summaryrefslogtreecommitdiffstats
path: root/src/3rdparty/webkit/JavaScriptCore/runtime/JSObject.cpp
blob: d38c325c87fce7ed01a1635b212959a6212ab67b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/*
 *  Copyright (C) 1999-2001 Harri Porten (porten@kde.org)
 *  Copyright (C) 2001 Peter Kelly (pmk@post.com)
 *  Copyright (C) 2003, 2004, 2005, 2006, 2008 Apple Inc. All rights reserved.
 *  Copyright (C) 2007 Eric Seidel (eric@webkit.org)
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Library General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Library General Public License for more details.
 *
 *  You should have received a copy of the GNU Library General Public License
 *  along with this library; see the file COPYING.LIB.  If not, write to
 *  the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 *  Boston, MA 02110-1301, USA.
 *
 */

#include "config.h"
#include "JSObject.h"

#include "DatePrototype.h"
#include "ErrorConstructor.h"
#include "GetterSetter.h"
#include "JSGlobalObject.h"
#include "NativeErrorConstructor.h"
#include "ObjectPrototype.h"
#include "PropertyNameArray.h"
#include "Lookup.h"
#include "Nodes.h"
#include "Operations.h"
#include <math.h>
#include <wtf/Assertions.h>

#define JSOBJECT_MARK_TRACING 0

#if JSOBJECT_MARK_TRACING

#define JSOBJECT_MARK_BEGIN() \
    static int markStackDepth = 0; \
    for (int i = 0; i < markStackDepth; i++) \
        putchar('-'); \
    printf("%s (%p)\n", className().UTF8String().c_str(), this); \
    markStackDepth++; \

#define JSOBJECT_MARK_END() \
    markStackDepth--;

#else // JSOBJECT_MARK_TRACING

#define JSOBJECT_MARK_BEGIN()
#define JSOBJECT_MARK_END()

#endif // JSOBJECT_MARK_TRACING

namespace JSC {

ASSERT_CLASS_FITS_IN_CELL(JSObject);

void JSObject::mark()
{
    JSOBJECT_MARK_BEGIN();

    JSCell::mark();
    m_structure->mark();

    size_t storageSize = m_structure->propertyStorageSize();
    for (size_t i = 0; i < storageSize; ++i) {
        JSValuePtr v = m_propertyStorage[i];
        if (!v->marked())
            v->mark();
    }

    JSOBJECT_MARK_END();
}

UString JSObject::className() const
{
    const ClassInfo* info = classInfo();
    if (info)
        return info->className;
    return "Object";
}

bool JSObject::getOwnPropertySlot(ExecState* exec, unsigned propertyName, PropertySlot& slot)
{
    return getOwnPropertySlot(exec, Identifier::from(exec, propertyName), slot);
}

static void throwSetterError(ExecState* exec)
{
    throwError(exec, TypeError, "setting a property that has only a getter");
}

// ECMA 8.6.2.2
void JSObject::put(ExecState* exec, const Identifier& propertyName, JSValuePtr value, PutPropertySlot& slot)
{
    ASSERT(value);
    ASSERT(!Heap::heap(value) || Heap::heap(value) == Heap::heap(this));

    if (propertyName == exec->propertyNames().underscoreProto) {
        // Setting __proto__ to a non-object, non-null value is silently ignored to match Mozilla.
        if (!value->isObject() && !value->isNull())
            return;

        JSValuePtr nextPrototypeValue = value;
        while (nextPrototypeValue && nextPrototypeValue->isObject()) {
            JSObject* nextPrototype = asObject(nextPrototypeValue)->unwrappedObject();
            if (nextPrototype == this) {
                throwError(exec, GeneralError, "cyclic __proto__ value");
                return;
            }
            nextPrototypeValue = nextPrototype->prototype();
        }

        setPrototype(value);
        return;
    }

    // Check if there are any setters or getters in the prototype chain
    JSValuePtr prototype;
    for (JSObject* obj = this; !obj->structure()->hasGetterSetterProperties(); obj = asObject(prototype)) {
        prototype = obj->prototype();
        if (prototype->isNull()) {
            putDirect(propertyName, value, 0, true, slot);
            return;
        }
    }
    
    unsigned attributes;
    if ((m_structure->get(propertyName, attributes) != WTF::notFound) && attributes & ReadOnly)
        return;

    for (JSObject* obj = this; ; obj = asObject(prototype)) {
        if (JSValuePtr gs = obj->getDirect(propertyName)) {
            if (gs->isGetterSetter()) {
                JSObject* setterFunc = asGetterSetter(gs)->setter();        
                if (!setterFunc) {
                    throwSetterError(exec);
                    return;
                }
                
