summaryrefslogtreecommitdiffstats
path: root/doc/src/snippets/code/src_gui_widgets_qstatusbar.cpp
blob: b7fc8180d09b2ff28bfe5bc42e9c050832eb3a88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/****************************************************************************
**
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the documentation of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:BSD$
** You may use this file under the terms of the BSD license as follows:
**
** "Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are
** met:
**   * Redistributions of source code must retain the above copyright
**     notice, this list of conditions and the following disclaimer.
**   * Redistributions in binary form must reproduce the above copyright
**     notice, this list of conditions and the following disclaimer in
**     the documentation and/or other materials provided with the
**     distribution.
**   * Neither the name of Nokia Corporation and its Subsidiary(-ies) nor
**     the names of its contributors may be used to endorse or promote
**     products derived from this software without specific prior written
**     permission.
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."
** $QT_END_LICENSE$
**
****************************************************************************/

//! [0]
statusBar()->addWidget(new MyReadWriteIndication);
//! [0]
id='n184' href='#n184'>184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*
 * Implementation of the Global Interpreter Lock (GIL).
 */

#include <stdlib.h>
#include <errno.h>

#include "pycore_atomic.h"


/*
   Notes about the implementation:

   - The GIL is just a boolean variable (locked) whose access is protected
     by a mutex (gil_mutex), and whose changes are signalled by a condition
     variable (gil_cond). gil_mutex is taken for short periods of time,
     and therefore mostly uncontended.

   - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
     able to release the GIL on demand by another thread. A volatile boolean
     variable (gil_drop_request) is used for that purpose, which is checked
     at every turn of the eval loop. That variable is set after a wait of
     `interval` microseconds on `gil_cond` has timed out.

      [Actually, another volatile boolean variable (eval_breaker) is used
       which ORs several conditions into one. Volatile booleans are
       sufficient as inter-thread signalling means since Python is run
       on cache-coherent architectures only.]

   - A thread wanting to take the GIL will first let pass a given amount of
     time (`interval` microseconds) before setting gil_drop_request. This
     encourages a defined switching period, but doesn't enforce it since
     opcodes can take an arbitrary time to execute.

     The `interval` value is available for the user to read and modify
     using the Python API `sys.{get,set}switchinterval()`.

   - When a thread releases the GIL and gil_drop_request is set, that thread
     ensures that another GIL-awaiting thread gets scheduled.
     It does so by waiting on a condition variable (switch_cond) until
     the value of last_holder is changed to something else than its
     own thread state pointer, indicating that another thread was able to
     take the GIL.

     This is meant to prohibit the latency-adverse behaviour on multi-core
     machines where one thread would speculatively release the GIL, but still
     run and end up being the first to re-acquire it, making the "timeslices"
     much longer than expected.
     (Note: this mechanism is enabled with FORCE_SWITCHING above)
*/

#include "condvar.h"

#define MUTEX_INIT(mut) \
    if (PyMUTEX_INIT(&(mut))) { \
        Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
#define MUTEX_FINI(mut) \
    if (PyMUTEX_FINI(&(mut))) { \
        Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
#define MUTEX_LOCK(mut) \
    if (PyMUTEX_LOCK(&(mut))) { \
        Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
#define MUTEX_UNLOCK(mut) \
    if (PyMUTEX_UNLOCK(&(mut))) { \
        Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };

#define COND_INIT(cond) \
    if (PyCOND_INIT(&(cond))) { \
        Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
#define COND_FINI(cond) \
    if (PyCOND_FINI(&(cond))) { \
        Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
#define COND_SIGNAL(cond) \
    if (PyCOND_SIGNAL(&(cond))) { \
        Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
#define COND_WAIT(cond, mut) \
    if (PyCOND_WAIT(&(cond), &(mut))) { \
        Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
    { \
        int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
        if (r < 0) \
            Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
        if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
            timeout_result = 1; \
        else \
            timeout_result = 0; \
    } \


