1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing for details. */
#include "cmCTestBinPacker.h"
#include <algorithm>
#include <utility>
bool cmCTestBinPackerAllocation::operator==(
const cmCTestBinPackerAllocation& other) const
{
return this->ProcessIndex == other.ProcessIndex &&
this->SlotsNeeded == other.SlotsNeeded && this->Id == other.Id;
}
bool cmCTestBinPackerAllocation::operator!=(
const cmCTestBinPackerAllocation& other) const
{
return !(*this == other);
}
namespace {
/*
* The following algorithm is used to do two things:
*
* 1) Determine if a test's resource requirements can fit within the resources
* present on the system, and
* 2) Do the actual allocation
*
* This algorithm performs a recursive search, looking for a bin pack that will
* fit the specified requirements. It has a template to specify different
* optimization strategies. If it ever runs out of room, it backtracks as far
* down the stack as it needs to and tries a different combination until no
* more combinations can be tried.
*/
template <typename AllocationStrategy>
bool AllocateCTestResources(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
const std::vector<std::string>& resourcesSorted, std::size_t currentIndex,
std::vector<cmCTestBinPackerAllocation*>& allocations)
{
// Iterate through all large enough resources until we find a solution
std::size_t resourceIndex = 0;
while (resourceIndex < resourcesSorted.size()) {
auto const& resource = resources.at(resourcesSorted[resourceIndex]);
if (resource.Free() >=
static_cast<unsigned int>(allocations[currentIndex]->SlotsNeeded)) {
// Preemptively allocate the resource
allocations[currentIndex]->Id = resourcesSorted[resourceIndex];
if (currentIndex + 1 >= allocations.size()) {
// We have a solution
return true;
}
// Move the resource up the list until it is sorted again
auto resources2 = resources;
auto resourcesSorted2 = resourcesSorted;
resources2[resourcesSorted2[resourceIndex]].Locked +=
allocations[currentIndex]->SlotsNeeded;
AllocationStrategy::IncrementalSort(resources2, resourcesSorted2,
resourceIndex);
// Recurse one level deeper
if (AllocateCTestResources<AllocationStrategy>(
resources2, resourcesSorted2, currentIndex + 1, allocations)) {
return true;
}
}
// No solution found here, deallocate the resource and try the next one
allocations[currentIndex]->Id.clear();
auto freeSlots = resources.at(resourcesSorted.at(resourceIndex)).Free();
do {
++resourceIndex;
} while (resourceIndex < resourcesSorted.size() &&
resources.at(resourcesSorted.at(resourceIndex)).Free() ==
freeSlots);
}
// No solution was found
return false;
}
template <typename AllocationStrategy>
bool AllocateCTestResources(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<cmCTestBinPackerAllocation>& allocations)
{
// Sort the resource requirements in descending order by slots needed
std::vector<cmCTestBinPackerAllocation*> allocationsPtr;
allocationsPtr.reserve(allocations.size());
for (auto& allocation : allocations) {
allocationsPtr.push_back(&allocation);
}
std::stable_sort(
allocationsPtr.rbegin(), allocationsPtr.rend(),
[](cmCTestBinPackerAllocation* a1, cmCTestBinPackerAllocation* a2) {
return a1->SlotsNeeded < a2->SlotsNeeded;
});
// Sort the resources according to sort strategy
std::vector<std::string> resourcesSorted;
resourcesSorted.reserve(resources.size());
for (auto const& res : resources) {
resourcesSorted.push_back(res.first);
}
AllocationStrategy::InitialSort(resources, resourcesSorted);
// Do the actual allocation
return AllocateCTestResources<AllocationStrategy>(
resources, resourcesSorted, static_cast<std::size_t>(0), allocationsPtr);
}
class RoundRobinAllocationStrategy
{
public:
static void InitialSort(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<std::string>& resourcesSorted);
static void IncrementalSort(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<std::string>& resourcesSorted, std::size_t lastAllocatedIndex);
};
void RoundRobinAllocationStrategy::InitialSort(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<std::string>& resourcesSorted)
{
std::stable_sort(
resourcesSorted.rbegin(), resourcesSorted.rend(),
[&resources](const std::string& id1, const std::string& id2) {
return resources.at(id1).Free() < resources.at(id2).Free();
});
}
void RoundRobinAllocationStrategy::IncrementalSort(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<std::string>& resourcesSorted, std::size_t lastAllocatedIndex)
{
auto tmp = resourcesSorted[lastAllocatedIndex];
std::size_t i = lastAllocatedIndex;
while (i < resourcesSorted.size() - 1 &&
resources.at(resourcesSorted[i + 1]).Free() >
resources.at(tmp).Free()) {
resourcesSorted[i] = resourcesSorted[i + 1];
++i;
}
resourcesSorted[i] = tmp;
}
class BlockAllocationStrategy
{
public:
static void InitialSort(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<std::string>& resourcesSorted);
static void IncrementalSort(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<std::string>& resourcesSorted, std::size_t lastAllocatedIndex);
};
void BlockAllocationStrategy::InitialSort(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<std::string>& resourcesSorted)
{
std::stable_sort(
resourcesSorted.rbegin(), resourcesSorted.rend(),
[&resources](const std::string& id1, const std::string& id2) {
return resources.at(id1).Free() < resources.at(id2).Free();
});
}
void BlockAllocationStrategy::IncrementalSort(
const std::map<std::string, cmCTestResourceAllocator::Resource>&,
std::vector<std::string>& resourcesSorted, std::size_t lastAllocatedIndex)
{
auto tmp = resourcesSorted[lastAllocatedIndex];
std::size_t i = lastAllocatedIndex;
while (i > 0) {
resourcesSorted[i] = resourcesSorted[i - 1];
--i;
}
resourcesSorted[i] = tmp;
}
}
bool cmAllocateCTestResourcesRoundRobin(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<cmCTestBinPackerAllocation>& allocations)
{
return AllocateCTestResources<RoundRobinAllocationStrategy>(resources,
allocations);
}
bool cmAllocateCTestResourcesBlock(
const std::map<std::string, cmCTestResourceAllocator::Resource>& resources,
std::vector<cmCTestBinPackerAllocation>& allocations)
{
return AllocateCTestResources<BlockAllocationStrategy>(resources,
allocations);
}
|