summaryrefslogtreecommitdiffstats
path: root/src/gui/math3d/qvector3d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gui/math3d/qvector3d.cpp')
-rw-r--r--src/gui/math3d/qvector3d.cpp535
1 files changed, 535 insertions, 0 deletions
diff --git a/src/gui/math3d/qvector3d.cpp b/src/gui/math3d/qvector3d.cpp
new file mode 100644
index 0000000..f0b3aeb
--- /dev/null
+++ b/src/gui/math3d/qvector3d.cpp
@@ -0,0 +1,535 @@
+/****************************************************************************
+**
+** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
+** Contact: Qt Software Information (qt-info@nokia.com)
+**
+** This file is part of the $MODULE$ of the Qt Toolkit.
+**
+** $TROLLTECH_DUAL_LICENSE$
+**
+****************************************************************************/
+
+#include "qvector3d.h"
+#include "qvector2d.h"
+#include "qvector4d.h"
+#include "qmath3dutil_p.h"
+#include <QtCore/qmath.h>
+
+QT_BEGIN_NAMESPACE
+
+#ifndef QT_NO_VECTOR3D
+
+/*!
+ \class QVector3D
+ \brief The QVector3D class represents a vector or vertex in 3D space.
+ \since 4.6
+
+ Vectors are one of the main building blocks of 3D representation and
+ drawing. They consist of three coordinates, traditionally called
+ x, y, and z.
+
+ The QVector3D class can also be used to represent vertices in 3D space.
+ We therefore do not need to provide a separate vertex class.
+
+ The coordinates are stored internally using the most efficient
+ representation for the GL rendering engine, which will be either
+ floating-point or fixed-point.
+*/
+
+/*!
+ \fn QVector3D::QVector3D()
+
+ Constructs a null vector, i.e. with coordinates (0, 0, 0).
+*/
+
+/*!
+ \fn QVector3D::QVector3D(qreal xpos, qreal ypos, qreal zpos)
+
+ Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos).
+*/
+
+/*!
+ \fn QVector3D::QVector3D(int xpos, int ypos, int zpos)
+
+ Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos).
+*/
+
+/*!
+ \fn QVector3D::QVector3D(const QPoint& point)
+
+ Constructs a vector with x and y coordinates from a 2D \a point, and a
+ z coordinate of 0.
+*/
+
+/*!
+ \fn QVector3D::QVector3D(const QPointF& point)
+
+ Constructs a vector with x and y coordinates from a 2D \a point, and a
+ z coordinate of 0.
+*/
+
+#ifndef QT_NO_VECTOR2D
+
+/*!
+ Constructs a 3D vector from the specified 2D \a vector. The z
+ coordinate is set to zero.
+
+ \sa toVector2D()
+*/
+QVector3D::QVector3D(const QVector2D& vector)
+{
+ xp = vector.xp;
+ yp = vector.yp;
+ zp = 0.0f;
+}
+
+/*!
+ Constructs a 3D vector from the specified 2D \a vector. The z
+ coordinate is set to \a zpos.
+
+ \sa toVector2D()
+*/
+QVector3D::QVector3D(const QVector2D& vector, qreal zpos)
+{
+ xp = vector.xp;
+ yp = vector.yp;
+ zp = zpos;
+}
+
+#endif
+
+#ifndef QT_NO_VECTOR4D
+
+/*!
+ Constructs a 3D vector from the specified 4D \a vector. The w
+ coordinate is dropped.
+
+ \sa toVector4D()
+*/
+QVector3D::QVector3D(const QVector4D& vector)
+{
+ xp = vector.xp;
+ yp = vector.yp;
+ zp = vector.zp;
+}
+
+#endif
+
+/*!
+ \fn bool QVector3D::isNull() const
+
+ Returns true if the x, y, and z coordinates are set to 0.0,
+ otherwise returns false.
+*/
+
+/*!
+ \fn qreal QVector3D::x() const
+
+ Returns the x coordinate of this point.
