1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
|
/*
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2006 Alexey Proskuryakov (ap@webkit.org)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef JSImmediate_h
#define JSImmediate_h
#include <wtf/Assertions.h>
#include <wtf/AlwaysInline.h>
#include <wtf/MathExtras.h>
#include <wtf/StdLibExtras.h>
#include "JSValue.h"
#include <limits>
#include <limits.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
namespace JSC {
class ExecState;
class JSCell;
class JSFastMath;
class JSGlobalData;
class JSObject;
class UString;
#if USE(ALTERNATE_JSIMMEDIATE)
inline intptr_t reinterpretDoubleToIntptr(double value)
{
return WTF::bitwise_cast<intptr_t>(value);
}
inline double reinterpretIntptrToDouble(intptr_t value)
{
return WTF::bitwise_cast<double>(value);
}
#endif
/*
* A JSValue* is either a pointer to a cell (a heap-allocated object) or an immediate (a type-tagged
* value masquerading as a pointer). The low two bits in a JSValue* are available for type tagging
* because allocator alignment guarantees they will be 00 in cell pointers.
*
* For example, on a 32 bit system:
*
* JSCell*: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 00
* [ high 30 bits: pointer address ] [ low 2 bits -- always 0 ]
* JSImmediate: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX TT
* [ high 30 bits: 'payload' ] [ low 2 bits -- tag ]
*
* Where the bottom two bits are non-zero they either indicate that the immediate is a 31 bit signed
* integer, or they mark the value as being an immediate of a type other than integer, with a secondary
* tag used to indicate the exact type.
*
* Where the lowest bit is set (TT is equal to 01 or 11) the high 31 bits form a 31 bit signed int value.
* Where TT is equal to 10 this indicates this is a type of immediate other than an integer, and the next
* two bits will form an extended tag.
*
* 31 bit signed int: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X1
* [ high 30 bits of the value ] [ high bit part of value ]
* Other: YYYYYYYYYYYYYYYYYYYYYYYYYYYY ZZ 10
* [ extended 'payload' ] [ extended tag ] [ tag 'other' ]
*
* Where the first bit of the extended tag is set this flags the value as being a boolean, and the following
* bit would flag the value as undefined. If neither bits are set, the value is null.
*
* Other: YYYYYYYYYYYYYYYYYYYYYYYYYYYY UB 10
* [ extended 'payload' ] [ undefined | bool ] [ tag 'other' ]
*
* For boolean value the lowest bit in the payload holds the value of the bool, all remaining bits are zero.
* For undefined or null immediates the payload is zero.
*
* Boolean: 000000000000000000000000000V 01 10
* [ boolean value ] [ bool ] [ tag 'other' ]
* Undefined: 0000000000000000000000000000 10 10
* [ zero ] [ undefined ] [ tag 'other' ]
* Null: 0000000000000000000000000000 00 10
* [ zero ] [ zero ] [ tag 'other' ]
*/
/*
* On 64-bit platforms, we support an alternative encoding form for immediates, if
* USE(ALTERNATE_JSIMMEDIATE) is defined. When this format is used, double precision
* floating point values may also be encoded as JSImmediates.
*
* The encoding makes use of unused NaN space in the IEEE754 representation. Any value
* with the top 13 bits set represents a QNaN (with the sign bit set). QNaN values
* can encode a 51-bit payload. Hardware produced and C-library payloads typically
* have a payload of zero. We assume that non-zero payloads are available to encode
* pointer and integer values. Since any 64-bit bit pattern where the top 15 bits are
* all set represents a NaN with a non-zero payload, we can use this space in the NaN
* ranges to encode other values (however there are also other ranges of NaN space that
* could have been selected). This range of NaN space is represented by 64-bit numbers
* begining with the 16-bit hex patterns 0xFFFE and 0xFFFF - we rely on the fact that no
* valid double-precision numbers will begin fall in these ranges.
*
* The scheme we have implemented encodes double precision values by adding 2^48 to the
* 64-bit integer representation of the number. After this manipulation, no encoded
* double-precision value will begin with the pattern 0x0000 or 0xFFFF.
*
* The top 16-bits denote the type of the encoded JSImmediate:
*
* Pointer: 0000:PPPP:PPPP:PPPP
* 0001:****:****:****
* Double:{ ...