                CallData callData;
                CallType callType = setterFunc->getCallData(callData);
                ArgList args;
                args.append(value);
                call(exec, setterFunc, callType, callData, this, args);
                return;
            }

            // If there's an existing property on the object or one of its 
            // prototypes it should be replaced, so break here.
            break;
        }

        prototype = obj->prototype();
        if (prototype->isNull())
            break;
    }

    putDirect(propertyName, value, 0, true, slot);
    return;
}

void JSObject::put(ExecState* exec, unsigned propertyName, JSValuePtr value)
{
    PutPropertySlot slot;
    put(exec, Identifier::from(exec, propertyName), value, slot);
}

void JSObject::putWithAttributes(ExecState*, const Identifier& propertyName, JSValuePtr value, unsigned attributes)
{
    putDirect(propertyName, value, attributes);
}

void JSObject::putWithAttributes(ExecState* exec, unsigned propertyName, JSValuePtr value, unsigned attributes)
{
    putWithAttributes(exec, Identifier::from(exec, propertyName), value, attributes);
}

bool JSObject::hasProperty(ExecState* exec, const Identifier& propertyName) const
{
    PropertySlot slot;
    return const_cast<JSObject*>(this)->getPropertySlot(exec, propertyName, slot);
}

bool JSObject::hasProperty(ExecState* exec, unsigned propertyName) const
{
    PropertySlot slot;
    return const_cast<JSObject*>(this)->getPropertySlot(exec, propertyName, slot);
}

// ECMA 8.6.2.5
bool JSObject::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
    unsigned attributes;
    if (m_structure->get(propertyName, attributes) != WTF::notFound) {
        if ((attributes & DontDelete))
            return false;
        removeDirect(propertyName);
        return true;
    }

    // Look in the static hashtable of properties
    const HashEntry* entry = findPropertyHashEntry(exec, propertyName);
    if (entry && entry->attributes() & DontDelete)
        return false; // this builtin property can't be deleted

    // FIXME: Should the code here actually do some deletion?
    return true;
}

bool JSObject::hasOwnProperty(ExecState* exec, const Identifier& propertyName) const
{
    PropertySlot slot;
    return const_cast<JSObject*>(this)->getOwnPropertySlot(exec, propertyName, slot);
}

bool JSObject::deleteProperty(ExecState* exec, unsigned propertyName)
{
    return deleteProperty(exec, Identifier::from(exec, propertyName));
}

static ALWAYS_INLINE JSValuePtr callDefaultValueFunction(ExecState* exec, const JSObject* object, const Identifier& propertyName)
{
    JSValuePtr function = object->get(exec, propertyName);
    CallData callData;
    CallType callType = function->getCallData(callData);
    if (callType == CallTypeNone)
        return exec->exception();

    // Prevent "toString" and "valueOf" from observing execution if an exception
    // is pending.
    if (exec->hadException())
        return exec->exception();

    JSValuePtr result = call(exec, function, callType, callData, const_cast<JSObject*>(object), exec->emptyList());
    ASSERT(!result->isGetterSetter());
    if (exec->hadException())
        return exec->exception();
    if (result->isObject())
        return noValue();
    return result;
}

bool JSObject::getPrimitiveNumber(ExecState* exec, double& number, JSValuePtr& result)
{
    result = defaultValue(exec, PreferNumber);
    number = result->toNumber(exec);
    return !result->isString();
}

// ECMA 8.6.2.6
JSValuePtr JSObject::defaultValue(ExecState* exec, PreferredPrimitiveType hint) const
{
    // Must call toString first for Date objects.
    if ((hint == PreferString) || (hint != PreferNumber && prototype() == exec->lexicalGlobalObject()->datePrototype())) {
        JSValuePtr value = callDefaultValueFunction(exec, this, exec->propertyNames().toString);
        if (value)
            return value;
        value = callDefaultValueFunction(exec, this, exec->propertyNames().valueOf);
        if (value)
            return value;
    } else {
        JSValuePtr value = callDefaultValueFunction(exec, this, exec->propertyNames().valueOf);
        if (value)
            return value;
        value = callDefaultValueFunction(exec, this, exec->propertyNames().toString);
        if (value)
            return value;
    }

