summaryrefslogtreecommitdiffstats
path: root/Source/cmComputeLinkDepends.cxx
blob: 93f3289c6844f1b1f31e2f6937a3736704a9cbdd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/* Distributed under the OSI-approved BSD 3-Clause License.  See accompanying
   file Copyright.txt or https://cmake.org/licensing for details.  */
#include "cmComputeLinkDepends.h"

#include "cmAlgorithms.h"
#include "cmComputeComponentGraph.h"
#include "cmGeneratorTarget.h"
#include "cmGlobalGenerator.h"
#include "cmLocalGenerator.h"
#include "cmMakefile.h"
#include "cmState.h"
#include "cmSystemTools.h"
#include "cmTarget.h"
#include "cmake.h"

#include <algorithm>
#include <assert.h>
#include <iterator>
#include <sstream>
#include <stdio.h>
#include <string.h>
#include <utility>

/*

This file computes an ordered list of link items to use when linking a
single target in one configuration.  Each link item is identified by
the string naming it.  A graph of dependencies is created in which
each node corresponds to one item and directed edges lead from nodes to
those which must *follow* them on the link line.  For example, the
graph

  A -> B -> C

will lead to the link line order

  A B C

The set of items placed in the graph is formed with a breadth-first
search of the link dependencies starting from the main target.

There are two types of items: those with known direct dependencies and
those without known dependencies.  We will call the two types "known
items" and "unknown items", respectively.  Known items are those whose
names correspond to targets (built or imported) and those for which an
old-style <item>_LIB_DEPENDS variable is defined.  All other items are
unknown and we must infer dependencies for them.  For items that look
like flags (beginning with '-') we trivially infer no dependencies,
and do not include them in the dependencies of other items.

Known items have dependency lists ordered based on how the user
specified them.  We can use this order to infer potential dependencies
of unknown items.  For example, if link items A and B are unknown and
items X and Y are known, then we might have the following dependency
lists:

  X: Y A B
  Y: A B

The explicitly known dependencies form graph edges

  X -> Y  ,  X -> A  ,  X -> B  ,  Y -> A  ,  Y -> B

We can also infer the edge

  A -> B

because *every* time A appears B is seen on its right.  We do not know
whether A really needs symbols from B to link, but it *might* so we
must preserve their order.  This is the case also for the following
explicit lists:

  X: A B Y
  Y: A B

Here, A is followed by the set {B,Y} in one list, and {B} in the other
list.  The intersection of these sets is {B}, so we can infer that A
depends on at most B.  Meanwhile B is followed by the set {Y} in one
list and {} in the other.  The intersection is {} so we can infer that
B has no dependencies.

Let's make a more complex example by adding unknown item C and
considering these dependency lists:

  X: A B Y C
  Y: A C B

The explicit edges are

  X -> Y  ,  X -> A  ,  X -> B  ,  X -> C  ,  Y -> A  ,  Y -> B  ,  Y -> C

For the unknown items, we infer dependencies by looking at the
"follow" sets:

  A: intersect( {B,Y,C} , {C,B} ) = {B,C} ; infer edges  A -> B  ,  A -> C
  B: intersect( {Y,C}   , {}    ) = {}    ; infer no edges
  C: intersect( {}      , {B}   ) = {}    ; infer no edges

Note that targets are never inferred as dependees because outside
libraries should not depend on them.

------------------------------------------------------------------------------

The initial exploration of dependencies using a BFS associates an
integer index with each link item.  When the graph is built outgoing
edges are sorted by this index.

After the initial exploration of the link interface tree, any
transitive (dependent) shared libraries that were encountered and not
included in the interface are processed in their own BFS.  This BFS
follows only the dependent library lists and not the link interfaces.
They are added to the link items with a mark indicating that the are
transitive dependencies.  Then cmComputeLinkInformation deals with
them on a per-platform basis.

The complete graph formed from all known and inferred dependencies may
not be acyclic, so an acyclic version must be created.
The original graph is converted to a directed acyclic graph in which
each node corresponds to a strongly connected component of the
original graph.  For example, the dependency graph

  X -> A -> B -> C -> A -> Y

contains strongly connected components {X}, {A,B,C}, and {Y}.  The
implied directed acyclic graph (DAG) is

  {X} -> {A,B,C} -> {Y}

We then compute a topological order for the DAG nodes to serve as a
reference for satisfying dependencies efficiently.  We perform the DFS
in reverse order and assign topological order indices counting down so
that the result is as close to the original BFS order as possible
without violating dependencies.

