diff options
Diffstat (limited to 'src/3rdparty/webkit/JavaScriptCore/runtime/JSArray.cpp')
-rw-r--r-- | src/3rdparty/webkit/JavaScriptCore/runtime/JSArray.cpp | 1005 |
1 files changed, 1005 insertions, 0 deletions
diff --git a/src/3rdparty/webkit/JavaScriptCore/runtime/JSArray.cpp b/src/3rdparty/webkit/JavaScriptCore/runtime/JSArray.cpp new file mode 100644 index 0000000..35d0dec --- /dev/null +++ b/src/3rdparty/webkit/JavaScriptCore/runtime/JSArray.cpp @@ -0,0 +1,1005 @@ +/* + * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) + * Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved. + * Copyright (C) 2003 Peter Kelly (pmk@post.com) + * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#include "config.h" +#include "JSArray.h" + +#include "ArrayPrototype.h" +#include "PropertyNameArray.h" +#include <wtf/AVLTree.h> +#include <wtf/Assertions.h> +#include <Operations.h> + +#define CHECK_ARRAY_CONSISTENCY 0 + +using namespace std; +using namespace WTF; + +namespace JSC { + +ASSERT_CLASS_FITS_IN_CELL(JSArray); + +// Overview of JSArray +// +// Properties of JSArray objects may be stored in one of three locations: +// * The regular JSObject property map. +// * A storage vector. +// * A sparse map of array entries. +// +// Properties with non-numeric identifiers, with identifiers that are not representable +// as an unsigned integer, or where the value is greater than MAX_ARRAY_INDEX +// (specifically, this is only one property - the value 0xFFFFFFFFU as an unsigned 32-bit +// integer) are not considered array indices and will be stored in the JSObject property map. +// +// All properties with a numeric identifer, representable as an unsigned integer i, +// where (i <= MAX_ARRAY_INDEX), are an array index and will be stored in either the +// storage vector or the sparse map. An array index i will be handled in the following +// fashion: +// +// * Where (i < MIN_SPARSE_ARRAY_INDEX) the value will be stored in the storage vector. +// * Where (MIN_SPARSE_ARRAY_INDEX <= i <= MAX_STORAGE_VECTOR_INDEX) the value will either +// be stored in the storage vector or in the sparse array, depending on the density of +// data that would be stored in the vector (a vector being used where at least +// (1 / minDensityMultiplier) of the entries would be populated). +// * Where (MAX_STORAGE_VECTOR_INDEX < i <= MAX_ARRAY_INDEX) the value will always be stored +// in the sparse array. + +// The definition of MAX_STORAGE_VECTOR_LENGTH is dependant on the definition storageSize +// function below - the MAX_STORAGE_VECTOR_LENGTH limit is defined such that the storage +// size calculation cannot overflow. (sizeof(ArrayStorage) - sizeof(JSValuePtr)) + +// (vectorLength * sizeof(JSValuePtr)) must be <= 0xFFFFFFFFU (which is maximum value of size_t). +#define MAX_STORAGE_VECTOR_LENGTH static_cast<unsigned>((0xFFFFFFFFU - (sizeof(ArrayStorage) - sizeof(JSValuePtr))) / sizeof(JSValuePtr)) + +// These values have to be macros to be used in max() and min() without introducing +// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>. +#define MIN_SPARSE_ARRAY_INDEX 10000U +#define MAX_STORAGE_VECTOR_INDEX (MAX_STORAGE_VECTOR_LENGTH - 1) +// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer. +#define MAX_ARRAY_INDEX 0xFFFFFFFEU + +// Our policy for when to use a vector and when to use a sparse map. +// For all array indices under MIN_SPARSE_ARRAY_INDEX, we always use a vector. +// When indices greater than MIN_SPARSE_ARRAY_INDEX are involved, we use a vector +// as long as it is 1/8 full. If more sparse than that, we use a map. +static const unsigned minDensityMultiplier = 8; + +const ClassInfo JSArray::info = {"Array", 0, 0, 0}; + +static inline size_t storageSize(unsigned vectorLength) +{ + ASSERT(vectorLength <= MAX_STORAGE_VECTOR_LENGTH); + + // MAX_STORAGE_VECTOR_LENGTH