1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
|
/*
* Implementation of DES encryption for NTLM
*
* Copyright 1997-2005 Simon Tatham.
*
* This software is released under the MIT license.
*/
/*
* Description of DES
* ------------------
*
* Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
* bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
* And S-boxes are indexed by six consecutive bits, not by the outer two
* followed by the middle four.
*
* The DES encryption routine requires a 64-bit input, and a key schedule K
* containing 16 48-bit elements.
*
* First the input is permuted by the initial permutation IP.
* Then the input is split into 32-bit words L and R. (L is the MSW.)
* Next, 16 rounds. In each round:
* (L, R) <- (R, L xor f(R, K[i]))
* Then the pre-output words L and R are swapped.
* Then L and R are glued back together into a 64-bit word. (L is the MSW,
* again, but since we just swapped them, the MSW is the R that came out
* of the last round.)
* The 64-bit output block is permuted by the inverse of IP and returned.
*
* Decryption is identical except that the elements of K are used in the
* opposite order. (This wouldn't work if that word swap didn't happen.)
*
* The function f, used in each round, accepts a 32-bit word R and a
* 48-bit key block K. It produces a 32-bit output.
*
* First R is expanded to 48 bits using the bit-selection function E.
* The resulting 48-bit block is XORed with the key block K to produce
* a 48-bit block X.
* This block X is split into eight groups of 6 bits. Each group of 6
* bits is then looked up in one of the eight S-boxes to convert
* it to 4 bits. These eight groups of 4 bits are glued back
* together to produce a 32-bit preoutput block.
* The preoutput block is permuted using the permutation P and returned.
*
* Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
* the approved input format for the key is a 64-bit word, eight of the
* bits are discarded, so the actual quantity of key used is 56 bits.
*
* First the input key is converted to two 28-bit words C and D using
* the bit-selection function PC1.
* Then 16 rounds of key setup occur. In each round, C and D are each
* rotated left by either 1 or 2 bits (depending on which round), and
* then converted into a key schedule element using the bit-selection
* function PC2.
*
* That's the actual algorithm. Now for the tedious details: all those
* painful permutations and lookup tables.
*
* IP is a 64-to-64 bit permutation. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
* 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
* 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
* 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
*
* E is a 32-to-48 bit selection function. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
* 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
*
* The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
* 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
* The S-boxes are listed below. The first S-box listed is applied to the
* most significant six bits of the block X; the last one is applied to the
* least significant.
*
* 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
* 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
* 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
* 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
*
* 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
* 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
* 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
* 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
*
* 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
* 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
* 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
* 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
*
* 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
* 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
* 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
* 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
*
* 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
* 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
* 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
* 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
*
* 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
* 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
* 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
* 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
*
* 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
* 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
* 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
* 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
*
* 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
* 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
* 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
* 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
*
* P is a 32-to-32 bit permutation. Its output contains the following
* bits of its input (listed in order MSB to LSB of output).
*
* 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
* 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
*
* PC1 is a 64-to-56 bit selection function. Its output is in two words,
* C and D. The word C contains the following bits of its input (listed
* in order MSB to LSB of output).
*
* 7 15 23 31 39 47 55 63 6 14 22 30 38 46
* 54 62 5 13 21 29 37 45 53 61 4 12 20 28
*
* And the word D contains these bits.
*
* 1 9 17 25 33 41 49 57 2 10 18 26 34 42
* 50 58 3 11 19 27 35 43 51 59 36 44 52 60
*
* PC2 is a 56-to-48 bit selection function. Its input is in two words,
* C and D. These are treated as one 56-bit word (with C more significant,
* so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
* 0 of the word are bits 27 to 0 of D). The output contains the following
* bits of this 56-bit input word (listed in order MSB to LSB of output).
*
* 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
* 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
*/
/*
* Implementation details
* ----------------------
*
* If you look at the code in this module, you'll find it looks
* nothing _like_ the above algorithm. Here I explain the
* differences...