* FFFE:****:****:****
* Integer: FFFF:0000:IIII:IIII
*
* 32-bit signed integers are marked with the 16-bit tag 0xFFFF. The tag 0x0000
* denotes a pointer, or another form of tagged immediate. Boolean, null and undefined
* values are encoded in the same manner as the default format.
*/
class JSImmediate {
public: // ### we need it!
friend class JIT;
friend class JSValue;
friend class JSFastMath;
friend JSValue jsNumber(ExecState* exec, double d);
friend JSValue jsNumber(ExecState*, char i);
friend JSValue jsNumber(ExecState*, unsigned char i);
friend JSValue jsNumber(ExecState*, short i);
friend JSValue jsNumber(ExecState*, unsigned short i);
friend JSValue jsNumber(ExecState* exec, int i);
friend JSValue jsNumber(ExecState* exec, unsigned i);
friend JSValue jsNumber(ExecState* exec, long i);
friend JSValue jsNumber(ExecState* exec, unsigned long i);
friend JSValue jsNumber(ExecState* exec, long long i);
friend JSValue jsNumber(ExecState* exec, unsigned long long i);
friend JSValue jsNumber(JSGlobalData* globalData, double d);
friend JSValue jsNumber(JSGlobalData* globalData, short i);
friend JSValue jsNumber(JSGlobalData* globalData, unsigned short i);
friend JSValue jsNumber(JSGlobalData* globalData, int i);
friend JSValue jsNumber(JSGlobalData* globalData, unsigned i);
friend JSValue jsNumber(JSGlobalData* globalData, long i);
friend JSValue jsNumber(JSGlobalData* globalData, unsigned long i);
friend JSValue jsNumber(JSGlobalData* globalData, long long i);
friend JSValue jsNumber(JSGlobalData* globalData, unsigned long long i);
#if USE(ALTERNATE_JSIMMEDIATE)
// If all bits in the mask are set, this indicates an integer number,
// if any but not all are set this value is a double precision number.
static const intptr_t TagTypeNumber = 0xffff000000000000ll;
// This value is 2^48, used to encode doubles such that the encoded value will begin
// with a 16-bit pattern within the range 0x0001..0xFFFE.
static const intptr_t DoubleEncodeOffset = 0x1000000000000ll;
#else
static const intptr_t TagTypeNumber = 0x1; // bottom bit set indicates integer, this dominates the following bit
#endif
static const intptr_t TagBitTypeOther = 0x2; // second bit set indicates immediate other than an integer
static const intptr_t TagMask = TagTypeNumber | TagBitTypeOther;
static const intptr_t ExtendedTagMask = 0xC; // extended tag holds a further two bits
static const intptr_t ExtendedTagBitBool = 0x4;
static const intptr_t ExtendedTagBitUndefined = 0x8;
static const intptr_t FullTagTypeMask = TagMask | ExtendedTagMask;
static const intptr_t FullTagTypeBool = TagBitTypeOther | ExtendedTagBitBool;
static const intptr_t FullTagTypeUndefined = TagBitTypeOther | ExtendedTagBitUndefined;
static const intptr_t FullTagTypeNull = TagBitTypeOther;
#if USE(ALTERNATE_JSIMMEDIATE)
static const int32_t IntegerPayloadShift = 0;
#else
static const int32_t IntegerPayloadShift = 1;
#endif
static const int32_t ExtendedPayloadShift = 4;
static const intptr_t ExtendedPayloadBitBoolValue = 1 << ExtendedPayloadShift;
static const int32_t signBit = 0x80000000;
static ALWAYS_INLINE bool isImmediate(JSValue v)
{
return rawValue(v) & TagMask;
}
static ALWAYS_INLINE bool isNumber(JSValue v)
{
return rawValue(v) & TagTypeNumber;
}
static ALWAYS_INLINE bool isIntegerNumber(JSValue v)
{
#if USE(ALTERNATE_JSIMMEDIATE)
return (rawValue(v) & TagTypeNumber) == TagTypeNumber;
#else
return isNumber(v);
#endif
}
#if USE(ALTERNATE_JSIMMEDIATE)
static ALWAYS_INLINE bool isDoubleNumber(JSValue v)
{
return isNumber(v) && !isIntegerNumber(v);
}
#endif
static ALWAYS_INLINE bool isPositiveIntegerNumber(JSValue v)
{
// A single mask to check for the sign bit and the number tag all at once.
