1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
/*
Disclaimer for Robert Penner's Easing Equations license:
TERMS OF USE - EASING EQUATIONS
Open source under the BSD License.
Copyright © 2001 Robert Penner
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <QtCore/qmath.h>
#include <math.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_PI_2
#define M_PI_2 (M_PI / 2)
#endif
/**
* Easing equation function for a simple linear tweening, with no easing.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeNone(qreal progress)
{
return progress;
}
/**
* Easing equation function for a quadratic (t^2) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInQuad(qreal t)
{
return t*t;
}
/**
* Easing equation function for a quadratic (t^2) easing out: decelerating to zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutQuad(qreal t)
{
return -t*(t-2);
}
/**
* Easing equation function for a quadratic (t^2) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInOutQuad(qreal t)
{
t*=2.0;
if (t < 1) {
return t*t/qreal(2);
} else {
--t;
return -0.5 * (t*(t-2) - 1);
}
}
/**
* Easing equation function for a quadratic (t^2) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutInQuad(qreal t)
{
if (t < 0.5) return easeOutQuad (t*2)/2;
return easeInQuad((2*t)-1)/2 + 0.5;
}
/**
* Easing equation function for a cubic (t^3) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInCubic(qreal t)
{
return t*t*t;
}
/**
* Easing equation function for a cubic (t^3) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutCubic(qreal t)
{
t-=1.0;
return t*t*t + 1;
}
/**
* Easing equation function for a cubic (t^3) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInOutCubic(qreal t)
{
t*=2.0;
if(t < 1) {
return 0.5*t*t*t;
} else {
t -= qreal(2.0);
return 0.5*(t*t*t + 2);
}
}
/**
* Easing equation function for a cubic (t^3) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutInCubic(qreal t)
{
if (t < 0.5) return easeOutCubic (2*t)/2;
return easeInCubic(2*t - 1)/2 + 0.5;
}
/**
* Easing equation function for a quartic (t^4) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInQuart(qreal t)
{
return t*t*t*t;
}
/**
* Easing equation function for a quartic (t^4) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutQuart(qreal t)
{
t-= qreal(1.0);
return - (t*t*t*t- 1);
}
/**
* Easing equation function for a quartic (t^4) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInOutQuart(qreal t)
{
t*=2;
if (t < 1) return 0.5*t*t*t*t;
else {
t -= 2.0f;
return -0.5 * (t*t*t*t- 2);
}
}
/**
* Easing equation function for a quartic (t^4) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutInQuart(qreal t)
{
if (t < 0.5) return easeOutQuart (2*t)/2;
return easeInQuart(2*t-1)/2 + 0.5;
}
/**
* Easing equation function for a quintic (t^5) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInQuint(qreal t)
{
return t*t*t*t*t;
}
/**
* Easing equation function for a quintic (t^5) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutQuint(qreal t)
{
t-=1.0;
return t*t*t*t*t + 1;
}
/**
* Easing equation function for a quintic (t^5) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInOutQuint(qreal t)
{
t*=2.0;
if (t < 1) return 0.5*t*t*t*t*t;
else {
t -= 2.0;
return 0.5*(t*t*t*t*t + 2);
}
}
/**
* Easing equation function for a quintic (t^5) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutInQuint(qreal t)
{
if (t < 0.5) return easeOutQuint (2*t)/2;
return easeInQuint(2*t - 1)/2 + 0.5;
}
/**
* Easing equation function for a sinusoidal (sin(t)) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInSine(qreal t)
{
return (t == 1.0) ? 1.0 : -::cos(t * M_PI_2) + 1.0;
}
/**
* Easing equation function for a sinusoidal (sin(t)) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutSine(qreal t)
{
return ::sin(t* M_PI_2);
}
/**
* Easing equation function for a sinusoidal (sin(t)) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInOutSine(qreal t)
{
return -0.5 * (::cos(M_PI*t) - 1);
}
/**
* Easing equation function for a sinusoidal (sin(t)) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutInSine(qreal t)
{
if (t < 0.5) return easeOutSine (2*t)/2;
return easeInSine(2*t - 1)/2 + 0.5;
}
/**
* Easing equation function for an exponential (2^t) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInExpo(qreal t)
{
return (t==0 || t == 1.0) ? t : ::qPow(2.0, 10 * (t - 1)) - qreal(0.001);
}
/**
* Easing equation function for an exponential (2^t) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutExpo(qreal t)
{
return (t==1.0) ? 1.0 : 1.001 * (-::qPow(2.0f, -10 * t) + 1);
}
/**
* Easing equation function for an exponential (2^t) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInOutExpo(qreal t)
{
if (t==0.0) return qreal(0.0);
if (t==1.0) return qreal(1.0);
t*=2.0;
if (t < 1) return 0.5 * ::qPow(qreal(2.0), 10 * (t - 1)) - 0.0005;
return 0.5 * 1.0005 * (-::qPow(qreal(2.0), -10 * (t - 1)) + 2);
}
/**
* Easing equation function for an exponential (2^t) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutInExpo(qreal t)
{
if (t < 0.5) return easeOutExpo (2*t)/2;
return easeInExpo(2*t - 1)/2 + 0.5;
}
/**
* Easing equation function for a circular (sqrt(1-t^2)) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInCirc(qreal t)
{
return -(::sqrt(1 - t*t) - 1);
}
/**
* Easing equation function for a circular (sqrt(1-t^2)) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutCirc(qreal t)
{
t-= qreal(1.0);
return ::sqrt(1 - t* t);
}
/**
* Easing equation function for a circular (sqrt(1-t^2)) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeInOutCirc(qreal t)
{
t*=qreal(2.0);
if (t < 1) {
return -0.5 * (::sqrt(1 - t*t) - 1);
} else {
t -= qreal(2.0);
return 0.5 * (::sqrt(1 - t*t) + 1);
}
}
/**
* Easing equation function for a circular (sqrt(1-t^2)) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @return The correct value.