*
* Key setup has not been heavily optimised here. We are not
* concerned with key agility: we aren't codebreakers. We don't
* mind a little delay (and it really is a little one; it may be a
* factor of five or so slower than it could be but it's still not
* an appreciable length of time) while setting up. The only tweaks
* in the key setup are ones which change the format of the key
* schedule to speed up the actual encryption. I'll describe those
* below.
*
* The first and most obvious optimisation is the S-boxes. Since
* each S-box always targets the same four bits in the final 32-bit
* word, so the output from (for example) S-box 0 must always be
* shifted left 28 bits, we can store the already-shifted outputs
* in the lookup tables. This reduces lookup-and-shift to lookup,
* so the S-box step is now just a question of ORing together eight
* table lookups.
*
* The permutation P is just a bit order change; it's invariant
* with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
* can apply P to every entry of the S-box tables and then we don't
* have to do it in the code of f(). This yields a set of tables
* which might be called SP-boxes.
*
* The bit-selection function E is our next target. Note that E is
* immediately followed by the operation of splitting into 6-bit
* chunks. Examining the 6-bit chunks coming out of E we notice
* they're all contiguous within the word (speaking cyclically -
* the end two wrap round); so we can extract those bit strings
* individually rather than explicitly running E. This would yield
* code such as
*
* y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
* t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
*
* and so on; and the key schedule preparation would have to
* provide each 6-bit chunk separately.
*
* Really we'd like to XOR in the key schedule element before
* looking up bit strings in R. This we can't do, naively, because
* the 6-bit strings we want overlap. But look at the strings:
*
* 3322222222221111111111
* bit 10987654321098765432109876543210
*
* box0 XXXXX X
* box1 XXXXXX
* box2 XXXXXX
* box3 XXXXXX
* box4 XXXXXX
* box5 XXXXXX
* box6 XXXXXX
* box7 X XXXXX
*
* The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
* overlap with each other. Neither do the ones for boxes 1, 3, 5
* and 7. So we could provide the key schedule in the form of two
* words that we can separately XOR into R, and then every S-box
* index is available as a (cyclically) contiguous 6-bit substring
* of one or the other of the results.
*
* The comments in Eric Young's libdes implementation point out
* that two of these bit strings require a rotation (rather than a
* simple shift) to extract. It's unavoidable that at least _one_
* must do; but we can actually run the whole inner algorithm (all
* 16 rounds) rotated one bit to the left, so that what the `real'
* DES description sees as L=0x80000001 we see as L=0x00000003.
* This requires rotating all our SP-box entries one bit to the
* left, and rotating each word of the key schedule elements one to
* the left, and rotating L and R one bit left just after IP and
* one bit right again just before FP. And in each round we convert
* a rotate into a shift, so we've saved a few per cent.
*
* That's about it for the inner loop; the SP-box tables as listed
* below are what I've described here (the original S value,
* shifted to its final place in the input to P, run through P, and
* then rotated one bit left). All that remains is to optimise the
* initial permutation IP.
*
* IP is not an arbitrary permutation. It has the nice property
* that if you take any bit number, write it in binary (6 bits),
* permute those 6 bits and invert some of them, you get the final
* position of that bit. Specifically, the bit whose initial
* position is given (in binary) as fedcba ends up in position
* AcbFED (where a capital letter denotes the inverse of a bit).
*
* We have the 64-bit data in two 32-bit words L and R, where bits
* in L are those with f=1 and bits in R are those with f=0. We
* note that we can do a simple transformation: suppose we exchange
* the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
* the bit fedcba to be in position cedfba - we've `swapped' bits c
* and f in the position of each bit!