return (rawValue(v) & (signBit | TagTypeNumber)) == TagTypeNumber;
}
static ALWAYS_INLINE bool isBoolean(JSValue v)
{
return (rawValue(v) & FullTagTypeMask) == FullTagTypeBool;
}
static ALWAYS_INLINE bool isUndefinedOrNull(JSValue v)
{
// Undefined and null share the same value, bar the 'undefined' bit in the extended tag.
return (rawValue(v) & ~ExtendedTagBitUndefined) == FullTagTypeNull;
}
static JSValue from(char);
static JSValue from(signed char);
static JSValue from(unsigned char);
static JSValue from(short);
static JSValue from(unsigned short);
static JSValue from(int);
static JSValue from(unsigned);
static JSValue from(long);
static JSValue from(unsigned long);
static JSValue from(long long);
static JSValue from(unsigned long long);
static JSValue from(double);
static ALWAYS_INLINE bool isEitherImmediate(JSValue v1, JSValue v2)
{
return (rawValue(v1) | rawValue(v2)) & TagMask;
}
static ALWAYS_INLINE bool areBothImmediate(JSValue v1, JSValue v2)
{
return isImmediate(v1) & isImmediate(v2);
}
static ALWAYS_INLINE bool areBothImmediateIntegerNumbers(JSValue v1, JSValue v2)
{
#if USE(ALTERNATE_JSIMMEDIATE)
return (rawValue(v1) & rawValue(v2) & TagTypeNumber) == TagTypeNumber;
#else
return rawValue(v1) & rawValue(v2) & TagTypeNumber;
#endif
}
static double toDouble(JSValue);
static bool toBoolean(JSValue);
static JSObject* toObject(JSValue, ExecState*);
static JSObject* toThisObject(JSValue, ExecState*);
static UString toString(JSValue);
static bool getUInt32(JSValue, uint32_t&);
static bool getTruncatedInt32(JSValue, int32_t&);
static bool getTruncatedUInt32(JSValue, uint32_t&);
static int32_t getTruncatedInt32(JSValue);
static uint32_t getTruncatedUInt32(JSValue);
static JSValue trueImmediate();
static JSValue falseImmediate();
static JSValue undefinedImmediate();
static JSValue nullImmediate();
static JSValue zeroImmediate();
static JSValue oneImmediate();
static JSObject* prototype(JSValue, ExecState*);
private:
#if USE(ALTERNATE_JSIMMEDIATE)
static const int minImmediateInt = ((-INT_MAX) - 1);
static const int maxImmediateInt = INT_MAX;
#else
static const int minImmediateInt = ((-INT_MAX) - 1) >> IntegerPayloadShift;
static const int maxImmediateInt = INT_MAX >> IntegerPayloadShift;
#endif
static const unsigned maxImmediateUInt = maxImmediateInt;
static ALWAYS_INLINE JSValue makeValue(intptr_t integer)
{
return JSValue::makeImmediate(integer);
}
// With USE(ALTERNATE_JSIMMEDIATE) we want the argument to be zero extended, so the
// integer doesn't interfere with the tag bits in the upper word. In the default encoding,
// if intptr_t id larger then int32_t we sign extend the value through the upper word.
#if USE(ALTERNATE_JSIMMEDIATE)
static ALWAYS_INLINE JSValue makeInt(uint32_t value)
#else
static ALWAYS_INLINE JSValue makeInt(int32_t value)
#endif
{
return makeValue((static_cast<intptr_t>(value) << IntegerPayloadShift) | TagTypeNumber);
}
#if USE(ALTERNATE_JSIMMEDIATE)
static ALWAYS_INLINE JSValue makeDouble(double value)
{
return makeValue(reinterpretDoubleToIntptr(value) + DoubleEncodeOffset);
}
#endif
static ALWAYS_INLINE JSValue makeBool(bool b)
{
return makeValue((static_cast<intptr_t>(b) << ExtendedPayloadShift) | FullTagTypeBool);
}
static ALWAYS_INLINE JSValue makeUndefined()
{
return makeValue(FullTagTypeUndefined);
}
static ALWAYS_INLINE JSValue makeNull()
{
return makeValue(FullTagTypeNull);
}
template<typename T>
