/null @@ -1,6350 +0,0 @@ -\documentclass[b5paper]{book} -\usepackage{hyperref} -\usepackage{makeidx} -\usepackage{amssymb} -\usepackage{color} -\usepackage{alltt} -\usepackage{graphicx} -\usepackage{layout} -\def\union{\cup} -\def\intersect{\cap} -\def\getsrandom{\stackrel{\rm R}{\gets}} -\def\cross{\times} -\def\cat{\hspace{0.5em} \| \hspace{0.5em}} -\def\catn{$\|$} -\def\divides{\hspace{0.3em} | \hspace{0.3em}} -\def\nequiv{\not\equiv} -\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}} -\def\lcm{{\rm lcm}} -\def\gcd{{\rm gcd}} -\def\log{{\rm log}} -\def\ord{{\rm ord}} -\def\abs{{\mathit abs}} -\def\rep{{\mathit rep}} -\def\mod{{\mathit\ mod\ }} -\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})} -\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor} -\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil} -\def\Or{{\rm\ or\ }} -\def\And{{\rm\ and\ }} -\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}} -\def\implies{\Rightarrow} -\def\undefined{{\rm ``undefined"}} -\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}} -\let\oldphi\phi -\def\phi{\varphi} -\def\Pr{{\rm Pr}} -\newcommand{\str}[1]{{\mathbf{#1}}} -\def\F{{\mathbb F}} -\def\N{{\mathbb N}} -\def\Z{{\mathbb Z}} -\def\R{{\mathbb R}} -\def\C{{\mathbb C}} -\def\Q{{\mathbb Q}} -\definecolor{DGray}{gray}{0.5} -\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}} -\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}} -\def\gap{\vspace{0.5ex}} -\makeindex -\begin{document} -\frontmatter -\pagestyle{empty} -\title{Multi--Precision Math} -\author{\mbox{ -%\begin{small} -\begin{tabular}{c} -Tom St Denis \\ -Algonquin College \\ -\\ -Mads Rasmussen \\ -Open Communications Security \\ -\\ -Greg Rose \\ -QUALCOMM Australia \\ -\end{tabular} -%\end{small} -} -} -\maketitle -This text has been placed in the public domain. This text corresponds to the v0.39 release of the -LibTomMath project. - -\begin{alltt} -Tom St Denis -111 Banning Rd -Ottawa, Ontario -K2L 1C3 -Canada - -Phone: 1-613-836-3160 -Email: tomstdenis@gmail.com -\end{alltt} - -This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{} -{\em book} macro package and the Perl {\em booker} package. - -\tableofcontents -\listoffigures -\chapter*{Prefaces} -When I tell people about my LibTom projects and that I release them as public domain they are often puzzled. -They ask why I did it and especially why I continue to work on them for free. The best I can explain it is ``Because I can.'' -Which seems odd and perhaps too terse for adult conversation. I often qualify it with ``I am able, I am willing.'' which -perhaps explains it better. I am the first to admit there is not anything that special with what I have done. Perhaps -others can see that too and then we would have a society to be proud of. My LibTom projects are what I am doing to give -back to society in the form of tools and knowledge that can help others in their endeavours. - -I started writing this book because it was the most logical task to further my goal of open academia. The LibTomMath source -code itself was written to be easy to follow and learn from. There are times, however, where pure C source code does not -explain the algorithms properly. Hence this book. The book literally starts with the foundation of the library and works -itself outwards to the more complicated algorithms. The use of both pseudo--code and verbatim source code provides a duality -of ``theory'' and ``practice'' that the computer science students of the world shall appreciate. I never deviate too far -from relatively straightforward algebra and I hope that this book can be a valuable learning asset. - -This book and indeed much of the LibTom projects would not exist in their current form if it was not for a plethora -of kind people donating their time, resources and kind words to help support my work. Writing a text of significant -length (along with the source code) is a tiresome and lengthy process. Currently the LibTom project is four years old, -comprises of literally thousands of users and over 100,000 lines of source code, TeX and other material. People like Mads and Greg -were there at the beginning to encourage me to work well. It is amazing how timely validation from others can boost morale to -continue the project. Definitely my parents were there for me by providing room and board during the many months of work in 2003. - -To my many friends whom I have met through the years I thank you for the good times and the words of encouragement. I hope I -honour your kind gestures with this project. - -Open Source. Open Academia. Open Minds. - -\begin{flushright} Tom St Denis \end{flushright} - -\newpage -I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also -contribute to educate others facing the problem of having to handle big number mathematical calculations. - -This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of -how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about -the layout and language used. - -I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the -practical aspects of cryptography. - -Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a -great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up -multiple precision calculations is often very important since we deal with outdated machine architecture where modular -reductions, for example, become painfully slow. - -This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks -themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?'' - -\begin{flushright} -Mads Rasmussen - -S\~{a}o Paulo - SP - -Brazil -\end{flushright} - -\newpage -It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about -Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not -really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once. - -At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the -sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real -contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity. -Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake. - -When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully, -and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close -friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort, -and I'm pleased to be involved with it. - -\begin{flushright} -Greg Rose, Sydney, Australia, June 2003. -\end{flushright} - -\mainmatter -\pagestyle{headings} -\chapter{Introduction} -\section{Multiple Precision Arithmetic} - -\subsection{What is Multiple Precision Arithmetic?} -When we think of long-hand arithmetic such as addition or multiplication we rarely consider the fact that we instinctively -raise or lower the precision of the numbers we are dealing with. For example, in decimal we almost immediate can -reason that $7$ times $6$ is $42$. However, $42$ has two digits of precision as opposed to one digit we started with. -Further multiplications of say $3$ result in a larger precision result $126$. In these few examples we have multiple -precisions for the numbers we are working with. Despite the various levels of precision a single subset\footnote{With the occasional optimization.} - of algorithms can be designed to accomodate them. - -By way of comparison a fixed or single precision operation would lose precision on various operations. For example, in -the decimal system with fixed precision $6 \cdot 7 = 2$. - -Essentially at the heart of computer based multiple precision arithmetic are the same long-hand algorithms taught in -schools to manually add, subtract, multiply and divide. - -\subsection{The Need for Multiple Precision Arithmetic} -The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation -of public-key cryptography algorithms. Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require -integers of significant magnitude to resist known cryptanalytic attacks. For example, at the time of this writing a -typical RSA modulus would be at least greater than $10^{309}$. However, modern programming languages such as ISO C \cite{ISOC} and -Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision. - -\begin{figure}[!here] -\begin{center} -\begin{tabular}{|r|c|} -\hline \textbf{Data Type} & \textbf{Range} \\ -\hline char & $-128 \ldots 127$ \\ -\hline short & $-32768 \ldots 32767$ \\ -\hline long & $-2147483648 \ldots 2147483647$ \\ -\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\ -\hline -\end{tabular} -\end{center} -\caption{Typical Data Types for the C Programming Language} -\label{fig:ISOC} -\end{figure} - -The largest data type guaranteed to be provided by the ISO C programming -language\footnote{As per the ISO C standard. However, each compiler vendor is allowed to augment the precision as they -see fit.} can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is -insufficient to accomodate the magnitude required for the problem at hand. An RSA modulus of magnitude $10^{19}$ could be -trivially factored\footnote{A Pollard-Rho factoring would take only $2^{16}$ time.} on the average desktop computer, -rendering any protocol based on the algorithm insecure. Multiple precision algorithms solve this very problem by -extending the range of representable integers while using single precision data types. - -Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic -primitives. Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in -various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient. In fact, several -major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and -deployment of efficient algorithms. - -However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines. -Another auxiliary use of multiple precision integers is high precision floating point data types. -The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$. -Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE. Since IEEE -floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small -(\textit{23, 48 and 64 bits}). The mantissa is merely an integer and a multiple precision integer could be used to create -a mantissa of much larger precision than hardware alone can efficiently support. This approach could be useful where -scientific applications must minimize the total output error over long calculations. - -Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$). -In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}. - -\subsection{Benefits of Multiple Precision Arithmetic} -\index{precision} -The benefit of multiple precision representations over single or fixed precision representations is that -no precision is lost while representing the result of an operation which requires excess precision. For example, -the product of two $n$-bit integers requires at least $2n$ bits of precision to be represented faithfully. A multiple -precision algorithm would augment the precision of the destination to accomodate the result while a single precision system -would truncate excess bits to maintain a fixed level of precision. - -It is possible to implement algorithms which require large integers with fixed precision algorithms. For example, elliptic -curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum -size the system will ever need. Such an approach can lead to vastly simpler algorithms which can accomodate the -integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard -processor has an 8 bit accumulator.}. However, as efficient as such an approach may be, the resulting source code is not -normally very flexible. It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated. - -Multiple precision algorithms have the most overhead of any style of arithmetic. For the the most part the -overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved -platforms. However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the -inputs. That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input -without the designer's explicit forethought. This leads to lower cost of ownership for the code as it only has to -be written and tested once. - -\section{Purpose of This Text} -The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms. -That is to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping'' -elements that are neglected by authors of other texts on the subject. Several well reknowned texts \cite{TAOCPV2,HAC} -give considerably detailed explanations of the theoretical aspects of algorithms and often very little information -regarding the practical implementation aspects. - -In most cases how an algorithm is explained and how it is actually implemented are two very different concepts. For -example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple -algorithm for performing multiple precision integer addition. However, the description lacks any discussion concerning -the fact that the two integer inputs may be of differing magnitudes. As a result the implementation is not as simple -as the text would lead people to believe. Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not -discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}). - -Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers -and fast modular inversion, which we consider practical oversights. These optimal algorithms are vital to achieve -any form of useful performance in non-trivial applications. - -To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer -package. As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.com}} package is used -to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field -tested and work very well. The LibTomMath library is freely available on the Internet for all uses and this text -discusses a very large portion of the inner workings of the library. - -The algorithms that are presented will always include at least one ``pseudo-code'' description followed -by the actual C source code that implements the algorithm. The pseudo-code can be used to implement the same -algorithm in other programming languages as the reader sees fit. - -This text shall also serve as a walkthrough of the creation of multiple precision algorithms from scratch. Showing -the reader how the algorithms fit together as well as where to start on various taskings. - -\section{Discussion and Notation} -\subsection{Notation} -A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent -the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$. The elements of the array $x$ are said to be the radix $\beta$ digits -of the integer. For example, $x = (1,2,3)_{10}$ would represent the integer -$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$. - -\index{mp\_int} -The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well -as auxilary data required to manipulate the data. These additional members are discussed further in section -\ref{sec:MPINT}. For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be -synonymous. When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members -are present as well. An expression of the type \textit{variablename.item} implies that it should evaluate to the -member named ``item'' of the variable. For example, a string of characters may have a member ``length'' which would -evaluate to the number of characters in the string. If the string $a$ equals ``hello'' then it follows that -$a.length = 5$. - -For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used -to solve a given problem. When an algorithm is described as accepting an integer input it is assumed the input is -a plain integer with no additional multiple-precision members. That is, algorithms that use integers as opposed to -mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management. These -algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple -precision algorithm to solve the same problem. - -\subsection{Precision Notation} -The variable $\beta$ represents the radix of a single digit of a multiple precision integer and -must be of the form $q^p$ for $q, p \in \Z^+$. A single precision variable must be able to represent integers in -the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range -$0 \le x < q \beta^2$. The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the -carry. Since all modern computers are binary, it is assumed that $q$ is two. - -\index{mp\_digit} \index{mp\_word} -Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent -a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type. In -several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words. -For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to -the $j$'th digit of a double precision array. Whenever an expression is to be assigned to a double precision -variable it is assumed that all single precision variables are promoted to double precision during the evaluation. -Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single -precision data type. - -For example, if $\beta = 10^2$ a single precision data type may represent a value in the -range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$. Let -$a = 23$ and $b = 49$ represent two single precision variables. The single precision product shall be written -as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$. -In this particular case, $\hat c = 1127$ and $c = 127$. The most significant digit of the product would not fit -in a single precision data type and as a result $c \ne \hat c$. - -\subsection{Algorithm Inputs and Outputs} -Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision -as indicated. The only exception to this rule is when variables have been indicated to be of type mp\_int. This -distinction is important as scalars are often used as array indicies and various other counters. - -\subsection{Mathematical Expressions} -The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression -itself. For example, $\lfloor 5.7 \rfloor = 5$. Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression -rounded to an integer not less than the expression itself. For example, $\lceil 5.1 \rceil = 6$. Typically when -the $/$ division symbol is used the intention is to perform an integer division with truncation. For example, -$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity. When an expression is written as a -fraction a real value division is implied, for example ${5 \over 2} = 2.5$. - -The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation -of the integer. For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$. - -\subsection{Work Effort} -\index{big-Oh} -To measure the efficiency of the specified algorithms, a modified big-Oh notation is used. In this system all -single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}. -That is a single precision addition, multiplication and division are assumed to take the same time to -complete. While this is generally not true in practice, it will simplify the discussions considerably. - -Some algorithms have slight advantages over others which is why some constants will not be removed in -the notation. For example, a normal baseline multiplication (section \ref{sec:basemult}) requires $O(n^2)$ work while a -baseline squaring (section \ref{sec:basesquare}) requires $O({{n^2 + n}\over 2})$ work. In standard big-Oh notation these -would both be said to be equivalent to $O(n^2)$. However, -in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small. As a -result small constant factors in the work effort will make an observable difference in algorithm efficiency. - -All of the algorithms presented in this text have a polynomial time work level. That is, of the form -$O(n^k)$ for $n, k \in \Z^{+}$. This will help make useful comparisons in terms of the speed of the algorithms and how -various optimizations will help pay off in the long run. - -\section{Exercises} -Within the more advanced chapters a section will be set aside to give the reader some challenging exercises related to -the discussion at hand. These exercises are not designed to be prize winning problems, but instead to be thought -provoking. Wherever possible the problems are forward minded, stating problems that will be answered in subsequent -chapters. The reader is encouraged to finish the exercises as they appear to get a better understanding of the -subject material. - -That being said, the problems are designed to affirm knowledge of a particular subject matter. Students in particular -are encouraged to verify they can answer the problems correctly before moving on. - -Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of -the problem. However, unlike \cite{TAOCPV2} the problems do not get nearly as hard. The scoring of these -exercises ranges from one (the easiest) to five (the hardest). The following table sumarizes the -scoring system used. - -\begin{figure}[here] -\begin{center} -\begin{small} -\begin{tabular}{|c|l|} -\hline $\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\ - & minutes to solve. Usually does not involve much computer time \\ - & to solve. \\ -\hline $\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\ - & time usage. Usually requires a program to be written to \\ - & solve the problem. \\ -\hline $\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\ - & of work. Usually involves trivial research and development of \\ - & new theory from the perspective of a student. \\ -\hline $\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\ - & of work and research, the solution to which will demonstrate \\ - & a higher mastery of the subject matter. \\ -\hline $\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\ - & novice to solve. Solutions to these problems will demonstrate a \\ - & complete mastery of the given subject. \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Exercise Scoring System} -\end{figure} - -Problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or -devising new theory. These problems are quick tests to see if the material is understood. Problems at the second level -are also designed to be easy but will require a program or algorithm to be implemented to arrive at the answer. These -two levels are essentially entry level questions. - -Problems at the third level are meant to be a bit more difficult than the first two levels. The answer is often -fairly obvious but arriving at an exacting solution requires some thought and skill. These problems will almost always -involve devising a new algorithm or implementing a variation of another algorithm previously presented. Readers who can -answer these questions will feel comfortable with the concepts behind the topic at hand. - -Problems at the fourth level are meant to be similar to those of the level three questions except they will require -additional research to be completed. The reader will most likely not know the answer right away, nor will the text provide -the exact details of the answer until a subsequent chapter. - -Problems at the fifth level are meant to be the hardest -problems relative to all the other problems in the chapter. People who can correctly answer fifth level problems have a -mastery of the subject matter at hand. - -Often problems will be tied together. The purpose of this is to start a chain of thought that will be discussed in future chapters. The reader -is encouraged to answer the follow-up problems and try to draw the relevance of problems. - -\section{Introduction to LibTomMath} - -\subsection{What is LibTomMath?} -LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C. By portable it -is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on -any given platform. - -The library has been successfully tested under numerous operating systems including Unix\footnote{All of these -trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such -as the Gameboy Advance. The library is designed to contain enough functionality to be able to develop applications such -as public key cryptosystems and still maintain a relatively small footprint. - -\subsection{Goals of LibTomMath} - -Libraries which obtain the most efficiency are rarely written in a high level programming language such as C. However, -even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the -library. Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM -processors. Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window -exponentiation and Montgomery reduction have been provided to make the library more efficient. - -Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface -(\textit{API}) has been kept as simple as possible. Often generic place holder routines will make use of specialized -algorithms automatically without the developer's specific attention. One such example is the generic multiplication -algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication -based on the magnitude of the inputs and the configuration of the library. - -Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should -be source compatible with another popular library which makes it more attractive for developers to use. In this case the -MPI library was used as a API template for all the basic functions. MPI was chosen because it is another library that fits -in the same niche as LibTomMath. Even though LibTomMath uses MPI as the template for the function names and argument -passing conventions, it has been written from scratch by Tom St Denis. - -The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum'' -library exists which can be used to teach computer science students how to perform fast and reliable multiple precision -integer arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points. - -\section{Choice of LibTomMath} -LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but -for more worthy reasons. Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL -\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for -reasons that will be explained in the following sub-sections. - -\subsection{Code Base} -The LibTomMath code base is all portable ISO C source code. This means that there are no platform dependent conditional -segments of code littered throughout the source. This clean and uncluttered approach to the library means that a -developer can more readily discern the true intent of a given section of source code without trying to keep track of -what conditional code will be used. - -The code base of LibTomMath is well organized. Each function is in its own separate source code file -which allows the reader to find a given function very quickly. On average there are $76$ lines of code per source -file which makes the source very easily to follow. By comparison MPI and LIP are single file projects making code tracing -very hard. GMP has many conditional code segments which also hinder tracing. - -When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.} - which is fairly small compared to GMP (over $250$KiB). LibTomMath is slightly larger than MPI (which compiles to about -$50$KiB) but LibTomMath is also much faster and more complete than MPI. - -\subsection{API Simplicity} -LibTomMath is designed after the MPI library and shares the API design. Quite often programs that use MPI will build -with LibTomMath without change. The function names correlate directly to the action they perform. Almost all of the -functions share the same parameter passing convention. The learning curve is fairly shallow with the API provided -which is an extremely valuable benefit for the student and developer alike. - -The LIP library is an example of a library with an API that is awkward to work with. LIP uses function names that are often ``compressed'' to -illegible short hand. LibTomMath does not share this characteristic. - -The GMP library also does not return error codes. Instead it uses a POSIX.1 \cite{POSIX1} signal system where errors -are signaled to the host application. This happens to be the fastest approach but definitely not the most versatile. In -effect a math error (i.e. invalid input, heap error, etc) can cause a program to stop functioning which is definitely -undersireable in many situations. - -\subsection{Optimizations} -While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does -feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring. GMP -and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations. GMP lacks a few -of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP -only had Barrett and Montgomery modular reduction algorithms.}. - -LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular -exponentiation. In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually -slower than the best libraries such as GMP and OpenSSL by only a small factor. - -\subsection{Portability and Stability} -LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler -(\textit{GCC}). This means that without changes the library will build without configuration or setting up any -variables. LIP and MPI will build ``out of the box'' as well but have numerous known bugs. Most notably the author of -MPI has recently stopped working on his library and LIP has long since been discontinued. - -GMP requires a configuration script to run and will not build out of the box. GMP and LibTomMath are still in active -development and are very stable across a variety of platforms. - -\subsection{Choice} -LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for -the case study of this text. Various source files from the LibTomMath project will be included within the text. However, -the reader is encouraged to download their own copy of the library to actually be able to work with the library. - -\chapter{Getting Started} -\section{Library Basics} -The trick to writing any useful library of source code is to build a solid foundation and work outwards from it. First, -a problem along with allowable solution parameters should be identified and analyzed. In this particular case the -inability to accomodate multiple precision integers is the problem. Futhermore, the solution must be written -as portable source code that is reasonably efficient across several different computer platforms. - -After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion. -That is, to implement the lowest level dependencies first and work towards the most abstract functions last. For example, -before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm. -By building outwards from a base foundation instead of using a parallel design methodology the resulting project is -highly modular. Being highly modular is a desirable property of any project as it often means the resulting product -has a small footprint and updates are easy to perform. - -Usually when I start a project I will begin with the header files. I define the data types I think I will need and -prototype the initial functions that are not dependent on other functions (within the library). After I -implement these base functions I prototype more dependent functions and implement them. The process repeats until -I implement all of the functions I require. For example, in the case of LibTomMath I implemented functions such as -mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod(). As an example as to -why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the -dependent function mp\_exptmod() was written. Adding the new multiplication algorithms did not require changes to the -mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development -for new algorithms. This methodology allows new algorithms to be tested in a complete framework with relative ease. - -FIGU,design_process,Design Flow of the First Few Original LibTomMath Functions. - -Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing -the source code. For example, one day I may audit the multipliers and the next day the polynomial basis functions. - -It only makes sense to begin the text with the preliminary data types and support algorithms required as well. -This chapter discusses the core algorithms of the library which are the dependents for every other algorithm. - -\section{What is a Multiple Precision Integer?} -Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot -be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is -to use fixed precision data types to create and manipulate multiple precision integers which may represent values -that are very large. - -As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits. In the decimal system -the largest single digit value is $9$. However, by concatenating digits together larger numbers may be represented. Newly prepended digits -(\textit{to the left}) are said to be in a different power of ten column. That is, the number $123$ can be described as having a $1$ in the hundreds -column, $2$ in the tens column and $3$ in the ones column. Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$. Computer based -multiple precision arithmetic is essentially the same concept. Larger integers are represented by adjoining fixed -precision computer words with the exception that a different radix is used. - -What most people probably do not think about explicitly are the various other attributes that describe a multiple precision -integer. For example, the integer $154_{10}$ has two immediately obvious properties. First, the integer is positive, -that is the sign of this particular integer is positive as opposed to negative. Second, the integer has three digits in -its representation. There is an additional property that the integer posesses that does not concern pencil-and-paper -arithmetic. The third property is how many digits placeholders are available to hold the integer. - -The human analogy of this third property is ensuring there is enough space on the paper to write the integer. For example, -if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left. -Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer -will not exceed the allowed boundaries. These three properties make up what is known as a multiple precision -integer or mp\_int for short. - -\subsection{The mp\_int Structure} -\label{sec:MPINT} -The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for -any such data type but it does provide for making composite data types known as structures. The following is the structure definition -used within LibTomMath. - -\index{mp\_int} -\begin{figure}[here] -\begin{center} -\begin{small} -%\begin{verbatim} -\begin{tabular}{|l|} -\hline -typedef struct \{ \\ -\hspace{3mm}int used, alloc, sign;\\ -\hspace{3mm}mp\_digit *dp;\\ -\} \textbf{mp\_int}; \\ -\hline -\end{tabular} -%\end{verbatim} -\end{small} -\caption{The mp\_int Structure} -\label{fig:mpint} -\end{center} -\end{figure} - -The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows. - -\begin{enumerate} -\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent -a given integer. The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count. - -\item The \textbf{alloc} parameter denotes how -many digits are available in the array to use by functions before it has to increase in size. When the \textbf{used} count -of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the -array to accommodate the precision of the result. - -\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple -precision integer. It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits. The array is maintained in a least -significant digit order. As a pencil and paper analogy the array is organized such that the right most digits are stored -first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array. For example, -if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then -it would represent the integer $a + b\beta + c\beta^2 + \ldots$ - -\index{MP\_ZPOS} \index{MP\_NEG} -\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}). -\end{enumerate} - -\subsubsection{Valid mp\_int Structures} -Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency. -The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy(). - -\begin{enumerate} -\item The value of \textbf{alloc} may not be less than one. That is \textbf{dp} always points to a previously allocated -array of digits. -\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero. -\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero. That is, -leading zero digits in the most significant positions must be trimmed. - \begin{enumerate} - \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero. - \end{enumerate} -\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero; -this represents the mp\_int value of zero. -\end{enumerate} - -\section{Argument Passing} -A convention of argument passing must be adopted early on in the development of any library. Making the function -prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity. -In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int -structures. That means that the source (input) operands are placed on the left and the destination (output) on the right. -Consider the following examples. - -\begin{verbatim} - mp_mul(&a, &b, &c); /* c = a * b */ - mp_add(&a, &b, &a); /* a = a + b */ - mp_sqr(&a, &b); /* b = a * a */ -\end{verbatim} - -The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the -functions and make sense of them. For example, the first function would read ``multiply a and b and store in c''. - -Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order -of assignment expressions. That is, the destination (output) is on the left and arguments (inputs) are on the right. In -truth, it is entirely a matter of preference. In the case of LibTomMath the convention from the MPI library has been -adopted. - -Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a -destination. For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$. This is an important -feature to implement since it allows the calling functions to cut down on the number of variables it must maintain. -However, to implement this feature specific care has to be given to ensure the destination is not modified before the -source is fully read. - -\section{Return Values} -A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them -to the caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour. However, the end -developer can still manage to cause a library to crash. For example, by passing an invalid pointer an application may -fault by dereferencing memory not owned by the application. - -In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for -instance) and memory allocation errors. It will not check that the mp\_int passed to any function is valid nor -will it check pointers for validity. Any function that can cause a runtime error will return an error code as an -\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}). - -\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM} -\begin{figure}[here] -\begin{center} -\begin{tabular}{|l|l|} -\hline \textbf{Value} & \textbf{Meaning} \\ -\hline \textbf{MP\_OKAY} & The function was successful \\ -\hline \textbf{MP\_VAL} & One of the input value(s) was invalid \\ -\hline \textbf{MP\_MEM} & The function ran out of heap memory \\ -\hline -\end{tabular} -\end{center} -\caption{LibTomMath Error Codes} -\label{fig:errcodes} -\end{figure} - -When an error is detected within a function it should free any memory it allocated, often during the initialization of -temporary mp\_ints, and return as soon as possible. The goal is to leave the system in the same state it was when the -function was called. Error checking with this style of API is fairly simple. - -\begin{verbatim} - int err; - if ((err = mp_add(&a, &b, &c)) != MP_OKAY) { - printf("Error: %s\n", mp_error_to_string(err)); - exit(EXIT_FAILURE); - } -\end{verbatim} - -The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use. Not all errors are fatal -and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases. - -\section{Initialization and Clearing} -The logical starting point when actually writing multiple precision integer functions is the initialization and -clearing of the mp\_int structures. These two algorithms will be used by the majority of the higher level algorithms. - -Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of -the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even though -the initial integer will represent zero. If only a single digit were allocated quite a few subsequent re-allocations -would occur when operations are performed on the integers. There is a tradeoff between how many default digits to allocate -and how many re-allocations are tolerable. Obviously allocating an excessive amount of digits initially will waste -memory and become unmanageable. - -If the memory for the digits has been successfully allocated then the rest of the members of the structure must -be initialized. Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set -to zero. The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}. - -\subsection{Initializing an mp\_int} -An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the -structure are set to valid values. The mp\_init algorithm will perform such an action. - -\index{mp\_init} -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_init}. \\ -\textbf{Input}. An mp\_int $a$ \\ -\textbf{Output}. Allocate memory and initialize $a$ to a known valid mp\_int state. \\ -\hline \\ -1. Allocate memory for \textbf{MP\_PREC} digits. \\ -2. If the allocation failed return(\textit{MP\_MEM}) \\ -3. for $n$ from $0$ to $MP\_PREC - 1$ do \\ -\hspace{3mm}3.1 $a_n \leftarrow 0$\\ -4. $a.sign \leftarrow MP\_ZPOS$\\ -5. $a.used \leftarrow 0$\\ -6. $a.alloc \leftarrow MP\_PREC$\\ -7. Return(\textit{MP\_OKAY})\\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_init} -\end{figure} - -\textbf{Algorithm mp\_init.} -The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly -manipulte it. It is assumed that the input may not have had any of its members previously initialized which is certainly -a valid assumption if the input resides on the stack. - -Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for -the digits is allocated. If this fails the function returns before setting any of the other members. The \textbf{MP\_PREC} -name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.} -used to dictate the minimum precision of newly initialized mp\_int integers. Ideally, it is at least equal to the smallest -precision number you'll be working with. - -Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow -heap operations later functions will have to perform in the future. If \textbf{MP\_PREC} is set correctly the slack -memory and the number of heap operations will be trivial. - -Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and -\textbf{alloc} members initialized. This ensures that the mp\_int will always represent the default state of zero regardless -of the original condition of the input. - -\textbf{Remark.} -This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally -when the ``to'' keyword is placed between two expressions. For example, ``for $a$ from $b$ to $c$ do'' means that -a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$. In each -iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$. If $b > c$ occured -the loop would not iterate. By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate -decrementally. - -EXAM,bn_mp_init.c - -One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure. It -is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack. The -call to mp\_init() is used only to initialize the members of the structure to a known default state. - -Here we see (line @23,XMALLOC@) the memory allocation is performed first. This allows us to exit cleanly and quickly -if there is an error. If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there -was a memory error. The function XMALLOC is what actually allocates the memory. Technically XMALLOC is not a function -but a macro defined in ``tommath.h``. By default, XMALLOC will evaluate to malloc() which is the C library's built--in -memory allocation routine. - -In order to assure the mp\_int is in a known state the digits must be set to zero. On most platforms this could have been -accomplished by using calloc() instead of malloc(). However, to correctly initialize a integer type to a given value in a -portable fashion you have to actually assign the value. The for loop (line @28,for@) performs this required -operation. - -After the memory has been successfully initialized the remainder of the members are initialized -(lines @29,used@ through @31,sign@) to their respective default states. At this point the algorithm has succeeded and -a success code is returned to the calling function. If this function returns \textbf{MP\_OKAY} it is safe to assume the -mp\_int structure has been properly initialized and is safe to use with other functions within the library. - -\subsection{Clearing an mp\_int} -When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be -returned to the application's memory pool with the mp\_clear algorithm. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_clear}. \\ -\textbf{Input}. An mp\_int $a$ \\ -\textbf{Output}. The memory for $a$ shall be deallocated. \\ -\hline \\ -1. If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\ -2. for $n$ from 0 to $a.used - 1$ do \\ -\hspace{3mm}2.1 $a_n \leftarrow 0$ \\ -3. Free the memory allocated for the digits of $a$. \\ -4. $a.used \leftarrow 0$ \\ -5. $a.alloc \leftarrow 0$ \\ -6. $a.sign \leftarrow MP\_ZPOS$ \\ -7. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_clear} -\end{figure} - -\textbf{Algorithm mp\_clear.} -This algorithm accomplishes two goals. First, it clears the digits and the other mp\_int members. This ensures that -if a developer accidentally re-uses a cleared structure it is less likely to cause problems. The second goal -is to free the allocated memory. - -The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this -algorithm will not try to free the memory multiple times. Cleared mp\_ints are detectable by having a pre-defined invalid -digit pointer \textbf{dp} setting. - -Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm -with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear. - -EXAM,bn_mp_clear.c - -The algorithm only operates on the mp\_int if it hasn't been previously cleared. The if statement (line @23,a->dp != NULL@) -checks to see if the \textbf{dp} member is not \textbf{NULL}. If the mp\_int is a valid mp\_int then \textbf{dp} cannot be -\textbf{NULL} in which case the if statement will evaluate to true. - -The digits of the mp\_int are cleared by the for loop (line @25,for@) which assigns a zero to every digit. Similar to mp\_init() -the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable. - -The digits are deallocated off the heap via the XFREE macro. Similar to XMALLOC the XFREE macro actually evaluates to -a standard C library function. In this case the free() function. Since free() only deallocates the memory the pointer -still has to be reset to \textbf{NULL} manually (line @33,NULL@). - -Now that the digits have been cleared and deallocated the other members are set to their final values (lines @34,= 0@ and @35,ZPOS@). - -\section{Maintenance Algorithms} - -The previous sections describes how to initialize and clear an mp\_int structure. To further support operations -that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be -able to augment the precision of an mp\_int and -initialize mp\_ints with differing initial conditions. - -These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level -algorithms such as addition, multiplication and modular exponentiation. - -\subsection{Augmenting an mp\_int's Precision} -When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire -result of an operation without loss of precision. Quite often the size of the array given by the \textbf{alloc} member -is large enough to simply increase the \textbf{used} digit count. However, when the size of the array is too small it -must be re-sized appropriately to accomodate the result. The mp\_grow algorithm will provide this functionality. - -\newpage\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_grow}. \\ -\textbf{Input}. An mp\_int $a$ and an integer $b$. \\ -\textbf{Output}. $a$ is expanded to accomodate $b$ digits. \\ -\hline \\ -1. if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\ -2. $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\ -3. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\ -4. Re-allocate the array of digits $a$ to size $v$ \\ -5. If the allocation failed then return(\textit{MP\_MEM}). \\ -6. for n from a.alloc to $v - 1$ do \\ -\hspace{+3mm}6.1 $a_n \leftarrow 0$ \\ -7. $a.alloc \leftarrow v$ \\ -8. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_grow} -\end{figure} - -\textbf{Algorithm mp\_grow.} -It is ideal to prevent re-allocations from being performed if they are not required (step one). This is useful to -prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow. - -The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three). -This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values. - -It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact. This is much -akin to how the \textit{realloc} function from the standard C library works. Since the newly allocated digits are -assumed to contain undefined values they are initially set to zero. - -EXAM,bn_mp_grow.c - -A quick optimization is to first determine if a memory re-allocation is required at all. The if statement (line @24,alloc@) checks -if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count. If the count is not larger than \textbf{alloc} -the function skips the re-allocation part thus saving time. - -When a re-allocation is performed it is turned into an optimal request to save time in the future. The requested digit count is -padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line @25, size@). The XREALLOC function is used -to re-allocate the memory. As per the other functions XREALLOC is actually a macro which evaluates to realloc by default. The realloc -function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before -the re-allocation. All that is left is to clear the newly allocated digits and return. - -Note that the re-allocation result is actually stored in a temporary pointer $tmp$. This is to allow this function to return -an error with a valid pointer. Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$. That would -result in a memory leak if XREALLOC ever failed. - -\subsection{Initializing Variable Precision mp\_ints} -Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size -of input mp\_ints to a given algorithm. The purpose of algorithm mp\_init\_size is similar to mp\_init except that it -will allocate \textit{at least} a specified number of digits. - -\begin{figure}[here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_init\_size}. \\ -\textbf{Input}. An mp\_int $a$ and the requested number of digits $b$. \\ -\textbf{Output}. $a$ is initialized to hold at least $b$ digits. \\ -\hline \\ -1. $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\ -2. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\ -3. Allocate $v$ digits. \\ -4. for $n$ from $0$ to $v - 1$ do \\ -\hspace{3mm}4.1 $a_n \leftarrow 0$ \\ -5. $a.sign \leftarrow MP\_ZPOS$\\ -6. $a.used \leftarrow 0$\\ -7. $a.alloc \leftarrow v$\\ -8. Return(\textit{MP\_OKAY})\\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_init\_size} -\end{figure} - -\textbf{Algorithm mp\_init\_size.} -This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of -digits allocated can be controlled by the second input argument $b$. The input size is padded upwards so it is a -multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits. This padding is used to prevent trivial -allocations from becoming a bottleneck in the rest of the algorithms. - -Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero. This -particular algorithm is useful if it is known ahead of time the approximate size of the input. If the approximation is -correct no further memory re-allocations are required to work with the mp\_int. - -EXAM,bn_mp_init_size.c - -The number of digits $b$ requested is padded (line @22,MP_PREC@) by first augmenting it to the next multiple of -\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result. If the memory can be successfully allocated the -mp\_int is placed in a default state representing the integer zero. Otherwise, the error code \textbf{MP\_MEM} will be -returned (line @27,return@). - -The digits are allocated and set to zero at the same time with the calloc() function (line @25,XCALLOC@). The -\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set -to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines @29,used@, @30,alloc@ and @31,sign@). If the function -returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the -functions to work with. - -\subsection{Multiple Integer Initializations and Clearings} -Occasionally a function will require a series of mp\_int data types to be made available simultaneously. -The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single -statement. It is essentially a shortcut to multiple initializations. - -\newpage\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_init\_multi}. \\ -\textbf{Input}. Variable length array $V_k$ of mp\_int variables of length $k$. \\ -\textbf{Output}. The array is initialized such that each mp\_int of $V_k$ is ready to use. \\ -\hline \\ -1. for $n$ from 0 to $k - 1$ do \\ -\hspace{+3mm}1.1. Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\ -\hspace{+3mm}1.2. If initialization failed then do \\ -\hspace{+6mm}1.2.1. for $j$ from $0$ to $n$ do \\ -\hspace{+9mm}1.2.1.1. Free the mp\_int $V_j$ (\textit{mp\_clear}) \\ -\hspace{+6mm}1.2.2. Return(\textit{MP\_MEM}) \\ -2. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_init\_multi} -\end{figure} - -\textbf{Algorithm mp\_init\_multi.} -The algorithm will initialize the array of mp\_int variables one at a time. If a runtime error has been detected -(\textit{step 1.2}) all of the previously initialized variables are cleared. The goal is an ``all or nothing'' -initialization which allows for quick recovery from runtime errors. - -EXAM,bn_mp_init_multi.c - -This function intializes a variable length list of mp\_int structure pointers. However, instead of having the mp\_int -structures in an actual C array they are simply passed as arguments to the function. This function makes use of the -``...'' argument syntax of the C programming language. The list is terminated with a final \textbf{NULL} argument -appended on the right. - -The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function. A count -$n$ of succesfully initialized mp\_int structures is maintained (line @47,n++@) such that if a failure does occur, -the algorithm can backtrack and free the previously initialized structures (lines @27,if@ to @46,}@). - - -\subsection{Clamping Excess Digits} -When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of -the function instead of checking during the computation. For example, a multiplication of a $i$ digit number by a -$j$ digit produces a result of at most $i + j$ digits. It is entirely possible that the result is $i + j - 1$ -though, with no final carry into the last position. However, suppose the destination had to be first expanded -(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry. -That would be a considerable waste of time since heap operations are relatively slow. - -The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function -terminates. This way a single heap operation (\textit{at most}) is required. However, if the result was not checked -there would be an excess high order zero digit. - -For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$. The leading zero digit -will not contribute to the precision of the result. In fact, through subsequent operations more leading zero digits would -accumulate to the point the size of the integer would be prohibitive. As a result even though the precision is very -low the representation is excessively large. - -The mp\_clamp algorithm is designed to solve this very problem. It will trim high-order zeros by decrementing the -\textbf{used} count until a non-zero most significant digit is found. Also in this system, zero is considered to be a -positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to -\textbf{MP\_ZPOS}. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_clamp}. \\ -\textbf{Input}. An mp\_int $a$ \\ -\textbf{Output}. Any excess leading zero digits of $a$ are removed \\ -\hline \\ -1. while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\ -\hspace{+3mm}1.1 $a.used \leftarrow a.used - 1$ \\ -2. if $a.used = 0$ then do \\ -\hspace{+3mm}2.1 $a.sign \leftarrow MP\_ZPOS$ \\ -\hline \\ -\end{tabular} -\end{center} -\caption{Algorithm mp\_clamp} -\end{figure} - -\textbf{Algorithm mp\_clamp.} -As can be expected this algorithm is very simple. The loop on step one is expected to iterate only once or twice at -the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for -when all of the digits are zero to ensure that the mp\_int is valid at all times. - -EXAM,bn_mp_clamp.c - -Note on line @27,while@ how to test for the \textbf{used} count is made on the left of the \&\& operator. In the C programming -language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails. This is -important since if the \textbf{used} is zero the test on the right would fetch below the array. That is obviously -undesirable. The parenthesis on line @28,a->used@ is used to make sure the \textbf{used} count is decremented and not -the pointer ``a''. - -\section*{Exercises} -\begin{tabular}{cl} -$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\ - & \\ -$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations. \\ - & \\ -$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\ - & encryption when $\beta = 2^{28}$. \\ - & \\ -$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp. What does it prevent? \\ - & \\ -$\left [ 1 \right ]$ & Give an example of when the algorithm mp\_init\_copy might be useful. \\ - & \\ -\end{tabular} - - -%%% -% CHAPTER FOUR -%%% - -\chapter{Basic Operations} - -\section{Introduction} -In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining -mp\_int structures. This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low -level basis of the entire library. While these algorithm are relatively trivial it is important to understand how they -work before proceeding since these algorithms will be used almost intrinsically in the following chapters. - -The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of -mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures -represent. - -\section{Assigning Values to mp\_int Structures} -\subsection{Copying an mp\_int} -Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making -a copy for the purposes of this text. The copy of the mp\_int will be a separate entity that represents the same -value as the mp\_int it was copied from. The mp\_copy algorithm provides this functionality. - -\newpage\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_copy}. \\ -\textbf{Input}. An mp\_int $a$ and $b$. \\ -\textbf{Output}. Store a copy of $a$ in $b$. \\ -\hline \\ -1. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{mp\_grow}) \\ -2. for $n$ from 0 to $a.used - 1$ do \\ -\hspace{3mm}2.1 $b_{n} \leftarrow a_{n}$ \\ -3. for $n$ from $a.used$ to $b.used - 1$ do \\ -\hspace{3mm}3.1 $b_{n} \leftarrow 0$ \\ -4. $b.used \leftarrow a.used$ \\ -5. $b.sign \leftarrow a.sign$ \\ -6. return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_copy} -\end{figure} - -\textbf{Algorithm mp\_copy.} -This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will -represent the same integer as the mp\_int $a$. The mp\_int $b$ shall be a complete and distinct copy of the -mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$. - -If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow -algorithm. The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two -and three). The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of -$b$. - -\textbf{Remark.} This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the -text. The error return codes of other algorithms are not explicitly checked in the pseudo-code presented. For example, in -step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded. Text space is -limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return -the error code itself. However, the C code presented will demonstrate all of the error handling logic required to -implement the pseudo-code. - -EXAM,bn_mp_copy.c - -Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output -mp\_int structures passed to a function are one and the same. For this case it is optimal to return immediately without -copying digits (line @24,a == b@). - -The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$. If $b.alloc$ is less than -$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines @29,alloc@ to @33,}@). In order to -simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits -of the mp\_ints $a$ and $b$ respectively. These aliases (lines @42,tmpa@ and @45,tmpb@) allow the compiler to access the digits without first dereferencing the -mp\_int pointers and then subsequently the pointer to the digits. - -After the aliases are established the digits from $a$ are copied into $b$ (lines @48,for@ to @50,}@) and then the excess -digits of $b$ are set to zero (lines @53,for@ to @55,}@). Both ``for'' loops make use of the pointer aliases and in -fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits. This optimization -allows the alias to stay in a machine register fairly easy between the two loops. - -\textbf{Remarks.} The use of pointer aliases is an implementation methodology first introduced in this function that will -be used considerably in other functions. Technically, a pointer alias is simply a short hand alias used to lower the -number of pointer dereferencing operations required to access data. For example, a for loop may resemble - -\begin{alltt} -for (x = 0; x < 100; x++) \{ - a->num[4]->dp[x] = 0; -\} -\end{alltt} - -This could be re-written using aliases as - -\begin{alltt} -mp_digit *tmpa; -a = a->num[4]->dp; -for (x = 0; x < 100; x++) \{ - *a++ = 0; -\} -\end{alltt} - -In this case an alias is used to access the -array of digits within an mp\_int structure directly. It may seem that a pointer alias is strictly not required -as a compiler may optimize out the redundant pointer operations. However, there are two dominant reasons to use aliases. - -The first reason is that most compilers will not effectively optimize pointer arithmetic. For example, some optimizations -may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Also some optimizations may -work for GCC and not MSVC. As such it is ideal to find a common ground for as many compilers as possible. Pointer -aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code -stands a better chance of being faster. - -The second reason is that pointer aliases often can make an algorithm simpler to read. Consider the first ``for'' -loop of the function mp\_copy() re-written to not use pointer aliases. - -\begin{alltt} - /* copy all the digits */ - for (n = 0; n < a->used; n++) \{ - b->dp[n] = a->dp[n]; - \} -\end{alltt} - -Whether this code is harder to read depends strongly on the individual. However, it is quantifiably slightly more -complicated as there are four variables within the statement instead of just two. - -\subsubsection{Nested Statements} -Another commonly used technique in the source routines is that certain sections of code are nested. This is used in -particular with the pointer aliases to highlight code phases. For example, a Comba multiplier (discussed in chapter six) -will typically have three different phases. First the temporaries are initialized, then the columns calculated and -finally the carries are propagated. In this example the middle column production phase will typically be nested as it -uses temporary variables and aliases the most. - -The nesting also simplies the source code as variables that are nested are only valid for their scope. As a result -the various temporary variables required do not propagate into other sections of code. - - -\subsection{Creating a Clone} -Another common operation is to make a local temporary copy of an mp\_int argument. To initialize an mp\_int -and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone. This is -useful within functions that need to modify an argument but do not wish to actually modify the original copy. The -mp\_init\_copy algorithm has been designed to help perform this task. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_init\_copy}. \\ -\textbf{Input}. An mp\_int $a$ and $b$\\ -\textbf{Output}. $a$ is initialized to be a copy of $b$. \\ -\hline \\ -1. Init $a$. (\textit{mp\_init}) \\ -2. Copy $b$ to $a$. (\textit{mp\_copy}) \\ -3. Return the status of the copy operation. \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_init\_copy} -\end{figure} - -\textbf{Algorithm mp\_init\_copy.} -This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it. As -such this algorithm will perform two operations in one step. - -EXAM,bn_mp_init_copy.c - -This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}. Note that -\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call -and \textbf{a} will be left intact. - -\section{Zeroing an Integer} -Reseting an mp\_int to the default state is a common step in many algorithms. The mp\_zero algorithm will be the algorithm used to -perform this task. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_zero}. \\ -\textbf{Input}. An mp\_int $a$ \\ -\textbf{Output}. Zero the contents of $a$ \\ -\hline \\ -1. $a.used \leftarrow 0$ \\ -2. $a.sign \leftarrow$ MP\_ZPOS \\ -3. for $n$ from 0 to $a.alloc - 1$ do \\ -\hspace{3mm}3.1 $a_n \leftarrow 0$ \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_zero} -\end{figure} - -\textbf{Algorithm mp\_zero.} -This algorithm simply resets a mp\_int to the default state. - -EXAM,bn_mp_zero.c - -After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the -\textbf{sign} variable is set to \textbf{MP\_ZPOS}. - -\section{Sign Manipulation} -\subsection{Absolute Value} -With the mp\_int representation of an integer, calculating the absolute value is trivial. The mp\_abs algorithm will compute -the absolute value of an mp\_int. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_abs}. \\ -\textbf{Input}. An mp\_int $a$ \\ -\textbf{Output}. Computes $b = \vert a \vert$ \\ -\hline \\ -1. Copy $a$ to $b$. (\textit{mp\_copy}) \\ -2. If the copy failed return(\textit{MP\_MEM}). \\ -3. $b.sign \leftarrow MP\_ZPOS$ \\ -4. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_abs} -\end{figure} - -\textbf{Algorithm mp\_abs.} -This algorithm computes the absolute of an mp\_int input. First it copies $a$ over $b$. This is an example of an -algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful. This allows, -for instance, the developer to pass the same mp\_int as the source and destination to this function without addition -logic to handle it. - -EXAM,bn_mp_abs.c - -This fairly trivial algorithm first eliminates non--required duplications (line @27,a != b@) and then sets the -\textbf{sign} flag to \textbf{MP\_ZPOS}. - -\subsection{Integer Negation} -With the mp\_int representation of an integer, calculating the negation is also trivial. The mp\_neg algorithm will compute -the negative of an mp\_int input. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_neg}. \\ -\textbf{Input}. An mp\_int $a$ \\ -\textbf{Output}. Computes $b = -a$ \\ -\hline \\ -1. Copy $a$ to $b$. (\textit{mp\_copy}) \\ -2. If the copy failed return(\textit{MP\_MEM}). \\ -3. If $a.used = 0$ then return(\textit{MP\_OKAY}). \\ -4. If $a.sign = MP\_ZPOS$ then do \\ -\hspace{3mm}4.1 $b.sign = MP\_NEG$. \\ -5. else do \\ -\hspace{3mm}5.1 $b.sign = MP\_ZPOS$. \\ -6. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_neg} -\end{figure} - -\textbf{Algorithm mp\_neg.} -This algorithm computes the negation of an input. First it copies $a$ over $b$. If $a$ has no used digits then -the algorithm returns immediately. Otherwise it flips the sign flag and stores the result in $b$. Note that if -$a$ had no digits then it must be positive by definition. Had step three been omitted then the algorithm would return -zero as negative. - -EXAM,bn_mp_neg.c - -Like mp\_abs() this function avoids non--required duplications (line @21,a != b@) and then sets the sign. We -have to make sure that only non--zero values get a \textbf{sign} of \textbf{MP\_NEG}. If the mp\_int is zero -than the \textbf{sign} is hard--coded to \textbf{MP\_ZPOS}. - -\section{Small Constants} -\subsection{Setting Small Constants} -Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For these cases the mp\_set algorithm is useful. - -\newpage\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_set}. \\ -\textbf{Input}. An mp\_int $a$ and a digit $b$ \\ -\textbf{Output}. Make $a$ equivalent to $b$ \\ -\hline \\ -1. Zero $a$ (\textit{mp\_zero}). \\ -2. $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\ -3. $a.used \leftarrow \left \lbrace \begin{array}{ll} - 1 & \mbox{if }a_0 > 0 \\ - 0 & \mbox{if }a_0 = 0 - \end{array} \right .$ \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_set} -\end{figure} - -\textbf{Algorithm mp\_set.} -This algorithm sets a mp\_int to a small single digit value. Step number 1 ensures that the integer is reset to the default state. The -single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly. - -EXAM,bn_mp_set.c - -First we zero (line @21,mp_zero@) the mp\_int to make sure that the other members are initialized for a -small positive constant. mp\_zero() ensures that the \textbf{sign} is positive and the \textbf{used} count -is zero. Next we set the digit and reduce it modulo $\beta$ (line @22,MP_MASK@). After this step we have to -check if the resulting digit is zero or not. If it is not then we set the \textbf{used} count to one, otherwise -to zero. - -We can quickly reduce modulo $\beta$ since it is of the form $2^k$ and a quick binary AND operation with -$2^k - 1$ will perform the same operation. - -One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses -this function should take that into account. Only trivially small constants can be set using this function. - -\subsection{Setting Large Constants} -To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal. It accepts a ``long'' -data type as input and will always treat it as a 32-bit integer. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_set\_int}. \\ -\textbf{Input}. An mp\_int $a$ and a ``long'' integer $b$ \\ -\textbf{Output}. Make $a$ equivalent to $b$ \\ -\hline \\ -1. Zero $a$ (\textit{mp\_zero}) \\ -2. for $n$ from 0 to 7 do \\ -\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\ -\hspace{3mm}2.2 $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\ -\hspace{3mm}2.3 $a_0 \leftarrow a_0 + u$ \\ -\hspace{3mm}2.4 $a.used \leftarrow a.used + 1$ \\ -3. Clamp excess used digits (\textit{mp\_clamp}) \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_set\_int} -\end{figure} - -\textbf{Algorithm mp\_set\_int.} -The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the -mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions. In step 2.2 the -next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is -incremented to reflect the addition. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have -zero digits used and the newly added four bits would be ignored. - -Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp. - -EXAM,bn_mp_set_int.c - -This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes. The weird -addition on line @38,a->used@ ensures that the newly added in bits are added to the number of digits. While it may not -seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line @27,mp_mul_2d@ -as well as the call to mp\_clamp() on line @40,mp_clamp@. Both functions will clamp excess leading digits which keeps -the number of used digits low. - -\section{Comparisons} -\subsection{Unsigned Comparisions} -Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers. For example, -to compare $1,234$ to $1,264$ the digits are extracted by their positions. That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$ -to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude -positions. If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater. - -The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two -mp\_int variables alone. It will ignore the sign of the two inputs. Such a function is useful when an absolute comparison is required or if the -signs are known to agree in advance. - -To facilitate working with the results of the comparison functions three constants are required. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{|r|l|} -\hline \textbf{Constant} & \textbf{Meaning} \\ -\hline \textbf{MP\_GT} & Greater Than \\ -\hline \textbf{MP\_EQ} & Equal To \\ -\hline \textbf{MP\_LT} & Less Than \\ -\hline -\end{tabular} -\end{center} -\caption{Comparison Return Codes} -\end{figure} - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_cmp\_mag}. \\ -\textbf{Input}. Two mp\_ints $a$ and $b$. \\ -\textbf{Output}. Unsigned comparison results ($a$ to the left of $b$). \\ -\hline \\ -1. If $a.used > b.used$ then return(\textit{MP\_GT}) \\ -2. If $a.used < b.used$ then return(\textit{MP\_LT}) \\ -3. for n from $a.used - 1$ to 0 do \\ -\hspace{+3mm}3.1 if $a_n > b_n$ then return(\textit{MP\_GT}) \\ -\hspace{+3mm}3.2 if $a_n < b_n$ then return(\textit{MP\_LT}) \\ -4. Return(\textit{MP\_EQ}) \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_cmp\_mag} -\end{figure} - -\textbf{Algorithm mp\_cmp\_mag.} -By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return -\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$. The first two steps compare the number of digits used in both $a$ and $b$. -Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is. -If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit. - -By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to -the zero'th digit. If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}. - -EXAM,bn_mp_cmp_mag.c - -The two if statements (lines @24,if@ and @28,if@) compare the number of digits in the two inputs. These two are -performed before all of the digits are compared since it is a very cheap test to perform and can potentially save -considerable time. The implementation given is also not valid without those two statements. $b.alloc$ may be -smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the array of digits. - - - -\subsection{Signed Comparisons} -Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude -comparison a trivial signed comparison algorithm can be written. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_cmp}. \\ -\textbf{Input}. Two mp\_ints $a$ and $b$ \\ -\textbf{Output}. Signed Comparison Results ($a$ to the left of $b$) \\ -\hline \\ -1. if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\ -2. if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\ -3. if $a.sign = MP\_NEG$ then \\ -\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\ -4 Otherwise \\ -\hspace{+3mm}4.1 Return the unsigned comparison of $a$ and $b$ \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_cmp} -\end{figure} - -\textbf{Algorithm mp\_cmp.