*
* Better still, this transformation is easy. In the example above,
* bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
* are 0xF0F0F0F0. So we can do
*
* difference = ((R >> 4) ^ L) & 0x0F0F0F0F
* R ^= (difference << 4)
* L ^= difference
*
* to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
* Also, we can invert the bit at the top just by exchanging L and
* R. So in a few swaps and a few of these bit operations we can
* do:
*
* Initially the position of bit fedcba is fedcba
* Swap L with R to make it Fedcba
* Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
* Perform bitswap(16,0x0000FFFF) to make it ecdFba
* Swap L with R to make it EcdFba
* Perform bitswap( 2,0x33333333) to make it bcdFEa
* Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
* Swap L with R to make it DcbFEa
* Perform bitswap( 1,0x55555555) to make it acbFED
* Swap L with R to make it AcbFED
*
* (In the actual code the four swaps are implicit: R and L are
* simply used the other way round in the first, second and last
* bitswap operations.)
*
* The final permutation is just the inverse of IP, so it can be
* performed by a similar set of operations.
*/
struct des_context {
quint32 k0246[16], k1357[16];
};
#define rotl(x, c) ( (x << c) | (x >> (32-c)) )
#define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
static quint32 bitsel(quint32 * input, const int *bitnums, int size)
{
quint32 ret = 0;
while (size--) {
int bitpos = *bitnums++;
ret <<= 1;
if (bitpos >= 0)
ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
}
return ret;
}
static inline void des_key_setup(quint32 key_msw, quint32 key_lsw,
struct des_context *sched)
{
/* Tables are modified to work with 56-bit key */
static const int PC1_Cbits[] = {
6, 13, 20, 27, 34, 41, 48, 55, 5, 12, 19, 26, 33, 40,
47, 54, 4, 11, 18, 25, 32, 39, 46, 53, 3, 10, 17, 24
};
static const int PC1_Dbits[] = {
0, 7, 14, 21, 28, 35, 42, 49, 1, 8, 15, 22, 29, 36,
43, 50, 2, 9, 16, 23, 30, 37, 44, 51, 31, 38, 45, 52
};
/*
* The bit numbers in the two lists below don't correspond to
* the ones in the above description of PC2, because in the
* above description C and D are concatenated so `bit 28' means
* bit 0 of C. In this implementation we're using the standard
* `bitsel' function above and C is in the second word, so bit
* 0 of C is addressed by writing `32' here.
*/
static const int PC2_0246[] = {
49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
};
static const int PC2_1357[] = {
-1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
-1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
};
static const int leftshifts[] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
quint32 C, D;
quint32 buf[2];
int i;
buf[0] = key_lsw;
buf[1] = key_msw;
C = bitsel(buf, PC1_Cbits, 28);
D = bitsel(buf, PC1_Dbits, 28);
for (i = 0; i < 16; i++) {
C = rotl28(C, leftshifts[i]);
D = rotl28(D, leftshifts[i]);
buf[0] = D;
buf[1] = C;
sched->k0246[i] = bitsel(buf, PC2_0246, 32);
sched->k1357[i] = bitsel(buf, PC2_1357, 32);
}
}