static JSValue fromNumberOutsideIntegerRange(T);
#if USE(ALTERNATE_JSIMMEDIATE)
static ALWAYS_INLINE double doubleValue(JSValue v)
{
return reinterpretIntptrToDouble(rawValue(v) - DoubleEncodeOffset);
}
#endif
static ALWAYS_INLINE int32_t intValue(JSValue v)
{
return static_cast<int32_t>(rawValue(v) >> IntegerPayloadShift);
}
static ALWAYS_INLINE uint32_t uintValue(JSValue v)
{
return static_cast<uint32_t>(rawValue(v) >> IntegerPayloadShift);
}
static ALWAYS_INLINE bool boolValue(JSValue v)
{
return rawValue(v) & ExtendedPayloadBitBoolValue;
}
static ALWAYS_INLINE intptr_t rawValue(JSValue v)
{
return v.immediateValue();
}
static double nonInlineNaN();
};
ALWAYS_INLINE JSValue JSImmediate::trueImmediate() { return makeBool(true); }
ALWAYS_INLINE JSValue JSImmediate::falseImmediate() { return makeBool(false); }
ALWAYS_INLINE JSValue JSImmediate::undefinedImmediate() { return makeUndefined(); }
ALWAYS_INLINE JSValue JSImmediate::nullImmediate() { return makeNull(); }
ALWAYS_INLINE JSValue JSImmediate::zeroImmediate() { return makeInt(0); }
ALWAYS_INLINE JSValue JSImmediate::oneImmediate() { return makeInt(1); }
#if USE(ALTERNATE_JSIMMEDIATE)
inline bool doubleToBoolean(double value)
{
return value < 0.0 || value > 0.0;
}
ALWAYS_INLINE bool JSImmediate::toBoolean(JSValue v)
{
ASSERT(isImmediate(v));
return isNumber(v) ? isIntegerNumber(v) ? v != zeroImmediate()
: doubleToBoolean(doubleValue(v)) : v == trueImmediate();
}
#else
ALWAYS_INLINE bool JSImmediate::toBoolean(JSValue v)
{
ASSERT(isImmediate(v));
return isIntegerNumber(v) ? v != zeroImmediate() : v == trueImmediate();
}
#endif
ALWAYS_INLINE uint32_t JSImmediate::getTruncatedUInt32(JSValue v)
{
// FIXME: should probably be asserting isPositiveIntegerNumber here.
ASSERT(isIntegerNumber(v));
return intValue(v);
}
#if USE(ALTERNATE_JSIMMEDIATE)
template<typename T>
inline JSValue JSImmediate::fromNumberOutsideIntegerRange(T value)
{
return makeDouble(static_cast<double>(value));
}
#else
template<typename T>
inline JSValue JSImmediate::fromNumberOutsideIntegerRange(T)
{
return JSValue();
}
#endif
ALWAYS_INLINE JSValue JSImmediate::from(char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(signed char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(short i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned short i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(int i)
{
#if !USE(ALTERNATE_JSIMMEDIATE)
if ((i < minImmediateInt) | (i > maxImmediateInt))
return fromNumberOutsideIntegerRange(i);
#endif
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned i)
{
if (i > maxImmediateUInt)
return fromNumberOutsideIntegerRange(i);
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(long i)
{
if ((i < minImmediateInt) | (i > maxImmediateInt))
return fromNumberOutsideIntegerRange(i);
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned long i)
{
if (i > maxImmediateUInt)
return fromNumberOutsideIntegerRange(i);
return makeInt(i);
}
ALWAYS_INLINE JSValue JSImmediate::from(long long i)
{
if ((i < minImmediateInt) | (i > maxImmediateInt))
return JSValue();
return makeInt(static_cast<intptr_t>(i));
}
ALWAYS_INLINE JSValue JSImmediate::from(unsigned long long i)
{
if (i > maxImmediateUInt)
return fromNumberOutsideIntegerRange(i);
return makeInt(static_cast<intptr_t>(i));
}
ALWAYS_INLINE JSValue JSImmediate::from(double d)
{
const int intVal = static_cast<int>(d);
// Check for data loss from conversion to int.