} -The first two steps compare the signs of the two inputs. If the signs do not agree then it can return right away with the appropriate -comparison code. When the signs are equal the digits of the inputs must be compared to determine the correct result. In step -three the unsigned comparision flips the order of the arguments since they are both negative. For instance, if $-a > -b$ then -$\vert a \vert < \vert b \vert$. Step number four will compare the two when they are both positive. - -EXAM,bn_mp_cmp.c - -The two if statements (lines @22,if@ and @26,if@) perform the initial sign comparison. If the signs are not the equal then which ever -has the positive sign is larger. The inputs are compared (line @30,if@) based on magnitudes. If the signs were both -negative then the unsigned comparison is performed in the opposite direction (line @31,mp_cmp_mag@). Otherwise, the signs are assumed to -be both positive and a forward direction unsigned comparison is performed. - -\section*{Exercises} -\begin{tabular}{cl} -$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\ - & \\ -$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits \\ - & of two random digits (of equal magnitude) before a difference is found. \\ - & \\ -$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based \\ - & on the observations made in the previous problem. \\ - & -\end{tabular} - -\chapter{Basic Arithmetic} -\section{Introduction} -At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been -established. The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms. These -algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms. It is very important -that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms -which easily places them at $O(n^2)$ or even $O(n^3)$ work levels. - -MARK,SHIFTS -All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right -logical shifts respectively. A logical shift is analogous to sliding the decimal point of radix-10 representations. For example, the real -number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}). -Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two. -For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$. - -One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed -from the number. For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$. However, with a logical shift the -result is $110_2$. - -\section{Addition and Subtraction} -In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus. For example, with 32-bit integers -$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$ since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$. -As a result subtraction can be performed with a trivial series of logical operations and an addition. - -However, in multiple precision arithmetic negative numbers are not represented in the same way. Instead a sign flag is used to keep track of the -sign of the integer. As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or -subtraction algorithms with the sign fixed up appropriately. - -The lower level algorithms will add or subtract integers without regard to the sign flag. That is they will add or subtract the magnitude of -the integers respectively. - -\subsection{Low Level Addition} -An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers. That is to add the -trailing digits first and propagate the resulting carry upwards. Since this is a lower level algorithm the name will have a ``s\_'' prefix. -Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely. - -\newpage -\begin{figure}[!here] -\begin{center} -\begin{small} -\begin{tabular}{l} -\hline Algorithm \textbf{s\_mp\_add}. \\ -\textbf{Input}. Two mp\_ints $a$ and $b$ \\ -\textbf{Output}. The unsigned addition $c = \vert a \vert + \vert b \vert$. \\ -\hline \\ -1. if $a.used > b.used$ then \\ -\hspace{+3mm}1.1 $min \leftarrow b.used$ \\ -\hspace{+3mm}1.2 $max \leftarrow a.used$ \\ -\hspace{+3mm}1.3 $x \leftarrow a$ \\ -2. else \\ -\hspace{+3mm}2.1 $min \leftarrow a.used$ \\ -\hspace{+3mm}2.2 $max \leftarrow b.used$ \\ -\hspace{+3mm}2.3 $x \leftarrow b$ \\ -3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\ -4. $oldused \leftarrow c.used$ \\ -5. $c.used \leftarrow max + 1$ \\ -6. $u \leftarrow 0$ \\ -7. for $n$ from $0$ to $min - 1$ do \\ -\hspace{+3mm}7.1 $c_n \leftarrow a_n + b_n + u$ \\ -\hspace{+3mm}7.2 $u \leftarrow c_n >> lg(\beta)$ \\ -\hspace{+3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\ -8. if $min \ne max$ then do \\ -\hspace{+3mm}8.1 for $n$ from $min$ to $max - 1$ do \\ -\hspace{+6mm}8.1.1 $c_n \leftarrow x_n + u$ \\ -\hspace{+6mm}8.1.2 $u \leftarrow c_n >> lg(\beta)$ \\ -\hspace{+6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\ -9. $c_{max} \leftarrow u$ \\ -10. if $olduse > max$ then \\ -\hspace{+3mm}10.1 for $n$ from $max + 1$ to $oldused - 1$ do \\ -\hspace{+6mm}10.1.1 $c_n \leftarrow 0$ \\ -11. Clamp excess digits in $c$. (\textit{mp\_clamp}) \\ -12. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Algorithm s\_mp\_add} -\end{figure} - -\textbf{Algorithm s\_mp\_add.} -This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes. -Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}. Even the -MIX pseudo machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes. - -The first thing that has to be accomplished is to sort out which of the two inputs is the largest. The addition logic -will simply add all of the smallest input to the largest input and store that first part of the result in the -destination. Then it will apply a simpler addition loop to excess digits of the larger input. - -The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two -inputs. The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the -same number of digits. After the inputs are sorted the destination $c$ is grown as required to accomodate the sum -of the two inputs. The original \textbf{used} count of $c$ is copied and set to the new used count. - -At this point the first addition loop will go through as many digit positions that both inputs have. The carry -variable $\mu$ is set to zero outside the loop. Inside the loop an ``addition'' step requires three statements to produce -one digit of the summand. First -two digits from $a$ and $b$ are added together along with the carry $\mu$. The carry of this step is extracted and stored -in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$. - -Now all of the digit positions that both inputs have in common have been exhausted. If $min \ne max$ then $x$ is an alias -for one of the inputs that has more digits. A simplified addition loop is then used to essentially copy the remaining digits -and the carry to the destination. - -The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition. - - -EXAM,bn_s_mp_add.c - -We first sort (lines @27,if@ to @35,}@) the inputs based on magnitude and determine the $min$ and $max$ variables. -Note that $x$ is a pointer to an mp\_int assigned to the largest input, in effect it is a local alias. Next we -grow the destination (@37,init@ to @42,}@) ensure that it can accomodate the result of the addition. - -Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases that are on -lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ represent the two inputs and destination variables respectively. These aliases are used to ensure the -compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int. - -The initial carry $u$ will be cleared (line @65,u = 0@), note that $u$ is of type mp\_digit which ensures type -compatibility within the implementation. The initial addition (line @66,for@ to @75,}@) adds digits from -both inputs until the smallest input runs out of digits. Similarly the conditional addition loop -(line @81,for@ to @90,}@) adds the remaining digits from the larger of the two inputs. The addition is finished -with the final carry being stored in $tmpc$ (line @94,tmpc++@). Note the ``++'' operator within the same expression. -After line @94,tmpc++@, $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$. This is useful -for the next loop (line @97,for@ to @99,}@) which set any old upper digits to zero. - -\subsection{Low Level Subtraction} -The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm. The principle difference is that the -unsigned subtraction algorithm requires the result to be positive. That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must -be met for this algorithm to function properly. Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly. -This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms. - -MARK,GAMMA - -For this algorithm a new variable is required to make the description simpler. Recall from section 1.3.1 that a mp\_digit must be able to represent -the range $0 \le x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a mp\_digit represent a larger range of values. For -this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a -mp\_digit (\textit{this implies $2^{\gamma} > \beta$}). - -For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long'' -data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma \ge 32$. - -\newpage\begin{figure}[!here] -\begin{center} -\begin{small} -\begin{tabular}{l} -\hline Algorithm \textbf{s\_mp\_sub}. \\ -\textbf{Input}. Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\ -\textbf{Output}. The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\ -\hline \\ -1. $min \leftarrow b.used$ \\ -2. $max \leftarrow a.used$ \\ -3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{mp\_grow}) \\ -4. $oldused \leftarrow c.used$ \\ -5. $c.used \leftarrow max$ \\ -6. $u \leftarrow 0$ \\ -7. for $n$ from $0$ to $min - 1$ do \\ -\hspace{3mm}7.1 $c_n \leftarrow a_n - b_n - u$ \\ -\hspace{3mm}7.2 $u \leftarrow c_n >> (\gamma - 1)$ \\ -\hspace{3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\ -8. if $min < max$ then do \\ -\hspace{3mm}8.1 for $n$ from $min$ to $max - 1$ do \\ -\hspace{6mm}8.1.1 $c_n \leftarrow a_n - u$ \\ -\hspace{6mm}8.1.2 $u \leftarrow c_n >> (\gamma - 1)$ \\ -\hspace{6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\ -9. if $oldused > max$ then do \\ -\hspace{3mm}9.1 for $n$ from $max$ to $oldused - 1$ do \\ -\hspace{6mm}9.1.1 $c_n \leftarrow 0$ \\ -10. Clamp excess digits of $c$. (\textit{mp\_clamp}). \\ -11. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Algorithm s\_mp\_sub} -\end{figure} - -\textbf{Algorithm s\_mp\_sub.} -This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive. That is when -passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly. This -algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well. As was the case -of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude. - -The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2 -set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at -most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and -set to the maximal count for the operation. - -The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision -subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction -loops. Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry. - -For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to -the third bit which will be set to zero after the borrow. After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the -third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case though the carry will be forced to propagate all the -way to the most significant bit. - -Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most -significant bit. Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that -is needed is a single zero or one bit for the carry. Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the -carry. This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed. - -If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step -10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed. - -EXAM,bn_s_mp_sub.c - -Like low level addition we ``sort'' the inputs. Except in this case the sorting is hardcoded -(lines @24,min@ and @25,max@). In reality the $min$ and $max$ variables are only aliases and are only -used to make the source code easier to read. Again the pointer alias optimization is used -within this algorithm. The aliases $tmpa$, $tmpb$ and $tmpc$ are initialized -(lines @42,tmpa@, @43,tmpb@ and @44,tmpc@) for $a$, $b$ and $c$ respectively. - -The first subtraction loop (lines @47,u = 0@ through @61,}@) subtract digits from both inputs until the smaller of -the two inputs has been exhausted. As remarked earlier there is an implementation reason for using the ``awkward'' -method of extracting the carry (line @57, >>@). The traditional method for extracting the carry would be to shift -by $lg(\beta)$ positions and logically AND the least significant bit. The AND operation is required because all of -the bits above the $\lg(\beta)$'th bit will be set to one after a carry occurs from subtraction. This carry -extraction requires two relatively cheap operations to extract the carry. The other method is to simply shift the -most significant bit to the least significant bit thus extracting the carry with a single cheap operation. This -optimization only works on twos compliment machines which is a safe assumption to make. - -If $a$ has a larger magnitude than $b$ an additional loop (lines @64,for@ through @73,}@) is required to propagate -the carry through $a$ and copy the result to $c$. - -\subsection{High Level Addition} -Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be -established. This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data -types. - -Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign} -flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases. - -\begin{figure}[!here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_add}. \\ -\textbf{Input}. Two mp\_ints $a$ and $b$ \\ -\textbf{Output}. The signed addition $c = a + b$. \\ -\hline \\ -1. if $a.sign = b.sign$ then do \\ -\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\ -\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\ -2. else do \\ -\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\ -\hspace{6mm}2.1.1 $c.sign \leftarrow b.sign$ \\ -\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\ -\hspace{3mm}2.2 else do \\ -\hspace{6mm}2.2.1 $c.sign \leftarrow a.sign$ \\ -\hspace{6mm}2.2.2 $c \leftarrow \vert a \vert - \vert b \vert$ \\ -3. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_add} -\end{figure} - -\textbf{Algorithm mp\_add.} -This algorithm performs the signed addition of two mp\_int variables. There is no reference algorithm to draw upon from -either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations. The algorithm is fairly -straightforward but restricted since subtraction can only produce positive results. - -\begin{figure}[here] -\begin{small} -\begin{center} -\begin{tabular}{|c|c|c|c|c|} -\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\ -\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\ -\hline $+$ & $+$ & No & $c = a + b$ & $a.sign$ \\ -\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\ -\hline $-$ & $-$ & No & $c = a + b$ & $a.sign$ \\ -\hline &&&&\\ - -\hline $+$ & $-$ & No & $c = b - a$ & $b.sign$ \\ -\hline $-$ & $+$ & No & $c = b - a$ & $b.sign$ \\ - -\hline &&&&\\ - -\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\ -\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\ - -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Addition Guide Chart} -\label{fig:AddChart} -\end{figure} - -Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three -specific cases need to be handled. The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are -forwarded to step three to check for errors. This simplifies the description of the algorithm considerably and best -follows how the implementation actually was achieved. - -Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms -s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits. The mp\_clamp algorithm will set the \textbf{sign} -to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero. - -For example, consider performing $-a + a$ with algorithm mp\_add. By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would -produce a result of $-0$. However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp -within algorithm s\_mp\_add will force $-0$ to become $0$. - -EXAM,bn_mp_add.c - -The source code follows the algorithm fairly closely. The most notable new source code addition is the usage of the $res$ integer variable which -is used to pass result of the unsigned operations forward. Unlike in the algorithm, the variable $res$ is merely returned as is without -explicitly checking it and returning the constant \textbf{MP\_OKAY}. The observation is this algorithm will succeed or fail only if the lower -level functions do so. Returning their return code is sufficient. - -\subsection{High Level Subtraction} -The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm. - -\newpage\begin{figure}[!here] -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_sub}. \\ -\textbf{Input}. Two mp\_ints $a$ and $b$ \\ -\textbf{Output}. The signed subtraction $c = a - b$. \\ -\hline \\ -1. if $a.sign \ne b.sign$ then do \\ -\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\ -\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\ -2. else do \\ -\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\ -\hspace{6mm}2.1.1 $c.sign \leftarrow a.sign$ \\ -\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{s\_mp\_sub}) \\ -\hspace{3mm}2.2 else do \\ -\hspace{6mm}2.2.1 $c.sign \leftarrow \left \lbrace \begin{array}{ll} - MP\_ZPOS & \mbox{if }a.sign = MP\_NEG \\ - MP\_NEG & \mbox{otherwise} \\ - \end{array} \right .$ \\ -\hspace{6mm}2.2.2 $c \leftarrow \vert b \vert - \vert a \vert$ \\ -3. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\caption{Algorithm mp\_sub} -\end{figure} - -\textbf{Algorithm mp\_sub.} -This algorithm performs the signed subtraction of two inputs. Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or -\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. Chart \ref{fig:SubChart} lists the eight possible inputs and -the operations required. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{|c|c|c|c|c|} -\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\ -\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\ -\hline $+$ & $-$ & No & $c = a + b$ & $a.sign$ \\ -\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\ -\hline $-$ & $+$ & No & $c = a + b$ & $a.sign$ \\ -\hline &&&& \\ -\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\ -\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\ -\hline &&&& \\ -\hline $+$ & $+$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\ -\hline $-$ & $-$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Subtraction Guide Chart} -\label{fig:SubChart} -\end{figure} - -Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction. That is to prevent the -algorithm from producing $-a - -a = -0$ as a result. - -EXAM,bn_mp_sub.c - -Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations -and forward it to the end of the function. On line @38, != MP_LT@ the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a -``greater than or equal to'' comparison. - -\section{Bit and Digit Shifting} -MARK,POLY -It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$. -This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring. - -In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established. That is to shift -the digits left or right as well to shift individual bits of the digits left and right. It is important to note that not all ``shift'' operations -are on radix-$\beta$ digits. - -\subsection{Multiplication by Two} - -In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient -operation to perform. A single precision logical shift left is sufficient to multiply a single digit by two. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_mul\_2}. \\ -\textbf{Input}. One mp\_int $a$ \\ -\textbf{Output}. $b = 2a$. \\ -\hline \\ -1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{mp\_grow}) \\ -2. $oldused \leftarrow b.used$ \\ -3. $b.used \leftarrow a.used$ \\ -4. $r \leftarrow 0$ \\ -5. for $n$ from 0 to $a.used - 1$ do \\ -\hspace{3mm}5.1 $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\ -\hspace{3mm}5.2 $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{3mm}5.3 $r \leftarrow rr$ \\ -6. If $r \ne 0$ then do \\ -\hspace{3mm}6.1 $b_{n + 1} \leftarrow r$ \\ -\hspace{3mm}6.2 $b.used \leftarrow b.used + 1$ \\ -7. If $b.used < oldused - 1$ then do \\ -\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\ -\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\ -8. $b.sign \leftarrow a.sign$ \\ -9. Return(\textit{MP\_OKAY}).\\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_mul\_2} -\end{figure} - -\textbf{Algorithm mp\_mul\_2.} -This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two. Neither \cite{TAOCPV2} nor \cite{HAC} describe such -an algorithm despite the fact it arises often in other algorithms. The algorithm is setup much like the lower level algorithm s\_mp\_add since -it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$. - -Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result. The initial \textbf{used} count -is set to $a.used$ at step 4. Only if there is a final carry will the \textbf{used} count require adjustment. - -Step 6 is an optimization implementation of the addition loop for this specific case. That is since the two values being added together -are the same there is no need to perform two reads from the digits of $a$. Step 6.1 performs a single precision shift on the current digit $a_n$ to -obtain what will be the carry for the next iteration. Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus -the previous carry. Recall from ~SHIFTS~ that $a_n << 1$ is equivalent to $a_n \cdot 2$. An iteration of the addition loop is finished with -forwarding the carry to the next iteration. - -Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$. -Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$. - -EXAM,bn_mp_mul_2.c - -This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input. The only noteworthy difference -is the use of the logical shift operator on line @52,<<@ to perform a single precision doubling. - -\subsection{Division by Two} -A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_div\_2}. \\ -\textbf{Input}. One mp\_int $a$ \\ -\textbf{Output}. $b = a/2$. \\ -\hline \\ -1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{mp\_grow}) \\ -2. If the reallocation failed return(\textit{MP\_MEM}). \\ -3. $oldused \leftarrow b.used$ \\ -4. $b.used \leftarrow a.used$ \\ -5. $r \leftarrow 0$ \\ -6. for $n$ from $b.used - 1$ to $0$ do \\ -\hspace{3mm}6.1 $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\ -\hspace{3mm}6.2 $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{3mm}6.3 $r \leftarrow rr$ \\ -7. If $b.used < oldused - 1$ then do \\ -\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\ -\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\ -8. $b.sign \leftarrow a.sign$ \\ -9. Clamp excess digits of $b$. (\textit{mp\_clamp}) \\ -10. Return(\textit{MP\_OKAY}).\\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_div\_2} -\end{figure} - -\textbf{Algorithm mp\_div\_2.} -This algorithm will divide an mp\_int by two using logical shifts to the right. Like mp\_mul\_2 it uses a modified low level addition -core as the basis of the algorithm. Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit. The algorithm -could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent -reading past the end of the array of digits. - -Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the -least significant bit not the most significant bit. - -EXAM,bn_mp_div_2.c - -\section{Polynomial Basis Operations} -Recall from ~POLY~ that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$. Such a representation is also known as -the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single -place. The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer -division and Karatsuba multiplication. - -Converting from an array of digits to polynomial basis is very simple. Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that -$y = \sum_{i=0}^{2} a_i \beta^i$. Simply replace $\beta$ with $x$ and the expression is in polynomial basis. For example, $f(x) = 8x + 9$ is the -polynomial basis representation for $89$ using radix ten. That is, $f(10) = 8(10) + 9 = 89$. - -\subsection{Multiplication by $x$} - -Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one -degree. In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$. From a scalar basis point of view multiplying by $x$ is equivalent to -multiplying by the integer $\beta$. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_lshd}. \\ -\textbf{Input}. One mp\_int $a$ and an integer $b$ \\ -\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\ -\hline \\ -1. If $b \le 0$ then return(\textit{MP\_OKAY}). \\ -2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{mp\_grow}). \\ -3. If the reallocation failed return(\textit{MP\_MEM}). \\ -4. $a.used \leftarrow a.used + b$ \\ -5. $i \leftarrow a.used - 1$ \\ -6. $j \leftarrow a.used - 1 - b$ \\ -7. for $n$ from $a.used - 1$ to $b$ do \\ -\hspace{3mm}7.1 $a_{i} \leftarrow a_{j}$ \\ -\hspace{3mm}7.2 $i \leftarrow i - 1$ \\ -\hspace{3mm}7.3 $j \leftarrow j - 1$ \\ -8. for $n$ from 0 to $b - 1$ do \\ -\hspace{3mm}8.1 $a_n \leftarrow 0$ \\ -9. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_lshd} -\end{figure} - -\textbf{Algorithm mp\_lshd.} -This algorithm multiplies an mp\_int by the $b$'th power of $x$. This is equivalent to multiplying by $\beta^b$. The algorithm differs -from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location. The -motivation behind this change is due to the way this function is typically used. Algorithms such as mp\_add store the result in an optionally -different third mp\_int because the original inputs are often still required. Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is -typically used on values where the original value is no longer required. The algorithm will return success immediately if -$b \le 0$ since the rest of algorithm is only valid when $b > 0$. - -First the destination $a$ is grown as required to accomodate the result. The counters $i$ and $j$ are used to form a \textit{sliding window} over -the digits of $a$ of length $b$. The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}). -The loop on step 7 copies the digit from the tail to the head. In each iteration the window is moved down one digit. The last loop on -step 8 sets the lower $b$ digits to zero. - -\newpage -FIGU,sliding_window,Sliding Window Movement - -EXAM,bn_mp_lshd.c - -The if statement (line @24,if@) ensures that the $b$ variable is greater than zero since we do not interpret negative -shift counts properly. The \textbf{used} count is incremented by $b$ before the copy loop begins. This elminates -the need for an additional variable in the for loop. The variable $top$ (line @42,top@) is an alias -for the leading digit while $bottom$ (line @45,bottom@) is an alias for the trailing edge. The aliases form a -window of exactly $b$ digits over the input. - -\subsection{Division by $x$} - -Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_rshd}. \\ -\textbf{Input}. One mp\_int $a$ and an integer $b$ \\ -\textbf{Output}. $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\ -\hline \\ -1. If $b \le 0$ then return. \\ -2. If $a.used \le b$ then do \\ -\hspace{3mm}2.1 Zero $a$. (\textit{mp\_zero}). \\ -\hspace{3mm}2.2 Return. \\ -3. $i \leftarrow 0$ \\ -4. $j \leftarrow b$ \\ -5. for $n$ from 0 to $a.used - b - 1$ do \\ -\hspace{3mm}5.1 $a_i \leftarrow a_j$ \\ -\hspace{3mm}5.2 $i \leftarrow i + 1$ \\ -\hspace{3mm}5.3 $j \leftarrow j + 1$ \\ -6. for $n$ from $a.used - b$ to $a.used - 1$ do \\ -\hspace{3mm}6.1 $a_n \leftarrow 0$ \\ -7. $a.used \leftarrow a.used - b$ \\ -8. Return. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_rshd} -\end{figure} - -\textbf{Algorithm mp\_rshd.} -This algorithm divides the input in place by the $b$'th power of $x$. It is analogous to dividing by a $\beta^b$ but much quicker since -it does not require single precision division. This algorithm does not actually return an error code as it cannot fail. - -If the input $b$ is less than one the algorithm quickly returns without performing any work. If the \textbf{used} count is less than or equal -to the shift count $b$ then it will simply zero the input and return. - -After the trivial cases of inputs have been handled the sliding window is setup. Much like the case of algorithm mp\_lshd a sliding window that -is $b$ digits wide is used to copy the digits. Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit. -Also the digits are copied from the leading to the trailing edge. - -Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented. - -EXAM,bn_mp_rshd.c - -The only noteworthy element of this routine is the lack of a return type since it cannot fail. Like mp\_lshd() we -form a sliding window except we copy in the other direction. After the window (line @59,for (;@) we then zero -the upper digits of the input to make sure the result is correct. - -\section{Powers of Two} - -Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required. For -example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful. Instead of performing single -shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed. - -\subsection{Multiplication by Power of Two} - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_mul\_2d}. \\ -\textbf{Input}. One mp\_int $a$ and an integer $b$ \\ -\textbf{Output}. $c \leftarrow a \cdot 2^b$. \\ -\hline \\ -1. $c \leftarrow a$. (\textit{mp\_copy}) \\ -2. If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\ -3. If the reallocation failed return(\textit{MP\_MEM}). \\ -4. If $b \ge lg(\beta)$ then \\ -\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\ -\hspace{3mm}4.2 If step 4.1 failed return(\textit{MP\_MEM}). \\ -5. $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\ -6. If $d \ne 0$ then do \\ -\hspace{3mm}6.1 $mask \leftarrow 2^d$ \\ -\hspace{3mm}6.2 $r \leftarrow 0$ \\ -\hspace{3mm}6.3 for $n$ from $0$ to $c.used - 1$ do \\ -\hspace{6mm}6.3.1 $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\ -\hspace{6mm}6.3.2 $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{6mm}6.3.3 $r \leftarrow rr$ \\ -\hspace{3mm}6.4 If $r > 0$ then do \\ -\hspace{6mm}6.4.1 $c_{c.used} \leftarrow r$ \\ -\hspace{6mm}6.4.2 $c.used \leftarrow c.used + 1$ \\ -7. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_mul\_2d} -\end{figure} - -\textbf{Algorithm mp\_mul\_2d.} -This algorithm multiplies $a$ by $2^b$ and stores the result in $c$. The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to -quickly compute the product. - -First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than -$\beta$. For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$ -left. - -After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform. Step 5 calculates the number of remaining shifts -required. If it is non-zero a modified shift loop is used to calculate the remaining product. -Essentially the loop is a generic version of algorithm mp\_mul\_2 designed to handle any shift count in the range $1 \le x < lg(\beta)$. The $mask$ -variable is used to extract the upper $d$ bits to form the carry for the next iteration. - -This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to -complete. It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow. - -EXAM,bn_mp_mul_2d.c - -The shifting is performed in--place which means the first step (line @24,a != c@) is to copy the input to the -destination. We avoid calling mp\_copy() by making sure the mp\_ints are different. The destination then -has to be grown (line @31,grow@) to accomodate the result. - -If the shift count $b$ is larger than $lg(\beta)$ then a call to mp\_lshd() is used to handle all of the multiples -of $lg(\beta)$. Leaving only a remaining shift of $lg(\beta) - 1$ or fewer bits left. Inside the actual shift -loop (lines @45,if@ to @76,}@) we make use of pre--computed values $shift$ and $mask$. These are used to -extract the carry bit(s) to pass into the next iteration of the loop. The $r$ and $rr$ variables form a -chain between consecutive iterations to propagate the carry. - -\subsection{Division by Power of Two} - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_div\_2d}. \\ -\textbf{Input}. One mp\_int $a$ and an integer $b$ \\ -\textbf{Output}. $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\ -\hline \\ -1. If $b \le 0$ then do \\ -\hspace{3mm}1.1 $c \leftarrow a$ (\textit{mp\_copy}) \\ -\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{mp\_zero}) \\ -\hspace{3mm}1.3 Return(\textit{MP\_OKAY}). \\ -2. $c \leftarrow a$ \\ -3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\ -4. If $b \ge lg(\beta)$ then do \\ -\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\ -5. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\ -6. If $k \ne 0$ then do \\ -\hspace{3mm}6.1 $mask \leftarrow 2^k$ \\ -\hspace{3mm}6.2 $r \leftarrow 0$ \\ -\hspace{3mm}6.3 for $n$ from $c.used - 1$ to $0$ do \\ -\hspace{6mm}6.3.1 $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\ -\hspace{6mm}6.3.2 $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\ -\hspace{6mm}6.3.3 $r \leftarrow rr$ \\ -7. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\ -8. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_div\_2d} -\end{figure} - -\textbf{Algorithm mp\_div\_2d.} -This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder. The algorithm is designed much like algorithm -mp\_mul\_2d by first using whole digit shifts then single precision shifts. This algorithm will also produce the remainder of the division -by using algorithm mp\_mod\_2d. - -EXAM,bn_mp_div_2d.c - -The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies. The remainder $d$ may be optionally -ignored by passing \textbf{NULL} as the pointer to the mp\_int variable. The temporary mp\_int variable $t$ is used to hold the -result of the remainder operation until the end. This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before -the quotient is obtained. - -The remainder of the source code is essentially the same as the source code for mp\_mul\_2d. The only significant difference is -the direction of the shifts. - -\subsection{Remainder of Division by Power of Two} - -The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$. This -algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_mod\_2d}. \\ -\textbf{Input}. One mp\_int $a$ and an integer $b$ \\ -\textbf{Output}. $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\ -\hline \\ -1. If $b \le 0$ then do \\ -\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{mp\_zero}) \\ -\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\ -2. If $b > a.used \cdot lg(\beta)$ then do \\ -\hspace{3mm}2.1 $c \leftarrow a$ (\textit{mp\_copy}) \\ -\hspace{3mm}2.2 Return the result of step 2.1. \\ -3. $c \leftarrow a$ \\ -4. If step 3 failed return(\textit{MP\_MEM}). \\ -5. for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\ -\hspace{3mm}5.1 $c_n \leftarrow 0$ \\ -6. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\ -7. $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\ -8. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\ -9. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_mod\_2d} -\end{figure} - -\textbf{Algorithm mp\_mod\_2d.} -This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$. First if $b$ is less than or equal to zero the -result is set to zero. If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns. Otherwise, $a$ -is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count. - -EXAM,bn_mp_mod_2d.c - -We first avoid cases of $b \le 0$ by simply mp\_zero()'ing the destination in such cases. Next if $2^b$ is larger -than the input we just mp\_copy() the input and return right away. After this point we know we must actually -perform some work to produce the remainder. - -Recalling that reducing modulo $2^k$ and a binary ``and'' with $2^k - 1$ are numerically equivalent we can quickly reduce -the number. First we zero any digits above the last digit in $2^b$ (line @41,for@). Next we reduce the -leading digit of both (line @45,&=@) and then mp\_clamp(). - -\section*{Exercises} -\begin{tabular}{cl} -$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\ - & in $O(n)$ time. \\ - &\\ -$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming \\ - & weight values such as $3$, $5$ and $9$. Extend it to handle all values \\ - & upto $64$ with a hamming weight less than three. \\ - &\\ -$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\ - & $2^k - 1$ as well. \\ - &\\ -$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\ - & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\ - & any $n$-bit input. Note that the time of addition is ignored in the \\ - & calculation. \\ - & \\ -$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\ - & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$. Again ignore \\ - & the cost of addition. \\ - & \\ -$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\ - & for $n = 64 \ldots 1024$ in steps of $64$. \\ - & \\ -$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\ - & calculating the result of a signed comparison. \\ - & -\end{tabular} - -\chapter{Multiplication and Squaring} -\section{The Multipliers} -For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of -algorithms of any multiple precision integer package. The set of multiplier algorithms include integer multiplication, squaring and modular reduction -where in each of the algorithms single precision multiplication is the dominant operation performed. This chapter will discuss integer multiplication -and squaring, leaving modular reductions for the subsequent chapter. - -The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular -exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$. During a modular -exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions, -35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision -multiplications. - -For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied -against every digit of the other multiplicand. Traditional long-hand multiplication is based on this process; while the techniques can differ the -overall algorithm used is essentially the same. Only ``recently'' have faster algorithms been studied. First Karatsuba multiplication was discovered in -1962. This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach. -This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions. - -\section{Multiplication} -\subsection{The Baseline Multiplication} -\label{sec:basemult} -\index{baseline multiplication} -Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication -algorithm that school children are taught. The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision -multiplications are required. More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required. To -simplify most discussions, it will be assumed that the inputs have comparable number of digits. - -The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be -used. This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible. One important -facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution. The importance of this -modification will become evident during the discussion of Barrett modular reduction. Recall that for a $n$ and $m$ digit input the product -will be at most $n + m$ digits. Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product. - -Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}. We shall now extend the variable set to -include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}. This implies that $2^{\alpha} > 2 \cdot \beta^2$. The -constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}). - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\ -\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\ -\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\ -\hline \\ -1. If min$(a.used, b.used) < \delta$ then do \\ -\hspace{3mm}1.1 Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}). \\ -\hspace{3mm}1.2 Return the result of step 1.1 \\ -\\ -Allocate and initialize a temporary mp\_int. \\ -2. Init $t$ to be of size $digs$ \\ -3. If step 2 failed return(\textit{MP\_MEM}). \\ -4. $t.used \leftarrow digs$ \\ -\\ -Compute the product. \\ -5. for $ix$ from $0$ to $a.used - 1$ do \\ -\hspace{3mm}5.1 $u \leftarrow 0$ \\ -\hspace{3mm}5.2 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\ -\hspace{3mm}5.3 If $pb < 1$ then goto step 6. \\ -\hspace{3mm}5.4 for $iy$ from $0$ to $pb - 1$ do \\ -\hspace{6mm}5.4.1 $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\ -\hspace{6mm}5.4.2 $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{6mm}5.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\ -\hspace{3mm}5.5 if $ix + pb < digs$ then do \\ -\hspace{6mm}5.5.1 $t_{ix + pb} \leftarrow u$ \\ -6. Clamp excess digits of $t$. \\ -7. Swap $c$ with $t$ \\ -8. Clear $t$ \\ -9. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm s\_mp\_mul\_digs} -\end{figure} - -\textbf{Algorithm s\_mp\_mul\_digs.} -This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits. While it may seem -a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent -algorithm. The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}. -Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the -inputs. - -The first thing this algorithm checks for is whether a Comba multiplier can be used instead. If the minimum digit count of either -input is less than $\delta$, then the Comba method may be used instead. After the Comba method is ruled out, the baseline algorithm begins. A -temporary mp\_int variable $t$ is used to hold the intermediate result of the product. This allows the algorithm to be used to -compute products when either $a = c$ or $b = c$ without overwriting the inputs. - -All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output. The $pb$ variable -is given the count of digits to read from $b$ inside the nested loop. If $pb \le 1$ then no more output digits can be produced and the algorithm -will exit the loop. The best way to think of the loops are as a series of $pb \times 1$ multiplications. That is, in each pass of the -innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$. - -For example, consider multiplying $576$ by $241$. That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best -visualized in the following table. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{|c|c|c|c|c|c|l|} -\hline && & 5 & 7 & 6 & \\ -\hline $\times$&& & 2 & 4 & 1 & \\ -\hline &&&&&&\\ - && & 5 & 7 & 6 & $10^0(1)(576)$ \\ - &2 & 3 & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\ - 1 & 3 & 8 & 8 & 1 & 6 & $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\ -\hline -\end{tabular} -\end{center} -\caption{Long-Hand Multiplication Diagram} -\end{figure} - -Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate -count. That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult. - -Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable. The multiplication on that step -is assumed to be a double wide output single precision multiplication. That is, two single precision variables are multiplied to produce a -double precision result. The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step -5.4.1 is propagated through the nested loop. If the carry was not propagated immediately it would overflow the single precision digit -$t_{ix+iy}$ and the result would be lost. - -At step 5.5 the nested loop is finished and any carry that was left over should be forwarded. The carry does not have to be added to the $ix+pb$'th -digit since that digit is assumed to be zero at this point. However, if $ix + pb \ge digs$ the carry is not set as it would make the result -exceed the precision requested. - -EXAM,bn_s_mp_mul_digs.c - -First we determine (line @30,if@) if the Comba method can be used first since it's faster. The conditions for -sing the Comba routine are that min$(a.used, b.used) < \delta$ and the number of digits of output is less than -\textbf{MP\_WARRAY}. This new constant is used to control the stack usage in the Comba routines. By default it is -set to $\delta$ but can be reduced when memory is at a premium. - -If we cannot use the Comba method we proceed to setup the baseline routine. We allocate the the destination mp\_int -$t$ (line @36,init@) to the exact size of the output to avoid further re--allocations. At this point we now -begin the $O(n^2)$ loop. - -This implementation of multiplication has the caveat that it can be trimmed to only produce a variable number of -digits as output. In each iteration of the outer loop the $pb$ variable is set (line @48,MIN@) to the maximum -number of inner loop iterations. - -Inside the inner loop we calculate $\hat r$ as the mp\_word product of the two mp\_digits and the addition of the -carry from the previous iteration. A particularly important observation is that most modern optimizing -C compilers (GCC for instance) can recognize that a $N \times N \rightarrow 2N$ multiplication is all that -is required for the product. In x86 terms for example, this means using the MUL instruction. - -Each digit of the product is stored in turn (line @68,tmpt@) and the carry propagated (line @71,>>@) to the -next iteration. - -\subsection{Faster Multiplication by the ``Comba'' Method} -MARK,COMBA - -One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be -computed and propagated upwards. This makes the nested loop very sequential and hard to unroll and implement -in parallel. The ``Comba'' \cite{COMBA} method is named after little known (\textit{in cryptographic venues}) Paul G. -Comba who described a method of implementing fast multipliers that do not require nested carry fixup operations. As an -interesting aside it seems that Paul Barrett describes a similar technique in his 1986 paper \cite{BARRETT} written -five years before. - -At the heart of the Comba technique is once again the long-hand algorithm. Except in this case a slight -twist is placed on how the columns of the result are produced. In the standard long-hand algorithm rows of products -are produced then added together to form the final result. In the baseline algorithm the columns are added together -after each iteration to get the result instantaneously. - -In the Comba algorithm the columns of the result are produced entirely independently of each other. That is at -the $O(n^2)$ level a simple multiplication and addition step is performed. The carries of the columns are propagated -after the nested loop to reduce the amount of work requiored. Succintly the first step of the algorithm is to compute -the product vector $\vec x$ as follows. - -\begin{equation} -\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace -\end{equation} - -Where $\vec x_n$ is the $n'th$ column of the output vector. Consider the following example which computes the vector $\vec x$ for the multiplication -of $576$ and $241$. - -\newpage\begin{figure}[here] -\begin{small} -\begin{center} -\begin{tabular}{|c|c|c|c|c|c|} - \hline & & 5 & 7 & 6 & First Input\\ - \hline $\times$ & & 2 & 4 & 1 & Second Input\\ -\hline & & $1 \cdot 5 = 5$ & $1 \cdot 7 = 7$ & $1 \cdot 6 = 6$ & First pass \\ - & $4 \cdot 5 = 20$ & $4 \cdot 7+5=33$ & $4 \cdot 6+7=31$ & 6 & Second pass \\ - $2 \cdot 5 = 10$ & $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31 & 6 & Third pass \\ -\hline 10 & 34 & 45 & 31 & 6 & Final Result \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Comba Multiplication Diagram} -\end{figure} - -At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler. -Now the columns must be fixed by propagating the carry upwards. The resultant vector will have one extra dimension over the input vector which is -congruent to adding a leading zero digit. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Comba Fixup}. \\ -\textbf{Input}. Vector $\vec x$ of dimension $k$ \\ -\textbf{Output}. Vector $\vec x$ such that the carries have been propagated. \\ -\hline \\ -1. for $n$ from $0$ to $k - 1$ do \\ -\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\ -\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\ -2. Return($\vec x$). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Comba Fixup} -\end{figure} - -With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$. In this case -$241 \cdot 576$ is in fact $138816$ and the procedure succeeded. If the algorithm is correct and as will be demonstrated shortly more -efficient than the baseline algorithm why not simply always use this algorithm? - -\subsubsection{Column Weight.} -At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output -independently. A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix -the carries. For example, in the multiplication of two three-digit numbers the third column of output will be the sum of -three single precision multiplications. If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then -an overflow can occur and the carry information will be lost. For any $m$ and $n$ digit inputs the maximum weight of any column is -min$(m, n)$ which is fairly obvious. - -The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used. Recall -from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision. Given these -two quantities we must not violate the following - -\begin{equation} -k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha} -\end{equation} - -Which reduces to - -\begin{equation} -k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha} -\end{equation} - -Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit. By further re-arrangement of the equation the final solution is -found. - -\begin{equation} -k < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}} -\end{equation} - -The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$. In this configuration -the smaller input may not have more than $256$ digits if the Comba method is to be used. This is quite satisfactory for most applications since -$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\ -\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\ -\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\ -\hline \\ -Place an array of \textbf{MP\_WARRAY} single precision digits named $W$ on the stack. \\ -1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\ -2. If step 1 failed return(\textit{MP\_MEM}).\\ -\\ -3. $pa \leftarrow \mbox{MIN}(digs, a.used + b.used)$ \\ -\\ -4. $\_ \hat W \leftarrow 0$ \\ -5. for $ix$ from 0 to $pa - 1$ do \\ -\hspace{3mm}5.1 $ty \leftarrow \mbox{MIN}(b.used - 1, ix)$ \\ -\hspace{3mm}5.2 $tx \leftarrow ix - ty$ \\ -\hspace{3mm}5.3 $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\ -\hspace{3mm}5.4 for $iz$ from 0 to $iy - 1$ do \\ -\hspace{6mm}5.4.1 $\_ \hat W \leftarrow \_ \hat W + a_{tx+iy}b_{ty-iy}$ \\ -\hspace{3mm}5.5 $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$\\ -\hspace{3mm}5.6 $\_ \hat W \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\ -\\ -6. $oldused \leftarrow c.used$ \\ -7. $c.used \leftarrow digs$ \\ -8. for $ix$ from $0$ to $pa$ do \\ -\hspace{3mm}8.1 $c_{ix} \leftarrow W_{ix}$ \\ -9. for $ix$ from $pa + 1$ to $oldused - 1$ do \\ -\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\ -\\ -10. Clamp $c$. \\ -11. Return MP\_OKAY. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm fast\_s\_mp\_mul\_digs} -\label{fig:COMBAMULT} -\end{figure} - -\textbf{Algorithm fast\_s\_mp\_mul\_digs.} -This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision. - -The outer loop of this algorithm is more complicated than that of the baseline multiplier. This is because on the inside of the -loop we want to produce one column per pass. This allows the accumulator $\_ \hat W$ to be placed in CPU registers and -reduce the memory bandwidth to two \textbf{mp\_digit} reads per iteration. - -The $ty$ variable is set to the minimum count of $ix$ or the number of digits in $b$. That way if $a$ has more digits than -$b$ this will be limited to $b.used - 1$. The $tx$ variable is set to the to the distance past $b.used$ the variable -$ix$ is. This is used for the immediately subsequent statement where we find $iy$. - -The variable $iy$ is the minimum digits we can read from either $a$ or $b$ before running out. Computing one column at a time -means we have to scan one integer upwards and the other downwards. $a$ starts at $tx$ and $b$ starts at $ty$. In each -pass we are producing the $ix$'th output column and we note that $tx + ty = ix$. As we move $tx$ upwards we have to -move $ty$ downards so the equality remains valid. The $iy$ variable is the number of iterations until -$tx \ge a.used$ or $ty < 0$ occurs. - -After every inner pass we store the lower half of the accumulator into $W_{ix}$ and then propagate the carry of the accumulator -into the next round by dividing $\_ \hat W$ by $\beta$. - -To measure the benefits of the Comba method over the baseline method consider the number of operations that are required. If the -cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require -$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers. The Comba method requires only $O(pn^2 + qn)$ time, however in practice, -the speed increase is actually much more. With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply -and addition operations in the nested loop in parallel. - -EXAM,bn_fast_s_mp_mul_digs.c - -As per the pseudo--code we first calculate $pa$ (line @47,MIN@) as the number of digits to output. Next we begin the outer loop -to produce the individual columns of the product. We use the two aliases $tmpx$ and $tmpy$ (lines @61,tmpx@, @62,tmpy@) to point -inside the two multiplicands quickly. - -The inner loop (lines @70,for@ to @72,}@) of this implementation is where the tradeoff come into play. Originally this comba -implementation was ``row--major'' which means it adds to each of the columns in each pass. After the outer loop it would then fix -the carries. This was very fast except it had an annoying drawback. You had to read a mp\_word and two mp\_digits and write -one mp\_word per iteration. On processors such as the Athlon XP and P4 this did not matter much since the cache bandwidth -is very high and it can keep the ALU fed with data. It did, however, matter on older and embedded cpus where cache is often -slower and also often doesn't exist. This new algorithm only performs two reads per iteration under the assumption that the -compiler has aliased $\_ \hat W$ to a CPU register. - -After the inner loop we store the current accumulator in $W$ and shift $\_ \hat W$ (lines @75,W[ix]@, @78,>>@) to forward it as -a carry for the next pass. After the outer loop we use the final carry (line @82,W[ix]@) as the last digit of the product. - -\subsection{Polynomial Basis Multiplication} -To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms -the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and -$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required. In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree. - -The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients $w_i$ will -directly yield the desired product when $\beta$ is substituted for $x$. The direct solution to solve for the $2n + 1$ coefficients -requires $O(n^2)$ time and would in practice be slower than the Comba technique. - -However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown -coefficients. This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with -Gaussian elimination. This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in -effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$. - -The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible. However, since -$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place. The benefit of this technique stems from the -fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively. As a result finding the $2n + 1$ relations required -by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs. - -When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$. The $\zeta_0$ term -is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The $\zeta_1$ term is the product -$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$. The third point $\zeta_{\infty}$ is less obvious but rather -simple to explain. The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication. -The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$. Note that the -points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly. - -If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points} -$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ for small values of $q$. The term ``mirror point'' stems from the fact that -$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$. For -example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror. - -\begin{eqnarray} -\zeta_{2} = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\ -16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0) -\end{eqnarray} - -Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts. For example, when $n = 2$ the -polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$. This technique of polynomial representation is known as Horner's method. - -As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications. Each multiplication is of -multiplicands that have $n$ times fewer digits than the inputs. The asymptotic running time of this algorithm is -$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}). Figure~\ref{fig:exponent} -summarizes the exponents for various values of $n$. - -\begin{figure} -\begin{center} -\begin{tabular}{|c|c|c|} -\hline \textbf{Split into $n$ Parts} & \textbf{Exponent} & \textbf{Notes}\\ -\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\ -\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\ -\hline $4$ & $1.403677461$ &\\ -\hline $5$ & $1.365212389$ &\\ -\hline $10$ & $1.278753601$ &\\ -\hline $100$ & $1.149426538$ &\\ -\hline $1000$ & $1.100270931$ &\\ -\hline $10000$ & $1.075252070$ &\\ -\hline -\end{tabular} -\end{center} -\caption{Asymptotic Running Time of Polynomial Basis Multiplication} -\label{fig:exponent} -\end{figure} - -At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$. However, the overhead -of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large -numbers. - -\subsubsection{Cutoff Point} -The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However, -the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved. This makes the -polynomial basis approach more costly to use with small inputs. - -Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}). There exists a -point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and -when $m > y$ the Comba methods are slower than the polynomial basis algorithms. - -The exact location of $y$ depends on several key architectural elements of the computer platform in question. - -\begin{enumerate} -\item The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example -on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$. The higher the ratio in favour of multiplication the lower -the cutoff point $y$ will be. - -\item The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is. Generally speaking as the number of splits -grows the complexity grows substantially. Ideally solving the system will only involve addition, subtraction and shifting of integers. This -directly reflects on the ratio previous mentioned. - -\item To a lesser extent memory bandwidth and function call overheads. Provided the values are in the processor cache this is less of an -influence over the cutoff point. - -\end{enumerate} - -A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met. For example, if the point -is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster. Finding the cutoff points is fairly simple when -a high resolution timer is available. - -\subsection{Karatsuba Multiplication} -Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for -general purpose multiplication. Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with -light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent. - -\begin{equation} -f(x) \cdot g(x) = acx^2 + ((a + b)(c + d) - (ac + bd))x + bd -\end{equation} - -Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying -this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns -out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points -$\zeta_0$, $\zeta_{\infty}$ and $\zeta_{1}$. Consider the resultant system of equations. - -\begin{center} -\begin{tabular}{rcrcrcrc} -$\zeta_{0}$ & $=$ & & & & & $w_0$ \\ -$\zeta_{1}$ & $=$ & $w_2$ & $+$ & $w_1$ & $+$ & $w_0$ \\ -$\zeta_{\infty}$ & $=$ & $w_2$ & & & & \\ -\end{tabular} -\end{center} - -By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for. The simplicity -of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.} -making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\ -\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\ -\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\ -\hline \\ -1. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\ -2. If step 2 failed then return(\textit{MP\_MEM}). \\ -\\ -Split the input. e.g. $a = x1 \cdot \beta^B + x0$ \\ -3. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\ -4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\ -5. $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\ -6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\ -7. $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\ -\\ -Calculate the three products. \\ -8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\ -9. $x1y1 \leftarrow x1 \cdot y1$ \\ -10. $t1 \leftarrow x1 + x0$ (\textit{mp\_add}) \\ -11. $x0 \leftarrow y1 + y0$ \\ -12. $t1 \leftarrow t1 \cdot x0$ \\ -\\ -Calculate the middle term. \\ -13. $x0 \leftarrow x0y0 + x1y1$ \\ -14. $t1 \leftarrow t1 - x0$ (\textit{s\_mp\_sub}) \\ -\\ -Calculate the final product. \\ -15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\ -16. $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\ -17. $t1 \leftarrow x0y0 + t1$ \\ -18. $c \leftarrow t1 + x1y1$ \\ -19. Clear all of the temporary variables. \\ -20. Return(\textit{MP\_OKAY}).\\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_karatsuba\_mul} -\end{figure} - -\textbf{Algorithm mp\_karatsuba\_mul.} -This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm. It is loosely based on the description -from Knuth \cite[pp. 294-295]{TAOCPV2}. - -\index{radix point} -In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen. The radix point chosen must -be used for both of the inputs meaning that it must be smaller than the smallest input. Step 3 chooses the radix point $B$ as half of the -smallest input \textbf{used} count. After the radix point is chosen the inputs are split into lower and upper halves. Step 4 and 5 -compute the lower halves. Step 6 and 7 computer the upper halves. - -After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products -$x0 \cdot y0$ and $x1 \cdot y1$. The mp\_int $x0$ is used as a temporary variable after $x1 + x0$ has been computed. By using $x0$ instead -of an additional temporary variable, the algorithm can avoid an addition memory allocation operation. - -The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations. - -EXAM,bn_mp_karatsuba_mul.c - -The new coding element in this routine, not seen in previous routines, is the usage of goto statements. The conventional -wisdom is that goto statements should be avoided. This is generally true, however when every single function call can fail, it makes sense -to handle error recovery with a single piece of code. Lines @61,if@ to @75,if@ handle initializing all of the temporary variables -required. Note how each of the if statements goes to a different label in case of failure. This allows the routine to correctly free only -the temporaries that have been successfully allocated so far. - -The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large. This saves the -additional reallocation that would have been necessary. Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective -number of digits for the next section of code. - -The first algebraic portion of the algorithm is to split the two inputs into their halves. However, instead of using mp\_mod\_2d and mp\_rshd -to extract the halves, the respective code has been placed inline within the body of the function. To initialize the halves, the \textbf{used} and -\textbf{sign} members are copied first. The first for loop on line @98,for@ copies the lower halves. Since they are both the same magnitude it -is simpler to calculate both lower halves in a single loop. The for loop on lines @104,for@ and @109,for@ calculate the upper halves $x1$ and -$y1$ respectively. - -By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs. - -When line @152,err@ is reached, the algorithm has completed succesfully. The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that -the same code that handles errors can be used to clear the temporary variables and return. - -\subsection{Toom-Cook $3$-Way Multiplication} -Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points are -chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce. Here, the points $\zeta_{0}$, -$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients -of the $W(x)$. - -With the five relations that Toom-Cook specifies, the following system of equations is formed. - -\begin{center} -\begin{tabular}{rcrcrcrcrcr} -$\zeta_0$ & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$ \\ -$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$ \\ -$\zeta_1$ & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$ \\ -$\zeta_2$ & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$ \\ -$\zeta_{\infty}$ & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$ \\ -\end{tabular} -\end{center} - -A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power -of two, two divisions by three and one multiplication by three. All of these $19$ sub-operations require less than quadratic time, meaning that -the algorithm can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point -(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_toom\_mul}. \\ -\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\ -\textbf{Output}. $c \leftarrow a \cdot b $ \\ -\hline \\ -Split $a$ and $b$ into three pieces. E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\ -1. $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\ -2. $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\ -3. $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\ -4. $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\ -5. $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\ -6. $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\ -7. $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\ -\\ -Find the five equations for $w_0, w_1, ..., w_4$. \\ -8. $w_0 \leftarrow a_0 \cdot b_0$ \\ -9. $w_4 \leftarrow a_2 \cdot b_2$ \\ -10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\ -11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\ -12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\ -13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\ -14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\ -15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\ -16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\ -17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\ -\\ -Continued on the next page.\\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_toom\_mul} -\end{figure} - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\ -\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\ -\textbf{Output}. $c \leftarrow a \cdot b $ \\ -\hline \\ -Now solve the system of equations. \\ -18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\ -19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\ -20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\ -21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\ -22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\ -23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\ -24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\ -25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\ -\\ -Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\ -26. for $n$ from $1$ to $4$ do \\ -\hspace{3mm}26.1 $w_n \leftarrow w_n \cdot \beta^{nk}$ \\ -27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\ -28. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_toom\_mul (continued)} -\end{figure} - -\textbf{Algorithm mp\_toom\_mul.} -This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach. Compared to the Karatsuba multiplication, this -algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead. In this -description, several statements have been compounded to save space. The intention is that the statements are executed from left to right across -any given step. - -The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively. From these smaller -integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required. - -The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively. The relation $w_1, w_2$ and $w_3$ correspond -to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively. These are found using logical shifts to independently find -$f(y)$ and $g(y)$ which significantly speeds up the algorithm. - -After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients -$w_1, w_2$ and $w_3$ to be isolated. The steps 18 through 25 perform the system reduction required as previously described. Each step of -the reduction represents the comparable matrix operation that would be performed had this been performed by pencil. For example, step 18 indicates -that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$. - -Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known. By substituting $\beta^{k}$ for $x$, the integer -result $a \cdot b$ is produced. - -EXAM,bn_mp_toom_mul.c - -The first obvious thing to note is that this algorithm is complicated. The complexity is worth it if you are multiplying very -large numbers. For example, a 10,000 digit multiplication takes approximaly 99,282,205 fewer single precision multiplications with -Toom--Cook than a Comba or baseline approach (this is a savings of more than 99$\%$). For most ``crypto'' sized numbers this -algorithm is not practical as Karatsuba has a much lower cutoff point. - -First we split $a$ and $b$ into three roughly equal portions. This has been accomplished (lines @40,mod@ to @69,rshd@) with -combinations of mp\_rshd() and mp\_mod\_2d() function calls. At this point $a = a2 \cdot \beta^2 + a1 \cdot \beta + a0$ and similiarly -for $b$. - -Next we compute the five points $w0, w1, w2, w3$ and $w4$. Recall that $w0$ and $w4$ can be computed directly from the portions so -we get those out of the way first (lines @72,mul@ and @77,mul@). Next we compute $w1, w2$ and $w3$ using Horners method. - -After this point we solve for the actual values of $w1, w2$ and $w3$ by reducing the $5 \times 5$ system which is relatively -straight forward. - -\subsection{Signed Multiplication} -Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required. So far all -of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_mul}. \\ -\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\ -\textbf{Output}. $c \leftarrow a \cdot b$ \\ -\hline \\ -1. If $a.sign = b.sign$ then \\ -\hspace{3mm}1.1 $sign = MP\_ZPOS$ \\ -2. else \\ -\hspace{3mm}2.1 $sign = MP\_ZNEG$ \\ -3. If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then \\ -\hspace{3mm}3.1 $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\ -4. else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\ -\hspace{3mm}4.1 $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\ -5. else \\ -\hspace{3mm}5.1 $digs \leftarrow a.used + b.used + 1$ \\ -\hspace{3mm}5.2 If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\ -\hspace{6mm}5.2.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs. \\ -\hspace{3mm}5.3 else \\ -\hspace{6mm}5.3.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs. \\ -6. $c.sign \leftarrow sign$ \\ -7. Return the result of the unsigned multiplication performed. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_mul} -\end{figure} - -\textbf{Algorithm mp\_mul.} -This algorithm performs the signed multiplication of two inputs. It will make use of any of the three unsigned multiplication algorithms -available when the input is of appropriate size. The \textbf{sign} of the result is not set until the end of the algorithm since algorithm -s\_mp\_mul\_digs will clear it. - -EXAM,bn_mp_mul.c - -The implementation is rather simplistic and is not particularly noteworthy. Line @22,?@ computes the sign of the result using the ``?'' -operator from the C programming language. Line @37,<<@ computes $\delta$ using the fact that $1 << k$ is equal to $2^k$. - -\section{Squaring} -\label{sec:basesquare} - -Squaring is a special case of multiplication where both multiplicands are equal. At first it may seem like there is no significant optimization -available but in fact there is. Consider the multiplication of $576$ against $241$. In total there will be nine single precision multiplications -performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$ and $2 \cdot 5$. Now consider -the multiplication of $123$ against $123$. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$, -$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$. On closer inspection some of the products are equivalent. For example, $3 \cdot 2 = 2 \cdot 3$ -and $3 \cdot 1 = 1 \cdot 3$. - -For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$ -required for multiplication. The following diagram gives an example of the operations required. - -\begin{figure}[here] -\begin{center} -\begin{tabular}{ccccc|c} -&&1&2&3&\\ -$\times$ &&1&2&3&\\ -\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\ - & $2 \cdot 1$ & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\ - $1 \cdot 1$ & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\ -\end{tabular} -\end{center} -\caption{Squaring Optimization Diagram} -\end{figure} - -MARK,SQUARE -Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious. For the purposes of this discussion let $x$ -represent the number being squared. The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it. - -The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product. Every non-square term of a column will -appear twice hence the name ``double product''. Every odd column is made up entirely of double products. In fact every column is made up of double -products and at most one square (\textit{see the exercise section}). - -The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row, -occurs at column $2k + 1$. For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero. -Column two of row one is a square and column three is the first unique column. - -\subsection{The Baseline Squaring Algorithm} -The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines -will not handle. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{s\_mp\_sqr}. \\ -\textbf{Input}. mp\_int $a$ \\ -\textbf{Output}. $b \leftarrow a^2$ \\ -\hline \\ -1. Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits. (\textit{mp\_init\_size}) \\ -2. If step 1 failed return(\textit{MP\_MEM}) \\ -3. $t.used \leftarrow 2 \cdot a.used + 1$ \\ -4. For $ix$ from 0 to $a.used - 1$ do \\ -\hspace{3mm}Calculate the square. \\ -\hspace{3mm}4.1 $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\ -\hspace{3mm}4.2 $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{3mm}Calculate the double products after the square. \\ -\hspace{3mm}4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\ -\hspace{3mm}4.4 For $iy$ from $ix + 1$ to $a.used - 1$ do \\ -\hspace{6mm}4.4.1 $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\ -\hspace{6mm}4.4.2 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{6mm}4.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\ -\hspace{3mm}Set the last carry. \\ -\hspace{3mm}4.5 While $u > 0$ do \\ -\hspace{6mm}4.5.1 $iy \leftarrow iy + 1$ \\ -\hspace{6mm}4.5.2 $\hat r \leftarrow t_{ix + iy} + u$ \\ -\hspace{6mm}4.5.3 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{6mm}4.5.4 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\ -5. Clamp excess digits of $t$. (\textit{mp\_clamp}) \\ -6. Exchange $b$ and $t$. \\ -7. Clear $t$ (\textit{mp\_clear}) \\ -8. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm s\_mp\_sqr} -\end{figure} - -\textbf{Algorithm s\_mp\_sqr.} -This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of HAC -\cite[pp.596-597]{HAC}. Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring. This allows the -destination mp\_int to be the same as the source mp\_int. - -The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while -the inner loop computes the columns of the partial result. Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate -the carry and compute the double products. - -The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this -very algorithm. The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that -when it is multiplied by two, it can be properly represented by a mp\_word. - -Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial -results calculated so far. This involves expensive carry propagation which will be eliminated in the next algorithm. - -EXAM,bn_s_mp_sqr.c - -Inside the outer loop (line @32,for@) the square term is calculated on line @35,r =@. The carry (line @42,>>@) has been -extracted from the mp\_word accumulator using a right shift. Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized -(lines @45,tmpx@ and @48,tmpt@) to simplify the inner loop. The doubling is performed using two -additions (line @57,r + r@) since it is usually faster than shifting, if not at least as fast. - -The important observation is that the inner loop does not begin at $iy = 0$ like for multiplication. As such the inner loops -get progressively shorter as the algorithm proceeds. This is what leads to the savings compared to using a multiplication to -square a number. - -\subsection{Faster Squaring by the ``Comba'' Method} -A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop. Squaring has an additional -drawback that it must double the product inside the inner loop as well. As for multiplication, the Comba technique can be used to eliminate these -performance hazards. - -The first obvious solution is to make an array of mp\_words which will hold all of the columns. This will indeed eliminate all of the carry -propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact -that $2a + 2b + 2c = 2(a + b + c)$. That is the sum of all of the double products is equal to double the sum of all the products. For example, -$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$. - -However, we cannot simply double all of the columns, since the squares appear only once per row. The most practical solution is to have two -mp\_word arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and -carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level. In this case, we have an even simpler solution in mind. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\ -\textbf{Input}. mp\_int $a$ \\ -\textbf{Output}. $b \leftarrow a^2$ \\ -\hline \\ -Place an array of \textbf{MP\_WARRAY} mp\_digits named $W$ on the stack. \\ -1. If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits. (\textit{mp\_grow}). \\ -2. If step 1 failed return(\textit{MP\_MEM}). \\ -\\ -3. $pa \leftarrow 2 \cdot a.used$ \\ -4. $\hat W1 \leftarrow 0$ \\ -5. for $ix$ from $0$ to $pa - 1$ do \\ -\hspace{3mm}5.1 $\_ \hat W \leftarrow 0$ \\ -\hspace{3mm}5.2 $ty \leftarrow \mbox{MIN}(a.used - 1, ix)$ \\ -\hspace{3mm}5.3 $tx \leftarrow ix - ty$ \\ -\hspace{3mm}5.4 $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\ -\hspace{3mm}5.5 $iy \leftarrow \mbox{MIN}(iy, \lfloor \left (ty - tx + 1 \right )/2 \rfloor)$ \\ -\hspace{3mm}5.6 for $iz$ from $0$ to $iz - 1$ do \\ -\hspace{6mm}5.6.1 $\_ \hat W \leftarrow \_ \hat W + a_{tx + iz}a_{ty - iz}$ \\ -\hspace{3mm}5.7 $\_ \hat W \leftarrow 2 \cdot \_ \hat W + \hat W1$ \\ -\hspace{3mm}5.8 if $ix$ is even then \\ -\hspace{6mm}5.8.1 $\_ \hat W \leftarrow \_ \hat W + \left ( a_{\lfloor ix/2 \rfloor}\right )^2$ \\ -\hspace{3mm}5.9 $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$ \\ -\hspace{3mm}5.10 $\hat W1 \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\ -\\ -6. $oldused \leftarrow b.used$ \\ -7. $b.used \leftarrow 2 \cdot a.used$ \\ -8. for $ix$ from $0$ to $pa - 1$ do \\ -\hspace{3mm}8.1 $b_{ix} \leftarrow W_{ix}$ \\ -9. for $ix$ from $pa$ to $oldused - 1$ do \\ -\hspace{3mm}9.1 $b_{ix} \leftarrow 0$ \\ -10. Clamp excess digits from $b$. (\textit{mp\_clamp}) \\ -11. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm fast\_s\_mp\_sqr} -\end{figure} - -\textbf{Algorithm fast\_s\_mp\_sqr.} -This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm -s\_mp\_sqr when the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$. -This algorithm is very similar to the Comba multiplier except with a few key differences we shall make note of. - -First, we have an accumulator and carry variables $\_ \hat W$ and $\hat W1$ respectively. This is because the inner loop -products are to be doubled. If we had added the previous carry in we would be doubling too much. Next we perform an -addition MIN condition on $iy$ (step 5.5) to prevent overlapping digits. For example, $a_3 \cdot a_5$ is equal -$a_5 \cdot a_3$. Whereas in the multiplication case we would have $5 < a.used$ and $3 \ge 0$ is maintained since we double the sum -of the products just outside the inner loop we have to avoid doing this. This is also a good thing since we perform -fewer multiplications and the routine ends up being faster. - -Finally the last difference is the addition of the ``square'' term outside the inner loop (step 5.8). We add in the square -only to even outputs and it is the square of the term at the $\lfloor ix / 2 \rfloor$ position. - -EXAM,bn_fast_s_mp_sqr.c - -This implementation is essentially a copy of Comba multiplication with the appropriate changes added to make it faster for -the special case of squaring. - -\subsection{Polynomial Basis Squaring} -The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception -is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$. Instead of performing $2n + 1$ -multiplications to find the $\zeta$ relations, squaring operations are performed instead. - -\subsection{Karatsuba Squaring} -Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square. -Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a -number with the following equation. - -\begin{equation} -h(x) = a^2x^2 + \left ((a + b)^2 - (a^2 + b^2) \right )x + b^2 -\end{equation} - -Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a + b)^2$. As in -Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of -$O \left ( n^{lg(3)} \right )$. - -If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm -instead? The answer to this arises from the cutoff point for squaring. As in multiplication there exists a cutoff point, at which the -time required for a Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff -point is fairly high. For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits. - -Consider squaring a 200 digit number with this technique. It will be split into two 100 digit halves which are subsequently squared. -The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm. If Karatsuba multiplication -were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\ -\textbf{Input}. mp\_int $a$ \\ -\textbf{Output}. $b \leftarrow a^2$ \\ -\hline \\ -1. Initialize the following temporary mp\_ints: $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\ -2. If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\ -\\ -Split the input. e.g. $a = x1\beta^B + x0$ \\ -3. $B \leftarrow \lfloor a.used / 2 \rfloor$ \\ -4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\ -5. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\ -\\ -Calculate the three squares. \\ -6. $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\ -7. $x1x1 \leftarrow x1^2$ \\ -8. $t1 \leftarrow x1 + x0$ (\textit{s\_mp\_add}) \\ -9. $t1 \leftarrow t1^2$ \\ -\\ -Compute the middle term. \\ -10. $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\ -11. $t1 \leftarrow t1 - t2$ \\ -\\ -Compute final product. \\ -12. $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\ -13. $x1x1 \leftarrow x1x1\beta^{2B}$ \\ -14. $t1 \leftarrow t1 + x0x0$ \\ -15. $b \leftarrow t1 + x1x1$ \\ -16. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_karatsuba\_sqr} -\end{figure} - -\textbf{Algorithm mp\_karatsuba\_sqr.} -This algorithm computes the square of an input $a$ using the Karatsuba technique. This algorithm is very similar to the Karatsuba based -multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings. - -The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is -placed just below the middle. Step 3, 4 and 5 compute the two halves required using $B$ -as the radix point. The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form. - -By expanding $\left (x1 + x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $(x0 - x1)^2 - (x1^2 + x0^2) = 2 \cdot x0 \cdot x1$. -Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then -this method is faster. Assuming no further recursions occur, the difference can be estimated with the following inequality. - -Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or -machine clock cycles.}. - -\begin{equation} -5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2 -\end{equation} - -For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$. This implies that the following inequality should hold. -\begin{center} -\begin{tabular}{rcl} -${5n \over 3} + 3n^2 + 3n$ & $<$ & ${n \over 3} + 6n^2$ \\ -${5 \over 3} + 3n + 3$ & $<$ & ${1 \over 3} + 6n$ \\ -${13 \over 9}$ & $<$ & $n$ \\ -\end{tabular} -\end{center} - -This results in a cutoff point around $n = 2$. As a consequence it is actually faster to compute the middle term the ``long way'' on processors -where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On -the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The only common exception is the ARMv4 processor which has a -ratio of 1:7. } than simpler operations such as addition. - -EXAM,bn_mp_karatsuba_sqr.c - -This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul. It uses the same inline style to copy and -shift the input into the two halves. The loop from line @54,{@ to line @70,}@ has been modified since only one input exists. The \textbf{used} -count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin. At this point $x1$ and $x0$ are valid equivalents -to the respective halves as if mp\_rshd and mp\_mod\_2d had been used. - -By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered. On the Athlon the cutoff point -is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}). On slower processors such as the Intel P4 -it is actually below the Comba limit (\textit{at 110 digits}). - -This routine uses the same error trap coding style as mp\_karatsuba\_sqr. As the temporary variables are initialized errors are -redirected to the error trap higher up. If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and -mp\_clears are executed normally. - -\subsection{Toom-Cook Squaring} -The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used -instead of multiplication to find the five relations. The reader is encouraged to read the description of the latter algorithm and try to -derive their own Toom-Cook squaring algorithm. - -\subsection{High Level Squaring} -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_sqr}. \\ -\textbf{Input}. mp\_int $a$ \\ -\textbf{Output}. $b \leftarrow a^2$ \\ -\hline \\ -1. If $a.used \ge TOOM\_SQR\_CUTOFF$ then \\ -\hspace{3mm}1.1 $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\ -2. else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\ -\hspace{3mm}2.1 $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\ -3. else \\ -\hspace{3mm}3.1 $digs \leftarrow a.used + b.used + 1$ \\ -\hspace{3mm}3.2 If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\ -\hspace{6mm}3.2.1 $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr. \\ -\hspace{3mm}3.3 else \\ -\hspace{6mm}3.3.1 $b \leftarrow a^2$ using algorithm s\_mp\_sqr. \\ -4. $b.sign \leftarrow MP\_ZPOS$ \\ -5. Return the result of the unsigned squaring performed. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_sqr} -\end{figure} - -\textbf{Algorithm mp\_sqr.} -This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least -\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If -neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used. - -EXAM,bn_mp_sqr.c - -\section*{Exercises} -\begin{tabular}{cl} -$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\ - & that have different number of digits in Karatsuba multiplication. \\ - & \\ -$\left [ 2 \right ] $ & In ~SQUARE~ the fact that every column of a squaring is made up \\ - & of double products and at most one square is stated. Prove this statement. \\ - & \\ -$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\ - & \\ -$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\ - & \\ -$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\ - & required for equation $6.7$ to be true. \\ - & \\ -$\left [ 3 \right ] $ & Implement a threaded version of Comba multiplication (and squaring) where you \\ - & compute subsets of the columns in each thread. Determine a cutoff point where \\ - & it is effective and add the logic to mp\_mul() and mp\_sqr(). \\ - &\\ -$\left [ 4 \right ] $ & Same as the previous but also modify the Karatsuba and Toom-Cook. You must \\ - & increase the throughput of mp\_exptmod() for random odd moduli in the range \\ - & $512 \ldots 4096$ bits significantly ($> 2x$) to complete this challenge. \\ - & \\ -\end{tabular} - -\chapter{Modular Reduction} -MARK,REDUCTION -\section{Basics of Modular Reduction} -\index{modular residue} -Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms, -such as factoring. Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set. A number $a$ is said to be \textit{reduced} -modulo another number $b$ by finding the remainder of the division $a/b$. Full integer division with remainder is a topic to be covered -in~\ref{sec:division}. - -Modular reduction is equivalent to solving for $r$ in the following equation. $a = bq + r$ where $q = \lfloor a/b \rfloor$. The result -$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$. In other vernacular $r$ is known as the -``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and -other forms of residues. - -Modular reductions are normally used to create either finite groups, rings or fields. The most common usage for performance driven modular reductions -is in modular exponentiation algorithms. That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible. This operation is used in the -RSA and Diffie-Hellman public key algorithms, for example. Modular multiplication and squaring also appears as a fundamental operation in -elliptic curve cryptographic algorithms. As will be discussed in the subsequent chapter there exist fast algorithms for computing modular -exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications. These algorithms will produce partial results in the -range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms. They have also been used to create redundancy check -algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems. - -\section{The Barrett Reduction} -The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate -division. Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to - -\begin{equation} -c = a - b \cdot \lfloor a/b \rfloor -\end{equation} - -Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper -targeted the DSP56K processor.} intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal. However, -DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types. -It would take another common optimization to optimize the algorithm. - -\subsection{Fixed Point Arithmetic} -The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers. Fixed -point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were -fairly slow if not unavailable. The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit -integer and a $q$-bit fraction part (\textit{where $p+q = k$}). - -In this system a $k$-bit integer $n$ would actually represent $n/2^q$. For example, with $q = 4$ the integer $n = 37$ would actually represent the -value $2.3125$. To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by -moving the implied decimal point back to where it should be. For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted -to fixed point first by multiplying by $2^q$. Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the -fixed point representation of $5$. The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$. - -This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication -of two fixed point numbers. Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal. If $2^q$ is -equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic. Using this fact dividing an integer -$a$ by another integer $b$ can be achieved with the following expression. - -\begin{equation} -\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor -\end{equation} - -The precision of the division is proportional to the value of $q$. If the divisor $b$ is used frequently as is the case with -modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations -are considerably faster than division on most processors. - -Consider dividing $19$ by $5$. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which -leads to a product of $19$ which when divided by $2^q$ produces $2$. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and -the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct. The value of $2^q$ must be close to or ideally -larger than the dividend. In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach -to work correctly. Plugging this form of divison into the original equation the following modular residue equation arises. - -\begin{equation} -c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor -\end{equation} - -Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol. Using the $\mu$ -variable also helps re-inforce the idea that it is meant to be computed once and re-used. - -\begin{equation} -c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor -\end{equation} - -Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one. In the context of Barrett -reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough -precision. - -Let $n$ represent the number of digits in $b$. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and -another $n^2$ single precision multiplications to find the residue. In total $3n^2$ single precision multiplications are required to -reduce the number. - -For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$. Consider reducing -$a = 180388626447$ modulo $b$ using the above reduction equation. The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$. -By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found. - -\subsection{Choosing a Radix Point} -Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications. If that were the best -that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$. -See~\ref{sec:division} for further details.} might as well be used in its place. The key to optimizing the reduction is to reduce the precision of -the initial multiplication that finds the quotient. - -Let $a$ represent the number of which the residue is sought. Let $b$ represent the modulus used to find the residue. Let $m$ represent -the number of digits in $b$. For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if -two $m$-digit numbers have been multiplied. Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer. Digits below the -$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$. Another way to -express this is by re-writing $a$ as two parts. If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then -${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$. Since $a'$ is bound to be less than $b$ the quotient -is bound by $0 \le {a' \over b} < 1$. - -Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits -``might as well be zero'' they might as well not be there in the first place. Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input -with the irrelevant digits trimmed. Now the modular reduction is trimmed to the almost equivalent equation - -\begin{equation} -c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor -\end{equation} - -Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the -exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$. If the optimization had not been performed the divisor -would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient -$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two. The original fixed point quotient can be off -by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient -can be off by an additional value of one for a total of at most two. This implies that -$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. By first subtracting $b$ times the quotient and then conditionally subtracting -$b$ once or twice the residue is found. - -The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single -precision multiplications, ignoring the subtractions required. In total $2m^2 + m$ single precision multiplications are required to find the residue. -This is considerably faster than the original attempt. - -For example, let $\beta = 10$ represent the radix of the digits. Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$ -represent the value of which the residue is desired. In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$. -With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$. The quotient is then -$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$. Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$ -is found. - -\subsection{Trimming the Quotient} -So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications. As -it stands now the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for -optimization. - -After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower -half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision -multiplications. If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly. -In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed. - -The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number. Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision -multiplications would be required. Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number -of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications. - -\subsection{Trimming the Residue} -After the quotient has been calculated it is used to reduce the input. As previously noted the algorithm is not exact and it can be off by a small -multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. If $b$ is $m$ digits than the -result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are -implicitly zero. - -The next optimization arises from this very fact. Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full -$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed. Similarly the value of $a$ can -be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well. A multiplication that produces -only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications. - -With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires $m^2 + 2m - 1$ single precision multiplications which -is considerably faster than the straightforward $3m^2$ method. - -\subsection{The Barrett Algorithm} -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_reduce}. \\ -\textbf{Input}. mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\ -\textbf{Output}. $a \mbox{ (mod }b\mbox{)}$ \\ -\hline \\ -Let $m$ represent the number of digits in $b$. \\ -1. Make a copy of $a$ and store it in $q$. (\textit{mp\_init\_copy}) \\ -2. $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\ -\\ -Produce the quotient. \\ -3. $q \leftarrow q \cdot \mu$ (\textit{note: only produce digits at or above $m-1$}) \\ -4. $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\ -\\ -Subtract the multiple of modulus from the input. \\ -5. $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\ -6. $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\ -7. $a \leftarrow a - q$ (\textit{mp\_sub}) \\ -\\ -Add $\beta^{m+1}$ if a carry occured. \\ -8. If $a < 0$ then (\textit{mp\_cmp\_d}) \\ -\hspace{3mm}8.1 $q \leftarrow 1$ (\textit{mp\_set}) \\ -\hspace{3mm}8.2 $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\ -\hspace{3mm}8.3 $a \leftarrow a + q$ \\ -\\ -Now subtract the modulus if the residue is too large (e.g. quotient too small). \\ -9. While $a \ge b$ do (\textit{mp\_cmp}) \\ -\hspace{3mm}9.1 $c \leftarrow a - b$ \\ -10. Clear $q$. \\ -11. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_reduce} -\end{figure} - -\textbf{Algorithm mp\_reduce.} -This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of HAC -\cite[pp. 602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}. The algorithm has several restrictions and assumptions which must -be adhered to for the algorithm to work. - -First the modulus $b$ is assumed to be positive and greater than one. If the modulus were less than or equal to one than subtracting -a multiple of it would either accomplish nothing or actually enlarge the input. The input $a$ must be in the range $0 \le a < b^2$ in order -for the quotient to have enough precision. If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem. -Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish. The value of $\mu$ is passed as an argument to this -algorithm and is assumed to be calculated and stored before the algorithm is used. - -Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position. An algorithm called -$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task. The algorithm is based on $s\_mp\_mul\_digs$ except that -instead of stopping at a given level of precision it starts at a given level of precision. This optimal algorithm can only be used if the number -of digits in $b$ is very much smaller than $\beta$. - -While it is known that -$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied -``borrow'' from the higher digits might leave a negative result. After the multiple of the modulus has been subtracted from $a$ the residue must be -fixed up in case it is negative. The invariant $\beta^{m+1}$ must be added to the residue to make it positive again. - -The while loop at step 9 will subtract $b$ until the residue is less than $b$. If the algorithm is performed correctly this step is -performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should. - -EXAM,bn_mp_reduce.c - -The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves -the number of single precision multiplications required. However, the optimization is only safe if $\beta$ is much larger than the number of digits -in the modulus. In the source code this is evaluated on lines @36,if@ to @44,}@ where algorithm s\_mp\_mul\_high\_digs is used when it is -safe to do so. - -\subsection{The Barrett Setup Algorithm} -In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for -future use so that the Barrett algorithm can be used without delay. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_reduce\_setup}. \\ -\textbf{Input}. mp\_int $a$ ($a > 1$) \\ -\textbf{Output}. $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\ -\hline \\ -1. $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot m}$ (\textit{mp\_2expt}) \\ -2. $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\ -3. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_reduce\_setup} -\end{figure} - -\textbf{Algorithm mp\_reduce\_setup.} -This algorithm computes the reciprocal $\mu$ required for Barrett reduction. First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot m}$ which -is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$. - -EXAM,bn_mp_reduce_setup.c - -This simple routine calculates the reciprocal $\mu$ required by Barrett reduction. Note the extended usage of algorithm mp\_div where the variable -which would received the remainder is passed as NULL. As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the -remainder to be passed as NULL meaning to ignore the value. - -\section{The Montgomery Reduction} -Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting -form of reduction in common use. It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a -residue times a constant. However, as perplexing as this may sound the algorithm is relatively simple and very efficient. - -Throughout this entire section the variable $n$ will represent the modulus used to form the residue. As will be discussed shortly the value of -$n$ must be odd. The variable $x$ will represent the quantity of which the residue is sought. Similar to the Barrett algorithm the input -is restricted to $0 \le x < n^2$. To begin the description some simple number theory facts must be established. - -\textbf{Fact 1.} Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$. Another way -to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$. Adding zero will not change the value of the residue. - -\textbf{Fact 2.} If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$. Actually -this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to -multiplication by $k^{-1}$ modulo $n$. - -From these two simple facts the following simple algorithm can be derived. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Montgomery Reduction}. \\ -\textbf{Input}. Integer $x$, $n$ and $k$ \\ -\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\ -\hline \\ -1. for $t$ from $1$ to $k$ do \\ -\hspace{3mm}1.1 If $x$ is odd then \\ -\hspace{6mm}1.1.1 $x \leftarrow x + n$ \\ -\hspace{3mm}1.2 $x \leftarrow x/2$ \\ -2. Return $x$. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Montgomery Reduction} -\end{figure} - -The algorithm reduces the input one bit at a time using the two congruencies stated previously. Inside the loop $n$, which is odd, is -added to $x$ if $x$ is odd. This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two. Since -$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$. Let $r$ represent the -final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to -$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired. - -\begin{figure}[here] -\begin{small} -\begin{center} -\begin{tabular}{|c|l|} -\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\ -\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\ -\hline $2$ & $x/2 = 1453$ \\ -\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\ -\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\ -\hline $5$ & $x/2 = 278$ \\ -\hline $6$ & $x/2 = 139$ \\ -\hline $7$ & $x + n = 396$, $x/2 = 198$ \\ -\hline $8$ & $x/2 = 99$ \\ -\hline $9$ & $x + n = 356$, $x/2 = 178$ \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Example of Montgomery Reduction (I)} -\label{fig:MONT1} -\end{figure} - -Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 9$ (note $\beta^k = 512$ which is larger than $n$). The result of -the algorithm $r = 178$ is congruent to the value of $2^{-9} \cdot 5555 \mbox{ (mod }257\mbox{)}$. When $r$ is multiplied by $2^9$ modulo $257$ the correct residue -$r \equiv 158$ is produced. - -Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The current algorithm requires $2k^2$ single precision shifts -and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful. -Fortunately there exists an alternative representation of the algorithm. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\ -\textbf{Input}. Integer $x$, $n$ and $k$ ($2^k > n$) \\ -\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\ -\hline \\ -1. for $t$ from $1$ to $k$ do \\ -\hspace{3mm}1.1 If the $t$'th bit of $x$ is one then \\ -\hspace{6mm}1.1.1 $x \leftarrow x + 2^tn$ \\ -2. Return $x/2^k$. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Montgomery Reduction (modified I)} -\end{figure} - -This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single -precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement. - -\begin{figure}[here] -\begin{small} -\begin{center} -\begin{tabular}{|c|l|r|} -\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\ -\hline -- & $5555$ & $1010110110011$ \\ -\hline $1$ & $x + 2^{0}n = 5812$ & $1011010110100$ \\ -\hline $2$ & $5812$ & $1011010110100$ \\ -\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\ -\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\ -\hline $5$ & $8896$ & $10001011000000$ \\ -\hline $6$ & $8896$ & $10001011000000$ \\ -\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\ -\hline $8$ & $25344$ & $110001100000000$ \\ -\hline $9$ & $x + 2^{7}n = 91136$ & $10110010000000000$ \\ -\hline -- & $x/2^k = 178$ & \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Example of Montgomery Reduction (II)} -\label{fig:MONT2} -\end{figure} - -Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 9$. -With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the -loop. Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed. In those iterations the $t$'th bit of $x$ is -zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero. - -\subsection{Digit Based Montgomery Reduction} -Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the -previous algorithm re-written to compute the Montgomery reduction in this new fashion. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\ -\textbf{Input}. Integer $x$, $n$ and $k$ ($\beta^k > n$) \\ -\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\ -\hline \\ -1. for $t$ from $0$ to $k - 1$ do \\ -\hspace{3mm}1.1 $x \leftarrow x + \mu n \beta^t$ \\ -2. Return $x/\beta^k$. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Montgomery Reduction (modified II)} -\end{figure} - -The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue. If the first digit of -the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit. This -problem breaks down to solving the following congruency. - -\begin{center} -\begin{tabular}{rcl} -$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\ -$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\ -$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\ -\end{tabular} -\end{center} - -In each iteration of the loop on step 1 a new value of $\mu$ must be calculated. The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used -extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$. - -For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$ -represent the value to reduce. - -\newpage\begin{figure} -\begin{center} -\begin{tabular}{|c|c|c|} -\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\ -\hline -- & $33$ & --\\ -\hline $0$ & $33 + \mu n = 50$ & $1$ \\ -\hline $1$ & $50 + \mu n \beta = 900$ & $5$ \\ -\hline -\end{tabular} -\end{center} -\caption{Example of Montgomery Reduction} -\end{figure} - -The final result $900$ is then divided by $\beta^k$ to produce the final result $9$. The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$ -which implies the result is not the modular residue of $x$ modulo $n$. However, recall that the residue is actually multiplied by $\beta^{-k}$ in -the algorithm. To get the true residue the value must be multiplied by $\beta^k$. In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and -the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$. - -\subsection{Baseline Montgomery Reduction} -The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for -Montgomery reductions. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\ -\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\ -\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\ -\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\ -\hline \\ -1. $digs \leftarrow 2n.used + 1$ \\ -2. If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\ -\hspace{3mm}2.1 Use algorithm fast\_mp\_montgomery\_reduce instead. \\ -\\ -Setup $x$ for the reduction. \\ -3. If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\ -4. $x.used \leftarrow digs$ \\ -\\ -Eliminate the lower $k$ digits. \\ -5. For $ix$ from $0$ to $k - 1$ do \\ -\hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{3mm}5.2 $u \leftarrow 0$ \\ -\hspace{3mm}5.3 For $iy$ from $0$ to $k - 1$ do \\ -\hspace{6mm}5.3.1 $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\ -\hspace{6mm}5.3.2 $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{6mm}5.3.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\ -\hspace{3mm}5.4 While $u > 0$ do \\ -\hspace{6mm}5.4.1 $iy \leftarrow iy + 1$ \\ -\hspace{6mm}5.4.2 $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\ -\hspace{6mm}5.4.3 $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\ -\hspace{6mm}5.4.4 $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\ -\\ -Divide by $\beta^k$ and fix up as required. \\ -6. $x \leftarrow \lfloor x / \beta^k \rfloor$ \\ -7. If $x \ge n$ then \\ -\hspace{3mm}7.1 $x \leftarrow x - n$ \\ -8. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_montgomery\_reduce} -\end{figure} - -\textbf{Algorithm mp\_montgomery\_reduce.} -This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm. The algorithm is loosely based -on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop. The -restrictions on this algorithm are fairly easy to adapt to. First $0 \le x < n^2$ bounds the input to numbers in the same range as -for the Barrett algorithm. Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$. $\rho$ must be calculated in -advance of this algorithm. Finally the variable $k$ is fixed and a pseudonym for $n.used$. - -Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique meaning that there are limits on -the size of the input. This algorithm is discussed in ~COMBARED~. - -Step 5 is the main reduction loop of the algorithm. The value of $\mu$ is calculated once per iteration in the outer loop. The inner loop -calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits. Both the addition and -multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop. - -Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications -in the inner loop. In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision -multiplications. - -EXAM,bn_mp_montgomery_reduce.c - -This is the baseline implementation of the Montgomery reduction algorithm. Lines @30,digs@ to @35,}@ determine if the Comba based -routine can be used instead. Line @47,mu@ computes the value of $\mu$ for that particular iteration of the outer loop. - -The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop. The alias $tmpx$ refers to the $ix$'th digit of $x$ and -the alias $tmpn$ refers to the modulus $n$. - -\subsection{Faster ``Comba'' Montgomery Reduction} -MARK,COMBARED - -The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial -nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba -technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates -a $k \times 1$ product $k$ times. - -The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$. This means the -carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit. The solution as it turns out is very simple. -Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry. - -With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases -the speed of the algorithm. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\ -\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\ -\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\ -\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\ -\hline \\ -Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\ -1. if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\ -Copy the digits of $x$ into the array $\hat W$ \\ -2. For $ix$ from $0$ to $x.used - 1$ do \\ -\hspace{3mm}2.1 $\hat W_{ix} \leftarrow x_{ix}$ \\ -3. For $ix$ from $x.used$ to $2n.used - 1$ do \\ -\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\ -Elimiate the lower $k$ digits. \\ -4. for $ix$ from $0$ to $n.used - 1$ do \\ -\hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{3mm}4.2 For $iy$ from $0$ to $n.used - 1$ do \\ -\hspace{6mm}4.2.1 $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\ -\hspace{3mm}4.3 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\ -Propagate carries upwards. \\ -5. for $ix$ from $n.used$ to $2n.used + 1$ do \\ -\hspace{3mm}5.1 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\ -Shift right and reduce modulo $\beta$ simultaneously. \\ -6. for $ix$ from $0$ to $n.used + 1$ do \\ -\hspace{3mm}6.1 $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\ -Zero excess digits and fixup $x$. \\ -7. if $x.used > n.used + 1$ then do \\ -\hspace{3mm}7.1 for $ix$ from $n.used + 1$ to $x.used - 1$ do \\ -\hspace{6mm}7.1.1 $x_{ix} \leftarrow 0$ \\ -8. $x.used \leftarrow n.used + 1$ \\ -9. Clamp excessive digits of $x$. \\ -10. If $x \ge n$ then \\ -\hspace{3mm}10.1 $x \leftarrow x - n$ \\ -11. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm fast\_mp\_montgomery\_reduce} -\end{figure} - -\textbf{Algorithm fast\_mp\_montgomery\_reduce.} -This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique. It is on most computer platforms significantly -faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}). The algorithm has the same restrictions -on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits $k$ in the -the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$. When $\beta = 2^{28}$ this algorithm can be used to reduce modulo -a modulus of at most $3,556$ bits in length. - -As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product. It is initially filled with the -contents of $x$ with the excess digits zeroed. The reduction loop is very similar the to the baseline loop at heart. The multiplication on step -4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$. Some multipliers such -as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing -a single precision multiplication instead half the amount of time is spent. - -Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work. That is what step -4.3 will do. In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards. Note -how the upper bits of those same words are not reduced modulo $\beta$. This is because those values will be discarded shortly and there is no -point. - -Step 5 will propagate the remainder of the carries upwards. On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are -stored in the destination $x$. - -EXAM,bn_fast_mp_montgomery_reduce.c - -The $\hat W$ array is first filled with digits of $x$ on line @49,for@ then the rest of the digits are zeroed on line @54,for@. Both loops share -the same alias variables to make the code easier to read. - -The value of $\mu$ is calculated in an interesting fashion. First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit. This -forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line @101,>>@ fixes the carry -for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$. - -The for loop on line @113,for@ propagates the rest of the carries upwards through the columns. The for loop on line @126,for@ reduces the columns -modulo $\beta$ and shifts them $k$ places at the same time. The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th -digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$. - -\subsection{Montgomery Setup} -To calculate the variable $\rho$ a relatively simple algorithm will be required. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_montgomery\_setup}. \\ -\textbf{Input}. mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\ -\textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\ -\hline \\ -1. $b \leftarrow n_0$ \\ -2. If $b$ is even return(\textit{MP\_VAL}) \\ -3. $x \leftarrow (((b + 2) \mbox{ AND } 4) << 1) + b$ \\ -4. for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\ -\hspace{3mm}4.1 $x \leftarrow x \cdot (2 - bx)$ \\ -5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\ -6. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_montgomery\_setup} -\end{figure} - -\textbf{Algorithm mp\_montgomery\_setup.} -This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick -to calculate $1/n_0$ when $\beta$ is a power of two. - -EXAM,bn_mp_montgomery_setup.c - -This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess -multiplications when $\beta$ is not the default 28-bits. - -\section{The Diminished Radix Algorithm} -The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett -or Montgomery methods for certain forms of moduli. The technique is based on the following simple congruence. - -\begin{equation} -(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)} -\end{equation} - -This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k=1$ that -then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof -of the above equation is very simple. First write $x$ in the product form. - -\begin{equation} -x = qn + r -\end{equation} - -Now reduce both sides modulo $(n - k)$. - -\begin{equation} -x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)} -\end{equation} - -The variable $n$ reduces modulo $n - k$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$ -into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Diminished Radix Reduction}. \\ -\textbf{Input}. Integer $x$, $n$, $k$ \\ -\textbf{Output}. $x \mbox{ mod } (n - k)$ \\ -\hline \\ -1. $q \leftarrow \lfloor x / n \rfloor$ \\ -2. $q \leftarrow k \cdot q$ \\ -3. $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\ -4. $x \leftarrow x + q$ \\ -5. If $x \ge (n - k)$ then \\ -\hspace{3mm}5.1 $x \leftarrow x - (n - k)$ \\ -\hspace{3mm}5.2 Goto step 1. \\ -6. Return $x$ \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Diminished Radix Reduction} -\label{fig:DR} -\end{figure} - -This algorithm will reduce $x$ modulo $n - k$ and return the residue. If $0 \le x < (n - k)^2$ then the algorithm will loop almost always -once or twice and occasionally three times. For simplicity sake the value of $x$ is bounded by the following simple polynomial. - -\begin{equation} -0 \le x < n^2 + k^2 - 2nk -\end{equation} - -The true bound is $0 \le x < (n - k - 1)^2$ but this has quite a few more terms. The value of $q$ after step 1 is bounded by the following. - -\begin{equation} -q < n - 2k - k^2/n -\end{equation} - -Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero. The value of $x$ after step 3 is bounded trivially as -$0 \le x < n$. By step four the sum $x + q$ is bounded by - -\begin{equation} -0 \le q + x < (k + 1)n - 2k^2 - 1 -\end{equation} - -With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3. After the second pass it is highly unlike that the -sum in step 4 will exceed $n - k$. In practice fewer than three passes of the algorithm are required to reduce virtually every input in the -range $0 \le x < (n - k - 1)^2$. - -\begin{figure} -\begin{small} -\begin{center} -\begin{tabular}{|l|} -\hline -$x = 123456789, n = 256, k = 3$ \\ -\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\ -$q \leftarrow q*k = 1446759$ \\ -$x \leftarrow x \mbox{ mod } n = 21$ \\ -$x \leftarrow x + q = 1446780$ \\ -$x \leftarrow x - (n - k) = 1446527$ \\ -\hline -$q \leftarrow \lfloor x/n \rfloor = 5650$ \\ -$q \leftarrow q*k = 16950$ \\ -$x \leftarrow x \mbox{ mod } n = 127$ \\ -$x \leftarrow x + q = 17077$ \\ -$x \leftarrow x - (n - k) = 16824$ \\ -\hline -$q \leftarrow \lfloor x/n \rfloor = 65$ \\ -$q \leftarrow q*k = 195$ \\ -$x \leftarrow x \mbox{ mod } n = 184$ \\ -$x \leftarrow x + q = 379$ \\ -$x \leftarrow x - (n - k) = 126$ \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Example Diminished Radix Reduction} -\label{fig:EXDR} -\end{figure} - -Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$. Note that even while $x$ -is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast. In this case only -three passes were required to find the residue $x \equiv 126$. - - -\subsection{Choice of Moduli} -On the surface this algorithm looks like a very expensive algorithm. It requires a couple of subtractions followed by multiplication and other -modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen. - -Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used. -Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right. Similarly division -by two (\textit{or powers of two}) is very simple for binary computers to perform. It would therefore seem logical to choose $n$ of the form $2^p$ -which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits. - -However, there is one operation related to division of power of twos that is even faster than this. If $n = \beta^p$ then the division may be -performed by moving whole digits to the right $p$ places. In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$. -Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$. - -Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted -modulus'' will refer to a modulus of the form $2^p - k$. The word ``restricted'' in this case refers to the fact that it is based on the -$2^p$ logic except $p$ must be a multiple of $lg(\beta)$. - -\subsection{Choice of $k$} -Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$ -in step 2 is the most expensive operation. Fortunately the choice of $k$ is not terribly limited. For all intents and purposes it might -as well be a single digit. The smaller the value of $k$ is the faster the algorithm will be. - -\subsection{Restricted Diminished Radix Reduction} -The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$. This algorithm can reduce -an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}. The implementation -of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition -of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular -exponentiations are performed. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_dr\_reduce}. \\ -\textbf{Input}. mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\ -\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\ -\textbf{Output}. $x \mbox{ mod } n$ \\ -\hline \\ -1. $m \leftarrow n.used$ \\ -2. If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\ -3. $\mu \leftarrow 0$ \\ -4. for $i$ from $0$ to $m - 1$ do \\ -\hspace{3mm}4.1 $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\ -\hspace{3mm}4.2 $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{3mm}4.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\ -5. $x_{m} \leftarrow \mu$ \\ -6. for $i$ from $m + 1$ to $x.used - 1$ do \\ -\hspace{3mm}6.1 $x_{i} \leftarrow 0$ \\ -7. Clamp excess digits of $x$. \\ -8. If $x \ge n$ then \\ -\hspace{3mm}8.1 $x \leftarrow x - n$ \\ -\hspace{3mm}8.2 Goto step 3. \\ -9. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_dr\_reduce} -\end{figure} - -\textbf{Algorithm mp\_dr\_reduce.} -This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$. It has similar restrictions to that of the Barrett reduction -with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$. - -This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization. The division by $\beta^m$, multiplication by $k$ -and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4. The division by $\beta^m$ is emulated by accessing -the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position. After the loop the $m$'th -digit is set to the carry and the upper digits are zeroed. Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to -$x$ before the addition of the multiple of the upper half. - -At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required. First $n$ is subtracted from $x$ and then the algorithm resumes -at step 3. - -EXAM,bn_mp_dr_reduce.c - -The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$. The label on line @49,top:@ is where -the algorithm will resume if further reduction passes are required. In theory it could be placed at the top of the function however, the size of -the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time. - -The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits. By reading digits from $x$ offset by $m$ digits -a division by $\beta^m$ can be simulated virtually for free. The loop on line @61,for@ performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11}) -in this algorithm. - -By line @68,mu@ the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed. Similarly by line @71,for@ the -same pointer will point to the $m+1$'th digit where the zeroes will be placed. - -Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required. -With the same logic at line @82,sub@ the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used -as well. Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code -does not need to be checked. - -\subsubsection{Setup} -To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for -completeness. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_dr\_setup}. \\ -\textbf{Input}. mp\_int $n$ \\ -\textbf{Output}. $k = \beta - n_0$ \\ -\hline \\ -1. $k \leftarrow \beta - n_0$ \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_dr\_setup} -\end{figure} - -EXAM,bn_mp_dr_setup.c - -\subsubsection{Modulus Detection} -Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be -of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\ -\textbf{Input}. mp\_int $n$ \\ -\textbf{Output}. $1$ if $n$ is in D.R form, $0$ otherwise \\ -\hline -1. If $n.used < 2$ then return($0$). \\ -2. for $ix$ from $1$ to $n.used - 1$ do \\ -\hspace{3mm}2.1 If $n_{ix} \ne \beta - 1$ return($0$). \\ -3. Return($1$). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_dr\_is\_modulus} -\end{figure} - -\textbf{Algorithm mp\_dr\_is\_modulus.} -This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are -in the mp\_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to -step 3 then $n$ must be of Diminished Radix form. - -EXAM,bn_mp_dr_is_modulus.c - -\subsection{Unrestricted Diminished Radix Reduction} -The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm -is a straightforward adaptation of algorithm~\ref{fig:DR}. - -In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new -algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_reduce\_2k}. \\ -\textbf{Input}. mp\_int $a$ and $n$. mp\_digit $k$ \\ -\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\ -\textbf{Output}. $a \mbox{ (mod }n\mbox{)}$ \\ -\hline -1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\ -2. While $a \ge n$ do \\ -\hspace{3mm}2.1 $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\ -\hspace{3mm}2.2 $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\ -\hspace{3mm}2.3 $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\ -\hspace{3mm}2.4 $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\ -\hspace{3mm}2.5 If $a \ge n$ then do \\ -\hspace{6mm}2.5.1 $a \leftarrow a - n$ \\ -3. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_reduce\_2k} -\end{figure} - -\textbf{Algorithm mp\_reduce\_2k.} -This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$. Division by $2^p$ is emulated with a right -shift which makes the algorithm fairly inexpensive to use. - -EXAM,bn_mp_reduce_2k.c - -The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$. The call to mp\_div\_2d -on line @31,mp_div_2d@ calculates both the quotient $q$ and the remainder $a$ required. By doing both in a single function call the code size -is kept fairly small. The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without -any multiplications. - -The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are -positive. By using the unsigned versions the overhead is kept to a minimum. - -\subsubsection{Unrestricted Setup} -To setup this reduction algorithm the value of $k = 2^p - n$ is required. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\ -\textbf{Input}. mp\_int $n$ \\ -\textbf{Output}. $k = 2^p - n$ \\ -\hline -1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\ -2. $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\ -3. $x \leftarrow x - n$ (\textit{mp\_sub}) \\ -4. $k \leftarrow x_0$ \\ -5. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_reduce\_2k\_setup} -\end{figure} - -\textbf{Algorithm mp\_reduce\_2k\_setup.} -This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k. By making a temporary variable $x$ equal to $2^p$ a subtraction -is sufficient to solve for $k$. Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$. - -EXAM,bn_mp_reduce_2k_setup.c - -\subsubsection{Unrestricted Detection} -An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true. - -\begin{enumerate} -\item The number has only one digit. -\item The number has more than one digit and every bit from the $\beta$'th to the most significant is one. -\end{enumerate} - -If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$. If the input is only -one digit than it will always be of the correct form. Otherwise all of the bits above the first digit must be one. This arises from the fact -that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most -significant bit. The resulting sum will be a power of two. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\ -\textbf{Input}. mp\_int $n$ \\ -\textbf{Output}. $1$ if of proper form, $0$ otherwise \\ -\hline -1. If $n.used = 0$ then return($0$). \\ -2. If $n.used = 1$ then return($1$). \\ -3. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\ -4. for $x$ from $lg(\beta)$ to $p$ do \\ -\hspace{3mm}4.1 If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\ -5. Return($1$). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_reduce\_is\_2k} -\end{figure} - -\textbf{Algorithm mp\_reduce\_is\_2k.} -This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly. - -EXAM,bn_mp_reduce_is_2k.c - - - -\section{Algorithm Comparison} -So far three very different algorithms for modular reduction have been discussed. Each of the algorithms have their own strengths and weaknesses -that makes having such a selection very useful. The following table sumarizes the three algorithms along with comparisons of work factors. Since -all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table. - -\begin{center} -\begin{small} -\begin{tabular}{|c|c|c|c|c|c|} -\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\ -\hline Barrett & $m^2 + 2m - 1$ & None & $79$ & $1087$ & $4223$ \\ -\hline Montgomery & $m^2 + m$ & $n$ must be odd & $72$ & $1056$ & $4160$ \\ -\hline D.R. & $2m$ & $n = \beta^m - k$ & $16$ & $64$ & $128$ \\ -\hline -\end{tabular} -\end{small} -\end{center} - -In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery -reduction can be written as a single function with the Comba technique it is much faster. Barrett reduction suffers from the overhead of -calling the half precision multipliers, addition and division by $\beta$ algorithms. - -For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly -shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}. In these algorithms -primes of the form $\beta^m - k$ can be found and shared amongst users. These primes will allow the Diminished Radix algorithm to be used in -modular exponentiation to greatly speed up the operation. - - - -\section*{Exercises} -\begin{tabular}{cl} -$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\ - & calculates the correct value of $\rho$. \\ - & \\ -$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly. \\ - & \\ -$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\ - & (\textit{figure~\ref{fig:DR}}) terminates. Also prove the probability that it will \\ - & terminate within $1 \le k \le 10$ iterations. \\ - & \\ -\end{tabular} - - -\chapter{Exponentiation} -Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$. A variant of exponentiation, computed -in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key -cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any -such cryptosystem and many methods have been sought to speed it up. - -\section{Exponentiation Basics} -A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired. However, as $b$ grows in size -the number of multiplications becomes prohibitive. Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature -with a $1024$-bit key. Such a calculation could never be completed as it would take simply far too long. - -Fortunately there is a very simple algorithm based on the laws of exponents. Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which -are two trivial relationships between the base and the exponent. Let $b_i$ represent the $i$'th bit of $b$ starting from the least -significant bit. If $b$ is a $k$-bit integer than the following equation is true. - -\begin{equation} -a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i} -\end{equation} - -By taking the base $a$ logarithm of both sides of the equation the following equation is the result. - -\begin{equation} -b = \sum_{i=0}^{k-1}2^i \cdot b_i -\end{equation} - -The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to -$a^{2^{i+1}}$. This observation forms the basis of essentially all fast exponentiation algorithms. It requires $k$ squarings and on average -$k \over 2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times. - -While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to -be computed in an auxilary variable. Consider the following equivalent algorithm. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Left to Right Exponentiation}. \\ -\textbf{Input}. Integer $a$, $b$ and $k$ \\ -\textbf{Output}. $c = a^b$ \\ -\hline \\ -1. $c \leftarrow 1$ \\ -2. for $i$ from $k - 1$ to $0$ do \\ -\hspace{3mm}2.1 $c \leftarrow c^2$ \\ -\hspace{3mm}2.2 $c \leftarrow c \cdot a^{b_i}$ \\ -3. Return $c$. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Left to Right Exponentiation} -\label{fig:LTOR} -\end{figure} - -This algorithm starts from the most significant bit and works towards the least significant bit. When the $i$'th bit of $b$ is set $a$ is -multiplied against the current product. In each iteration the product is squared which doubles the exponent of the individual terms of the -product. - -For example, let $b = 101100_2 \equiv 44_{10}$. The following chart demonstrates the actions of the algorithm. - -\newpage\begin{figure} -\begin{center} -\begin{tabular}{|c|c|} -\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\ -\hline - & $1$ \\ -\hline $5$ & $a$ \\ -\hline $4$ & $a^2$ \\ -\hline $3$ & $a^4 \cdot a$ \\ -\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\ -\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\ -\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\ -\hline -\end{tabular} -\end{center} -\caption{Example of Left to Right Exponentiation} -\end{figure} - -When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation. This particular algorithm is -called ``Left to Right'' because it reads the exponent in that order. All of the exponentiation algorithms that will be presented are of this nature. - -\subsection{Single Digit Exponentiation} -The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended -to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of -$b$ that are greater than three. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_expt\_d}. \\ -\textbf{Input}. mp\_int $a$ and mp\_digit $b$ \\ -\textbf{Output}. $c = a^b$ \\ -\hline \\ -1. $g \leftarrow a$ (\textit{mp\_init\_copy}) \\ -2. $c \leftarrow 1$ (\textit{mp\_set}) \\ -3. for $x$ from 1 to $lg(\beta)$ do \\ -\hspace{3mm}3.1 $c \leftarrow c^2$ (\textit{mp\_sqr}) \\ -\hspace{3mm}3.2 If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\ -\hspace{6mm}3.2.1 $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\ -\hspace{3mm}3.3 $b \leftarrow b << 1$ \\ -4. Clear $g$. \\ -5. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_expt\_d} -\end{figure} - -\textbf{Algorithm mp\_expt\_d.} -This algorithm computes the value of $a$ raised to the power of a single digit $b$. It uses the left to right exponentiation algorithm to -quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the -exponent is a fixed width. - -A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$. The result is set to the initial value of -$1$ in the subsequent step. - -Inside the loop the exponent is read from the most significant bit first down to the least significant bit. First $c$ is invariably squared -on step 3.1. In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$. The value -of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit. In effect each -iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location. - -EXAM,bn_mp_expt_d.c - -Line @29,mp_set@ sets the initial value of the result to $1$. Next the loop on line @31,for@ steps through each bit of the exponent starting from -the most significant down towards the least significant. The invariant squaring operation placed on line @333,mp_sqr@ is performed first. After -the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set. The shift on line -@47,<<@ moves all of the bits of the exponent upwards towards the most significant location. - -\section{$k$-ary Exponentiation} -When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor -slower than squaring. Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$. Suppose instead it referred to -the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY} -computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a small window on only a -portion of the entire exponent. Consider the following modification to the basic left to right exponentiation algorithm. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{$k$-ary Exponentiation}. \\ -\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\ -\textbf{Output}. $c = a^b$ \\ -\hline \\ -1. $c \leftarrow 1$ \\ -2. for $i$ from $t - 1$ to $0$ do \\ -\hspace{3mm}2.1 $c \leftarrow c^{2^k} $ \\ -\hspace{3mm}2.2 Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\ -\hspace{3mm}2.3 $c \leftarrow c \cdot a^g$ \\ -3. Return $c$. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{$k$-ary Exponentiation} -\label{fig:KARY} -\end{figure} - -The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times. If the values of $a^g$ for $0 < g < 2^k$ have been -precomputed this algorithm requires only $t$ multiplications and $tk$ squarings. The table can be generated with $2^{k - 1} - 1$ squarings and -$2^{k - 1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$. -However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}. - -Suppose $k = 4$ and $t = 100$. This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation. The -original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value. The total number of squarings -has increased slightly but the number of multiplications has nearly halved. - -\subsection{Optimal Values of $k$} -An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$. The simplest -approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result. Table~\ref{fig:OPTK} lists optimal values of $k$ -for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}. - -\begin{figure}[here] -\begin{center} -\begin{small} -\begin{tabular}{|c|c|c|c|c|c|} -\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\ -\hline $16$ & $2$ & $27$ & $24$ \\ -\hline $32$ & $3$ & $49$ & $48$ \\ -\hline $64$ & $3$ & $92$ & $96$ \\ -\hline $128$ & $4$ & $175$ & $192$ \\ -\hline $256$ & $4$ & $335$ & $384$ \\ -\hline $512$ & $5$ & $645$ & $768$ \\ -\hline $1024$ & $6$ & $1257$ & $1536$ \\ -\hline $2048$ & $6$ & $2452$ & $3072$ \\ -\hline $4096$ & $7$ & $4808$ & $6144$ \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Optimal Values of $k$ for $k$-ary Exponentiation} -\label{fig:OPTK} -\end{figure} - -\subsection{Sliding-Window Exponentiation} -A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$. Essentially -this is a table for all values of $g$ where the most significant bit of $g$ is a one. However, in order for this to be allowed in the -algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided. - -Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm~\ref{fig:KARY}. - -\begin{figure}[here] -\begin{center} -\begin{small} -\begin{tabular}{|c|c|c|c|c|c|} -\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\ -\hline $16$ & $3$ & $24$ & $27$ \\ -\hline $32$ & $3$ & $45$ & $49$ \\ -\hline $64$ & $4$ & $87$ & $92$ \\ -\hline $128$ & $4$ & $167$ & $175$ \\ -\hline $256$ & $5$ & $322$ & $335$ \\ -\hline $512$ & $6$ & $628$ & $645$ \\ -\hline $1024$ & $6$ & $1225$ & $1257$ \\ -\hline $2048$ & $7$ & $2403$ & $2452$ \\ -\hline $4096$ & $8$ & $4735$ & $4808$ \\ -\hline -\end{tabular} -\end{small} -\end{center} -\caption{Optimal Values of $k$ for Sliding Window Exponentiation} -\label{fig:OPTK2} -\end{figure} - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\ -\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\ -\textbf{Output}. $c = a^b$ \\ -\hline \\ -1. $c \leftarrow 1$ \\ -2. for $i$ from $t - 1$ to $0$ do \\ -\hspace{3mm}2.1 If the $i$'th bit of $b$ is a zero then \\ -\hspace{6mm}2.1.1 $c \leftarrow c^2$ \\ -\hspace{3mm}2.2 else do \\ -\hspace{6mm}2.2.1 $c \leftarrow c^{2^k}$ \\ -\hspace{6mm}2.2.2 Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\ -\hspace{6mm}2.2.3 $c \leftarrow c \cdot a^g$ \\ -\hspace{6mm}2.2.4 $i \leftarrow i - k$ \\ -3. Return $c$. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Sliding Window $k$-ary Exponentiation} -\end{figure} - -Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent. While this -algorithm requires the same number of squarings it can potentially have fewer multiplications. The pre-computed table $a^g$ is also half -the size as the previous table. - -Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as -the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$. The second algorithm will break the -exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$. The single digit $0$ in the second representation are where -a single squaring took place instead of a squaring and multiplication. In total the first method requires $10$ multiplications and $18$ -squarings. The second method requires $8$ multiplications and $18$ squarings. - -In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster. - -\section{Modular Exponentiation} - -Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing -$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation. Instead of first computing $a^b$ and then reducing it -modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation. - -This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using -one of the algorithms presented in ~REDUCTION~. - -Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first. This algorithm -will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The -value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}). If no inverse exists the algorithm -terminates with an error. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_exptmod}. \\ -\textbf{Input}. mp\_int $a$, $b$ and $c$ \\ -\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\ -\hline \\ -1. If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\ -2. If $b.sign = MP\_NEG$ then \\ -\hspace{3mm}2.1 $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\ -\hspace{3mm}2.2 $x' \leftarrow \vert x \vert$ \\ -\hspace{3mm}2.3 Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\ -3. if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\ -\hspace{3mm}3.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\ -4. else \\ -\hspace{3mm}4.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_exptmod} -\end{figure} - -\textbf{Algorithm mp\_exptmod.} -The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod. It is a sliding window $k$-ary algorithm -which uses Barrett reduction to reduce the product modulo $p$. The second algorithm mp\_exptmod\_fast performs the same operation -except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation -algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}). - -EXAM,bn_mp_exptmod.c - -In order to keep the algorithms in a known state the first step on line @29,if@ is to reject any negative modulus as input. If the exponent is -negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$. The temporary variable $tmpG$ is assigned -the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$. The algorithm will recuse with these new values with a positive -exponent. - -If the exponent is positive the algorithm resumes the exponentiation. Line @63,dr_@ determines if the modulus is of the restricted Diminished Radix -form. If it is not line @65,reduce@ attempts to determine if it is of a unrestricted Diminished Radix form. The integer $dr$ will take on one -of three values. - -\begin{enumerate} -\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form. -\item $dr = 1$ means that the modulus is of restricted Diminished Radix form. -\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form. -\end{enumerate} - -Line @69,if@ determines if the fast modular exponentiation algorithm can be used. It is allowed if $dr \ne 0$ or if the modulus is odd. Otherwise, -the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction. - -\subsection{Barrett Modular Exponentiation} - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{s\_mp\_exptmod}. \\ -\textbf{Input}. mp\_int $a$, $b$ and $c$ \\ -\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\ -\hline \\ -1. $k \leftarrow lg(x)$ \\ -2. $winsize \leftarrow \left \lbrace \begin{array}{ll} - 2 & \mbox{if }k \le 7 \\ - 3 & \mbox{if }7 < k \le 36 \\ - 4 & \mbox{if }36 < k \le 140 \\ - 5 & \mbox{if }140 < k \le 450 \\ - 6 & \mbox{if }450 < k \le 1303 \\ - 7 & \mbox{if }1303 < k \le 3529 \\ - 8 & \mbox{if }3529 < k \\ - \end{array} \right .$ \\ -3. Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\ -4. Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\ -5. $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\ -\\ -Setup the table of small powers of $g$. First find $g^{2^{winsize}}$ and then all multiples of it. \\ -6. $k \leftarrow 2^{winsize - 1}$ \\ -7. $M_{k} \leftarrow M_1$ \\ -8. for $ix$ from 0 to $winsize - 2$ do \\ -\hspace{3mm}8.1 $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr}) \\ -\hspace{3mm}8.2 $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\ -9. for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\ -\hspace{3mm}9.1 $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\ -\hspace{3mm}9.2 $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\ -10. $res \leftarrow 1$ \\ -\\ -Start Sliding Window. \\ -11. $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\ -12. Loop \\ -\hspace{3mm}12.1 $bitcnt \leftarrow bitcnt - 1$ \\ -\hspace{3mm}12.2 If $bitcnt = 0$ then do \\ -\hspace{6mm}12.2.1 If $digidx = -1$ goto step 13. \\ -\hspace{6mm}12.2.2 $buf \leftarrow x_{digidx}$ \\ -\hspace{6mm}12.2.3 $digidx \leftarrow digidx - 1$ \\ -\hspace{6mm}12.2.4 $bitcnt \leftarrow lg(\beta)$ \\ -Continued on next page. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm s\_mp\_exptmod} -\end{figure} - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\ -\textbf{Input}. mp\_int $a$, $b$ and $c$ \\ -\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\ -\hline \\ -\hspace{3mm}12.3 $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\ -\hspace{3mm}12.4 $buf \leftarrow buf << 1$ \\ -\hspace{3mm}12.5 if $mode = 0$ and $y = 0$ then goto step 12. \\ -\hspace{3mm}12.6 if $mode = 1$ and $y = 0$ then do \\ -\hspace{6mm}12.6.1 $res \leftarrow res^2$ \\ -\hspace{6mm}12.6.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\ -\hspace{6mm}12.6.3 Goto step 12. \\ -\hspace{3mm}12.7 $bitcpy \leftarrow bitcpy + 1$ \\ -\hspace{3mm}12.8 $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\ -\hspace{3mm}12.9 $mode \leftarrow 2$ \\ -\hspace{3mm}12.10 If $bitcpy = winsize$ then do \\ -\hspace{6mm}Window is full so perform the squarings and single multiplication. \\ -\hspace{6mm}12.10.1 for $ix$ from $0$ to $winsize -1$ do \\ -\hspace{9mm}12.10.1.1 $res \leftarrow res^2$ \\ -\hspace{9mm}12.10.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\ -\hspace{6mm}12.10.2 $res \leftarrow res \cdot M_{bitbuf}$ \\ -\hspace{6mm}12.10.3 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\ -\hspace{6mm}Reset the window. \\ -\hspace{6mm}12.10.4 $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\ -\\ -No more windows left. Check for residual bits of exponent. \\ -13. If $mode = 2$ and $bitcpy > 0$ then do \\ -\hspace{3mm}13.1 for $ix$ form $0$ to $bitcpy - 1$ do \\ -\hspace{6mm}13.1.1 $res \leftarrow res^2$ \\ -\hspace{6mm}13.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\ -\hspace{6mm}13.1.3 $bitbuf \leftarrow bitbuf << 1$ \\ -\hspace{6mm}13.1.4 If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\ -\hspace{9mm}13.1.4.1 $res \leftarrow res \cdot M_{1}$ \\ -\hspace{9mm}13.1.4.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\ -14. $y \leftarrow res$ \\ -15. Clear $res$, $mu$ and the $M$ array. \\ -16. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm s\_mp\_exptmod (continued)} -\end{figure} - -\textbf{Algorithm s\_mp\_exptmod.} -This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$. It takes advantage of the Barrett reduction -algorithm to keep the product small throughout the algorithm. - -The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent the -larger the window size becomes. After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated. This -table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$. - -After the table is allocated the first power of $g$ is found. Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make -the rest of the algorithm more efficient. The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$ -times. The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$. - -Now that the table is available the sliding window may begin. The following list describes the functions of all the variables in the window. -\begin{enumerate} -\item The variable $mode$ dictates how the bits of the exponent are interpreted. -\begin{enumerate} - \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply - $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found. - \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode leading $0$ bits - are read and a single squaring is performed. If a non-zero bit is read a new window is created. - \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit - downwards. -\end{enumerate} -\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero a new digit - is fetched from the exponent. -\item The variable $buf$ holds the currently read digit of the exponent. -\item The variable $digidx$ is an index into the exponents digits. It starts at the leading digit $x.used - 1$ and moves towards the trailing digit. -\item The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and - the appropriate operations performed. -\item The variable $bitbuf$ holds the current bits of the window being formed. -\end{enumerate} - -All of step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step -inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left a new digit is -read and if there are no digits left than the loop terminates. - -After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit -upwards. In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to -trailing edges the entire exponent is read from most significant bit to least significant bit. - -At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read. This prevents the -algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read. Step 12.6 and 12.7-10 handle -the two cases of $mode = 1$ and $mode = 2$ respectively. - -FIGU,expt_state,Sliding Window State Diagram - -By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If $mode = 2$ then -a Left-to-Right algorithm is used to process the remaining few bits. - -EXAM,bn_s_mp_exptmod.c - -Lines @31,if@ through @45,}@ determine the optimal window size based on the length of the exponent in bits. The window divisions are sorted -from smallest to greatest so that in each \textbf{if} statement only one condition must be tested. For example, by the \textbf{if} statement -on line @37,if@ the value of $x$ is already known to be greater than $140$. - -The conditional piece of code beginning on line @42,ifdef@ allows the window size to be restricted to five bits. This logic is used to ensure -the table of precomputed powers of $G$ remains relatively small. - -The for loop on line @60,for@ initializes the $M$ array while lines @71,mp_init@ and @75,mp_reduce@ through @85,}@ initialize the reduction -function that will be used for this modulus. - --- More later. - -\section{Quick Power of Two} -Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is -equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_2expt}. \\ -\textbf{Input}. integer $b$ \\ -\textbf{Output}. $a \leftarrow 2^b$ \\ -\hline \\ -1. $a \leftarrow 0$ \\ -2. If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\ -3. $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\ -4. $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\ -5. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_2expt} -\end{figure} - -\textbf{Algorithm mp\_2expt.} - -EXAM,bn_mp_2expt.c - -\chapter{Higher Level Algorithms} - -This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package. These -routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important. - -The first section describes a method of integer division with remainder that is universally well known. It provides the signed division logic -for the package. The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations. -These algorithms serve mostly to simplify other algorithms where small constants are required. The last two sections discuss how to manipulate -various representations of integers. For example, converting from an mp\_int to a string of character. - -\section{Integer Division with Remainder} -\label{sec:division} - -Integer division aside from modular exponentiation is the most intensive algorithm to compute. Like addition, subtraction and multiplication -the basis of this algorithm is the long-hand division algorithm taught to school children. Throughout this discussion several common variables -will be used. Let $x$ represent the divisor and $y$ represent the dividend. Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and -let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$. The following simple algorithm will be used to start the discussion. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\ -\textbf{Input}. integer $x$ and $y$ \\ -\textbf{Output}. $q = \lfloor y/x\rfloor, r = y - xq$ \\ -\hline \\ -1. $q \leftarrow 0$ \\ -2. $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\ -3. for $t$ from $n$ down to $0$ do \\ -\hspace{3mm}3.1 Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\ -\hspace{3mm}3.2 $q \leftarrow q + k\beta^t$ \\ -\hspace{3mm}3.3 $y \leftarrow y - kx\beta^t$ \\ -4. $r \leftarrow y$ \\ -5. Return($q, r$) \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Radix-$\beta$ Integer Division} -\label{fig:raddiv} -\end{figure} - -As children we are taught this very simple algorithm for the case of $\beta = 10$. Almost instinctively several optimizations are taught for which -their reason of existing are never explained. For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor. - -To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and -simultaneously $(k + 1)x\beta^t$ is greater than $y$. Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have. The habitual method -used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient. By only using leading -digits a much simpler division may be used to form an educated guess at what the value must be. In this case $k = \lfloor 54/23\rfloor = 2$ quickly -arises as a possible solution. Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$. -As a result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$. - -Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder -$y = 841 - 3x\beta = 181$. Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the -remainder $y = 181 - 7x = 20$. The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since -$237 \cdot 23 + 20 = 5471$ is true. - -\subsection{Quotient Estimation} -\label{sec:divest} -As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend. When $p$ leading -digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows. Technically -speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the -dividend and divisor are zero. - -The value of the estimation may off by a few values in either direction and in general is fairly correct. A simplification \cite[pp. 271]{TAOCPV2} -of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$. The estimate -using this technique is never too small. For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$ -represent the most significant digits of the dividend and divisor respectively. - -\textbf{Proof.}\textit{ The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to -$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. } -The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger. For all other -cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$. The latter portion of the inequalility -$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values. Next a series of -inequalities will prove the hypothesis. - -\begin{equation} -y - \hat k x \le y - \hat k x_s\beta^s -\end{equation} - -This is trivially true since $x \ge x_s\beta^s$. Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$. - -\begin{equation} -y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s) -\end{equation} - -By simplifying the previous inequality the following inequality is formed. - -\begin{equation} -y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s -\end{equation} - -Subsequently, - -\begin{equation} -y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s < x_s\beta^s \le x -\end{equation} - -Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof. \textbf{QED} - - -\subsection{Normalized Integers} -For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$. By multiplying both -$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original -remainder. The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will -lie in the domain of a single digit. Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$. - -\begin{equation} -{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta} -\end{equation} - -At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small. - -\subsection{Radix-$\beta$ Division with Remainder} -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_div}. \\ -\textbf{Input}. mp\_int $a, b$ \\ -\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\ -\hline \\ -1. If $b = 0$ return(\textit{MP\_VAL}). \\ -2. If $\vert a \vert < \vert b \vert$ then do \\ -\hspace{3mm}2.1 $d \leftarrow a$ \\ -\hspace{3mm}2.2 $c \leftarrow 0$ \\ -\hspace{3mm}2.3 Return(\textit{MP\_OKAY}). \\ -\\ -Setup the quotient to receive the digits. \\ -3. Grow $q$ to $a.used + 2$ digits. \\ -4. $q \leftarrow 0$ \\ -5. $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\ -6. $sign \leftarrow \left \lbrace \begin{array}{ll} - MP\_ZPOS & \mbox{if }a.sign = b.sign \\ - MP\_NEG & \mbox{otherwise} \\ - \end{array} \right .$ \\ -\\ -Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\ -7. $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\ -8. $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\ -\\ -Find the leading digit of the quotient. \\ -9. $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\ -10. $y \leftarrow y \cdot \beta^{n - t}$ \\ -11. While ($x \ge y$) do \\ -\hspace{3mm}11.1 $q_{n - t} \leftarrow q_{n - t} + 1$ \\ -\hspace{3mm}11.2 $x \leftarrow x - y$ \\ -12. $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\ -\\ -Continued on the next page. \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_div} -\end{figure} - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_div} (continued). \\ -\textbf{Input}. mp\_int $a, b$ \\ -\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\ -\hline \\ -Now find the remainder fo the digits. \\ -13. for $i$ from $n$ down to $(t + 1)$ do \\ -\hspace{3mm}13.1 If $i > x.used$ then jump to the next iteration of this loop. \\ -\hspace{3mm}13.2 If $x_{i} = y_{t}$ then \\ -\hspace{6mm}13.2.1 $q_{i - t - 1} \leftarrow \beta - 1$ \\ -\hspace{3mm}13.3 else \\ -\hspace{6mm}13.3.1 $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\ -\hspace{6mm}13.3.2 $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\ -\hspace{6mm}13.3.3 $q_{i - t - 1} \leftarrow \hat r$ \\ -\hspace{3mm}13.4 $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\ -\\ -Fixup quotient estimation. \\ -\hspace{3mm}13.5 Loop \\ -\hspace{6mm}13.5.1 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\ -\hspace{6mm}13.5.2 t$1 \leftarrow 0$ \\ -\hspace{6mm}13.5.3 t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\ -\hspace{6mm}13.5.4 $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\ -\hspace{6mm}13.5.5 t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\ -\hspace{6mm}13.5.6 If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\ -\hspace{3mm}13.6 t$1 \leftarrow y \cdot q_{i - t - 1}$ \\ -\hspace{3mm}13.7 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\ -\hspace{3mm}13.8 $x \leftarrow x - $ t$1$ \\ -\hspace{3mm}13.9 If $x.sign = MP\_NEG$ then \\ -\hspace{6mm}13.10 t$1 \leftarrow y$ \\ -\hspace{6mm}13.11 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\ -\hspace{6mm}13.12 $x \leftarrow x + $ t$1$ \\ -\hspace{6mm}13.13 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\ -\\ -Finalize the result. \\ -14. Clamp excess digits of $q$ \\ -15. $c \leftarrow q, c.sign \leftarrow sign$ \\ -16. $x.sign \leftarrow a.sign$ \\ -17. $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\ -18. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_div (continued)} -\end{figure} -\textbf{Algorithm mp\_div.} -This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor. The algorithm is a signed -division and will produce a fully qualified quotient and remainder. - -First the divisor $b$ must be non-zero which is enforced in step one. If the divisor is larger than the dividend than the quotient is implicitly -zero and the remainder is the dividend. - -After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient. Two unsigned copies of the -divisor $y$ and dividend $x$ are made as well. The core of the division algorithm is an unsigned division and will only work if the values are -positive. Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$. -This is performed by shifting both to the left by enough bits to get the desired normalization. - -At this point the division algorithm can begin producing digits of the quotient. Recall that maximum value of the estimation used is -$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means. In this case $y$ is shifted -to the left (\textit{step ten}) so that it has the same number of digits as $x$. The loop on step eleven will subtract multiples of the -shifted copy of $y$ until $x$ is smaller. Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two -times to produce the desired leading digit of the quotient. - -Now the remainder of the digits can be produced. The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly -accurately approximate the true quotient digit. The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by -induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$. - -Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high. The next step of the estimation process is -to refine the estimation. The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher -order approximation to adjust the quotient digit. - -After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced -by optimizing Barrett reduction.}. Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of -algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large. - -Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the -remainder. An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC} -is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie -outside their respective boundaries. For example, if $t = 0$ or $i \le 1$ then the digits would be undefined. In those cases the digits should -respectively be replaced with a zero. - -EXAM,bn_mp_div.c - -The implementation of this algorithm differs slightly from the pseudo code presented previously. In this algorithm either of the quotient $c$ or -remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired. For example, the C code to call the division -algorithm with only the quotient is - -\begin{verbatim} -mp_div(&a, &b, &c, NULL); /* c = [a/b] */ -\end{verbatim} - -Lines @108,if@ and @113,if@ handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor -respectively. After the two trivial cases all of the temporary variables are initialized. Line @147,neg@ determines the sign of -the quotient and line @148,sign@ ensures that both $x$ and $y$ are positive. - -The number of bits in the leading digit is calculated on line @151,norm@. Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits -of precision which when reduced modulo $lg(\beta)$ produces the value of $k$. In this case $k$ is the number of bits in the leading digit which is -exactly what is required. For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting -them to the left by $lg(\beta) - 1 - k$ bits. - -Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively. These are first used to produce the -leading digit of the quotient. The loop beginning on line @184,for@ will produce the remainder of the quotient digits. - -The conditional ``continue'' on line @186,continue@ is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the -algorithm eliminates multiple non-zero digits in a single iteration. This ensures that $x_i$ is always non-zero since by definition the digits -above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}. - -Lines @214,t1@, @216,t1@ and @222,t2@ through @225,t2@ manually construct the high accuracy estimations by setting the digits of the two mp\_int -variables directly. - -\section{Single Digit Helpers} - -This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants. All of -the helper functions assume the single digit input is positive and will treat them as such. - -\subsection{Single Digit Addition and Subtraction} - -Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction -algorithms. As a result these algorithms are subtantially simpler with a slight cost in performance. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_add\_d}. \\ -\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\ -\textbf{Output}. $c = a + b$ \\ -\hline \\ -1. $t \leftarrow b$ (\textit{mp\_set}) \\ -2. $c \leftarrow a + t$ \\ -3. Return(\textit{MP\_OKAY}) \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_add\_d} -\end{figure} - -\textbf{Algorithm mp\_add\_d.} -This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together. - -EXAM,bn_mp_add_d.c - -Clever use of the letter 't'. - -\subsubsection{Subtraction} -The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int. - -\subsection{Single Digit Multiplication} -Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline -multiplication algorithm. Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands -only has one digit. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_mul\_d}. \\ -\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\ -\textbf{Output}. $c = ab$ \\ -\hline \\ -1. $pa \leftarrow a.used$ \\ -2. Grow $c$ to at least $pa + 1$ digits. \\ -3. $oldused \leftarrow c.used$ \\ -4. $c.used \leftarrow pa + 1$ \\ -5. $c.sign \leftarrow a.sign$ \\ -6. $\mu \leftarrow 0$ \\ -7. for $ix$ from $0$ to $pa - 1$ do \\ -\hspace{3mm}7.1 $\hat r \leftarrow \mu + a_{ix}b$ \\ -\hspace{3mm}7.2 $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\ -\hspace{3mm}7.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\ -8. $c_{pa} \leftarrow \mu$ \\ -9. for $ix$ from $pa + 1$ to $oldused$ do \\ -\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\ -10. Clamp excess digits of $c$. \\ -11. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_mul\_d} -\end{figure} -\textbf{Algorithm mp\_mul\_d.} -This algorithm quickly multiplies an mp\_int by a small single digit value. It is specially tailored to the job and has a minimal of overhead. -Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations. - -EXAM,bn_mp_mul_d.c - -In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is -read from the source. This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively. - -\subsection{Single Digit Division} -Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion. Since the -divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_div\_d}. \\ -\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\ -\textbf{Output}. $c = \lfloor a / b \rfloor, d = a - cb$ \\ -\hline \\ -1. If $b = 0$ then return(\textit{MP\_VAL}).\\ -2. If $b = 3$ then use algorithm mp\_div\_3 instead. \\ -3. Init $q$ to $a.used$ digits. \\ -4. $q.used \leftarrow a.used$ \\ -5. $q.sign \leftarrow a.sign$ \\ -6. $\hat w \leftarrow 0$ \\ -7. for $ix$ from $a.used - 1$ down to $0$ do \\ -\hspace{3mm}7.1 $\hat w \leftarrow \hat w \beta + a_{ix}$ \\ -\hspace{3mm}7.2 If $\hat w \ge b$ then \\ -\hspace{6mm}7.2.1 $t \leftarrow \lfloor \hat w / b \rfloor$ \\ -\hspace{6mm}7.2.2 $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\ -\hspace{3mm}7.3 else\\ -\hspace{6mm}7.3.1 $t \leftarrow 0$ \\ -\hspace{3mm}7.4 $q_{ix} \leftarrow t$ \\ -8. $d \leftarrow \hat w$ \\ -9. Clamp excess digits of $q$. \\ -10. $c \leftarrow q$ \\ -11. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_div\_d} -\end{figure} -\textbf{Algorithm mp\_div\_d.} -This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach. Essentially in every iteration of the -algorithm another digit of the dividend is reduced and another digit of quotient produced. Provided $b < \beta$ the value of $\hat w$ -after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$. - -If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3. It replaces the division by three with -a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup. In essence it is much like the Barrett reduction -from chapter seven. - -EXAM,bn_mp_div_d.c - -Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to -indicate the respective value is not required. This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created. - -The division and remainder on lines @44,/@ and @45,%@ can be replaced often by a single division on most processors. For example, the 32-bit x86 based -processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously. Unfortunately the GCC -compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively. - -\subsection{Single Digit Root Extraction} - -Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned. Algorithms such as the Newton-Raphson approximation -(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$. - -\begin{equation} -x_{i+1} = x_i - {f(x_i) \over f'(x_i)} -\label{eqn:newton} -\end{equation} - -In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired. The derivative of $f(x)$ is -simply $f'(x) = nx^{n - 1}$. Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain -such as the real numbers. As a result the root found can be above the true root by few and must be manually adjusted. Ideally at the end of the -algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_n\_root}. \\ -\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\ -\textbf{Output}. $c^b \le a$ \\ -\hline \\ -1. If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\ -2. $sign \leftarrow a.sign$ \\ -3. $a.sign \leftarrow MP\_ZPOS$ \\ -4. t$2 \leftarrow 2$ \\ -5. Loop \\ -\hspace{3mm}5.1 t$1 \leftarrow $ t$2$ \\ -\hspace{3mm}5.2 t$3 \leftarrow $ t$1^{b - 1}$ \\ -\hspace{3mm}5.3 t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\ -\hspace{3mm}5.4 t$2 \leftarrow $ t$2 - a$ \\ -\hspace{3mm}5.5 t$3 \leftarrow $ t$3 \cdot b$ \\ -\hspace{3mm}5.6 t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\ -\hspace{3mm}5.7 t$2 \leftarrow $ t$1 - $ t$3$ \\ -\hspace{3mm}5.8 If t$1 \ne $ t$2$ then goto step 5. \\ -6. Loop \\ -\hspace{3mm}6.1 t$2 \leftarrow $ t$1^b$ \\ -\hspace{3mm}6.2 If t$2 > a$ then \\ -\hspace{6mm}6.2.1 t$1 \leftarrow $ t$1 - 1$ \\ -\hspace{6mm}6.2.2 Goto step 6. \\ -7. $a.sign \leftarrow sign$ \\ -8. $c \leftarrow $ t$1$ \\ -9. $c.sign \leftarrow sign$ \\ -10. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_n\_root} -\end{figure} -\textbf{Algorithm mp\_n\_root.} -This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach. It is partially optimized based on the observation -that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator. That is at first the denominator is calculated by finding -$x^{b - 1}$. This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator. This saves a total of $b - 1$ -multiplications by t$1$ inside the loop. - -The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the -root. Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$. - -EXAM,bn_mp_n_root.c - -\section{Random Number Generation} - -Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms. Pollard-Rho -factoring for example, can make use of random values as starting points to find factors of a composite integer. In this case the algorithm presented -is solely for simulations and not intended for cryptographic use. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_rand}. \\ -\textbf{Input}. An integer $b$ \\ -\textbf{Output}. A pseudo-random number of $b$ digits \\ -\hline \\ -1. $a \leftarrow 0$ \\ -2. If $b \le 0$ return(\textit{MP\_OKAY}) \\ -3. Pick a non-zero random digit $d$. \\ -4. $a \leftarrow a + d$ \\ -5. for $ix$ from 1 to $d - 1$ do \\ -\hspace{3mm}5.1 $a \leftarrow a \cdot \beta$ \\ -\hspace{3mm}5.2 Pick a random digit $d$. \\ -\hspace{3mm}5.3 $a \leftarrow a + d$ \\ -6. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_rand} -\end{figure} -\textbf{Algorithm mp\_rand.} -This algorithm produces a pseudo-random integer of $b$ digits. By ensuring that the first digit is non-zero the algorithm also guarantees that the -final result has at least $b$ digits. It relies heavily on a third-part random number generator which should ideally generate uniformly all of -the integers from $0$ to $\beta - 1$. - -EXAM,bn_mp_rand.c - -\section{Formatted Representations} -The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties. For example, the ability to -be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers -into a program. - -\subsection{Reading Radix-n Input} -For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to -printable characters. For example, when the character ``N'' is read it represents the integer $23$. The first $16$ characters of the -map are for the common representations up to hexadecimal. After that they match the ``base64'' encoding scheme which are suitable chosen -such that they are printable. While outputting as base64 may not be too helpful for human operators it does allow communication via non binary -mediums. - -\newpage\begin{figure}[here] -\begin{center} -\begin{tabular}{cc|cc|cc|cc} -\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} \\ -\hline -0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\ -4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\ -8 & 8 & 9 & 9 & 10 & A & 11 & B \\ -12 & C & 13 & D & 14 & E & 15 & F \\ -16 & G & 17 & H & 18 & I & 19 & J \\ -20 & K & 21 & L & 22 & M & 23 & N \\ -24 & O & 25 & P & 26 & Q & 27 & R \\ -28 & S & 29 & T & 30 & U & 31 & V \\ -32 & W & 33 & X & 34 & Y & 35 & Z \\ -36 & a & 37 & b & 38 & c & 39 & d \\ -40 & e & 41 & f & 42 & g & 43 & h \\ -44 & i & 45 & j & 46 & k & 47 & l \\ -48 & m & 49 & n & 50 & o & 51 & p \\ -52 & q & 53 & r & 54 & s & 55 & t \\ -56 & u & 57 & v & 58 & w & 59 & x \\ -60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\ -\hline -\end{tabular} -\end{center} -\caption{Lower ASCII Map} -\label{fig:ASC} -\end{figure} - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_read\_radix}. \\ -\textbf{Input}. A string $str$ of length $sn$ and radix $r$. \\ -\textbf{Output}. The radix-$\beta$ equivalent mp\_int. \\ -\hline \\ -1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\ -2. $ix \leftarrow 0$ \\ -3. If $str_0 =$ ``-'' then do \\ -\hspace{3mm}3.1 $ix \leftarrow ix + 1$ \\ -\hspace{3mm}3.2 $sign \leftarrow MP\_NEG$ \\ -4. else \\ -\hspace{3mm}4.1 $sign \leftarrow MP\_ZPOS$ \\ -5. $a \leftarrow 0$ \\ -6. for $iy$ from $ix$ to $sn - 1$ do \\ -\hspace{3mm}6.1 Let $y$ denote the position in the map of $str_{iy}$. \\ -\hspace{3mm}6.2 If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\ -\hspace{3mm}6.3 $a \leftarrow a \cdot r$ \\ -\hspace{3mm}6.4 $a \leftarrow a + y$ \\ -7. If $a \ne 0$ then $a.sign \leftarrow sign$ \\ -8. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_read\_radix} -\end{figure} -\textbf{Algorithm mp\_read\_radix.} -This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer. A minus symbol ``-'' may precede the -string to indicate the value is negative, otherwise it is assumed to be positive. The algorithm will read up to $sn$ characters from the input -and will stop when it reads a character it cannot map the algorithm stops reading characters from the string. This allows numbers to be embedded -as part of larger input without any significant problem. - -EXAM,bn_mp_read_radix.c - -\subsection{Generating Radix-$n$ Output} -Generating radix-$n$ output is fairly trivial with a division and remainder algorithm. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_toradix}. \\ -\textbf{Input}. A mp\_int $a$ and an integer $r$\\ -\textbf{Output}. The radix-$r$ representation of $a$ \\ -\hline \\ -1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\ -2. If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}). \\ -3. $t \leftarrow a$ \\ -4. $str \leftarrow$ ``'' \\ -5. if $t.sign = MP\_NEG$ then \\ -\hspace{3mm}5.1 $str \leftarrow str + $ ``-'' \\ -\hspace{3mm}5.2 $t.sign = MP\_ZPOS$ \\ -6. While ($t \ne 0$) do \\ -\hspace{3mm}6.1 $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\ -\hspace{3mm}6.2 $t \leftarrow \lfloor t / r \rfloor$ \\ -\hspace{3mm}6.3 Look up $d$ in the map and store the equivalent character in $y$. \\ -\hspace{3mm}6.4 $str \leftarrow str + y$ \\ -7. If $str_0 = $``$-$'' then \\ -\hspace{3mm}7.1 Reverse the digits $str_1, str_2, \ldots str_n$. \\ -8. Otherwise \\ -\hspace{3mm}8.1 Reverse the digits $str_0, str_1, \ldots str_n$. \\ -9. Return(\textit{MP\_OKAY}).\\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_toradix} -\end{figure} -\textbf{Algorithm mp\_toradix.} -This algorithm computes the radix-$r$ representation of an mp\_int $a$. The ``digits'' of the representation are extracted by reducing -successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$. Note that instead of actually dividing by $r^k$ in -each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration. As a result a series of trivial $n \times 1$ divisions -are required instead of a series of $n \times k$ divisions. One design flaw of this approach is that the digits are produced in the reverse order -(see~\ref{fig:mpradix}). To remedy this flaw the digits must be swapped or simply ``reversed''. - -\begin{figure} -\begin{center} -\begin{tabular}{|c|c|c|} -\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\ -\hline $1234$ & -- & -- \\ -\hline $123$ & $4$ & ``4'' \\ -\hline $12$ & $3$ & ``43'' \\ -\hline $1$ & $2$ & ``432'' \\ -\hline $0$ & $1$ & ``4321'' \\ -\hline -\end{tabular} -\end{center} -\caption{Example of Algorithm mp\_toradix.} -\label{fig:mpradix} -\end{figure} - -EXAM,bn_mp_toradix.c - -\chapter{Number Theoretic Algorithms} -This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi -symbol computation. These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and -various Sieve based factoring algorithms. - -\section{Greatest Common Divisor} -The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of -both $a$ and $b$. That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur -simultaneously. - -The most common approach (cite) is to reduce one input modulo another. That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then -$r$ is also divisible by $k$. The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\ -\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\ -\textbf{Output}. The greatest common divisor $(a, b)$. \\ -\hline \\ -1. While ($b > 0$) do \\ -\hspace{3mm}1.1 $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\ -\hspace{3mm}1.2 $a \leftarrow b$ \\ -\hspace{3mm}1.3 $b \leftarrow r$ \\ -2. Return($a$). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Greatest Common Divisor (I)} -\label{fig:gcd1} -\end{figure} - -This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly. However, divisions are -relatively expensive operations to perform and should ideally be avoided. There is another approach based on a similar relationship of -greatest common divisors. The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$. -In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\ -\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\ -\textbf{Output}. The greatest common divisor $(a, b)$. \\ -\hline \\ -1. While ($b > 0$) do \\ -\hspace{3mm}1.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\ -\hspace{3mm}1.2 $b \leftarrow b - a$ \\ -2. Return($a$). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Greatest Common Divisor (II)} -\label{fig:gcd2} -\end{figure} - -\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.} -The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$. In other -words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$. Since both $a$ and $b$ are always -divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the -second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof. \textbf{QED}. - -As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful. Specially if $b$ is much larger than $a$ such that -$b - a$ is still very much larger than $a$. A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does -not divide the greatest common divisor but will divide $b - a$. In this case ${b - a} \over p$ is also an integer and still divisible by -the greatest common divisor. - -However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first. -Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\ -\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\ -\textbf{Output}. The greatest common divisor $(a, b)$. \\ -\hline \\ -1. $k \leftarrow 0$ \\ -2. While $a$ and $b$ are both divisible by $p$ do \\ -\hspace{3mm}2.1 $a \leftarrow \lfloor a / p \rfloor$ \\ -\hspace{3mm}2.2 $b \leftarrow \lfloor b / p \rfloor$ \\ -\hspace{3mm}2.3 $k \leftarrow k + 1$ \\ -3. While $a$ is divisible by $p$ do \\ -\hspace{3mm}3.1 $a \leftarrow \lfloor a / p \rfloor$ \\ -4. While $b$ is divisible by $p$ do \\ -\hspace{3mm}4.1 $b \leftarrow \lfloor b / p \rfloor$ \\ -5. While ($b > 0$) do \\ -\hspace{3mm}5.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\ -\hspace{3mm}5.2 $b \leftarrow b - a$ \\ -\hspace{3mm}5.3 While $b$ is divisible by $p$ do \\ -\hspace{6mm}5.3.1 $b \leftarrow \lfloor b / p \rfloor$ \\ -6. Return($a \cdot p^k$). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm Greatest Common Divisor (III)} -\label{fig:gcd3} -\end{figure} - -This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$ -decreases more rapidly. The first loop on step two removes powers of $p$ that are in common. A count, $k$, is kept which will present a common -divisor of $p^k$. After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$. This means that $p$ can be safely -divided out of the difference $b - a$ so long as the division leaves no remainder. - -In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often. It also helps that division by $p$ be easy -to compute. The ideal choice of $p$ is two since division by two amounts to a right logical shift. Another important observation is that by -step five both $a$ and $b$ are odd. Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the -largest of the pair. - -\subsection{Complete Greatest Common Divisor} -The algorithms presented so far cannot handle inputs which are zero or negative. The following algorithm can handle all input cases properly -and will produce the greatest common divisor. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_gcd}. \\ -\textbf{Input}. mp\_int $a$ and $b$ \\ -\textbf{Output}. The greatest common divisor $c = (a, b)$. \\ -\hline \\ -1. If $a = 0$ then \\ -\hspace{3mm}1.1 $c \leftarrow \vert b \vert $ \\ -\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\ -2. If $b = 0$ then \\ -\hspace{3mm}2.1 $c \leftarrow \vert a \vert $ \\ -\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\ -3. $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\ -4. $k \leftarrow 0$ \\ -5. While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\ -\hspace{3mm}5.1 $k \leftarrow k + 1$ \\ -\hspace{3mm}5.2 $u \leftarrow \lfloor u / 2 \rfloor$ \\ -\hspace{3mm}5.3 $v \leftarrow \lfloor v / 2 \rfloor$ \\ -6. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\ -\hspace{3mm}6.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\ -7. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\ -\hspace{3mm}7.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\ -8. While $v.used > 0$ \\ -\hspace{3mm}8.1 If $\vert u \vert > \vert v \vert$ then \\ -\hspace{6mm}8.1.1 Swap $u$ and $v$. \\ -\hspace{3mm}8.2 $v \leftarrow \vert v \vert - \vert u \vert$ \\ -\hspace{3mm}8.3 While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\ -\hspace{6mm}8.3.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\ -9. $c \leftarrow u \cdot 2^k$ \\ -10. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_gcd} -\end{figure} -\textbf{Algorithm mp\_gcd.} -This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$. The algorithm was originally based on Algorithm B of -Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain. In theory it achieves the same asymptotic working time as -Algorithm B and in practice this appears to be true. - -The first two steps handle the cases where either one of or both inputs are zero. If either input is zero the greatest common divisor is the -largest input or zero if they are both zero. If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of -$a$ and $b$ respectively and the algorithm will proceed to reduce the pair. - -Step five will divide out any common factors of two and keep track of the count in the variable $k$. After this step, two is no longer a -factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even. Step -six and seven ensure that the $u$ and $v$ respectively have no more factors of two. At most only one of the while--loops will iterate since -they cannot both be even. - -By step eight both of $u$ and $v$ are odd which is required for the inner logic. First the pair are swapped such that $v$ is equal to -or greater than $u$. This ensures that the subtraction on step 8.2 will always produce a positive and even result. Step 8.3 removes any -factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd. - -After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six. The result -must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier. - -EXAM,bn_mp_gcd.c - -This function makes use of the macros mp\_iszero and mp\_iseven. The former evaluates to $1$ if the input mp\_int is equivalent to the -integer zero otherwise it evaluates to $0$. The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise -it evaluates to $0$. Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero. The three -trivial cases of inputs are handled on lines @23,zero@ through @29,}@. After those lines the inputs are assumed to be non-zero. - -Lines @32,if@ and @36,if@ make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively. At this point the common factors of two -must be divided out of the two inputs. The block starting at line @43,common@ removes common factors of two by first counting the number of trailing -zero bits in both. The local integer $k$ is used to keep track of how many factors of $2$ are pulled out of both values. It is assumed that -the number of factors will not exceed the maximum value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than -entries than are accessible by an ``int'' so this is not a limitation.