is defined such that provided (vectorLength <= MAX_STORAGE_VECTOR_LENGTH) + // - as asserted above - the following calculation cannot overflow. + size_t size = (sizeof(ArrayStorage) - sizeof(JSValuePtr)) + (vectorLength * sizeof(JSValuePtr)); + // Assertion to detect integer overflow in previous calculation (should not be possible, provided that + // MAX_STORAGE_VECTOR_LENGTH is correctly defined). + ASSERT(((size - (sizeof(ArrayStorage) - sizeof(JSValuePtr))) / sizeof(JSValuePtr) == vectorLength) && (size >= (sizeof(ArrayStorage) - sizeof(JSValuePtr)))); + + return size; +} + +static inline unsigned increasedVectorLength(unsigned newLength) +{ + ASSERT(newLength <= MAX_STORAGE_VECTOR_LENGTH); + + // Mathematically equivalent to: + // increasedLength = (newLength * 3 + 1) / 2; + // or: + // increasedLength = (unsigned)ceil(newLength * 1.5)); + // This form is not prone to internal overflow. + unsigned increasedLength = newLength + (newLength >> 1) + (newLength & 1); + ASSERT(increasedLength >= newLength); + + return min(increasedLength, MAX_STORAGE_VECTOR_LENGTH); +} + +static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues) +{ + return length / minDensityMultiplier <= numValues; +} + +#if !CHECK_ARRAY_CONSISTENCY + +inline void JSArray::checkConsistency(ConsistencyCheckType) +{ +} + +#endif + +JSArray::JSArray(PassRefPtr<Structure> structure) + : JSObject(structure) +{ + unsigned initialCapacity = 0; + + m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity))); + m_fastAccessCutoff = 0; + m_storage->m_vectorLength = initialCapacity; + m_storage->m_length = 0; + + checkConsistency(); +} + +JSArray::JSArray(PassRefPtr<Structure> structure, unsigned initialLength) + : JSObject(structure) +{ + unsigned initialCapacity = min(initialLength, MIN_SPARSE_ARRAY_INDEX); + + m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity))); + m_fastAccessCutoff = 0; + m_storage->m_vectorLength = initialCapacity; + m_storage->m_length = initialLength; + + Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValuePtr)); + + checkConsistency(); +} + +JSArray::JSArray(ExecState* exec, PassRefPtr<Structure> structure, const ArgList& list) + : JSObject(structure) +{ + unsigned length = list.size(); + + m_fastAccessCutoff = length; + + ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length))); + + storage->m_vectorLength = length; + storage->m_numValuesInVector = length; + storage->m_sparseValueMap = 0; + storage->m_length = length; + + size_t i = 0; + ArgList::const_iterator end = list.end(); + for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i) + storage->m_vector[i] = (*it).jsValue(exec); + + m_storage = storage; + + // When the array is created non-empty, its cells are filled, so it's really no worse than + // a property map. Therefore don't report extra memory cost. + + checkConsistency(); +} + +JSArray::~JSArray() +{ + checkConsistency(DestructorConsistencyCheck); + + delete m_storage->m_sparseValueMap; + fastFree(m_storage); +} + +bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot) +{ + ArrayStorage* storage = m_storage; + + if (i >= storage->m_length) { + if (i > MAX_ARRAY_INDEX) + return getOwnPropertySlot(exec, Identifier::from(exec, i), slot); + return false; + } + + if (i < storage->m_vectorLength) { + JSValuePtr& valueSlot = storage->m_vector[i]; + if (valueSlot) { + slot.setValueSlot(&valueSlot); + return true; + } + } else if (SparseArrayValueMap* map = storage->m_sparseValueMap) { + if (i >= MIN_SPARSE_ARRAY_INDEX) { + SparseArrayValueMap::iterator it = map->find(i); + if (it != map->end()) { + slot.setValueSlot(&it->second); + return true; + } + } + } + + return false; +} + +bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot) +{ + if (propertyName == exec->propertyNames().length) { + slot.setValue(jsNumber(exec, length())); + return true; + } + + bool isArrayIndex; + unsigned i = propertyName.toArrayIndex(&isArrayIndex); + if (isArrayIndex) + return JSArray::getOwnPropertySlot(exec, i, slot); + + return JSObject::getOwnPropertySlot(exec, propertyName, slot); +} + +// ECMA 15.4.5.1 +void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValuePtr value, PutPropertySlot& slot) +{ + bool isArrayIndex; + unsigned i = propertyName.toArrayIndex(&isArrayIndex); + if (isArrayIndex) { + put(exec, i, value); + return; + } + + if (propertyName == exec->propertyNames().length) { + unsigned newLength = value->toUInt32(exec); + if (value->toNumber(exec) != static_cast<double>(newLength)) { + throwError(exec, RangeError, "Invalid array length."); + return; + } + setLength(newLength); + return; + } + + JSObject::put(exec, propertyName, value, slot); +} + +void JSArray::put(ExecState* exec, unsigned i, JSValuePtr value) +{ + checkConsistency(); + + unsigned length = m_storage->m_length; + if (i >= length && i <= MAX_ARRAY_INDEX) { + length = i + 1; + m_storage->m_length = length; + } + + if (i < m_storage->m_vectorLength) { + JSValuePtr& valueSlot = m_storage->m_vector[i]; + if (valueSlot) { + valueSlot = value; + checkConsistency(); + return; + } + valueSlot = value; + if (++m_storage->m_numValuesInVector == m_storage->m_length) + m_fastAccessCutoff = m_storage->m_length; + checkConsistency(); + return; + } + + putSlowCase(exec, i, value); +} + +NEVER_INLINE void JSArray::putSlowCase(ExecState* exec, unsigned i, JSValuePtr value) +{ + ArrayStorage* storage = m_storage; + SparseArrayValueMap* map = storage->m_sparseValueMap; + + if (i >= MIN_SPARSE_ARRAY_INDEX) { + if (i > MAX_ARRAY_INDEX) { + PutPropertySlot slot; + put(exec, Identifier::from(exec, i), value, slot); + return; + } + + // We miss some cases where we could compact the storage, such as a large array that is being filled from the end + // (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster. + if ((i > MAX_STORAGE_VECTOR_INDEX) || !isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) { + if (!map) { + map = new SparseArrayValueMap; + storage->m_sparseValueMap = map; + } + map->set(i, value); + return; + } + } + + // We have decided that we'll put the new item into the vector. + // Fast case is when there is no sparse map, so we can increase the vector size without moving values from it. + if (!map || map->isEmpty()) { + if (increaseVectorLength(i + 1)) { + storage = m_storage; + storage->m_vector[i] = value; + if (++storage->m_numValuesInVector == storage->m_length) + m_fastAccessCutoff = storage->m_length; + checkConsistency(); + } else + throwOutOfMemoryError(exec); + return; + } + + // Decide how many values it would be best to move from the map. + unsigned newNumValuesInVector = storage->m_numValuesInVector + 1; + unsigned newVectorLength = increasedVectorLength(i + 1); + for (unsigned j = max(storage->m_vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j) + newNumValuesInVector += map->contains(j); + if (i >= MIN_SPARSE_ARRAY_INDEX) + newNumValuesInVector -= map->contains(i); + if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) { + unsigned proposedNewNumValuesInVector = newNumValuesInVector; + // If newVectorLength is already the maximum - MAX_STORAGE_VECTOR_LENGTH - then do not attempt to grow any further. + while (newVectorLength < MAX_STORAGE_VECTOR_LENGTH) { + unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1); + for (unsigned j = max(newVectorLength, MIN_SPARSE_ARRAY_INDEX); j < proposedNewVectorLength; ++j) + proposedNewNumValuesInVector += map->contains(j); + if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector)) + break; + newVectorLength = proposedNewVectorLength; + newNumValuesInVector = proposedNewNumValuesInVector; + } + } + + storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength))); + if (!storage) { + throwOutOfMemoryError(exec); + return; + } + + unsigned vectorLength = storage->m_vectorLength; + if (newNumValuesInVector == storage->m_numValuesInVector + 1) { + for (unsigned j = vectorLength; j < newVectorLength; ++j) + storage->m_vector[j] = noValue(); + if (i > MIN_SPARSE_ARRAY_INDEX) + map->remove(i); + } else { + for (unsigned j = vectorLength; j < max(vectorLength, MIN_SPARSE_ARRAY_INDEX); ++j) + storage->m_vector[j] = noValue(); + for (unsigned j = max(vectorLength, MIN_SPARSE_ARRAY_INDEX); j < newVectorLength; ++j) + storage->m_vector[j] = map->take(j); + } + + storage->m_vector[i] = value; + + storage->m_vectorLength = newVectorLength; + storage->m_numValuesInVector = newNumValuesInVector; + + m_storage = storage; + + checkConsistency(); +} + +bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName) +{ + bool isArrayIndex; + unsigned i = propertyName.toArrayIndex(&isArrayIndex); + if (isArrayIndex) + return deleteProperty(exec, i); + + if (propertyName == exec->propertyNames().length) + return false; + + return JSObject::deleteProperty(exec, propertyName); +} + +bool JSArray::deleteProperty(ExecState* exec, unsigned i) +{ + checkConsistency(); + + ArrayStorage* storage = m_storage; + + if (i < storage->m_vectorLength) { + JSValuePtr& valueSlot = storage->m_vector[i]; + if (!valueSlot) { + checkConsistency(); + return false; + } + valueSlot = noValue(); + --storage->m_numValuesInVector; + if (m_fastAccessCutoff > i) + m_fastAccessCutoff = i; + checkConsistency(); + return true; + } + + if (SparseArrayValueMap* map = storage->m_sparseValueMap) { + if (i >= MIN_SPARSE_ARRAY_INDEX) { + SparseArrayValueMap::iterator it = map->find(i); + if (it != map->end()) { + map->remove(it); + checkConsistency(); + return true; + } + } + } + + checkConsistency(); + + if (i > MAX_ARRAY_INDEX) + return deleteProperty(exec, Identifier::from(exec, i)); + + return false; +} + +void JSArray::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames) +{ + // FIXME: Filling PropertyNameArray with an identifier for every integer + // is incredibly inefficient for large arrays. We need a different approach, + // which almost certainly means a different structure for PropertyNameArray. + + ArrayStorage* storage = m_storage; + + unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength); + for (unsigned i = 0; i < usedVectorLength; ++i) { + if (storage->m_vector[i]) + propertyNames.add(Identifier::from(exec, i)); + } + + if (SparseArrayValueMap* map = storage->m_sparseValueMap) { + SparseArrayValueMap::iterator end = map->end(); + for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) + propertyNames.add(Identifier::from(exec, it->first)); + } + + JSObject::getPropertyNames(exec, propertyNames); +} + +bool JSArray::increaseVectorLength(unsigned newLength) +{ + // This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map + // to the vector. Callers have to account for that, because they can do it more efficiently. + + ArrayStorage* storage = m_storage; + + unsigned vectorLength = storage->m_vectorLength; + ASSERT(newLength > vectorLength); + ASSERT(newLength <= MAX_STORAGE_VECTOR_INDEX); + unsigned newVectorLength = increasedVectorLength(newLength); + + storage = static_cast<ArrayStorage*>(tryFastRealloc(storage, storageSize(newVectorLength))); + if (!storage) + return false; + + storage->m_vectorLength = newVectorLength; + + for (unsigned i = vectorLength; i < newVectorLength; ++i) + storage->m_vector[i] = noValue(); + + m_storage = storage; + return true; +} + +void JSArray::setLength(unsigned newLength) +{ + checkConsistency(); + + ArrayStorage* storage = m_storage; + + unsigned length = m_storage->m_length; + + if (newLength < length) { + if (m_fastAccessCutoff > newLength) + m_fastAccessCutoff = newLength; + + unsigned usedVectorLength = min(length, storage->m_vectorLength); + for (unsigned i = newLength; i < usedVectorLength; ++i) { + JSValuePtr& valueSlot = storage->m_vector[i]; + bool hadValue = valueSlot; + valueSlot = noValue(); + storage->m_numValuesInVector -= hadValue; + } + + if (SparseArrayValueMap* map = storage->m_sparseValueMap) { + SparseArrayValueMap copy = *map; + SparseArrayValueMap::iterator end = copy.end(); + for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) { + if (it->first >= newLength) + map->remove(it->first); + } + if (map->isEmpty()) { + delete map; + storage->m_sparseValueMap = 0; + } + } + } + + m_storage->m_length = newLength; + + checkConsistency(); +} + +JSValuePtr JSArray::pop() +{ + checkConsistency(); + + unsigned length = m_storage->m_length; + if (!length) + return jsUndefined(); + + --length; + + JSValuePtr result; + + if (m_fastAccessCutoff > length) { + JSValuePtr& valueSlot = m_storage->m_vector[length]; + result = valueSlot; + ASSERT(result); + valueSlot = noValue(); + --m_storage->m_numValuesInVector; + m_fastAccessCutoff = length; + } else if (length < m_storage->m_vectorLength) { + JSValuePtr& valueSlot = m_storage->m_vector[length]; + result = valueSlot; + valueSlot = noValue(); + if (result) + --m_storage->m_numValuesInVector; + else + result = jsUndefined(); + } else { + result = jsUndefined(); + if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) { + SparseArrayValueMap::iterator it = map->find(length); + if (it != map->end()) { + result = it->second; + map->remove(it); + if (map->isEmpty()) { + delete map; + m_storage->m_sparseValueMap = 0; + } + } + } + } + + m_storage->m_length = length; + + checkConsistency(); + + return result; +} + +void JSArray::push(ExecState* exec, JSValuePtr value) +{ + checkConsistency(); + + if (m_storage->m_length < m_storage->m_vectorLength) { + ASSERT(!m_storage->m_vector[m_storage->m_length]); + m_storage->m_vector[m_storage->m_length] = value; + if (++m_storage->m_numValuesInVector == ++m_storage->m_length) + m_fastAccessCutoff = m_storage->m_length; + checkConsistency(); + return; + } + + if (m_storage->m_length < MIN_SPARSE_ARRAY_INDEX) { + SparseArrayValueMap* map = m_storage->m_sparseValueMap; + if (!map || map->isEmpty()) { + if (increaseVectorLength(m_storage->m_length + 1)) { + m_storage->m_vector[m_storage->m_length] = value; + if (++m_storage->m_numValuesInVector == ++m_storage->m_length) + m_fastAccessCutoff = m_storage->m_length; + checkConsistency(); + return; + } + checkConsistency(); + throwOutOfMemoryError(exec); + return; + } + } + + putSlowCase(exec, m_storage->m_length++, value); +} + +void JSArray::mark() +{ + JSObject::mark(); + + ArrayStorage* storage = m_storage; + + unsigned usedVectorLength = min(storage->m_length, storage->m_vectorLength); + for (unsigned i = 0; i < usedVectorLength; ++i) { + JSValuePtr value = storage->m_vector[i]; + if (value && !value->marked()) + value->mark(); + } + + if (SparseArrayValueMap* map = storage->m_sparseValueMap) { + SparseArrayValueMap::iterator end = map->end(); + for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) { + JSValuePtr value = it->second; + if (!value->marked()) + value->mark(); + } + } +} + +typedef std::pair<JSValuePtr, UString> ArrayQSortPair; + +static int compareByStringPairForQSort(const void* a, const void* b) +{ + const ArrayQSortPair* va = static_cast<const ArrayQSortPair*>(a); + const ArrayQSortPair* vb = static_cast<const ArrayQSortPair*>(b); + return compare(va->second, vb->second); +} + +void JSArray::sort(ExecState* exec) +{ + unsigned lengthNotIncludingUndefined = compactForSorting(); + if (m_storage->m_sparseValueMap) { + throwOutOfMemoryError(exec); + return; + } + + if (!lengthNotIncludingUndefined) + return; + + // Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that. + // This is a considerable improvement over doing it twice per comparison, though it requires a large temporary + // buffer. Besides, this protects us from crashing if some objects have custom toString methods that return + // random or otherwise changing results, effectively making compare function inconsistent. + + Vector<ArrayQSortPair> values(lengthNotIncludingUndefined); + if (!values.begin()) { + throwOutOfMemoryError(exec); + return; + } + + for (size_t i = 0; i < lengthNotIncludingUndefined; i++) { + JSValuePtr value = m_storage->m_vector[i]; + ASSERT(!value->isUndefined()); + values[i].first = value; + } + + // FIXME: While calling these toString functions, the array could be mutated. + // In that case, objects pointed to by values in this vector might get garbage-collected! + + // FIXME: The following loop continues to call toString on subsequent values even after + // a toString call raises an exception. + + for (size_t i = 0; i < lengthNotIncludingUndefined; i++) + values[i].second = values[i].first->toString(exec); + + if (exec->hadException()) + return; + + // FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather + // than O(N log N). + +#if HAVE(MERGESORT) + mergesort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort); +#else + // FIXME: The qsort library function is likely to not be a stable sort. + // ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort. + qsort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort); +#endif + + // FIXME: If the toString function changed the length of the array, this might be + // modifying the vector incorrectly. + + for (size_t i = 0; i < lengthNotIncludingUndefined; i++) + m_storage->m_vector[i] = values[i].first; + + checkConsistency(SortConsistencyCheck); +} + +struct AVLTreeNodeForArrayCompare { + JSValuePtr value; + + // Child pointers. The high bit of gt is robbed and used as the + // balance factor sign. The high bit of lt is robbed and used as + // the magnitude of the balance factor. + int32_t gt; + int32_t lt; +}; + +struct AVLTreeAbstractorForArrayCompare { + typedef int32_t handle; // Handle is an index into m_nodes vector. + typedef JSValuePtr key; + typedef int32_t size; + + Vector<AVLTreeNodeForArrayCompare> m_nodes; + ExecState* m_exec; + JSValuePtr m_compareFunction; + CallType m_compareCallType; + const CallData* m_compareCallData; + JSValuePtr m_globalThisValue; + + handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; } + void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; } + handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; } + void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; } + + int get_balance_factor(handle h) + { + if (m_nodes[h].gt & 0x80000000) + return -1; + return static_cast<unsigned>(m_nodes[h].lt) >> 31; + } + + void set_balance_factor(handle h, int bf) + { + if (bf == 0) { + m_nodes[h].lt &= 0x7FFFFFFF; + m_nodes[h].gt &= 0x7FFFFFFF; + } else { + m_nodes[h].lt |= 0x80000000; + if (bf < 0) + m_nodes[h].gt |= 0x80000000; + else + m_nodes[h].gt &= 0x7FFFFFFF; + } + } + + int compare_key_key(key va, key vb) + { + ASSERT(!va->isUndefined()); + ASSERT(!vb->isUndefined()); + + if (m_exec->hadException()) + return 1; + + ArgList arguments; + arguments.append(va); + arguments.append(vb); + double compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments)->toNumber(m_exec); + return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent. + } + + int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); } + int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); } + + static handle null() { return 0x7FFFFFFF; } +}; + +void JSArray::sort(ExecState* exec, JSValuePtr