+
+ \sa setX(), y(), z()
+*/
+
+/*!
+ \fn qreal QVector3D::y() const
+
+ Returns the y coordinate of this point.
+
+ \sa setY(), x(), z()
+*/
+
+/*!
+ \fn qreal QVector3D::z() const
+
+ Returns the z coordinate of this point.
+
+ \sa setZ(), x(), y()
+*/
+
+/*!
+ \fn void QVector3D::setX(qreal x)
+
+ Sets the x coordinate of this point to the given \a x coordinate.
+
+ \sa x(), setY(), setZ()
+*/
+
+/*!
+ \fn void QVector3D::setY(qreal y)
+
+ Sets the y coordinate of this point to the given \a y coordinate.
+
+ \sa y(), setX(), setZ()
+*/
+
+/*!
+ \fn void QVector3D::setZ(qreal z)
+
+ Sets the z coordinate of this point to the given \a z coordinate.
+
+ \sa z(), setX(), setY()
+*/
+
+/*!
+ Returns the normalized unit vector form of this vector. If this vector
+ is not null, the returned vector is guaranteed to be 1.0 in length.
+ If this vector is null, then a null vector is returned.
+
+ \sa length(), normalize()
+*/
+QVector3D QVector3D::normalized() const
+{
+ qreal len = length();
+ if (!qIsNull(len))
+ return *this / len;
+ else
+ return QVector3D();
+}
+
+/*!
+ Normalizes the currect vector in place. Nothing happens if this
+ vector is a null vector.
+
+ \sa length(), normalized()
+*/
+void QVector3D::normalize()
+{
+ qreal len = length();
+ if (qIsNull(len))
+ return;
+
+ xp /= len;
+ yp /= len;
+ zp /= len;
+}
+
+/*!
+ \fn QVector3D &QVector3D::operator+=(const QVector3D &vector)
+
+ Adds the given \a vector to this vector and returns a reference to
+ this vector.
+
+ \sa operator-=()
+*/
+
+/*!
+ \fn QVector3D &QVector3D::operator-=(const QVector3D &vector)
+
+ Subtracts the given \a vector from this vector and returns a reference to
+ this vector.
+
+ \sa operator+=()
+*/
+
+/*!
+ \fn QVector3D &QVector3D::operator*=(qreal factor)
+
+ Multiplies this vector's coordinates by the given \a factor, and
+ returns a reference to this vector.
+
+ \sa operator/=()
+*/
+
+/*!
+ \fn QVector3D &QVector3D::operator*=(const QVector3D& vector)
+ \overload
+
+ Multiplies the components of this vector by the corresponding
+ components in \a vector.
+
+ Note: this is not the same as the crossProduct() of this
+ vector and \a vector.
+
+ \sa crossProduct()
+*/
+
+/*!
+ \fn QVector3D &QVector3D::operator/=(qreal divisor)
+
+ Divides this vector's coordinates by the given \a divisor, and
+ returns a reference to this vector.
+
+ \sa operator*=()
+*/
+
+/*!
+ Returns the dot product of \a v1 and \a v2.
+*/
+qreal QVector3D::dotProduct(const QVector3D& v1, const QVector3D& v2)
+{
+ return qvtdot64(qvtmul64(v1.xp, v2.xp) + qvtmul64(v1.yp, v2.yp) + qvtmul64(v1.zp, v2.zp));
+}
+
+/*!
+ Returns the cross-product of vectors \a v1 and \a v2, which corresponds
+ to the normal vector of a plane defined by \a v1 and \a v2.
+
+ \sa normal()
+*/
+QVector3D QVector3D::crossProduct(const QVector3D& v1, const QVector3D& v2)
+{
+ return QVector3D(v1.yp * v2.zp - v1.zp * v2.yp,
+ v1.zp * v2.xp - v1.xp * v2.zp,
+ v1.xp * v2.yp - v1.yp * v2.xp, 1);
+}
+
+/*!
+ Returns the normal vector of a plane defined by vectors \a v1 and \a v2,
+ normalized to be a unit vector.