#define DEFAULT_INTERVAL 5000

static void _gil_initialize(struct _gil_runtime_state *gil)
{
    _Py_atomic_int uninitialized = {-1};
    gil->locked = uninitialized;
    gil->interval = DEFAULT_INTERVAL;
}

static int gil_created(struct _gil_runtime_state *gil)
{
    return (_Py_atomic_load_explicit(&gil->locked, _Py_memory_order_acquire) >= 0);
}

static void create_gil(struct _gil_runtime_state *gil)
{
    MUTEX_INIT(gil->mutex);
#ifdef FORCE_SWITCHING
    MUTEX_INIT(gil->switch_mutex);
#endif
    COND_INIT(gil->cond);
#ifdef FORCE_SWITCHING
    COND_INIT(gil->switch_cond);
#endif
    _Py_atomic_store_relaxed(&gil->last_holder, 0);
    _Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
    _Py_atomic_store_explicit(&gil->locked, 0, _Py_memory_order_release);
}

static void destroy_gil(struct _gil_runtime_state *gil)
{
    /* some pthread-like implementations tie the mutex to the cond
     * and must have the cond destroyed first.
     */
    COND_FINI(gil->cond);
    MUTEX_FINI(gil->mutex);
#ifdef FORCE_SWITCHING
    COND_FINI(gil->switch_cond);
    MUTEX_FINI(gil->switch_mutex);
#endif
    _Py_atomic_store_explicit(&gil->locked, -1,
                              _Py_memory_order_release);
    _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
}

static void recreate_gil(struct _gil_runtime_state *gil)
{
    _Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
    /* XXX should we destroy the old OS resources here? */
    create_gil(gil);
}

static void
drop_gil(struct _ceval_runtime_state *ceval, struct _ceval_state *ceval2,
         PyThreadState *tstate)
{
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
    struct _gil_runtime_state *gil = &ceval2->gil;
#else
    struct _gil_runtime_state *gil = &ceval->gil;
#endif
    if (!_Py_atomic_load_relaxed(&gil->locked)) {
        Py_FatalError("drop_gil: GIL is not locked");
    }

    /* tstate is allowed to be NULL (early interpreter init) */
    if (tstate != NULL) {
        /* Sub-interpreter support: threads might have been switched
           under our feet using PyThreadState_Swap(). Fix the GIL last
           holder variable so that our heuristics work. */
        _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
    }

    MUTEX_LOCK(gil->mutex);
    _Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
    _Py_atomic_store_relaxed(&gil->locked, 0);
    COND_SIGNAL(gil->cond);
    MUTEX_UNLOCK(gil->mutex);

#ifdef FORCE_SWITCHING
    if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request) && tstate != NULL) {
        MUTEX_LOCK(gil->switch_mutex);
        /* Not switched yet => wait */
        if (((PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) == tstate)
        {
            assert(is_tstate_valid(tstate));
            RESET_GIL_DROP_REQUEST(tstate->interp);
            /* NOTE: if COND_WAIT does not atomically start waiting when
               releasing the mutex, another thread can run through, take
               the GIL and drop it again, and reset the condition
               before we even had a chance to wait for it. */
            COND_WAIT(gil->switch_cond, gil->switch_mutex);
        }
        MUTEX_UNLOCK(gil->switch_mutex);
    }
#endif
}


/* Check if a Python thread must exit immediately, rather than taking the GIL
   if Py_Finalize() has been called.

   When this function is called by a daemon thread after Py_Finalize() has been
   called, the GIL does no longer exist.

   tstate must be non-NULL. */
static inline int
tstate_must_exit(PyThreadState *tstate)
{
    /* bpo-39877: Access _PyRuntime directly rather than using
       tstate->interp->runtime to support calls from Python daemon threads.
       After Py_Finalize() has been called, tstate can be a dangling pointer:
       point to PyThreadState freed memory. */
    PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime);
    return (finalizing != NULL && finalizing != tstate);
}


/* Take the GIL.

   The function saves errno at entry and restores its value at exit.

   tstate must be non-NULL. */
static void
take_gil(PyThreadState *tstate)
{
    int err = errno;

    assert(tstate != NULL);

    if (tstate_must_exit(tstate)) {
        /* bpo-39877: If Py_Finalize() has been called and tstate is not the
           thread which called Py_Finalize(), exit immediately the thread.