    ASSERT(!exec->hadException());

    return throwError(exec, TypeError, "No default value");
}

const HashEntry* JSObject::findPropertyHashEntry(ExecState* exec, const Identifier& propertyName) const
{
    for (const ClassInfo* info = classInfo(); info; info = info->parentClass) {
        if (const HashTable* propHashTable = info->propHashTable(exec)) {
            if (const HashEntry* entry = propHashTable->entry(exec, propertyName))
                return entry;
        }
    }
    return 0;
}

void JSObject::defineGetter(ExecState* exec, const Identifier& propertyName, JSObject* getterFunction)
{
    JSValuePtr object = getDirect(propertyName);
    if (object && object->isGetterSetter()) {
        ASSERT(m_structure->hasGetterSetterProperties());
        asGetterSetter(object)->setGetter(getterFunction);
        return;
    }

    PutPropertySlot slot;
    GetterSetter* getterSetter = new (exec) GetterSetter;
    putDirect(propertyName, getterSetter, None, true, slot);

    // putDirect will change our Structure if we add a new property. For
    // getters and setters, though, we also need to change our Structure
    // if we override an existing non-getter or non-setter.
    if (slot.type() != PutPropertySlot::NewProperty) {
        if (!m_structure->isDictionary()) {
            RefPtr<Structure> structure = Structure::getterSetterTransition(m_structure);
            setStructure(structure.release());
        }
    }

    m_structure->setHasGetterSetterProperties(true);
    getterSetter->setGetter(getterFunction);
}

void JSObject::defineSetter(ExecState* exec, const Identifier& propertyName, JSObject* setterFunction)
{
    JSValuePtr object = getDirect(propertyName);
    if (object && object->isGetterSetter()) {
        ASSERT(m_structure->hasGetterSetterProperties());
        asGetterSetter(object)->setSetter(setterFunction);
        return;
    }

    PutPropertySlot slot;
    GetterSetter* getterSetter = new (exec) GetterSetter;
    putDirect(propertyName, getterSetter, None, true, slot);

    // putDirect will change our Structure if we add a new property. For
    // getters and setters, though, we also need to change our Structure
    // if we override an existing non-getter or non-setter.
    if (slot.type() != PutPropertySlot::NewProperty) {
        if (!m_structure->isDictionary()) {
            RefPtr<Structure> structure = Structure::getterSetterTransition(m_structure);
            setStructure(structure.release());
        }
    }

    m_structure->setHasGetterSetterProperties(true);
    getterSetter->setSetter(setterFunction);
}

JSValuePtr JSObject::lookupGetter(ExecState*, const Identifier& propertyName)
{
    JSObject* object = this;
    while (true) {
        if (JSValuePtr value = object->getDirect(propertyName)) {
            if (!value->isGetterSetter())
                return jsUndefined();
            JSObject* functionObject = asGetterSetter(value)->getter();
            if (!functionObject)
                return jsUndefined();
            return functionObject;
        }

        if (!object->prototype() || !object->prototype()->isObject())
            return jsUndefined();
        object = asObject(object->prototype());
    }
}

JSValuePtr JSObject::lookupSetter(ExecState*, const Identifier& propertyName)
{
    JSObject* object = this;
    while (true) {
        if (JSValuePtr value = object->getDirect(propertyName)) {
            if (!value->isGetterSetter())
                return jsUndefined();
            JSObject* functionObject = asGetterSetter(value)->setter();
            if (!functionObject)
                return jsUndefined();
            return functionObject;
        }

        if (!object->prototype() || !object->prototype()->isObject())
            return jsUndefined();
        object = asObject(object->prototype());
    }
}

bool JSObject::hasInstance(ExecState* exec, JSValuePtr value, JSValuePtr proto)
{
    if (!proto->isObject()) {
        throwError(exec, TypeError, "instanceof called on an object with an invalid prototype property.");
        return false;
    }

    if (!value->isObject())
        return false;

    JSObject* object = asObject(value);
    while ((object = object->prototype()->getObject())) {
        if (proto == object)
            return true;
    }
    return false;
}

bool JSObject::propertyIsEnumerable(ExecState* exec, const Identifier& propertyName) const
{
    unsigned attributes;
    if (!getPropertyAttributes(exec, propertyName, attributes))
        return false;
    return !(attributes & DontEnum);
}

bool JSObject::getPropertyAttributes(ExecState* exec, const Identifier& propertyName, unsigned& attributes) const
{
    if (m_structure->get(propertyName, attributes) != WTF::notFound)
        return true;
    
    // Look in the static hashtable of properties
    const HashEntry* entry = findPropertyHashEntry(exec, propertyName);
    if (entry) {
        attributes = entry->attributes();
        return true;
    }
    
    return false;
}

void JSObject::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames)
{
    m_structure->getEnumerablePropertyNames(exec, propertyNames, this);
}

bool JSObject::toBoolean(ExecState*) const
{
    return true;
}

double JSObject::toNumber(ExecState* exec) const
{
    JSValuePtr primitive = toPrimitive(exec, PreferNumber);
    if (exec->hadException()) // should be picked up soon in Nodes.cpp
        return 0.0;
    return primitive->toNumber(exec);
}