*/
static qreal easeOutInCirc(qreal t)
{
if (t < 0.5) return easeOutCirc (2*t)/2;
return easeInCirc(2*t - 1)/2 + 0.5;
}
static qreal easeInElastic_helper(qreal t, qreal b, qreal c, qreal d, qreal a, qreal p)
{
if (t==0) return b;
qreal t_adj = (qreal)t / (qreal)d;
if (t_adj==1) return b+c;
qreal s;
if(a < ::fabs(c)) {
a = c;
s = p / 4.0f;
} else {
s = p / (2 * M_PI) * ::asin(c / a);
}
t_adj -= 1.0f;
return -(a*::qPow(2.0f,10*t_adj) * ::sin( (t_adj*d-s)*(2*M_PI)/p )) + b;
}
/**
* Easing equation function for an elastic (exponentially decaying sine wave) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @param a Amplitude.
* @param p Period.
* @return The correct value.
*/
static qreal easeInElastic(qreal t, qreal a, qreal p)
{
return easeInElastic_helper(t, 0, 1, 1, a, p);
}
static qreal easeOutElastic_helper(qreal t, qreal /*b*/, qreal c, qreal /*d*/, qreal a, qreal p)
{
if (t==0) return 0;
if (t==1) return c;
qreal s;
if(a < c) {
a = c;
s = p / 4.0f;
} else {
s = p / (2 * M_PI) * ::asin(c / a);
}
return (a*::qPow(2.0f,-10*t) * ::sin( (t-s)*(2*M_PI)/p ) + c);
}
/**
* Easing equation function for an elastic (exponentially decaying sine wave) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @param a Amplitude.
* @param p Period.
* @return The correct value.
*/
static qreal easeOutElastic(qreal t, qreal a, qreal p)
{
return easeOutElastic_helper(t, 0, 1, 1, a, p);
}
/**
* Easing equation function for an elastic (exponentially decaying sine wave) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @param a Amplitude.
* @param p Period.
* @return The correct value.
*/
static qreal easeInOutElastic(qreal t, qreal a, qreal p)
{
if (t==0) return 0.0;
t*=2.0;
if (t==2) return 1.0;
qreal s;
if(a < 1.0) {
a = 1.0;
s = p / 4.0f;
} else {
s = p / (2 * M_PI) * ::asin(1.0 / a);
}
if (t < 1) return -.5*(a*::qPow(2.0f,10*(t-1)) * ::sin( (t-1-s)*(2*M_PI)/p ));
return a*::qPow(2.0f,-10*(t-1)) * ::sin( (t-1-s)*(2*M_PI)/p )*.5 + 1.0;
}
/**
* Easing equation function for an elastic (exponentially decaying sine wave) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @param a Amplitude.
* @param p Period.
* @return The correct value.
*/
static qreal easeOutInElastic(qreal t, qreal a, qreal p)
{
if (t < 0.5) return easeOutElastic_helper(t*2, 0, 0.5, 1.0, a, p);
return easeInElastic_helper(2*t - 1.0, 0.5, 0.5, 1.0, a, p);
}
/**
* Easing equation function for a back (overshooting cubic easing: (s+1)*t^3 - s*t^2) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @param s Overshoot ammount: higher s means greater overshoot (0 produces cubic easing with no overshoot, and the default value of 1.70158 produces an overshoot of 10 percent).
* @return The correct value.
*/
static qreal easeInBack(qreal t, qreal s)
{
return t*t*((s+1)*t - s);
}
/**
* Easing equation function for a back (overshooting cubic easing: (s+1)*t^3 - s*t^2) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @param s Overshoot ammount: higher s means greater overshoot (0 produces cubic easing with no overshoot, and the default value of 1.70158 produces an overshoot of 10 percent).
* @return The correct value.
*/
static qreal easeOutBack(qreal t, qreal s)
{
t-= qreal(1.0);
return t*t*((s+1)*t+ s) + 1;
}
/**
* Easing equation function for a back (overshooting cubic easing: (s+1)*t^3 - s*t^2) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @param s Overshoot ammount: higher s means greater overshoot (0 produces cubic easing with no overshoot, and the default value of 1.70158 produces an overshoot of 10 percent).