+
+ Use crossProduct() to compute the cross-product of \a v1 and \a v2 if you
+ do not need the result to be normalized to a unit vector.
+
+ \sa crossProduct(), distanceToPlane()
+*/
+QVector3D QVector3D::normal(const QVector3D& v1, const QVector3D& v2)
+{
+ return crossProduct(v1, v2).normalized();
+}
+
+/*!
+ \overload
+
+ Returns the normal vector of a plane defined by vectors
+ \a v2 - \a v1 and \a v3 - \a v1, normalized to be a unit vector.
+
+ Use crossProduct() to compute the cross-product of \a v2 - \a v1 and
+ \a v3 - \a v1 if you do not need the result to be normalized to a
+ unit vector.
+
+ \sa crossProduct(), distanceToPlane()
+*/
+QVector3D QVector3D::normal
+ (const QVector3D& v1, const QVector3D& v2, const QVector3D& v3)
+{
+ return crossProduct((v2 - v1), (v3 - v1)).normalized();
+}
+
+/*!
+ Returns the distance from this vertex to a plane defined by
+ the vertex \a plane and a \a normal unit vector. The \a normal
+ parameter is assumed to have been normalized to a unit vector.
+
+ The return value will be negative if the vertex is below the plane,
+ or zero if it is on the plane.
+
+ \sa normal(), distanceToLine()
+*/
+qreal QVector3D::distanceToPlane
+ (const QVector3D& plane, const QVector3D& normal) const
+{
+ return dotProduct(*this - plane, normal);
+}
+
+/*!
+ \overload
+
+ Returns the distance from this vertex a plane defined by
+ the vertices \a plane1, \a plane2 and \a plane3.
+
+ The return value will be negative if the vertex is below the plane,
+ or zero if it is on the plane.
+
+ The two vectors that define the plane are \a plane2 - \a plane1
+ and \a plane3 - \a plane1.
+
+ \sa normal(), distanceToLine()
+*/
+qreal QVector3D::distanceToPlane
+ (const QVector3D& plane1, const QVector3D& plane2, const QVector3D& plane3) const
+{
+ QVector3D n = normal(plane2 - plane1, plane3 - plane1);
+ return dotProduct(*this - plane1, n);
+}
+
+/*!
+ Returns the distance that this vertex is from a line defined
+ by \a point and the unit vector \a direction.
+
+ If \a direction is a null vector, then it does not define a line.
+ In that case, the distance from \a point to this vertex is returned.
+
+ \sa distanceToPlane()
+*/
+qreal QVector3D::distanceToLine
+ (const QVector3D& point, const QVector3D& direction) const
+{
+ if (direction.isNull())
+ return (*this - point).length();
+ QVector3D p = point + dotProduct(*this - point, direction) * direction;
+ return (*this - p).length();
+}
+
+/*!
+ \fn bool operator==(const QVector3D &v1, const QVector3D &v2)
+ \relates QVector3D
+
+ Returns true if \a v1 is equal to \a v2; otherwise returns false.
+ This operator uses an exact floating-point comparison.
+*/
+
+/*!
+ \fn bool operator!=(const QVector3D &v1, const QVector3D &v2)
+ \relates QVector3D
+
+ Returns true if \a v1 is not equal to \a v2; otherwise returns false.
+ This operator uses an exact floating-point comparison.
+*/
+
+/*!
+ \fn const QVector3D operator+(const QVector3D &v1, const QVector3D &v2)
+ \relates QVector3D
+
+ Returns a QVector3D object that is the sum of the given vectors, \a v1
+ and \a v2; each component is added separately.
+
+ \sa QVector3D::operator+=()
+*/
+
+/*!
+ \fn const QVector3D operator-(const QVector3D &v1, const QVector3D &v2)
+ \relates QVector3D
+
+ Returns a QVector3D object that is formed by subtracting \a v2 from \a v1;
+ each component is subtracted separately.