UString JSObject::toString(ExecState* exec) const
{
    JSValuePtr primitive = toPrimitive(exec, PreferString);
    if (exec->hadException())
        return "";
    return primitive->toString(exec);
}

JSObject* JSObject::toObject(ExecState*) const
{
    return const_cast<JSObject*>(this);
}

JSObject* JSObject::toThisObject(ExecState*) const
{
    return const_cast<JSObject*>(this);
}

JSObject* JSObject::unwrappedObject()
{
    return this;
}

void JSObject::removeDirect(const Identifier& propertyName)
{
    size_t offset;
    if (m_structure->isDictionary()) {
        offset = m_structure->removePropertyWithoutTransition(propertyName);
        if (offset != WTF::notFound)
            m_propertyStorage[offset] = jsUndefined();
        return;
    }

    RefPtr<Structure> structure = Structure::removePropertyTransition(m_structure, propertyName, offset);
    if (offset != WTF::notFound)
        m_propertyStorage[offset] = jsUndefined();
    setStructure(structure.release());
}

void JSObject::putDirectFunction(ExecState* exec, InternalFunction* function, unsigned attr)
{
    putDirect(Identifier(exec, function->name(&exec->globalData())), function, attr);
}

void JSObject::putDirectFunctionWithoutTransition(ExecState* exec, InternalFunction* function, unsigned attr)
{
    putDirectWithoutTransition(Identifier(exec, function->name(&exec->globalData())), function, attr);
}

NEVER_INLINE void JSObject::fillGetterPropertySlot(PropertySlot& slot, JSValuePtr* location)
{
    if (JSObject* getterFunction = asGetterSetter(*location)->getter())
        slot.setGetterSlot(getterFunction);
    else
        slot.setUndefined();
}

Structure* JSObject::createInheritorID()
{
    m_inheritorID = JSObject::createStructure(this);
    return m_inheritorID.get();
}

void JSObject::allocatePropertyStorage(size_t oldSize, size_t newSize)
{
    allocatePropertyStorageInline(oldSize, newSize);
}

JSObject* constructEmptyObject(ExecState* exec)
{
    return new (exec) JSObject(exec->lexicalGlobalObject()->emptyObjectStructure());
}

} // namespace JSC
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
/*
 * This file compiles an abstract syntax tree (AST) into Python bytecode.
 *
 * The primary entry point is PyAST_Compile(), which returns a
 * PyCodeObject.  The compiler makes several passes to build the code
 * object:
 *   1. Checks for future statements.  See future.c
 *   2. Builds a symbol table.  See symtable.c.
 *   3. Generate code for basic blocks.  See compiler_mod() in this file.
 *   4. Assemble the basic blocks into final code.  See assemble() in
 *      this file.
 *   5. Optimize the byte code (peephole optimizations).  See peephole.c
 *
 * Note that compiler_mod() suggests module, but the module ast type
 * (mod_ty) has cases for expressions and interactive statements.
 *
 * CAUTION: The VISIT_* macros abort the current function when they
 * encounter a problem. So don't invoke them when there is memory
 * which needs to be released. Code blocks are OK, as the compiler
 * structure takes care of releasing those.  Use the arena to manage
 * objects.
 */

#include "Python.h"

#include "Python-ast.h"
#include "pycore_pystate.h"   /* _PyInterpreterState_GET_UNSAFE() */
#include "ast.h"
#include "code.h"
#include "symtable.h"
#include "opcode.h"
#include "wordcode_helpers.h"

#define DEFAULT_BLOCK_SIZE 16
#define DEFAULT_BLOCKS 8
#define DEFAULT_CODE_SIZE 128
#define DEFAULT_LNOTAB_SIZE 16