* @return The correct value.
*/
static qreal easeInOutBack(qreal t, qreal s)
{
t *= 2.0;
if (t < 1) {
s *= 1.525f;
return 0.5*(t*t*((s+1)*t - s));
} else {
t -= 2;
s *= 1.525f;
return 0.5*(t*t*((s+1)*t+ s) + 2);
}
}
/**
* Easing equation function for a back (overshooting cubic easing: (s+1)*t^3 - s*t^2) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @param s Overshoot ammount: higher s means greater overshoot (0 produces cubic easing with no overshoot, and the default value of 1.70158 produces an overshoot of 10 percent).
* @return The correct value.
*/
static qreal easeOutInBack(qreal t, qreal s)
{
if (t < 0.5) return easeOutBack (2*t, s)/2;
return easeInBack(2*t - 1, s)/2 + 0.5;
}
static qreal easeOutBounce_helper(qreal t, qreal c, qreal a)
{
if (t == 1.0) return c;
if (t < (4/11.0)) {
return c*(7.5625*t*t);
} else if (t < (8/11.0)) {
t -= (6/11.0);
return -a * (1. - (7.5625*t*t + .75)) + c;
} else if (t < (10/11.0)) {
t -= (9/11.0);
return -a * (1. - (7.5625*t*t + .9375)) + c;
} else {
t -= (21/22.0);
return -a * (1. - (7.5625*t*t + .984375)) + c;
}
}
/**
* Easing equation function for a bounce (exponentially decaying parabolic bounce) easing out: decelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @param a Amplitude.
* @return The correct value.
*/
static qreal easeOutBounce(qreal t, qreal a)
{
return easeOutBounce_helper(t, 1, a);
}
/**
* Easing equation function for a bounce (exponentially decaying parabolic bounce) easing in: accelerating from zero velocity.
*
* @param t Current time (in frames or seconds).
* @param a Amplitude.
* @return The correct value.
*/
static qreal easeInBounce(qreal t, qreal a)
{
return 1.0 - easeOutBounce_helper(1.0-t, 1.0, a);
}
/**
* Easing equation function for a bounce (exponentially decaying parabolic bounce) easing in/out: acceleration until halfway, then deceleration.
*
* @param t Current time (in frames or seconds).
* @param a Amplitude.
* @return The correct value.
*/
static qreal easeInOutBounce(qreal t, qreal a)
{
if (t < 0.5) return easeInBounce (2*t, a)/2;
else return (t == 1.0) ? 1.0 : easeOutBounce (2*t - 1, a)/2 + 0.5;
}
/**
* Easing equation function for a bounce (exponentially decaying parabolic bounce) easing out/in: deceleration until halfway, then acceleration.
*
* @param t Current time (in frames or seconds).
* @param a Amplitude.
* @return The correct value.
*/
static qreal easeOutInBounce(qreal t, qreal a)
{
if (t < 0.5) return easeOutBounce_helper(t*2, 0.5, a);
return 1.0 - easeOutBounce_helper (2.0-2*t, 0.5, a);
}
static inline qreal qt_sinProgress(qreal value)
{
return qSin((value * M_PI) - M_PI_2) / 2 + qreal(0.5);
}
static inline qreal qt_smoothBeginEndMixFactor(qreal value)
{
return qMin(qMax(1 - value * 2 + qreal(0.3), qreal(0.0)), qreal(1.0));
}
// SmoothBegin blends Smooth and Linear Interpolation.
// Progress 0 - 0.3 : Smooth only
// Progress 0.3 - ~ 0.5 : Mix of Smooth and Linear
// Progress ~ 0.5 - 1 : Linear only
/**
* Easing function that starts growing slowly, then increases in speed. At the end of the curve the speed will be constant.
*/
static qreal easeInCurve(qreal t)
{
const qreal sinProgress = qt_sinProgress(t);
const qreal mix = qt_smoothBeginEndMixFactor(t);
return sinProgress * mix + t * (1 - mix);
}
/**
* Easing function that starts growing steadily, then ends slowly. The speed will be constant at the beginning of the curve.
*/
static qreal easeOutCurve(qreal t)
{
const qreal sinProgress = qt_sinProgress(t);
const qreal mix = qt_smoothBeginEndMixFactor(1 - t);
return sinProgress * mix + t * (1 - mix);
}
/**
* Easing function where the value grows sinusoidally. Note that the calculated end value will be 0 rather than 1.
*/
static qreal easeSineCurve(qreal t)
{
return (qSin(((t * M_PI * 2)) - M_PI_2) + 1) / 2;
}
/**
* Easing function where the value grows cosinusoidally. Note that the calculated start value will be 0.5 and the end value will be 0.5
* contrary to the usual 0 to 1 easing curve.
*/
static qreal easeCosineCurve(qreal t)
{
return (qCos(((t * M_PI * 2)) - M_PI_2) + 1) / 2;
}
|