}. - -At this point there are no more common factors of two in the two values. The divisions by a power of two on lines @60,div_2d@ and @67,div_2d@ remove -any independent factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm. The while loop -on line @72, while@ performs the reduction of the pair until $v$ is equal to zero. The unsigned comparison and subtraction algorithms are used in -place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative. - -\section{Least Common Multiple} -The least common multiple of a pair of integers is their product divided by their greatest common divisor. For two integers $a$ and $b$ the -least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$. For example, if $a = 2 \cdot 2 \cdot 3 = 12$ -and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$. - -The least common multiple arises often in coding theory as well as number theory. If two functions have periods of $a$ and $b$ respectively they will -collide, that is be in synchronous states, after only $[ a, b ]$ iterations. This is why, for example, random number generators based on -Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}). -Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_lcm}. \\ -\textbf{Input}. mp\_int $a$ and $b$ \\ -\textbf{Output}. The least common multiple $c = [a, b]$. \\ -\hline \\ -1. $c \leftarrow (a, b)$ \\ -2. $t \leftarrow a \cdot b$ \\ -3. $c \leftarrow \lfloor t / c \rfloor$ \\ -4. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_lcm} -\end{figure} -\textbf{Algorithm mp\_lcm.} -This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$. It computes the least common multiple directly by -dividing the product of the two inputs by their greatest common divisor. - -EXAM,bn_mp_lcm.c - -\section{Jacobi Symbol Computation} -To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg. What is the name of this?} off which the Jacobi symbol is -defined. The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$. Numerically it is -equivalent to equation \ref{eqn:legendre}. - -\textit{-- Tom, don't be an ass, cite your source here...!} - -\begin{equation} -a^{(p-1)/2} \equiv \begin{array}{rl} - -1 & \mbox{if }a\mbox{ is a quadratic non-residue.} \\ - 0 & \mbox{if }a\mbox{ divides }p\mbox{.} \\ - 1 & \mbox{if }a\mbox{ is a quadratic residue}. - \end{array} \mbox{ (mod }p\mbox{)} -\label{eqn:legendre} -\end{equation} - -\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.} -An integer $a$ is a quadratic residue if the following equation has a solution. - -\begin{equation} -x^2 \equiv a \mbox{ (mod }p\mbox{)} -\label{eqn:root} -\end{equation} - -Consider the following equation. - -\begin{equation} -0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)} -\label{eqn:rooti} -\end{equation} - -Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true. If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$ -then the quantity in the braces must be zero. By reduction, - -\begin{eqnarray} -\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0 \nonumber \\ -\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\ -x^2 \equiv a \mbox{ (mod }p\mbox{)} -\end{eqnarray} - -As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue. If $a$ does not divide $p$ and $a$ -is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since -\begin{equation} -0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)} -\end{equation} -One of the terms on the right hand side must be zero. \textbf{QED} - -\subsection{Jacobi Symbol} -The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2. If $p = \prod_{i=0}^n p_i$ then -the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation. - -\begin{equation} -\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right ) -\end{equation} - -By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function. The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for -further details.} will be used to derive an efficient Jacobi symbol algorithm. Where $p$ is an odd integer greater than two and $a, b \in \Z$ the -following are true. - -\begin{enumerate} -\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$. -\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$. -\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$. -\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$. Otherwise, it equals $-1$. -\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$. More specifically -$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$. -\end{enumerate} - -Using these facts if $a = 2^k \cdot a'$ then - -\begin{eqnarray} -\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\ - = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right ) -\label{eqn:jacobi} -\end{eqnarray} - -By fact five, - -\begin{equation} -\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4} -\end{equation} - -Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then - -\begin{equation} -\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4} -\end{equation} - -By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed. - -\begin{equation} -\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right ) \cdot (-1)^{(p-1)(a'-1)/4} -\end{equation} - -The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively. The value of -$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$. Using this approach the -factors of $p$ do not have to be known. Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the -Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$. - -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_jacobi}. \\ -\textbf{Input}. mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\ -\textbf{Output}. The Jacobi symbol $c = \left ( {a \over p } \right )$. \\ -\hline \\ -1. If $a = 0$ then \\ -\hspace{3mm}1.1 $c \leftarrow 0$ \\ -\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\ -2. If $a = 1$ then \\ -\hspace{3mm}2.1 $c \leftarrow 1$ \\ -\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\ -3. $a' \leftarrow a$ \\ -4. $k \leftarrow 0$ \\ -5. While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\ -\hspace{3mm}5.1 $k \leftarrow k + 1$ \\ -\hspace{3mm}5.2 $a' \leftarrow \lfloor a' / 2 \rfloor$ \\ -6. If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\ -\hspace{3mm}6.1 $s \leftarrow 1$ \\ -7. else \\ -\hspace{3mm}7.1 $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\ -\hspace{3mm}7.2 If $r = 1$ or $r = 7$ then \\ -\hspace{6mm}7.2.1 $s \leftarrow 1$ \\ -\hspace{3mm}7.3 else \\ -\hspace{6mm}7.3.1 $s \leftarrow -1$ \\ -8. If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\ -\hspace{3mm}8.1 $s \leftarrow -s$ \\ -9. If $a' \ne 1$ then \\ -\hspace{3mm}9.1 $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\ -\hspace{3mm}9.2 $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\ -10. $c \leftarrow s$ \\ -11. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_jacobi} -\end{figure} -\textbf{Algorithm mp\_jacobi.} -This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three. The algorithm -is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}. - -Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively. Step five determines the number of two factors in the -input $a$. If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one. If $k$ is odd than the term evaluates to one -if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled -the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$. The latter term evaluates to one if both $p$ and $a'$ -are congruent to one modulo four, otherwise it evaluates to negative one. - -By step nine if $a'$ does not equal one a recursion is required. Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute -$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product. - -EXAM,bn_mp_jacobi.c - -As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C -variable name character. - -The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm. If the input is non-trivial the algorithm -has to proceed compute the Jacobi. The variable $s$ is used to hold the current Jacobi product. Note that $s$ is merely a C ``int'' data type since -the values it may obtain are merely $-1$, $0$ and $1$. - -After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$. Technically only the least significant -bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same -processor requirements and neither is faster than the other. - -Line @59, if@ through @70, }@ determines the value of $\left ( { 2 \over p } \right )^k$. If the least significant bit of $k$ is zero than -$k$ is even and the value is one. Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight. The value of -$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines @73, if@ through @75, }@. - -Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$. - -\textit{-- Comment about default $s$ and such...} - -\section{Modular Inverse} -\label{sec:modinv} -The modular inverse of a number actually refers to the modular multiplicative inverse. Essentially for any integer $a$ such that $(a, p) = 1$ there -exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$. The integer $b$ is called the multiplicative inverse of $a$ which is -denoted as $b = a^{-1}$. Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and -fields of integers. However, the former will be the matter of discussion. - -The simplest approach is to compute the algebraic inverse of the input. That is to compute $b \equiv a^{\Phi(p) - 1}$. If $\Phi(p)$ is the -order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$. The proof of which is trivial. - -\begin{equation} -ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)} -\end{equation} - -However, as simple as this approach may be it has two serious flaws. It requires that the value of $\Phi(p)$ be known which if $p$ is composite -requires all of the prime factors. This approach also is very slow as the size of $p$ grows. - -A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear -Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation. - -\begin{equation} -ab + pq = 1 -\end{equation} - -Where $a$, $b$, $p$ and $q$ are all integers. If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of -$a$ modulo $p$. The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$. -However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place. The -binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine -equation. - -\subsection{General Case} -\newpage\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_invmod}. \\ -\textbf{Input}. mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$. \\ -\textbf{Output}. The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\ -\hline \\ -1. If $b \le 0$ then return(\textit{MP\_VAL}). \\ -2. If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\ -3. $x \leftarrow \vert a \vert, y \leftarrow b$ \\ -4. If $x_0 \equiv y_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\ -5. $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\ -6. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\ -\hspace{3mm}6.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\ -\hspace{3mm}6.2 If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\ -\hspace{6mm}6.2.1 $A \leftarrow A + y$ \\ -\hspace{6mm}6.2.2 $B \leftarrow B - x$ \\ -\hspace{3mm}6.3 $A \leftarrow \lfloor A / 2 \rfloor$ \\ -\hspace{3mm}6.4 $B \leftarrow \lfloor B / 2 \rfloor$ \\ -7. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\ -\hspace{3mm}7.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\ -\hspace{3mm}7.2 If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\ -\hspace{6mm}7.2.1 $C \leftarrow C + y$ \\ -\hspace{6mm}7.2.2 $D \leftarrow D - x$ \\ -\hspace{3mm}7.3 $C \leftarrow \lfloor C / 2 \rfloor$ \\ -\hspace{3mm}7.4 $D \leftarrow \lfloor D / 2 \rfloor$ \\ -8. If $u \ge v$ then \\ -\hspace{3mm}8.1 $u \leftarrow u - v$ \\ -\hspace{3mm}8.2 $A \leftarrow A - C$ \\ -\hspace{3mm}8.3 $B \leftarrow B - D$ \\ -9. else \\ -\hspace{3mm}9.1 $v \leftarrow v - u$ \\ -\hspace{3mm}9.2 $C \leftarrow C - A$ \\ -\hspace{3mm}9.3 $D \leftarrow D - B$ \\ -10. If $u \ne 0$ goto step 6. \\ -11. If $v \ne 1$ return(\textit{MP\_VAL}). \\ -12. While $C \le 0$ do \\ -\hspace{3mm}12.1 $C \leftarrow C + b$ \\ -13. While $C \ge b$ do \\ -\hspace{3mm}13.1 $C \leftarrow C - b$ \\ -14. $c \leftarrow C$ \\ -15. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\end{figure} -\textbf{Algorithm mp\_invmod.} -This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$. This algorithm is a variation of the -extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}. It has been modified to only compute the modular inverse and not a complete -Diophantine solution. - -If $b \le 0$ than the modulus is invalid and MP\_VAL is returned. Similarly if both $a$ and $b$ are even then there cannot be a multiplicative -inverse for $a$ and the error is reported. - -The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd. In this case -the other variables to the Diophantine equation are solved. The algorithm terminates when $u = 0$ in which case the solution is - -\begin{equation} -Ca + Db = v -\end{equation} - -If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists. Otherwise, $C$ -is the modular inverse of $a$. The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie -within $1 \le a^{-1} < b$. Step numbers twelve and thirteen adjust the inverse until it is in range. If the original input $a$ is within $0 < a < p$ -then only a couple of additions or subtractions will be required to adjust the inverse. - -EXAM,bn_mp_invmod.c - -\subsubsection{Odd Moduli} - -When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse. In particular by attempting to solve -the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$. - -The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed. This -optimization will halve the time required to compute the modular inverse. - -\section{Primality Tests} - -A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself. For example, $a = 7$ is prime -since the integers $2 \ldots 6$ do not evenly divide $a$. By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$. - -Prime numbers arise in cryptography considerably as they allow finite fields to be formed. The ability to determine whether an integer is prime or -not quickly has been a viable subject in cryptography and number theory for considerable time. The algorithms that will be presented are all -probablistic algorithms in that when they report an integer is composite it must be composite. However, when the algorithms report an integer is -prime the algorithm may be incorrect. - -As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as -well be zero. For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question. - -\subsection{Trial Division} - -Trial division means to attempt to evenly divide a candidate integer by small prime integers. If the candidate can be evenly divided it obviously -cannot be prime. By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime. However, such a test -would require a prohibitive amount of time as $n$ grows. - -Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead. By performing trial division with only a subset -of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime. However, often it can prove a candidate is not prime. - -The benefit of this test is that trial division by small values is fairly efficient. Specially compared to the other algorithms that will be -discussed shortly. The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by -$1 - {1.12 \over ln(q)}$. The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range -$3 \le q \le 100$. - -At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly. At $q = 90$ further testing is generally not going to -be of any practical use. In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate -approximately $80\%$ of all candidate integers. The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base. The -array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\ -\textbf{Input}. mp\_int $a$ \\ -\textbf{Output}. $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$. \\ -\hline \\ -1. for $ix$ from $0$ to $PRIME\_SIZE$ do \\ -\hspace{3mm}1.1 $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\ -\hspace{3mm}1.2 If $d = 0$ then \\ -\hspace{6mm}1.2.1 $c \leftarrow 1$ \\ -\hspace{6mm}1.2.2 Return(\textit{MP\_OKAY}). \\ -2. $c \leftarrow 0$ \\ -3. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_prime\_is\_divisible} -\end{figure} -\textbf{Algorithm mp\_prime\_is\_divisible.} -This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions. - -EXAM,bn_mp_prime_is_divisible.c - -The algorithm defaults to a return of $0$ in case an error occurs. The values in the prime table are all specified to be in the range of a -mp\_digit. The table \_\_prime\_tab is defined in the following file. - -EXAM,bn_prime_tab.c - -Note that there are two possible tables. When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes -upto $1619$ are used. Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit. - -\subsection{The Fermat Test} -The Fermat test is probably one the oldest tests to have a non-trivial probability of success. It is based on the fact that if $n$ is in -fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$. The reason being that if $n$ is prime than the order of -the multiplicative sub group is $n - 1$. Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to -$a^1 = a$. - -If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$. In which case -it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$. However, this test is not absolute as it is possible that the order -of a base will divide $n - 1$ which would then be reported as prime. Such a base yields what is known as a Fermat pseudo-prime. Several -integers known as Carmichael numbers will be a pseudo-prime to all valid bases. Fortunately such numbers are extremely rare as $n$ grows -in size. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_prime\_fermat}. \\ -\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\ -\textbf{Output}. $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$. \\ -\hline \\ -1. $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\ -2. If $t = b$ then \\ -\hspace{3mm}2.1 $c = 1$ \\ -3. else \\ -\hspace{3mm}3.1 $c = 0$ \\ -4. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_prime\_fermat} -\end{figure} -\textbf{Algorithm mp\_prime\_fermat.} -This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not. It uses a single modular exponentiation to -determine the result. - -EXAM,bn_mp_prime_fermat.c - -\subsection{The Miller-Rabin Test} -The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen -candidate integers. The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the -value must be equal to $-1$. The squarings are stopped as soon as $-1$ is observed. If the value of $1$ is observed first it means that -some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime. - -\begin{figure}[!here] -\begin{small} -\begin{center} -\begin{tabular}{l} -\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\ -\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\ -\textbf{Output}. $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$. \\ -\hline -1. $a' \leftarrow a - 1$ \\ -2. $r \leftarrow n1$ \\ -3. $c \leftarrow 0, s \leftarrow 0$ \\ -4. While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\ -\hspace{3mm}4.1 $s \leftarrow s + 1$ \\ -\hspace{3mm}4.2 $r \leftarrow \lfloor r / 2 \rfloor$ \\ -5. $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\ -6. If $y \nequiv \pm 1$ then \\ -\hspace{3mm}6.1 $j \leftarrow 1$ \\ -\hspace{3mm}6.2 While $j \le (s - 1)$ and $y \nequiv a'$ \\ -\hspace{6mm}6.2.1 $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\ -\hspace{6mm}6.2.2 If $y = 1$ then goto step 8. \\ -\hspace{6mm}6.2.3 $j \leftarrow j + 1$ \\ -\hspace{3mm}6.3 If $y \nequiv a'$ goto step 8. \\ -7. $c \leftarrow 1$\\ -8. Return(\textit{MP\_OKAY}). \\ -\hline -\end{tabular} -\end{center} -\end{small} -\caption{Algorithm mp\_prime\_miller\_rabin} -\end{figure} -\textbf{Algorithm mp\_prime\_miller\_rabin.} -This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$. It will set $c = 1$ if the algorithm cannot determine -if $b$ is composite or $c = 0$ if $b$ is provably composite. The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$. - -If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not. Otherwise, the algorithm will -square $y$ upto $s - 1$ times stopping only when $y \equiv -1$. If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$ -is provably composite. If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite. If $a$ is not provably -composite then it is \textit{probably} prime. - -EXAM,bn_mp_prime_miller_rabin.c - - - - -\backmatter -\appendix -\begin{thebibliography}{ABCDEF} -\bibitem[1]{TAOCPV2} -Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998 - -\bibitem[2]{HAC} -A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996 - -\bibitem[3]{ROSE} -Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999 - -\bibitem[4]{COMBA} -Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990) - -\bibitem[5]{KARA} -A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294 - -\bibitem[6]{KARAP} -Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002 - -\bibitem[7]{BARRETT} -Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag. - -\bibitem[8]{MONT} -P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985. - -\bibitem[9]{DRMET} -Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories - -\bibitem[10]{MMB} -J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89 - -\bibitem[11]{RSAREF} -R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems} - -\bibitem[12]{DHREF} -Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976 - -\bibitem[13]{IEEE} -IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985) - -\bibitem[14]{GMP} -GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/} - -\bibitem[15]{MPI} -Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/} - -\bibitem[16]{OPENSSL} -OpenSSL Cryptographic Toolkit, \url{http://openssl.org} - -\bibitem[17]{LIP} -Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip} - -\bibitem[18]{ISOC} -JTC1/SC22/WG14, ISO/IEC 9899:1999, ``A draft rationale for the C99 standard.'' - -\bibitem[19]{JAVA} -The Sun Java Website, \url{http://java.sun.com/} - -\end{thebibliography} - -\input{tommath.ind} - -\end{document} diff --git a/libtommath/tommath_class.h b/libtommath/tommath_class.h index b9cc902..2085521 100644 --- a/libtommath/tommath_class.h +++ b/libtommath/tommath_class.h @@ -38,7 +38,9 @@ #define BN_MP_DR_REDUCE_C #define BN_MP_DR_SETUP_C #define BN_MP_EXCH_C +#define BN_MP_EXPORT_C #define BN_MP_EXPT_D_C +#define BN_MP_EXPT_D_EX_C #define BN_MP_EXPTMOD_C #define BN_MP_EXPTMOD_FAST_C #define BN_MP_EXTEUCLID_C @@ -46,7 +48,10 @@ #define BN_MP_FWRITE_C #define BN_MP_GCD_C #define BN_MP_GET_INT_C +#define BN_MP_GET_LONG_C +#define BN_MP_GET_LONG_LONG_C #define BN_MP_GROW_C +#define BN_MP_IMPORT_C #define BN_MP_INIT_C #define BN_MP_INIT_COPY_C #define BN_MP_INIT_MULTI_C @@ -73,6 +78,7 @@ #define BN_MP_MUL_D_C #define BN_MP_MULMOD_C #define BN_MP_N_ROOT_C +#define BN_MP_N_ROOT_EX_C #define BN_MP_NEG_C #define BN_MP_OR_C #define BN_MP_PRIME_FERMAT_C @@ -99,11 +105,14 @@ #define BN_MP_RSHD_C #define BN_MP_SET_C #define BN_MP_SET_INT_C +#define BN_MP_SET_LONG_C +#define BN_MP_SET_LONG_LONG_C #define BN_MP_SHRINK_C #define BN_MP_SIGNED_BIN_SIZE_C #define BN_MP_SQR_C #define BN_MP_SQRMOD_C #define BN_MP_SQRT_C +#define BN_MP_SQRTMOD_PRIME_C #define BN_MP_SUB_C #define BN_MP_SUB_D_C #define BN_MP_SUBMOD_C @@ -315,12 +324,23 @@ #if defined(BN_MP_EXCH_C) #endif +#if defined(BN_MP_EXPORT_C) + #define BN_MP_INIT_COPY_C + #define BN_MP_COUNT_BITS_C + #define BN_MP_DIV_2D_C + #define BN_MP_CLEAR_C +#endif + #if defined(BN_MP_EXPT_D_C) + #define BN_MP_EXPT_D_EX_C +#endif + +#if defined(BN_MP_EXPT_D_EX_C) #define BN_MP_INIT_COPY_C #define BN_MP_SET_C - #define BN_MP_SQR_C - #define BN_MP_CLEAR_C #define BN_MP_MUL_C + #define BN_MP_CLEAR_C + #define BN_MP_SQR_C #endif #if defined(BN_MP_EXPTMOD_C) @@ -387,7 +407,6 @@ #if defined(BN_MP_GCD_C) #define BN_MP_ISZERO_C #define BN_MP_ABS_C - #define BN_MP_ZERO_C #define BN_MP_INIT_COPY_C #define BN_MP_CNT_LSB_C #define BN_MP_DIV_2D_C @@ -401,13 +420,26 @@ #if defined(BN_MP_GET_INT_C) #endif +#if defined(BN_MP_GET_LONG_C) +#endif + +#if defined(BN_MP_GET_LONG_LONG_C) +#endif + #if defined(BN_MP_GROW_C) #endif +#if defined(BN_MP_IMPORT_C) + #define BN_MP_ZERO_C + #define BN_MP_MUL_2D_C + #define BN_MP_CLAMP_C +#endif + #if defined(BN_MP_INIT_C) #endif #if defined(BN_MP_INIT_COPY_C) + #define BN_MP_INIT_SIZE_C #define BN_MP_COPY_C #endif @@ -481,8 +513,9 @@ #define BN_MP_MUL_C #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C - #define BN_MP_SUB_C + #define BN_S_MP_ADD_C #define BN_MP_ADD_C + #define BN_S_MP_SUB_C #define BN_MP_LSHD_C #define BN_MP_CLEAR_C #endif @@ -491,8 +524,8 @@ #define BN_MP_INIT_SIZE_C #define BN_MP_CLAMP_C #define BN_MP_SQR_C - #define BN_MP_SUB_C #define BN_S_MP_ADD_C + #define BN_S_MP_SUB_C #define BN_MP_LSHD_C #define BN_MP_ADD_C #define BN_MP_CLEAR_C @@ -516,8 +549,9 @@ #define BN_MP_INIT_C #define BN_MP_DIV_C #define BN_MP_CLEAR_C - #define BN_MP_ADD_C + #define BN_MP_ISZERO_C #define BN_MP_EXCH_C + #define BN_MP_ADD_C #endif #if defined(BN_MP_MOD_2D_C) @@ -583,10 +617,14 @@ #endif #if defined(BN_MP_N_ROOT_C) + #define BN_MP_N_ROOT_EX_C +#endif + +#if defined(BN_MP_N_ROOT_EX_C) #define BN_MP_INIT_C #define BN_MP_SET_C #define BN_MP_COPY_C - #define BN_MP_EXPT_D_C + #define BN_MP_EXPT_D_EX_C #define BN_MP_MUL_C #define BN_MP_SUB_C #define BN_MP_MUL_D_C @@ -667,9 +705,9 @@ #endif #if defined(BN_MP_RADIX_SIZE_C) + #define BN_MP_ISZERO_C #define BN_MP_COUNT_BITS_C #define BN_MP_INIT_COPY_C - #define BN_MP_ISZERO_C #define BN_MP_DIV_D_C #define BN_MP_CLEAR_C #endif @@ -687,7 +725,6 @@ #if defined(BN_MP_READ_RADIX_C) #define BN_MP_ZERO_C #define BN_MP_S_RMAP_C - #define BN_MP_RADIX_SMAP_C #define BN_MP_MUL_D_C #define BN_MP_ADD_D_C #define BN_MP_ISZERO_C @@ -788,6 +825,12 @@ #define BN_MP_CLAMP_C #endif +#if defined(BN_MP_SET_LONG_C) +#endif + +#if defined(BN_MP_SET_LONG_LONG_C) +#endif + #if defined(BN_MP_SHRINK_C) #endif @@ -823,6 +866,25 @@ #define BN_MP_CLEAR_C #endif +#if defined(BN_MP_SQRTMOD_PRIME_C) + #define BN_MP_CMP_D_C + #define BN_MP_ZERO_C + #define BN_MP_JACOBI_C + #define BN_MP_INIT_MULTI_C + #define BN_MP_MOD_D_C + #define BN_MP_ADD_D_C + #define BN_MP_DIV_2_C + #define BN_MP_EXPTMOD_C + #define BN_MP_COPY_C + #define BN_MP_SUB_D_C + #define BN_MP_ISEVEN_C + #define BN_MP_SET_INT_C + #define BN_MP_SQRMOD_C + #define BN_MP_MULMOD_C + #define BN_MP_SET_C + #define BN_MP_CLEAR_MULTI_C +#endif + #if defined(BN_MP_SUB_C) #define BN_S_MP_ADD_C #define BN_MP_CMP_MAG_C diff --git a/libtommath/tommath_private.h b/libtommath/tommath_private.h new file mode 100644 index 0000000..d23c333 --- /dev/null +++ b/libtommath/tommath_private.h @@ -0,0 +1,125 @@ +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com + */ +#ifndef TOMMATH_PRIV_H_ +#define TOMMATH_PRIV_H_ + +#include <tommath.h> +#include <ctype.h> + +#ifndef MIN +#define MIN(x,y) (((x) < (y)) ? (x) : (y)) +#endif + +#ifndef MAX +#define MAX(x,y) (((x) > (y)) ? (x) : (y)) +#endif + +#ifdef __cplusplus +extern "C" { + +/* C++ compilers don't like assigning void * to mp_digit * */ +#define OPT_CAST(x) (x *) + +#else + +/* C on the other hand doesn't care */ +#define OPT_CAST(x) + +#endif + +/* define heap macros */ +#if 0 +#ifndef XMALLOC + /* default to libc stuff */ + #define XMALLOC malloc + #define XFREE free + #define XREALLOC realloc + #define XCALLOC calloc +#else + /* prototypes for our heap functions */ + extern void *XMALLOC(size_t n); + extern void *XREALLOC(void *p, size_t n); + extern void *XCALLOC(size_t n, size_t s); + extern void XFREE(void *p); +#endif +#endif + +/* lowlevel functions, do not call! */ +int s_mp_add(mp_int *a, mp_int *b, mp_int *c); +int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); +#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) +int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); +int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); +int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); +int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); +int fast_s_mp_sqr(mp_int *a, mp_int *b); +int s_mp_sqr(mp_int *a, mp_int *b); +int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); +int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); +int mp_karatsuba_sqr(mp_int *a, mp_int *b); +int mp_toom_sqr(mp_int *a, mp_int *b); +int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); +int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); +int fast_mp_montgomery_reduce(mp_int *x, mp_int *n, mp_digit rho); +int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int redmode); +int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); +void bn_reverse(unsigned char *s, int len); + +extern const char *mp_s_rmap; + +/* Fancy macro to set an MPI from another type. + * There are several things assumed: + * x is the counter and unsigned + * a is the pointer to the MPI + * b is the original value that should be set in the MPI. + */ +#define MP_SET_XLONG(func_name, type) \ +int func_name (mp_int * a, type b) \ +{ \ + unsigned int x; \ + int res; \ + \ + mp_zero (a); \ + \ + /* set four bits at a time */ \ + for (x = 0; x < (sizeof(type) * 2u); x++) { \ + /* shift the number up four bits */ \ + if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) { \ + return res; \ + } \ + \ + /* OR in the top four bits of the source */ \ + a->dp[0] |= (b >> ((sizeof(type) * 8u) - 4u)) & 15u; \ + \ + /* shift the source up to the next four bits */ \ + b <<= 4; \ + \ + /* ensure that digits are not clamped off */ \ + a->used += 1; \ + } \ + mp_clamp (a); \ + return MP_OKAY; \ +} + +#ifdef __cplusplus + } +#endif + +#endif + + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/libtommath/tommath_superclass.h b/libtommath/tommath_superclass.h index e3926df..0eeaf5f 100644 --- a/libtommath/tommath_superclass.h +++ b/libtommath/tommath_superclass.h @@ -60,9 +60,9 @@ #undef BN_FAST_MP_INVMOD_C /* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold - * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines] + * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines] * which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without - * trouble. + * trouble. */ #undef BN_S_MP_MUL_DIGS_C #undef BN_S_MP_SQR_C @@ -70,3 +70,7 @@ #endif #endif + +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ diff --git a/macosx/Tcl.xcode/project.pbxproj b/macosx/Tcl.xcode/project.pbxproj index a99afc5..117cd61 100644 --- a/macosx/Tcl.xcode/project.pbxproj +++ b/macosx/Tcl.xcode/project.pbxproj @@ -166,6 +166,7 @@ F9E61D2A090A4891002B3151 /* bn_mp_sqrt.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42C008F272B3004A47F5 /* bn_mp_sqrt.c */; }; F9E61D2B090A48A4002B3151 /* bn_mp_and.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D426C08F272B3004A47F5 /* bn_mp_and.c */; }; F9E61D2C090A48AC002B3151 /* bn_mp_expt_d.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D427F08F272B3004A47F5 /* bn_mp_expt_d.c */; }; + F9E61D2C090A48AC002B3151 /* bn_mp_expt_d_ex.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D427F08F272B3004A47F5 /* bn_mp_expt_d_ex.c */; }; F9E61D2D090A48BB002B3151 /* bn_mp_xor.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42CD08F272B3004A47F5 /* bn_mp_xor.c */; }; F9E61D2E090A48BF002B3151 /* bn_mp_or.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42A308F272B3004A47F5 /* bn_mp_or.c */; }; F9E61D2F090A48C7002B3151 /* bn_mp_shrink.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42BC08F272B3004A47F5 /* bn_mp_shrink.c */; }; @@ -1442,6 +1443,7 @@ F96D427A08F272B3004A47F5 /* bn_mp_div_d.c */, F96D427E08F272B3004A47F5 /* bn_mp_exch.c */, F96D427F08F272B3004A47F5 /* bn_mp_expt_d.c */, + F96D427F08F272B3004A47F5 /* bn_mp_expt_d_ex.c */, F96D428708F272B3004A47F5 /* bn_mp_grow.c */, F96D428808F272B3004A47F5 /* bn_mp_init.c */, F96D428908F272B3004A47F5 /* bn_mp_init_copy.c */, @@ -2075,6 +2077,7 @@ F96D48F808F272C3004A47F5 /* bn_mp_div_d.c in Sources */, F96D48FC08F272C3004A47F5 /* bn_mp_exch.c in Sources */, F9E61D2C090A48AC002B3151 /* bn_mp_expt_d.c in Sources */, + F9E61D2C090A48AC002B3151 /* bn_mp_expt_d_ex.c in Sources */, F96D490508F272C3004A47F5 /* bn_mp_grow.c in Sources */, F96D490608F272C3004A47F5 /* bn_mp_init.c in Sources */, F96D490708F272C3004A47F5 /* bn_mp_init_copy.c in Sources */, diff --git a/macosx/Tcl.xcodeproj/project.pbxproj b/macosx/Tcl.xcodeproj/project.pbxproj index 393fd31..3be274f 100644 --- a/macosx/Tcl.xcodeproj/project.pbxproj +++ b/macosx/Tcl.xcodeproj/project.pbxproj @@ -165,7 +165,8 @@ F9E61D29090A486C002B3151 /* bn_mp_neg.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42A208F272B3004A47F5 /* bn_mp_neg.c */; }; F9E61D2A090A4891002B3151 /* bn_mp_sqrt.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42C008F272B3004A47F5 /* bn_mp_sqrt.c */; }; F9E61D2B090A48A4002B3151 /* bn_mp_and.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D426C08F272B3004A47F5 /* bn_mp_and.c */; }; - F9E61D2C090A48AC002B3151 /* bn_mp_expt_d.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D427F08F272B3004A47F5 /* bn_mp_expt_d.c */; }; + F9E61D2C090A48AC002B3151 /* bn_mp_expt_d.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D427F08F272B3004A47F5 /* bn_mp_expt_d_ex.c */; }; + F9E61D2C090A48AC002B3151 /* bn_mp_expt_d_ex.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D427F08F272B3004A47F5 /* bn_mp_expt_d.c */; }; F9E61D2D090A48BB002B3151 /* bn_mp_xor.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42CD08F272B3004A47F5 /* bn_mp_xor.c */; }; F9E61D2E090A48BF002B3151 /* bn_mp_or.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42A308F272B3004A47F5 /* bn_mp_or.c */; }; F9E61D2F090A48C7002B3151 /* bn_mp_shrink.c in Sources */ = {isa = PBXBuildFile; fileRef = F96D42BC08F272B3004A47F5 /* bn_mp_shrink.c */; }; @@ -579,6 +580,7 @@ F96D427A08F272B3004A47F5 /* bn_mp_div_d.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = bn_mp_div_d.c; sourceTree = "<group>"; }; F96D427E08F272B3004A47F5 /* bn_mp_exch.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = bn_mp_exch.c; sourceTree = "<group>"; }; F96D427F08F272B3004A47F5 /* bn_mp_expt_d.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = bn_mp_expt_d.c; sourceTree = "<group>"; }; + F96D427F08F272B3004A47F5 /* bn_mp_expt_d_ex.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = bn_mp_expt_d_ex.c; sourceTree = "<group>"; }; F96D428708F272B3004A47F5 /* bn_mp_grow.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = bn_mp_grow.c; sourceTree = "<group>"; }; F96D428808F272B3004A47F5 /* bn_mp_init.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = bn_mp_init.c; sourceTree = "<group>"; }; F96D428908F272B3004A47F5 /* bn_mp_init_copy.c */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.c.c; path = bn_mp_init_copy.c; sourceTree = "<group>"; }; @@ -1442,6 +1444,7 @@ F96D427A08F272B3004A47F5 /* bn_mp_div_d.c */, F96D427E08F272B3004A47F5 /* bn_mp_exch.c */, F96D427F08F272B3004A47F5 /* bn_mp_expt_d.c */, + F96D427F08F272B3004A47F5 /* bn_mp_expt_d_ex.c */, F96D428708F272B3004A47F5 /* bn_mp_grow.c */, F96D428808F272B3004A47F5 /* bn_mp_init.c */, F96D428908F272B3004A47F5 /* bn_mp_init_copy.c */, @@ -2075,6 +2078,7 @@ F96D48F808F272C3004A47F5 /* bn_mp_div_d.c in Sources */, F96D48FC08F272C3004A47F5 /* bn_mp_exch.c in Sources */, F9E61D2C090A48AC002B3151 /* bn_mp_expt_d.c in Sources */, + F9E61D2C090A48AC002B3151 /* bn_mp_expt_d_ex.c in Sources */, F96D490508F272C3004A47F5 /* bn_mp_grow.c in Sources */, F96D490608F272C3004A47F5 /* bn_mp_init.c in Sources */, F96D490708F272C3004A47F5 /* bn_mp_init_copy.c in Sources */, diff --git a/unix/Makefile.in b/unix/Makefile.in index 628c6e9..c4f6136 100644 --- a/unix/Makefile.in +++ b/unix/Makefile.in @@ -320,7 +320,7 @@ TOMMATH_OBJS = bncore.o bn_reverse.o bn_fast_s_mp_mul_digs.o \ bn_mp_cnt_lsb.o bn_mp_copy.o \ bn_mp_count_bits.o bn_mp_div.o bn_mp_div_d.o bn_mp_div_2.o \ bn_mp_div_2d.o bn_mp_div_3.o \ - bn_mp_exch.o bn_mp_expt_d.o bn_mp_grow.o bn_mp_init.o \ + bn_mp_exch.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_grow.o bn_mp_init.o \ bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \ bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_karatsuba_mul.o \ bn_mp_karatsuba_sqr.o \ @@ -503,6 +503,7 @@ TOMMATH_SRCS = \ $(TOMMATH_DIR)/bn_mp_div_3.c \ $(TOMMATH_DIR)/bn_mp_exch.c \ $(TOMMATH_DIR)/bn_mp_expt_d.c \ + $(TOMMATH_DIR)/bn_mp_expt_d_ex.c \ $(TOMMATH_DIR)/bn_mp_grow.c \ $(TOMMATH_DIR)/bn_mp_init.c \ $(TOMMATH_DIR)/bn_mp_init_copy.c \ @@ -1420,6 +1421,9 @@ bn_mp_exch.o: $(TOMMATH_DIR)/bn_mp_exch.c $(MATHHDRS) bn_mp_expt_d.o: $(TOMMATH_DIR)/bn_mp_expt_d.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_expt_d.c +bn_mp_expt_d_ex.o: $(TOMMATH_DIR)/bn_mp_expt_d_ex.c $(MATHHDRS) + $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_expt_d_ex.c + bn_mp_grow.o: $(TOMMATH_DIR)/bn_mp_grow.c $(MATHHDRS) $(CC) -c $(CC_SWITCHES) $(TOMMATH_DIR)/bn_mp_grow.c diff --git a/unix/tclUnixNotfy.c b/unix/tclUnixNotfy.c index 9f9301f..e37962d 100644 --- a/unix/tclUnixNotfy.c +++ b/unix/tclUnixNotfy.c @@ -150,8 +150,8 @@ static int triggerPipe = -1; * The notifierMutex locks access to all of the global notifier state. */ -pthread_mutex_t notifierInitMutex = PTHREAD_MUTEX_INITIALIZER; -pthread_mutex_t notifierMutex = PTHREAD_MUTEX_INITIALIZER; +static pthread_mutex_t notifierInitMutex = PTHREAD_MUTEX_INITIALIZER; +static pthread_mutex_t notifierMutex = PTHREAD_MUTEX_INITIALIZER; /* * The following static indicates if the notifier thread is running. * diff --git a/win/Makefile.in b/win/Makefile.in index 31efb42..e967ef3 100644 --- a/win/Makefile.in +++ b/win/Makefile.in @@ -328,6 +328,7 @@ TOMMATH_OBJS = \ bn_mp_div_3.${OBJEXT} \ bn_mp_exch.${OBJEXT} \ bn_mp_expt_d.${OBJEXT} \ + bn_mp_expt_d_ex.${OBJEXT} \ bn_mp_grow.${OBJEXT} \ bn_mp_init.${OBJEXT} \ bn_mp_init_copy.${OBJEXT} \ diff --git a/win/makefile.vc b/win/makefile.vc index 6535fde..c10b196 100644 --- a/win/makefile.vc +++ b/win/makefile.vc @@ -383,6 +383,7 @@ TOMMATHOBJS = \ $(TMP_DIR)\bn_mp_div_3.obj \
$(TMP_DIR)\bn_mp_exch.obj \
$(TMP_DIR)\bn_mp_expt_d.obj \
+ $(TMP_DIR)\bn_mp_expt_d_ex.obj \
$(TMP_DIR)\bn_mp_grow.obj \
$(TMP_DIR)\bn_mp_init.obj \
$(TMP_DIR)\bn_mp_init_copy.obj \
|