if (intVal != d || (!intVal && signbit(d)))
return fromNumberOutsideIntegerRange(d);
return from(intVal);
}
ALWAYS_INLINE int32_t JSImmediate::getTruncatedInt32(JSValue v)
{
ASSERT(isIntegerNumber(v));
return intValue(v);
}
ALWAYS_INLINE double JSImmediate::toDouble(JSValue v)
{
ASSERT(isImmediate(v));
if (isIntegerNumber(v))
return intValue(v);
#if USE(ALTERNATE_JSIMMEDIATE)
if (isNumber(v)) {
ASSERT(isDoubleNumber(v));
return doubleValue(v);
}
#else
ASSERT(!isNumber(v));
#endif
if (rawValue(v) == FullTagTypeUndefined)
return nonInlineNaN();
ASSERT(JSImmediate::isBoolean(v) || (v == JSImmediate::nullImmediate()));
return rawValue(v) >> ExtendedPayloadShift;
}
ALWAYS_INLINE bool JSImmediate::getUInt32(JSValue v, uint32_t& i)
{
i = uintValue(v);
return isPositiveIntegerNumber(v);
}
ALWAYS_INLINE bool JSImmediate::getTruncatedInt32(JSValue v, int32_t& i)
{
i = intValue(v);
return isIntegerNumber(v);
}
ALWAYS_INLINE bool JSImmediate::getTruncatedUInt32(JSValue v, uint32_t& i)
{
return getUInt32(v, i);
}
// These are identical logic to the JSValue functions above, and faster than jsNumber(number).toInt32().
int32_t toInt32(double);
uint32_t toUInt32(double);
int32_t toInt32SlowCase(double, bool& ok);
uint32_t toUInt32SlowCase(double, bool& ok);
inline JSValue::JSValue(JSNullTag)
{
*this = JSImmediate::nullImmediate();
}
inline JSValue::JSValue(JSUndefinedTag)
{
*this = JSImmediate::undefinedImmediate();
}
inline JSValue::JSValue(JSTrueTag)
{
*this = JSImmediate::trueImmediate();
}
inline JSValue::JSValue(JSFalseTag)
{
*this = JSImmediate::falseImmediate();
}
inline bool JSValue::isUndefinedOrNull() const
{
return JSImmediate::isUndefinedOrNull(asValue());
}
inline bool JSValue::isBoolean() const
{
return JSImmediate::isBoolean(asValue());
}
inline bool JSValue::getBoolean(bool& v) const
{
if (JSImmediate::isBoolean(asValue())) {
v = JSImmediate::toBoolean(asValue());
return true;
}
return false;
}
inline bool JSValue::getBoolean() const
{
return asValue() == jsBoolean(true);
}
ALWAYS_INLINE int32_t JSValue::toInt32(ExecState* exec) const
{
int32_t i;
if (getTruncatedInt32(i))
return i;
bool ignored;
return toInt32SlowCase(toNumber(exec), ignored);
}
inline uint32_t JSValue::toUInt32(ExecState* exec) const
{
uint32_t i;
if (getTruncatedUInt32(i))
return i;
bool ignored;
return toUInt32SlowCase(toNumber(exec), ignored);
}
inline int32_t toInt32(double val)
{
if (!(val >= -2147483648.0 && val < 2147483648.0)) {
bool ignored;
return toInt32SlowCase(val, ignored);
}
return static_cast<int32_t>(val);
}
inline uint32_t toUInt32(double val)
{
if (!(val >= 0.0 && val < 4294967296.0)) {
bool ignored;
return toUInt32SlowCase(val, ignored);
}
return static_cast<uint32_t>(val);
}
inline int32_t JSValue::toInt32(ExecState* exec, bool& ok) const
{
int32_t i;
if (getTruncatedInt32(i)) {
ok = true;
return i;
}
return toInt32SlowCase(toNumber(exec), ok);
}
inline uint32_t JSValue::toUInt32(ExecState* exec, bool& ok) const
{
uint32_t i;
if (getTruncatedUInt32(i)) {
ok = true;
return i;
}
return toUInt32SlowCase(toNumber(exec), ok);
}
inline bool JSValue::isCell() const
{
return !JSImmediate::isImmediate(asValue());
}
inline bool JSValue::isInt32Fast() const
{
return JSImmediate::isIntegerNumber(asValue());
}
inline int32_t JSValue::getInt32Fast() const
{
ASSERT(isInt32Fast());
return JSImmediate::getTruncatedInt32(asValue());
}
inline bool JSValue::isUInt32Fast() const
{
return JSImmediate::isPositiveIntegerNumber(asValue());
}
inline uint32_t JSValue::getUInt32Fast() const
{
ASSERT(isUInt32Fast());
return JSImmediate::getTruncatedUInt32(asValue());
}
inline JSValue JSValue::makeInt32Fast(int32_t i)
{
return JSImmediate::from(i);
}