------------------------------------------------------------------------------

The final link entry order is constructed as follows.  We first walk
through and emit the *original* link line as specified by the user.
As each item is emitted, a set of pending nodes in the component DAG
is maintained.  When a pending component has been completely seen, it
is removed from the pending set and its dependencies (following edges
of the DAG) are added.  A trivial component (those with one item) is
complete as soon as its item is seen.  A non-trivial component (one
with more than one item; assumed to be static libraries) is complete
when *all* its entries have been seen *twice* (all entries seen once,
then all entries seen again, not just each entry twice).  A pending
component tracks which items have been seen and a count of how many
times the component needs to be seen (once for trivial components,
twice for non-trivial).  If at any time another component finishes and
re-adds an already pending component, the pending component is reset
so that it needs to be seen in its entirety again.  This ensures that
all dependencies of a component are satisfied no matter where it
appears.

After the original link line has been completed, we append to it the
remaining pending components and their dependencies.  This is done by
repeatedly emitting the first item from the first pending component
and following the same update rules as when traversing the original
link line.  Since the pending components are kept in topological order
they are emitted with minimal repeats (we do not want to emit a
component just to have it added again when another component is
completed later).  This process continues until no pending components
remain.  We know it will terminate because the component graph is
guaranteed to be acyclic.

The final list of items produced by this procedure consists of the
original user link line followed by minimal additional items needed to
satisfy dependencies.  The final list is then filtered to de-duplicate
items that we know the linker will re-use automatically (shared libs).

*/

cmComputeLinkDepends::cmComputeLinkDepends(const cmGeneratorTarget* target,
                                           const std::string& config)
{
  // Store context information.
  this->Target = target;
  this->Makefile = this->Target->Target->GetMakefile();
  this->GlobalGenerator =
    this->Target->GetLocalGenerator()->GetGlobalGenerator();
  this->CMakeInstance = this->GlobalGenerator->GetCMakeInstance();

  // The configuration being linked.
  this->HasConfig = !config.empty();
  this->Config = (this->HasConfig) ? config : std::string();
  std::vector<std::string> debugConfigs =
    this->Makefile->GetCMakeInstance()->GetDebugConfigs();
  this->LinkType = CMP0003_ComputeLinkType(this->Config, debugConfigs);

  // Enable debug mode if requested.
  this->DebugMode = this->Makefile->IsOn("CMAKE_LINK_DEPENDS_DEBUG_MODE");

  // Assume no compatibility until set.
  this->OldLinkDirMode = false;

  // No computation has been done.
  this->CCG = CM_NULLPTR;
}

cmComputeLinkDepends::~cmComputeLinkDepends()
{
  cmDeleteAll(this->InferredDependSets);
  delete this->CCG;
}

void cmComputeLinkDepends::SetOldLinkDirMode(bool b)
{
  this->OldLinkDirMode = b;
}

std::vector<cmComputeLinkDepends::LinkEntry> const&
cmComputeLinkDepends::Compute()
{
  // Follow the link dependencies of the target to be linked.
  this->AddDirectLinkEntries();

  // Complete the breadth-first search of dependencies.
  while (!this->BFSQueue.empty()) {
    // Get the next entry.
    BFSEntry qe = this->BFSQueue.front();
    this->BFSQueue.pop();

    // Follow the entry's dependencies.
    this->FollowLinkEntry(qe);
  }

  // Complete the search of shared library dependencies.
  while (!this->SharedDepQueue.empty()) {
    // Handle the next entry.
    this->HandleSharedDependency(this->SharedDepQueue.front());
    this->SharedDepQueue.pop();
  }

  // Infer dependencies of targets for which they were not known.
  this->InferDependencies();

  // Cleanup the constraint graph.
  this->CleanConstraintGraph();

  // Display the constraint graph.
  if (this->DebugMode) {
    fprintf(stderr, "---------------------------------------"
                    "---------------------------------------\n");
    fprintf(stderr, "Link dependency analysis for target %s, config %s\n",
            this->Target->GetName().c_str(),
            this->HasConfig ? this->Config.c_str() : "noconfig");
    this->DisplayConstraintGraph();
  }