static const quint32 SPboxes[8][64] = {
{0x01010400, 0x00000000, 0x00010000, 0x01010404,
0x01010004, 0x00010404, 0x00000004, 0x00010000,
0x00000400, 0x01010400, 0x01010404, 0x00000400,
0x01000404, 0x01010004, 0x01000000, 0x00000004,
0x00000404, 0x01000400, 0x01000400, 0x00010400,
0x00010400, 0x01010000, 0x01010000, 0x01000404,
0x00010004, 0x01000004, 0x01000004, 0x00010004,
0x00000000, 0x00000404, 0x00010404, 0x01000000,
0x00010000, 0x01010404, 0x00000004, 0x01010000,
0x01010400, 0x01000000, 0x01000000, 0x00000400,
0x01010004, 0x00010000, 0x00010400, 0x01000004,
0x00000400, 0x00000004, 0x01000404, 0x00010404,
0x01010404, 0x00010004, 0x01010000, 0x01000404,
0x01000004, 0x00000404, 0x00010404, 0x01010400,
0x00000404, 0x01000400, 0x01000400, 0x00000000,
0x00010004, 0x00010400, 0x00000000, 0x01010004},
{0x80108020, 0x80008000, 0x00008000, 0x00108020,
0x00100000, 0x00000020, 0x80100020, 0x80008020,
0x80000020, 0x80108020, 0x80108000, 0x80000000,
0x80008000, 0x00100000, 0x00000020, 0x80100020,
0x00108000, 0x00100020, 0x80008020, 0x00000000,
0x80000000, 0x00008000, 0x00108020, 0x80100000,
0x00100020, 0x80000020, 0x00000000, 0x00108000,
0x00008020, 0x80108000, 0x80100000, 0x00008020,
0x00000000, 0x00108020, 0x80100020, 0x00100000,
0x80008020, 0x80100000, 0x80108000, 0x00008000,
0x80100000, 0x80008000, 0x00000020, 0x80108020,
0x00108020, 0x00000020, 0x00008000, 0x80000000,
0x00008020, 0x80108000, 0x00100000, 0x80000020,
0x00100020, 0x80008020, 0x80000020, 0x00100020,
0x00108000, 0x00000000, 0x80008000, 0x00008020,
0x80000000, 0x80100020, 0x80108020, 0x00108000},
{0x00000208, 0x08020200, 0x00000000, 0x08020008,
0x08000200, 0x00000000, 0x00020208, 0x08000200,
0x00020008, 0x08000008, 0x08000008, 0x00020000,
0x08020208, 0x00020008, 0x08020000, 0x00000208,
0x08000000, 0x00000008, 0x08020200, 0x00000200,
0x00020200, 0x08020000, 0x08020008, 0x00020208,
0x08000208, 0x00020200, 0x00020000, 0x08000208,
0x00000008, 0x08020208, 0x00000200, 0x08000000,
0x08020200, 0x08000000, 0x00020008, 0x00000208,
0x00020000, 0x08020200, 0x08000200, 0x00000000,
0x00000200, 0x00020008, 0x08020208, 0x08000200,
0x08000008, 0x00000200, 0x00000000, 0x08020008,
0x08000208, 0x00020000, 0x08000000, 0x08020208,
0x00000008, 0x00020208, 0x00020200, 0x08000008,
0x08020000, 0x08000208, 0x00000208, 0x08020000,
0x00020208, 0x00000008, 0x08020008, 0x00020200},
{0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802080, 0x00800081, 0x00800001, 0x00002001,
0x00000000, 0x00802000, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00800080, 0x00800001,
0x00000001, 0x00002000, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002001, 0x00002080,
0x00800081, 0x00000001, 0x00002080, 0x00800080,
0x00002000, 0x00802080, 0x00802081, 0x00000081,
0x00800080, 0x00800001, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00000000, 0x00802000,
0x00002080, 0x00800080, 0x00800081, 0x00000001,
0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802081, 0x00000081, 0x00000001, 0x00002000,
0x00800001, 0x00002001, 0x00802080, 0x00800081,