inline bool JSValue::areBothInt32Fast(JSValue v1, JSValue v2)
{
return JSImmediate::areBothImmediateIntegerNumbers(v1, v2);
}
class JSFastMath {
public:
static ALWAYS_INLINE bool canDoFastBitwiseOperations(JSValue v1, JSValue v2)
{
return JSImmediate::areBothImmediateIntegerNumbers(v1, v2);
}
static ALWAYS_INLINE JSValue equal(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return jsBoolean(v1 == v2);
}
static ALWAYS_INLINE JSValue notEqual(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return jsBoolean(v1 != v2);
}
static ALWAYS_INLINE JSValue andImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return JSImmediate::makeValue(JSImmediate::rawValue(v1) & JSImmediate::rawValue(v2));
}
static ALWAYS_INLINE JSValue xorImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return JSImmediate::makeValue((JSImmediate::rawValue(v1) ^ JSImmediate::rawValue(v2)) | JSImmediate::TagTypeNumber);
}
static ALWAYS_INLINE JSValue orImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastBitwiseOperations(v1, v2));
return JSImmediate::makeValue(JSImmediate::rawValue(v1) | JSImmediate::rawValue(v2));
}
static ALWAYS_INLINE bool canDoFastRshift(JSValue v1, JSValue v2)
{
return JSImmediate::areBothImmediateIntegerNumbers(v1, v2);
}
static ALWAYS_INLINE bool canDoFastUrshift(JSValue v1, JSValue v2)
{
return JSImmediate::areBothImmediateIntegerNumbers(v1, v2) && !(JSImmediate::rawValue(v1) & JSImmediate::signBit);
}
static ALWAYS_INLINE JSValue rightShiftImmediateNumbers(JSValue val, JSValue shift)
{
ASSERT(canDoFastRshift(val, shift) || canDoFastUrshift(val, shift));
#if USE(ALTERNATE_JSIMMEDIATE)
return JSImmediate::makeValue(static_cast<intptr_t>(static_cast<uint32_t>(static_cast<int32_t>(JSImmediate::rawValue(val)) >> ((JSImmediate::rawValue(shift) >> JSImmediate::IntegerPayloadShift) & 0x1f))) | JSImmediate::TagTypeNumber);
#else
return JSImmediate::makeValue((JSImmediate::rawValue(val) >> ((JSImmediate::rawValue(shift) >> JSImmediate::IntegerPayloadShift) & 0x1f)) | JSImmediate::TagTypeNumber);
#endif
}
static ALWAYS_INLINE bool canDoFastAdditiveOperations(JSValue v)
{
// Number is non-negative and an operation involving two of these can't overflow.
// Checking for allowed negative numbers takes more time than it's worth on SunSpider.
return (JSImmediate::rawValue(v) & (JSImmediate::TagTypeNumber + (JSImmediate::signBit | (JSImmediate::signBit >> 1)))) == JSImmediate::TagTypeNumber;
}
static ALWAYS_INLINE bool canDoFastAdditiveOperations(JSValue v1, JSValue v2)
{
// Number is non-negative and an operation involving two of these can't overflow.
// Checking for allowed negative numbers takes more time than it's worth on SunSpider.
return canDoFastAdditiveOperations(v1) && canDoFastAdditiveOperations(v2);
}
static ALWAYS_INLINE JSValue addImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastAdditiveOperations(v1, v2));
return JSImmediate::makeValue(JSImmediate::rawValue(v1) + JSImmediate::rawValue(v2) - JSImmediate::TagTypeNumber);
}
static ALWAYS_INLINE JSValue subImmediateNumbers(JSValue v1, JSValue v2)
{
ASSERT(canDoFastAdditiveOperations(v1, v2));
return JSImmediate::makeValue(JSImmediate::rawValue(v1) - JSImmediate::rawValue(v2) + JSImmediate::TagTypeNumber);
}
static ALWAYS_INLINE JSValue incImmediateNumber(JSValue v)
{
ASSERT(canDoFastAdditiveOperations(v));
return JSImmediate::makeValue(JSImmediate::rawValue(v) + (1 << JSImmediate::IntegerPayloadShift));
}
static ALWAYS_INLINE JSValue decImmediateNumber(JSValue v)
{
ASSERT(canDoFastAdditiveOperations(v));
return JSImmediate::makeValue(JSImmediate::rawValue(v) - (1 << JSImmediate::IntegerPayloadShift));
}
};
} // namespace JSC
#endif // JSImmediate_h
|