  // Compute the final ordering.
  this->OrderLinkEntires();

  // Compute the final set of link entries.
  // Iterate in reverse order so we can keep only the last occurrence
  // of a shared library.
  std::set<int> emmitted;
  for (std::vector<int>::const_reverse_iterator
         li = this->FinalLinkOrder.rbegin(),
         le = this->FinalLinkOrder.rend();
       li != le; ++li) {
    int i = *li;
    LinkEntry const& e = this->EntryList[i];
    cmGeneratorTarget const* t = e.Target;
    // Entries that we know the linker will re-use do not need to be repeated.
    bool uniquify = t && t->GetType() == cmState::SHARED_LIBRARY;
    if (!uniquify || emmitted.insert(i).second) {
      this->FinalLinkEntries.push_back(e);
    }
  }
  // Reverse the resulting order since we iterated in reverse.
  std::reverse(this->FinalLinkEntries.begin(), this->FinalLinkEntries.end());

  // Display the final set.
  if (this->DebugMode) {
    this->DisplayFinalEntries();
  }

  return this->FinalLinkEntries;
}

std::map<std::string, int>::iterator cmComputeLinkDepends::AllocateLinkEntry(
  std::string const& item)
{
  std::map<std::string, int>::value_type index_entry(
    item, static_cast<int>(this->EntryList.size()));
  std::map<std::string, int>::iterator lei =
    this->LinkEntryIndex.insert(index_entry).first;
  this->EntryList.push_back(LinkEntry());
  this->InferredDependSets.push_back(CM_NULLPTR);
  this->EntryConstraintGraph.push_back(EdgeList());
  return lei;
}

int cmComputeLinkDepends::AddLinkEntry(cmLinkItem const& item)
{
  // Check if the item entry has already been added.
  std::map<std::string, int>::iterator lei = this->LinkEntryIndex.find(item);
  if (lei != this->LinkEntryIndex.end()) {
    // Yes.  We do not need to follow the item's dependencies again.
    return lei->second;
  }

  // Allocate a spot for the item entry.
  lei = this->AllocateLinkEntry(item);

  // Initialize the item entry.
  int index = lei->second;
  LinkEntry& entry = this->EntryList[index];
  entry.Item = item;
  entry.Target = item.Target;
  entry.IsFlag = (!entry.Target && item[0] == '-' && item[1] != 'l' &&
                  item.substr(0, 10) != "-framework");

  // If the item has dependencies queue it to follow them.
  if (entry.Target) {
    // Target dependencies are always known.  Follow them.
    BFSEntry qe = { index, CM_NULLPTR };
    this->BFSQueue.push(qe);
  } else {
    // Look for an old-style <item>_LIB_DEPENDS variable.
    std::string var = entry.Item;
    var += "_LIB_DEPENDS";
    if (const char* val = this->Makefile->GetDefinition(var)) {
      // The item dependencies are known.  Follow them.
      BFSEntry qe = { index, val };
      this->BFSQueue.push(qe);
    } else if (!entry.IsFlag) {
      // The item dependencies are not known.  We need to infer them.
      this->InferredDependSets[index] = new DependSetList;
    }
  }

  return index;
}

void cmComputeLinkDepends::FollowLinkEntry(BFSEntry const& qe)
{
  // Get this entry representation.
  int depender_index = qe.Index;
  LinkEntry const& entry = this->EntryList[depender_index];

  // Follow the item's dependencies.
  if (entry.Target) {
    // Follow the target dependencies.
    if (cmLinkInterface const* iface =
          entry.Target->GetLinkInterface(this->Config, this->Target)) {
      const bool isIface =
        entry.Target->GetType() == cmState::INTERFACE_LIBRARY;
      // This target provides its own link interface information.
      this->AddLinkEntries(depender_index, iface->Libraries);

      if (isIface) {
        return;
      }

      // Handle dependent shared libraries.
      this->FollowSharedDeps(depender_index, iface);