compareFunction, CallType callType, const CallData& callData) +{ + checkConsistency(); + + // FIXME: This ignores exceptions raised in the compare function or in toNumber. + + // The maximum tree depth is compiled in - but the caller is clearly up to no good + // if a larger array is passed. + ASSERT(m_storage->m_length <= static_cast<unsigned>(std::numeric_limits<int>::max())); + if (m_storage->m_length > static_cast<unsigned>(std::numeric_limits<int>::max())) + return; + + if (!m_storage->m_length) + return; + + unsigned usedVectorLength = min(m_storage->m_length, m_storage->m_vectorLength); + + AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items + tree.abstractor().m_exec = exec; + tree.abstractor().m_compareFunction = compareFunction; + tree.abstractor().m_compareCallType = callType; + tree.abstractor().m_compareCallData = &callData; + tree.abstractor().m_globalThisValue = exec->globalThisValue(); + tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0)); + + if (!tree.abstractor().m_nodes.begin()) { + throwOutOfMemoryError(exec); + return; + } + + // FIXME: If the compare function modifies the array, the vector, map, etc. could be modified + // right out from under us while we're building the tree here. + + unsigned numDefined = 0; + unsigned numUndefined = 0; + + // Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree. + for (; numDefined < usedVectorLength; ++numDefined) { + JSValuePtr v = m_storage->m_vector[numDefined]; + if (!v || v->isUndefined()) + break; + tree.abstractor().m_nodes[numDefined].value = v; + tree.insert(numDefined); + } + for (unsigned i = numDefined; i < usedVectorLength; ++i) { + JSValuePtr v = m_storage->m_vector[i]; + if (v) { + if (v->isUndefined()) + ++numUndefined; + else { + tree.abstractor().m_nodes[numDefined].value = v; + tree.insert(numDefined); + ++numDefined; + } + } + } + + unsigned newUsedVectorLength = numDefined + numUndefined; + + if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) { + newUsedVectorLength += map->size(); + if (newUsedVectorLength > m_storage->m_vectorLength) { + // Check that it is possible to allocate an array large enough to hold all the entries. + if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) { + throwOutOfMemoryError(exec); + return; + } + } + + SparseArrayValueMap::iterator end = map->end(); + for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) { + tree.abstractor().m_nodes[numDefined].value = it->second; + tree.insert(numDefined); + ++numDefined; + } + + delete map; + m_storage->m_sparseValueMap = 0; + } + + ASSERT(tree.abstractor().m_nodes.size() >= numDefined); + + // FIXME: If the compare function changed the length of the array, the following might be + // modifying the vector incorrectly. + + // Copy the values back into m_storage. + AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter; + iter.start_iter_least(tree); + for (unsigned i = 0; i < numDefined; ++i) { + m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value; + ++iter; + } + + // Put undefined values back in. + for (unsigned i = numDefined; i < newUsedVectorLength; ++i) + m_storage->m_vector[i] = jsUndefined(); + + // Ensure that unused values in the vector are zeroed out. + for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) + m_storage->m_vector[i] = noValue(); + + m_fastAccessCutoff = newUsedVectorLength; + m_storage->m_numValuesInVector = newUsedVectorLength; + + checkConsistency(SortConsistencyCheck); +} + +void JSArray::fillArgList(ExecState* exec, ArgList& args) +{ + unsigned fastAccessLength = min(m_storage->m_length, m_fastAccessCutoff); + unsigned i = 0; + for (; i < fastAccessLength; ++i) + args.append(getIndex(i)); + for (; i < m_storage->m_length; ++i) + args.append(get(exec, i)); +} + +unsigned JSArray::compactForSorting() +{ + checkConsistency(); + + ArrayStorage* storage = m_storage; + + unsigned usedVectorLength = min(m_storage->m_length, storage->m_vectorLength); + + unsigned numDefined = 0; + unsigned numUndefined = 0; + + for (; numDefined < usedVectorLength; ++numDefined) { + JSValuePtr v = storage->m_vector[numDefined]; + if (!v || v->isUndefined()) + break; + } + for (unsigned i = numDefined; i < usedVectorLength; ++i) { + JSValuePtr v = storage->m_vector[i]; + if (v) { + if (v->isUndefined()) + ++numUndefined; + else + storage->m_vector[numDefined++] = v; + } + } + + unsigned newUsedVectorLength = numDefined + numUndefined; + + if (SparseArrayValueMap* map = storage->m_sparseValueMap) { + newUsedVectorLength += map->size(); + if (newUsedVectorLength > storage->m_vectorLength) { + // Check that it is possible to allocate an array large enough to hold all the entries - if not, + // exception is thrown by caller. + if ((newUsedVectorLength > MAX_STORAGE_VECTOR_LENGTH) || !increaseVectorLength(newUsedVectorLength)) + return 0; + storage = m_storage; + } + + SparseArrayValueMap::iterator end = map->end(); + for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) + storage->m_vector[numDefined++] = it->second; + + delete map; + storage->m_sparseValueMap = 0; + } + + for (unsigned i = numDefined; i < newUsedVectorLength; ++i) + storage->m_vector[i] = jsUndefined(); + for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i) + storage->m_vector[i] = noValue(); + + m_fastAccessCutoff = newUsedVectorLength; + storage->m_numValuesInVector = newUsedVectorLength; + + checkConsistency(SortConsistencyCheck); + + return numDefined; +} + +void* JSArray::lazyCreationData() +{ + return m_storage->lazyCreationData; +} + +void JSArray::setLazyCreationData(void* d) +{ + m_storage->lazyCreationData = d; +} + +#if CHECK_ARRAY_CONSISTENCY + +void JSArray::checkConsistency(ConsistencyCheckType type) +{ + ASSERT(m_storage); + if (type == SortConsistencyCheck) + ASSERT(!m_storage->m_sparseValueMap); + + ASSERT(m_fastAccessCutoff <= m_storage->m_length); + ASSERT(m_fastAccessCutoff <= m_storage->m_numValuesInVector); + + unsigned numValuesInVector = 0; + for (unsigned i = 0; i < m_storage->m_vectorLength; ++i) { + if (JSValuePtr value = m_storage->m_vector[i]) { + ASSERT(i < m_storage->m_length); + if (type != DestructorConsistencyCheck) + value->type(); // Likely to crash if the object was deallocated. + ++numValuesInVector; + } else { + ASSERT(i >= m_fastAccessCutoff); + if (type == SortConsistencyCheck) + ASSERT(i >= m_storage->m_numValuesInVector); + } + } + ASSERT(numValuesInVector == m_storage->m_numValuesInVector); + + if (m_storage->m_sparseValueMap) { + SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end(); + for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) { + unsigned index = it->first; + ASSERT(index < m_storage->m_length); + ASSERT(index >= m_storage->m_vectorLength); + ASSERT(index <= MAX_ARRAY_INDEX); + ASSERT(it->second); + if (type != DestructorConsistencyCheck) + it->second->type(); // Likely to crash if the object was deallocated. + } + } +} + +#endif + +JSArray* constructEmptyArray(ExecState* exec) +{ + return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure()); +} + +JSArray* constructEmptyArray(ExecState* exec, unsigned initialLength) +{ + return new (exec) JSArray(exec->lexicalGlobalObject()->arrayStructure(), initialLength); +} + +JSArray* constructArray(ExecState* exec, JSValuePtr singleItemValue) +{ + ArgList values; + values.append(singleItemValue); + return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values); +} + +JSArray* constructArray(ExecState* exec, const ArgList& values) +{ + return new (exec) JSArray(exec, exec->lexicalGlobalObject()->arrayStructure(), values); +} + +} // namespace JSC |