0x00002001, 0x00002080, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002000, 0x00802080},
{0x00000100, 0x02080100, 0x02080000, 0x42000100,
0x00080000, 0x00000100, 0x40000000, 0x02080000,
0x40080100, 0x00080000, 0x02000100, 0x40080100,
0x42000100, 0x42080000, 0x00080100, 0x40000000,
0x02000000, 0x40080000, 0x40080000, 0x00000000,
0x40000100, 0x42080100, 0x42080100, 0x02000100,
0x42080000, 0x40000100, 0x00000000, 0x42000000,
0x02080100, 0x02000000, 0x42000000, 0x00080100,
0x00080000, 0x42000100, 0x00000100, 0x02000000,
0x40000000, 0x02080000, 0x42000100, 0x40080100,
0x02000100, 0x40000000, 0x42080000, 0x02080100,
0x40080100, 0x00000100, 0x02000000, 0x42080000,
0x42080100, 0x00080100, 0x42000000, 0x42080100,
0x02080000, 0x00000000, 0x40080000, 0x42000000,
0x00080100, 0x02000100, 0x40000100, 0x00080000,
0x00000000, 0x40080000, 0x02080100, 0x40000100},
{0x20000010, 0x20400000, 0x00004000, 0x20404010,
0x20400000, 0x00000010, 0x20404010, 0x00400000,
0x20004000, 0x00404010, 0x00400000, 0x20000010,
0x00400010, 0x20004000, 0x20000000, 0x00004010,
0x00000000, 0x00400010, 0x20004010, 0x00004000,
0x00404000, 0x20004010, 0x00000010, 0x20400010,
0x20400010, 0x00000000, 0x00404010, 0x20404000,
0x00004010, 0x00404000, 0x20404000, 0x20000000,
0x20004000, 0x00000010, 0x20400010, 0x00404000,
0x20404010, 0x00400000, 0x00004010, 0x20000010,
0x00400000, 0x20004000, 0x20000000, 0x00004010,
0x20000010, 0x20404010, 0x00404000, 0x20400000,
0x00404010, 0x20404000, 0x00000000, 0x20400010,
0x00000010, 0x00004000, 0x20400000, 0x00404010,
0x00004000, 0x00400010, 0x20004010, 0x00000000,
0x20404000, 0x20000000, 0x00400010, 0x20004010},
{0x00200000, 0x04200002, 0x04000802, 0x00000000,
0x00000800, 0x04000802, 0x00200802, 0x04200800,
0x04200802, 0x00200000, 0x00000000, 0x04000002,
0x00000002, 0x04000000, 0x04200002, 0x00000802,
0x04000800, 0x00200802, 0x00200002, 0x04000800,
0x04000002, 0x04200000, 0x04200800, 0x00200002,
0x04200000, 0x00000800, 0x00000802, 0x04200802,
0x00200800, 0x00000002, 0x04000000, 0x00200800,
0x04000000, 0x00200800, 0x00200000, 0x04000802,
0x04000802, 0x04200002, 0x04200002, 0x00000002,
0x00200002, 0x04000000, 0x04000800, 0x00200000,
0x04200800, 0x00000802, 0x00200802, 0x04200800,
0x00000802, 0x04000002, 0x04200802, 0x04200000,
0x00200800, 0x00000000, 0x00000002, 0x04200802,
0x00000000, 0x00200802, 0x04200000, 0x00000800,
0x04000002, 0x04000800, 0x00000800, 0x00200002},
{0x10001040, 0x00001000, 0x00040000, 0x10041040,
0x10000000, 0x10001040, 0x00000040, 0x10000000,
0x00040040, 0x10040000, 0x10041040, 0x00041000,
0x10041000, 0x00041040, 0x00001000, 0x00000040,
0x10040000, 0x10000040, 0x10001000, 0x00001040,
0x00041000, 0x00040040, 0x10040040, 0x10041000,
0x00001040, 0x00000000, 0x00000000, 0x10040040,
0x10000040, 0x10001000, 0x00041040, 0x00040000,
0x00041040, 0x00040000, 0x10041000, 0x00001000,
0x00000040, 0x10040040, 0x00001000, 0x00041040,
0x10001000, 0x00000040, 0x10000040, 0x10040000,
0x10040040, 0x10000000, 0x00040000, 0x10001040,
