1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
* MD4 (RFC-1320) message digest.
* Modified from MD5 code by Andrey Panin <pazke@donpac.ru>
*
* Written by Solar Designer <solar@openwall.com> in 2001, and placed in
* the public domain. There's absolutely no warranty.
*
* This differs from Colin Plumb's older public domain implementation in
* that no 32-bit integer data type is required, there's no compile-time
* endianness configuration, and the function prototypes match OpenSSL's.
* The primary goals are portability and ease of use.
*
* This implementation is meant to be fast, but not as fast as possible.
* Some known optimizations are not included to reduce source code size
* and avoid compile-time configuration.
*/
#include "md4.h"
#include <string.h>
QT_BEGIN_NAMESPACE
/*
* The basic MD4 functions.
*/
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
/*
* The MD4 transformation for all four rounds.
*/
#define STEP(f, a, b, c, d, x, s) \
(a) += f((b), (c), (d)) + (x); \
(a) = ((a) << (s)) | ((a) >> (32 - (s)))
/*
* SET reads 4 input bytes in little-endian byte order and stores them
* in a properly aligned word in host byte order.
*
* The check for little-endian architectures which tolerate unaligned
* memory accesses is just an optimization. Nothing will break if it
* doesn't work.
*/
#if defined(__i386__) || defined(__x86_64__)
#define SET(n) \
(*(const quint32 *)&ptr[(n) * 4])
#define GET(n) \
SET(n)
#else
#define SET(n) \
(ctx->block[(n)] = \
(quint32)ptr[(n) * 4] | \
((quint32)ptr[(n) * 4 + 1] << 8) | \
((quint32)ptr[(n) * 4 + 2] << 16) | \
((quint32)ptr[(n) * 4 + 3] << 24))
#define GET(n) \
(ctx->block[(n)])
#endif
/*
* This processes one or more 64-byte data blocks, but does NOT update
* the bit counters. There're no alignment requirements.
*/
static const unsigned char *body(struct md4_context *ctx, const unsigned char *data, size_t size)
{
const unsigned char *ptr;
quint32 a, b, c, d;
quint32 saved_a, saved_b, saved_c, saved_d;
ptr = data;
a = ctx->a;
b = ctx->b;
c = ctx->c;
d = ctx->d;
do {
saved_a = a;
saved_b = b;
saved_c = c;
saved_d = d;
/* Round 1 */
STEP(F, a, b, c, d, SET( 0), 3);
STEP(F, d, a, b, c, SET( 1), 7);
STEP(F, c, d, a, b, SET( 2), 11);
STEP(F, b, c, d, a, SET( 3), 19);
STEP(F, a, b, c, d, SET( 4), 3);
STEP(F, d, a, b, c, SET( 5), 7);
STEP(F, c, d, a, b, SET( 6), 11);
STEP(F, b, c, d, a, SET( 7), 19);
STEP(F, a, b, c, d, SET( 8), 3);
STEP(F, d, a, b, c, SET( 9), 7);
STEP(F, c, d, a, b, SET(10), 11);
STEP(F, b, c, d, a, SET(11), 19);
STEP(F, a, b, c, d, SET(12), 3);
STEP(F, d, a, b, c, SET(13), 7);
STEP(F, c, d, a, b, SET(14), 11);
STEP(F, b, c, d, a, SET(15), 19);
/* Round 2 */
STEP(G, a, b, c, d, GET( 0) + 0x5A827999, 3);
STEP(G, d, a, b, c, GET( 4) + 0x5A827999, 5);
STEP(G, c, d, a, b, GET( 8) + 0x5A827999, 9);
STEP(G, b, c, d, a, GET(12) + 0x5A827999, 13);
STEP(G, a, b, c, d, GET( 1) + 0x5A827999, 3);
STEP(G, d, a, b, c, GET( 5) + 0x5A827999, 5);
STEP(G, c, d, a, b, GET( 9) + 0x5A827999, 9);
STEP(G, b, c, d, a, GET(13) + 0x5A827999, 13);
STEP(G, a, b, c, d, GET( 2) + 0x5A827999, 3);
STEP(G, d, a, b, c, GET( 6) + 0x5A827999, 5);