      // Support for CMP0003.
      for (std::vector<cmLinkItem>::const_iterator oi =
             iface->WrongConfigLibraries.begin();
           oi != iface->WrongConfigLibraries.end(); ++oi) {
        this->CheckWrongConfigItem(*oi);
      }
    }
  } else {
    // Follow the old-style dependency list.
    this->AddVarLinkEntries(depender_index, qe.LibDepends);
  }
}

void cmComputeLinkDepends::FollowSharedDeps(int depender_index,
                                            cmLinkInterface const* iface,
                                            bool follow_interface)
{
  // Follow dependencies if we have not followed them already.
  if (this->SharedDepFollowed.insert(depender_index).second) {
    if (follow_interface) {
      this->QueueSharedDependencies(depender_index, iface->Libraries);
    }
    this->QueueSharedDependencies(depender_index, iface->SharedDeps);
  }
}

void cmComputeLinkDepends::QueueSharedDependencies(
  int depender_index, std::vector<cmLinkItem> const& deps)
{
  for (std::vector<cmLinkItem>::const_iterator li = deps.begin();
       li != deps.end(); ++li) {
    SharedDepEntry qe;
    qe.Item = *li;
    qe.DependerIndex = depender_index;
    this->SharedDepQueue.push(qe);
  }
}

void cmComputeLinkDepends::HandleSharedDependency(SharedDepEntry const& dep)
{
  // Check if the target already has an entry.
  std::map<std::string, int>::iterator lei =
    this->LinkEntryIndex.find(dep.Item);
  if (lei == this->LinkEntryIndex.end()) {
    // Allocate a spot for the item entry.
    lei = this->AllocateLinkEntry(dep.Item);

    // Initialize the item entry.
    LinkEntry& entry = this->EntryList[lei->second];
    entry.Item = dep.Item;
    entry.Target = dep.Item.Target;

    // This item was added specifically because it is a dependent
    // shared library.  It may get special treatment
    // in cmComputeLinkInformation.
    entry.IsSharedDep = true;
  }

  // Get the link entry for this target.
  int index = lei->second;
  LinkEntry& entry = this->EntryList[index];

  // This shared library dependency must follow the item that listed
  // it.
  this->EntryConstraintGraph[dep.DependerIndex].push_back(index);

  // Target items may have their own dependencies.
  if (entry.Target) {
    if (cmLinkInterface const* iface =
          entry.Target->GetLinkInterface(this->Config, this->Target)) {
      // Follow public and private dependencies transitively.
      this->FollowSharedDeps(index, iface, true);
    }
  }
}

void cmComputeLinkDepends::AddVarLinkEntries(int depender_index,
                                             const char* value)
{
  // This is called to add the dependencies named by
  // <item>_LIB_DEPENDS.  The variable contains a semicolon-separated
  // list.  The list contains link-type;item pairs and just items.
  std::vector<std::string> deplist;
  cmSystemTools::ExpandListArgument(value, deplist);

  // Look for entries meant for this configuration.
  std::vector<cmLinkItem> actual_libs;
  cmTargetLinkLibraryType llt = GENERAL_LibraryType;
  bool haveLLT = false;
  for (std::vector<std::string>::const_iterator di = deplist.begin();
       di != deplist.end(); ++di) {
    if (*di == "debug") {
      llt = DEBUG_LibraryType;
      haveLLT = true;
    } else if (*di == "optimized") {
      llt = OPTIMIZED_LibraryType;
      haveLLT = true;
    } else if (*di == "general") {
      llt = GENERAL_LibraryType;
      haveLLT = true;
    } else if (!di->empty()) {
      // If no explicit link type was given prior to this entry then
      // check if the entry has its own link type variable.  This is
      // needed for compatibility with dependency files generated by
      // the export_library_dependencies command from CMake 2.4 and
      // lower.
      if (!haveLLT) {
        std::string var = *di;
        var += "_LINK_TYPE";
        if (const char* val = this->Makefile->GetDefinition(var)) {
          if (strcmp(val, "debug") == 0) {
            llt = DEBUG_LibraryType;
          } else if (strcmp(val, "optimized") == 0) {
            llt = OPTIMIZED_LibraryType;
          }
        }
      }

      // If the library is meant for this link type then use it.
      if (llt == GENERAL_LibraryType || llt == this->LinkType) {
        cmLinkItem item(*di, this->FindTargetToLink(depender_index, *di));
        actual_libs.push_back(item);
      } else if (this->OldLinkDirMode) {
        cmLinkItem item(*di, this->FindTargetToLink(depender_index, *di));
        this->CheckWrongConfigItem(item);
      }

      // Reset the link type until another explicit type is given.
      llt = GENERAL_LibraryType;
      haveLLT = false;
    }
  }