+
+ \sa QVector3D::operator-=()
+*/
+
+/*!
+ \fn const QVector3D operator*(qreal factor, const QVector3D &vector)
+ \relates QVector3D
+
+ Returns a copy of the given \a vector, multiplied by the given \a factor.
+
+ \sa QVector3D::operator*=()
+*/
+
+/*!
+ \fn const QVector3D operator*(const QVector3D &vector, qreal factor)
+ \relates QVector3D
+
+ Returns a copy of the given \a vector, multiplied by the given \a factor.
+
+ \sa QVector3D::operator*=()
+*/
+
+/*!
+ \fn const QVector3D operator*(const QVector3D &v1, const QVector3D& v2)
+ \relates QVector3D
+
+ Multiplies the components of \a v1 by the corresponding components in \a v2.
+
+ Note: this is not the same as the crossProduct() of \a v1 and \a v2.
+
+ \sa QVector3D::crossProduct()
+*/
+
+/*!
+ \fn const QVector3D operator-(const QVector3D &vector)
+ \relates QVector3D
+ \overload
+
+ Returns a QVector3D object that is formed by changing the sign of
+ all three components of the given \a vector.
+
+ Equivalent to \c {QVector3D(0,0,0) - vector}.
+*/
+
+/*!
+ \fn const QVector3D operator/(const QVector3D &vector, qreal divisor)
+ \relates QVector3D
+
+ Returns the QVector3D object formed by dividing all three components of
+ the given \a vector by the given \a divisor.
+
+ \sa QVector3D::operator/=()
+*/
+
+/*!
+ \fn bool qFuzzyCompare(const QVector3D& v1, const QVector3D& v2)
+ \relates QVector3D
+
+ Returns true if \a v1 and \a v2 are equal, allowing for a small
+ fuzziness factor for floating-point comparisons; false otherwise.
+*/
+
+#ifndef QT_NO_VECTOR2D
+
+/*!
+ Returns the 2D vector form of this 3D vector, dropping the z coordinate.
+
+ \sa toVector4D(), toPoint()
+*/
+QVector2D QVector3D::toVector2D() const
+{
+ return QVector2D(xp, yp, 1);
+}
+
+#endif
+
+#ifndef QT_NO_VECTOR4D
+
+/*!
+ Returns the 4D form of this 3D vector, with the w coordinate set to zero.
+
+ \sa toVector2D(), toPoint()
+*/
+QVector4D QVector3D::toVector4D() const
+{
+ return QVector4D(xp, yp, zp, 0.0f, 1);
+}
+
+#endif
+
+/*!
+ \fn QPoint QVector3D::toPoint() const
+
+ Returns the QPoint form of this 3D vector.
+
+ \sa toPointF(), toVector2D()
+*/
+
+/*!
+ \fn QPointF QVector3D::toPointF() const
+
+ Returns the QPointF form of this 3D vector.
+
+ \sa toPoint(), toVector2D()
+*/
+
+/*!
+ Returns the length of the vector from the origin.
+
+ \sa lengthSquared(), normalized()
+*/
+qreal QVector3D::length() const
+{
+ return qvtsqrt64(qvtmul64(xp, xp) + qvtmul64(yp, yp) + qvtmul64(zp, zp));
+}
+
+/*!
+ Returns the squared length of the vector from the origin.
+ This is equivalent to the dot product of the vector with itself.
+
+ \sa length(), dotProduct()
+*/
+qreal QVector3D::lengthSquared() const
+{
+ return qvtdot64(qvtmul64(xp, xp) + qvtmul64(yp, yp) + qvtmul64(zp, zp));
+}
+
+#ifndef QT_NO_DEBUG_STREAM
+
+QDebug operator<<(QDebug dbg, const QVector3D &vector)
+{
+ dbg.nospace() << "QVector3D("
+ << vector.x() << ", " << vector.y() << ", " << vector.z() << ')';
+ return dbg.space();
+}
+
+#endif
+
+#endif
+
+QT_END_NAMESPACE