           This code path can be reached by a daemon thread after Py_Finalize()
           completes. In this case, tstate is a dangling pointer: points to
           PyThreadState freed memory. */
        PyThread_exit_thread();
    }

    assert(is_tstate_valid(tstate));
    PyInterpreterState *interp = tstate->interp;
    struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
    struct _ceval_state *ceval2 = &interp->ceval;
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
    struct _gil_runtime_state *gil = &ceval2->gil;
#else
    struct _gil_runtime_state *gil = &ceval->gil;
#endif

    /* Check that _PyEval_InitThreads() was called to create the lock */
    assert(gil_created(gil));

    MUTEX_LOCK(gil->mutex);

    if (!_Py_atomic_load_relaxed(&gil->locked)) {
        goto _ready;
    }

    while (_Py_atomic_load_relaxed(&gil->locked)) {
        unsigned long saved_switchnum = gil->switch_number;

        unsigned long interval = (gil->interval >= 1 ? gil->interval : 1);
        int timed_out = 0;
        COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);

        /* If we timed out and no switch occurred in the meantime, it is time
           to ask the GIL-holding thread to drop it. */
        if (timed_out &&
            _Py_atomic_load_relaxed(&gil->locked) &&
            gil->switch_number == saved_switchnum)
        {
            if (tstate_must_exit(tstate)) {
                MUTEX_UNLOCK(gil->mutex);
                PyThread_exit_thread();
            }
            assert(is_tstate_valid(tstate));

            SET_GIL_DROP_REQUEST(interp);
        }
    }

_ready:
#ifdef FORCE_SWITCHING
    /* This mutex must be taken before modifying gil->last_holder:
       see drop_gil(). */
    MUTEX_LOCK(gil->switch_mutex);
#endif
    /* We now hold the GIL */
    _Py_atomic_store_relaxed(&gil->locked, 1);
    _Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);

    if (tstate != (PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) {
        _Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
        ++gil->switch_number;
    }

#ifdef FORCE_SWITCHING
    COND_SIGNAL(gil->switch_cond);
    MUTEX_UNLOCK(gil->switch_mutex);
#endif

    if (tstate_must_exit(tstate)) {
        /* bpo-36475: If Py_Finalize() has been called and tstate is not
           the thread which called Py_Finalize(), exit immediately the
           thread.

           This code path can be reached by a daemon thread which was waiting
           in take_gil() while the main thread called
           wait_for_thread_shutdown() from Py_Finalize(). */
        MUTEX_UNLOCK(gil->mutex);
        drop_gil(ceval, ceval2, tstate);
        PyThread_exit_thread();
    }
    assert(is_tstate_valid(tstate));

    if (_Py_atomic_load_relaxed(&ceval2->gil_drop_request)) {
        RESET_GIL_DROP_REQUEST(interp);
    }
    else {
        /* bpo-40010: eval_breaker should be recomputed to be set to 1 if there
           is a pending signal: signal received by another thread which cannot
           handle signals.

           Note: RESET_GIL_DROP_REQUEST() calls COMPUTE_EVAL_BREAKER(). */
        COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
    }

    /* Don't access tstate if the thread must exit */
    if (tstate->async_exc != NULL) {
        _PyEval_SignalAsyncExc(tstate->interp);
    }

    MUTEX_UNLOCK(gil->mutex);

    errno = err;
}

void _PyEval_SetSwitchInterval(unsigned long microseconds)
{
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
    PyInterpreterState *interp = PyInterpreterState_Get();
    struct _gil_runtime_state *gil = &interp->ceval.gil;
#else
    struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil;
#endif
    gil->interval = microseconds;
}

unsigned long _PyEval_GetSwitchInterval()
{
#ifdef EXPERIMENTAL_ISOLATED_SUBINTERPRETERS
    PyInterpreterState *interp = PyInterpreterState_Get();
    struct _gil_runtime_state *gil = &interp->ceval.gil;
#else
    struct _gil_runtime_state *gil = &_PyRuntime.ceval.gil;
#endif
    return gil->interval;
}