  // Add the entries from this list.
  this->AddLinkEntries(depender_index, actual_libs);
}

void cmComputeLinkDepends::AddDirectLinkEntries()
{
  // Add direct link dependencies in this configuration.
  cmLinkImplementation const* impl =
    this->Target->GetLinkImplementation(this->Config);
  this->AddLinkEntries(-1, impl->Libraries);
  for (std::vector<cmLinkItem>::const_iterator wi =
         impl->WrongConfigLibraries.begin();
       wi != impl->WrongConfigLibraries.end(); ++wi) {
    this->CheckWrongConfigItem(*wi);
  }
}

template <typename T>
void cmComputeLinkDepends::AddLinkEntries(int depender_index,
                                          std::vector<T> const& libs)
{
  // Track inferred dependency sets implied by this list.
  std::map<int, DependSet> dependSets;

  // Loop over the libraries linked directly by the depender.
  for (typename std::vector<T>::const_iterator li = libs.begin();
       li != libs.end(); ++li) {
    // Skip entries that will resolve to the target getting linked or
    // are empty.
    cmLinkItem const& item = *li;
    if (item == this->Target->GetName() || item.empty()) {
      continue;
    }

    // Add a link entry for this item.
    int dependee_index = this->AddLinkEntry(*li);

    // The dependee must come after the depender.
    if (depender_index >= 0) {
      this->EntryConstraintGraph[depender_index].push_back(dependee_index);
    } else {
      // This is a direct dependency of the target being linked.
      this->OriginalEntries.push_back(dependee_index);
    }

    // Update the inferred dependencies for earlier items.
    for (std::map<int, DependSet>::iterator dsi = dependSets.begin();
         dsi != dependSets.end(); ++dsi) {
      // Add this item to the inferred dependencies of other items.
      // Target items are never inferred dependees because unknown
      // items are outside libraries that should not be depending on
      // targets.
      if (!this->EntryList[dependee_index].Target &&
          !this->EntryList[dependee_index].IsFlag &&
          dependee_index != dsi->first) {
        dsi->second.insert(dependee_index);
      }
    }

    // If this item needs to have dependencies inferred, do so.
    if (this->InferredDependSets[dependee_index]) {
      // Make sure an entry exists to hold the set for the item.
      dependSets[dependee_index];
    }
  }

  // Store the inferred dependency sets discovered for this list.
  for (std::map<int, DependSet>::iterator dsi = dependSets.begin();
       dsi != dependSets.end(); ++dsi) {
    this->InferredDependSets[dsi->first]->push_back(dsi->second);
  }
}

cmGeneratorTarget const* cmComputeLinkDepends::FindTargetToLink(
  int depender_index, const std::string& name)
{
  // Look for a target in the scope of the depender.
  cmGeneratorTarget const* from = this->Target;
  if (depender_index >= 0) {
    if (cmGeneratorTarget const* depender =
          this->EntryList[depender_index].Target) {
      from = depender;
    }
  }
  return from->FindTargetToLink(name);
}

void cmComputeLinkDepends::InferDependencies()
{
  // The inferred dependency sets for each item list the possible
  // dependencies.  The intersection of the sets for one item form its
  // inferred dependencies.
  for (unsigned int depender_index = 0;
       depender_index < this->InferredDependSets.size(); ++depender_index) {
    // Skip items for which dependencies do not need to be inferred or
    // for which the inferred dependency sets are empty.
    DependSetList* sets = this->InferredDependSets[depender_index];
    if (!sets || sets->empty()) {
      continue;
    }

    // Intersect the sets for this item.
    DependSetList::const_iterator i = sets->begin();
    DependSet common = *i;
    for (++i; i != sets->end(); ++i) {
      DependSet intersection;
      std::set_intersection(common.begin(), common.end(), i->begin(), i->end(),
                            std::inserter(intersection, intersection.begin()));
      common = intersection;
    }

    // Add the inferred dependencies to the graph.
    cmGraphEdgeList& edges = this->EntryConstraintGraph[depender_index];
    edges.insert(edges.end(), common.begin(), common.end());
  }
}

void cmComputeLinkDepends::CleanConstraintGraph()
{
  for (Graph::iterator i = this->EntryConstraintGraph.begin();
       i != this->EntryConstraintGraph.end(); ++i) {
    // Sort the outgoing edges for each graph node so that the
    // original order will be preserved as much as possible.
    std::sort(i->begin(), i->end());