STEP(G, c, d, a, b, GET(10) + 0x5A827999, 9);
STEP(G, b, c, d, a, GET(14) + 0x5A827999, 13);
STEP(G, a, b, c, d, GET( 3) + 0x5A827999, 3);
STEP(G, d, a, b, c, GET( 7) + 0x5A827999, 5);
STEP(G, c, d, a, b, GET(11) + 0x5A827999, 9);
STEP(G, b, c, d, a, GET(15) + 0x5A827999, 13);
/* Round 3 */
STEP(H, a, b, c, d, GET( 0) + 0x6ED9EBA1, 3);
STEP(H, d, a, b, c, GET( 8) + 0x6ED9EBA1, 9);
STEP(H, c, d, a, b, GET( 4) + 0x6ED9EBA1, 11);
STEP(H, b, c, d, a, GET(12) + 0x6ED9EBA1, 15);
STEP(H, a, b, c, d, GET( 2) + 0x6ED9EBA1, 3);
STEP(H, d, a, b, c, GET(10) + 0x6ED9EBA1, 9);
STEP(H, c, d, a, b, GET( 6) + 0x6ED9EBA1, 11);
STEP(H, b, c, d, a, GET(14) + 0x6ED9EBA1, 15);
STEP(H, a, b, c, d, GET( 1) + 0x6ED9EBA1, 3);
STEP(H, d, a, b, c, GET( 9) + 0x6ED9EBA1, 9);
STEP(H, c, d, a, b, GET( 5) + 0x6ED9EBA1, 11);
STEP(H, b, c, d, a, GET(13) + 0x6ED9EBA1, 15);
STEP(H, a, b, c, d, GET( 3) + 0x6ED9EBA1, 3);
STEP(H, d, a, b, c, GET(11) + 0x6ED9EBA1, 9);
STEP(H, c, d, a, b, GET( 7) + 0x6ED9EBA1, 11);
STEP(H, b, c, d, a, GET(15) + 0x6ED9EBA1, 15);
a += saved_a;
b += saved_b;
c += saved_c;
d += saved_d;
ptr += 64;
} while (size -= 64);
ctx->a = a;
ctx->b = b;
ctx->c = c;
ctx->d = d;
return ptr;
}
static void md4_init(struct md4_context *ctx)
{
ctx->a = 0x67452301;
ctx->b = 0xefcdab89;
ctx->c = 0x98badcfe;
ctx->d = 0x10325476;
ctx->lo = 0;
ctx->hi = 0;
}
static void md4_update(struct md4_context *ctx, const unsigned char *data, size_t size)
{
/* @UNSAFE */
quint32 saved_lo;
unsigned long used, free;
saved_lo = ctx->lo;
if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
ctx->hi++;
ctx->hi += size >> 29;
used = saved_lo & 0x3f;
if (used) {
free = 64 - used;
if (size < free) {
memcpy(&ctx->buffer[used], data, size);
return;
}
memcpy(&ctx->buffer[used], data, free);
data = (const unsigned char *) data + free;
size -= free;
body(ctx, ctx->buffer, 64);
}
if (size >= 64) {
data = body(ctx, data, size & ~(unsigned long)0x3f);
size &= 0x3f;
}
memcpy(ctx->buffer, data, size);
}
static void md4_final(struct md4_context *ctx, unsigned char result[MD4_RESULTLEN])
{
/* @UNSAFE */
unsigned long used, free;
used = ctx->lo & 0x3f;
ctx->buffer[used++] = 0x80;
free = 64 - used;
if (free < 8) {
memset(&ctx->buffer[used], 0, free);
body(ctx, ctx->buffer, 64);
used = 0;
free = 64;
}
memset(&ctx->buffer[used], 0, free - 8);
ctx->lo <<= 3;
ctx->buffer[56] = ctx->lo;
ctx->buffer[57] = ctx->lo >> 8;
ctx->buffer[58] = ctx->lo >> 16;
ctx->buffer[59] = ctx->lo >> 24;
ctx->buffer[60] = ctx->hi;
ctx->buffer[61] = ctx->hi >> 8;
ctx->buffer[62] = ctx->hi >> 16;
ctx->buffer[63] = ctx->hi >> 24;
body(ctx, ctx->buffer, 64);
result[0] = ctx->a;
result[1] = ctx->a >> 8;
result[2] = ctx->a >> 16;
result[3] = ctx->a >> 24;
result[4] = ctx->b;
result[5] = ctx->b >> 8;
result[6] = ctx->b >> 16;
result[7] = ctx->b >> 24;
result[8] = ctx->c;
result[9] = ctx->c >> 8;
result[10] = ctx->c >> 16;
result[11] = ctx->c >> 24;
result[12] = ctx->d;
result[13] = ctx->d >> 8;
result[14] = ctx->d >> 16;
result[15] = ctx->d >> 24;
memset(ctx, 0, sizeof(*ctx));
}
#undef F
#undef G
#undef H
QT_END_NAMESPACE
|