0x00000000, 0x10041040, 0x00040040, 0x10000040,
0x10040000, 0x10001000, 0x10001040, 0x00000000,
0x10041040, 0x00041000, 0x00041000, 0x00001040,
0x00001040, 0x00040040, 0x10000000, 0x10041000}
};
#define f(R, K0246, K1357) (\
s0246 = R ^ K0246, \
s1357 = R ^ K1357, \
s0246 = rotl(s0246, 28), \
SPboxes[0] [(s0246 >> 24) & 0x3F] | \
SPboxes[1] [(s1357 >> 24) & 0x3F] | \
SPboxes[2] [(s0246 >> 16) & 0x3F] | \
SPboxes[3] [(s1357 >> 16) & 0x3F] | \
SPboxes[4] [(s0246 >> 8) & 0x3F] | \
SPboxes[5] [(s1357 >> 8) & 0x3F] | \
SPboxes[6] [(s0246 ) & 0x3F] | \
SPboxes[7] [(s1357 ) & 0x3F])
#define bitswap(L, R, n, mask) (\
swap = mask & ( (R >> n) ^ L ), \
R ^= swap << n, \
L ^= swap)
/* Initial permutation */
#define IP(L, R) (\
bitswap(R, L, 4, 0x0F0F0F0F), \
bitswap(R, L, 16, 0x0000FFFF), \
bitswap(L, R, 2, 0x33333333), \
bitswap(L, R, 8, 0x00FF00FF), \
bitswap(R, L, 1, 0x55555555))
/* Final permutation */
#define FP(L, R) (\
bitswap(R, L, 1, 0x55555555), \
bitswap(L, R, 8, 0x00FF00FF), \
bitswap(L, R, 2, 0x33333333), \
bitswap(R, L, 16, 0x0000FFFF), \
bitswap(R, L, 4, 0x0F0F0F0F))
static void
des_encipher(quint32 *output, quint32 L, quint32 R,
struct des_context *sched)
{
quint32 swap, s0246, s1357;
IP(L, R);
L = rotl(L, 1);
R = rotl(R, 1);
L ^= f(R, sched->k0246[0], sched->k1357[0]);
R ^= f(L, sched->k0246[1], sched->k1357[1]);
L ^= f(R, sched->k0246[2], sched->k1357[2]);
R ^= f(L, sched->k0246[3], sched->k1357[3]);
L ^= f(R, sched->k0246[4], sched->k1357[4]);
R ^= f(L, sched->k0246[5], sched->k1357[5]);
L ^= f(R, sched->k0246[6], sched->k1357[6]);
R ^= f(L, sched->k0246[7], sched->k1357[7]);
L ^= f(R, sched->k0246[8], sched->k1357[8]);
R ^= f(L, sched->k0246[9], sched->k1357[9]);
L ^= f(R, sched->k0246[10], sched->k1357[10]);
R ^= f(L, sched->k0246[11], sched->k1357[11]);
L ^= f(R, sched->k0246[12], sched->k1357[12]);
R ^= f(L, sched->k0246[13], sched->k1357[13]);
L ^= f(R, sched->k0246[14], sched->k1357[14]);
R ^= f(L, sched->k0246[15], sched->k1357[15]);
L = rotl(L, 31);
R = rotl(R, 31);
swap = L;
L = R;
R = swap;
FP(L, R);
output[0] = L;
output[1] = R;
}
#define GET_32BIT_MSB_FIRST(cp) \
(((unsigned long)(unsigned char)(cp)[3]) | \
((unsigned long)(unsigned char)(cp)[2] << 8) | \
((unsigned long)(unsigned char)(cp)[1] << 16) | \
((unsigned long)(unsigned char)(cp)[0] << 24))
#define PUT_32BIT_MSB_FIRST(cp, value) do { \
(cp)[3] = (value); \
(cp)[2] = (value) >> 8; \
(cp)[1] = (value) >> 16; \
(cp)[0] = (value) >> 24; } while (0)
static inline void
des_cbc_encrypt(unsigned char *dest, const unsigned char *src,
struct des_context *sched)
{
quint32 out[2], L, R;
L = GET_32BIT_MSB_FIRST(src);
R = GET_32BIT_MSB_FIRST(src + 4);
des_encipher(out, L, R, sched);
PUT_32BIT_MSB_FIRST(dest, out[0]);
PUT_32BIT_MSB_FIRST(dest + 4, out[1]);
}
static unsigned char *
deshash(unsigned char *dst, const unsigned char *key,
const unsigned char *src)
{
struct des_context ctx;
des_key_setup(GET_32BIT_MSB_FIRST(key) >> 8,
GET_32BIT_MSB_FIRST(key + 3), &ctx);
des_cbc_encrypt(dst, src, &ctx);
return dst;
}
|