    // Make the edge list unique.
    i->erase(std::unique(i->begin(), i->end()), i->end());
  }
}

void cmComputeLinkDepends::DisplayConstraintGraph()
{
  // Display the graph nodes and their edges.
  std::ostringstream e;
  for (unsigned int i = 0; i < this->EntryConstraintGraph.size(); ++i) {
    EdgeList const& nl = this->EntryConstraintGraph[i];
    e << "item " << i << " is [" << this->EntryList[i].Item << "]\n";
    e << cmWrap("  item ", nl, " must follow it", "\n") << "\n";
  }
  fprintf(stderr, "%s\n", e.str().c_str());
}

void cmComputeLinkDepends::OrderLinkEntires()
{
  // Compute the DAG of strongly connected components.  The algorithm
  // used by cmComputeComponentGraph should identify the components in
  // the same order in which the items were originally discovered in
  // the BFS.  This should preserve the original order when no
  // constraints disallow it.
  this->CCG = new cmComputeComponentGraph(this->EntryConstraintGraph);

  // The component graph is guaranteed to be acyclic.  Start a DFS
  // from every entry to compute a topological order for the
  // components.
  Graph const& cgraph = this->CCG->GetComponentGraph();
  int n = static_cast<int>(cgraph.size());
  this->ComponentVisited.resize(cgraph.size(), 0);
  this->ComponentOrder.resize(cgraph.size(), n);
  this->ComponentOrderId = n;
  // Run in reverse order so the topological order will preserve the
  // original order where there are no constraints.
  for (int c = n - 1; c >= 0; --c) {
    this->VisitComponent(c);
  }

  // Display the component graph.
  if (this->DebugMode) {
    this->DisplayComponents();
  }

  // Start with the original link line.
  for (std::vector<int>::const_iterator i = this->OriginalEntries.begin();
       i != this->OriginalEntries.end(); ++i) {
    this->VisitEntry(*i);
  }

  // Now explore anything left pending.  Since the component graph is
  // guaranteed to be acyclic we know this will terminate.
  while (!this->PendingComponents.empty()) {
    // Visit one entry from the first pending component.  The visit
    // logic will update the pending components accordingly.  Since
    // the pending components are kept in topological order this will
    // not repeat one.
    int e = *this->PendingComponents.begin()->second.Entries.begin();
    this->VisitEntry(e);
  }
}

void cmComputeLinkDepends::DisplayComponents()
{
  fprintf(stderr, "The strongly connected components are:\n");
  std::vector<NodeList> const& components = this->CCG->GetComponents();
  for (unsigned int c = 0; c < components.size(); ++c) {
    fprintf(stderr, "Component (%u):\n", c);
    NodeList const& nl = components[c];
    for (NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni) {
      int i = *ni;
      fprintf(stderr, "  item %d [%s]\n", i, this->EntryList[i].Item.c_str());
    }
    EdgeList const& ol = this->CCG->GetComponentGraphEdges(c);
    for (EdgeList::const_iterator oi = ol.begin(); oi != ol.end(); ++oi) {
      int i = *oi;
      fprintf(stderr, "  followed by Component (%d)\n", i);
    }
    fprintf(stderr, "  topo order index %d\n", this->ComponentOrder[c]);
  }
  fprintf(stderr, "\n");
}

void cmComputeLinkDepends::VisitComponent(unsigned int c)
{
  // Check if the node has already been visited.
  if (this->ComponentVisited[c]) {
    return;
  }

  // We are now visiting this component so mark it.
  this->ComponentVisited[c] = 1;

  // Visit the neighbors of the component first.
  // Run in reverse order so the topological order will preserve the
  // original order where there are no constraints.
  EdgeList const& nl = this->CCG->GetComponentGraphEdges(c);
  for (EdgeList::const_reverse_iterator ni = nl.rbegin(); ni != nl.rend();
       ++ni) {
    this->VisitComponent(*ni);
  }

  // Assign an ordering id to this component.
  this->ComponentOrder[c] = --this->ComponentOrderId;
}

void cmComputeLinkDepends::VisitEntry(int index)
{
  // Include this entry on the link line.
  this->FinalLinkOrder.push_back(index);

  // This entry has now been seen.  Update its component.
  bool completed = false;
  int component = this->CCG->GetComponentMap()[index];
  std::map<int, PendingComponent>::iterator mi =
    this->PendingComponents.find(this->ComponentOrder[component]);
  if (mi != this->PendingComponents.end()) {
    // The entry is in an already pending component.
    PendingComponent& pc = mi->second;

    // Remove the entry from those pending in its component.
    pc.Entries.erase(index);
    if (pc.Entries.empty()) {
      // The complete component has been seen since it was last needed.
      --pc.Count;

      if (pc.Count == 0) {
        // The component has been completed.
        this->PendingComponents.erase(mi);
        completed = true;
      } else {
        // The whole component needs to be seen again.
        NodeList const& nl = this->CCG->GetComponent(component);
        assert(nl.size() > 1);
        pc.Entries.insert(nl.begin(), nl.end());
      }
    }
  } else {
    // The entry is not in an already pending component.
    NodeList const& nl = this->CCG->GetComponent(component);
    if (nl.size() > 1) {
      // This is a non-trivial component.  It is now pending.
      PendingComponent& pc = this->MakePendingComponent(component);

      // The starting entry has already been seen.
      pc.Entries.erase(index);
    } else {
      // This is a trivial component, so it is already complete.
      completed = true;
    }
  }

  // If the entry completed a component, the component's dependencies
  // are now pending.
  if (completed) {
    EdgeList const& ol = this->CCG->GetComponentGraphEdges(component);
    for (EdgeList::const_iterator oi = ol.begin(); oi != ol.end(); ++oi) {
      // This entire component is now pending no matter whether it has
      // been partially seen already.
      this->MakePendingComponent(*oi);
    }
  }
}

cmComputeLinkDepends::PendingComponent&
cmComputeLinkDepends::MakePendingComponent(unsigned int component)
{
  // Create an entry (in topological order) for the component.
  PendingComponent& pc =
    this->PendingComponents[this->ComponentOrder[component]];
  pc.Id = component;
  NodeList const& nl = this->CCG->GetComponent(component);

  if (nl.size() == 1) {
    // Trivial components need be seen only once.
    pc.Count = 1;
  } else {
    // This is a non-trivial strongly connected component of the
    // original graph.  It consists of two or more libraries
    // (archives) that mutually require objects from one another.  In
    // the worst case we may have to repeat the list of libraries as
    // many times as there are object files in the biggest archive.
    // For now we just list them twice.
    //
    // The list of items in the component has been sorted by the order
    // of discovery in the original BFS of dependencies.  This has the
    // advantage that the item directly linked by a target requiring
    // this component will come first which minimizes the number of
    // repeats needed.
    pc.Count = this->ComputeComponentCount(nl);
  }

  // Store the entries to be seen.
  pc.Entries.insert(nl.begin(), nl.end());

  return pc;
}

int cmComputeLinkDepends::ComputeComponentCount(NodeList const& nl)
{
  unsigned int count = 2;
  for (NodeList::const_iterator ni = nl.begin(); ni != nl.end(); ++ni) {
    if (cmGeneratorTarget const* target = this->EntryList[*ni].Target) {
      if (cmLinkInterface const* iface =
            target->GetLinkInterface(this->Config, this->Target)) {
        if (iface->Multiplicity > count) {
          count = iface->Multiplicity;
        }
      }
    }
  }
  return count;
}

void cmComputeLinkDepends::DisplayFinalEntries()
{
  fprintf(stderr, "target [%s] links to:\n", this->Target->GetName().c_str());
  for (std::vector<LinkEntry>::const_iterator lei =
         this->FinalLinkEntries.begin();
       lei != this->FinalLinkEntries.end(); ++lei) {
    if (lei->Target) {
      fprintf(stderr, "  target [%s]\n", lei->Target->GetName().c_str());
    } else {
      fprintf(stderr, "  item [%s]\n", lei->Item.c_str());
    }
  }
  fprintf(stderr, "\n");
}

void cmComputeLinkDepends::CheckWrongConfigItem(cmLinkItem const& item)
{
  if (!this->OldLinkDirMode) {
    return;
  }

  // For CMake 2.4 bug-compatibility we need to consider the output
  // directories of targets linked in another configuration as link
  // directories.
  if (item.Target && !item.Target->IsImported()) {
    this->OldWrongConfigItems.insert(item.Target);
  }
}