#define COMP_GENEXP   0
#define COMP_LISTCOMP 1
#define COMP_SETCOMP  2
#define COMP_DICTCOMP 3

struct instr {
    unsigned i_jabs : 1;
    unsigned i_jrel : 1;
    unsigned char i_opcode;
    int i_oparg;
    struct basicblock_ *i_target; /* target block (if jump instruction) */
    int i_lineno;
};

typedef struct basicblock_ {
    /* Each basicblock in a compilation unit is linked via b_list in the
       reverse order that the block are allocated.  b_list points to the next
       block, not to be confused with b_next, which is next by control flow. */
    struct basicblock_ *b_list;
    /* number of instructions used */
    int b_iused;
    /* length of instruction array (b_instr) */
    int b_ialloc;
    /* pointer to an array of instructions, initially NULL */
    struct instr *b_instr;
    /* If b_next is non-NULL, it is a pointer to the next
       block reached by normal control flow. */
    struct basicblock_ *b_next;
    /* b_seen is used to perform a DFS of basicblocks. */
    unsigned b_seen : 1;
    /* b_return is true if a RETURN_VALUE opcode is inserted. */
    unsigned b_return : 1;
    /* depth of stack upon entry of block, computed by stackdepth() */
    int b_startdepth;
    /* instruction offset for block, computed by assemble_jump_offsets() */
    int b_offset;
} basicblock;

/* fblockinfo tracks the current frame block.

A frame block is used to handle loops, try/except, and try/finally.
It's called a frame block to distinguish it from a basic block in the
compiler IR.
*/

enum fblocktype { WHILE_LOOP, FOR_LOOP, EXCEPT, FINALLY_TRY, FINALLY_END,
                  WITH, ASYNC_WITH, HANDLER_CLEANUP, POP_VALUE };

struct fblockinfo {
    enum fblocktype fb_type;
    basicblock *fb_block;
    /* (optional) type-specific exit or cleanup block */
    basicblock *fb_exit;
    /* (optional) additional information required for unwinding */
    void *fb_datum;
};

enum {
    COMPILER_SCOPE_MODULE,
    COMPILER_SCOPE_CLASS,
    COMPILER_SCOPE_FUNCTION,
    COMPILER_SCOPE_ASYNC_FUNCTION,
    COMPILER_SCOPE_LAMBDA,
    COMPILER_SCOPE_COMPREHENSION,
};

/* The following items change on entry and exit of code blocks.
   They must be saved and restored when returning to a block.
*/
struct compiler_unit {
    PySTEntryObject *u_ste;

    PyObject *u_name;
    PyObject *u_qualname;  /* dot-separated qualified name (lazy) */
    int u_scope_type;

    /* The following fields are dicts that map objects to
       the index of them in co_XXX.      The index is used as
       the argument for opcodes that refer to those collections.
    */
    PyObject *u_consts;    /* all constants */
    PyObject *u_names;     /* all names */
    PyObject *u_varnames;  /* local variables */
    PyObject *u_cellvars;  /* cell variables */
    PyObject *u_freevars;  /* free variables */

    PyObject *u_private;        /* for private name mangling */

    Py_ssize_t u_argcount;        /* number of arguments for block */
    Py_ssize_t u_posonlyargcount;        /* number of positional only arguments for block */
    Py_ssize_t u_kwonlyargcount; /* number of keyword only arguments for block */
    /* Pointer to the most recently allocated block.  By following b_list
       members, you can reach all early allocated blocks. */
    basicblock *u_blocks;
    basicblock *u_curblock; /* pointer to current block */

    int u_nfblocks;
    struct fblockinfo u_fblock[CO_MAXBLOCKS];

    int u_firstlineno; /* the first lineno of the block */
    int u_lineno;          /* the lineno for the current stmt */
    int u_col_offset;      /* the offset of the current stmt */
    int u_lineno_set;  /* boolean to indicate whether instr
                          has been generated with current lineno */
};

/* This struct captures the global state of a compilation.

The u pointer points to the current compilation unit, while units
for enclosing blocks are stored in c_stack.     The u and c_stack are
managed by compiler_enter_scope() and compiler_exit_scope().

Note that we don't track recursion levels during compilation - the
task of detecting and rejecting excessive levels of nesting is
handled by the symbol analysis pass.

*/

struct compiler {
    PyObject *c_filename;
    struct symtable *c_st;
    PyFutureFeatures *c_future; /* pointer to module's __future__ */
    PyCompilerFlags *c_flags;

    int c_optimize;              /* optimization level */
    int c_interactive;           /* true if in interactive mode */
    int c_nestlevel;
    int c_do_not_emit_bytecode;  /* The compiler won't emit any bytecode
                                    if this value is different from zero.
                                    This can be used to temporarily visit
                                    nodes without emitting bytecode to
                                    check only errors. */

    PyObject *c_const_cache;     /* Python dict holding all constants,
                                    including names tuple */
    struct compiler_unit *u; /* compiler state for current block */
    PyObject *c_stack;           /* Python list holding compiler_unit ptrs */
    PyArena *c_arena;            /* pointer to memory allocation arena */
};

static int compiler_enter_scope(struct compiler *, identifier, int, void *, int);
static void compiler_free(struct compiler *);
static basicblock *compiler_new_block(struct compiler *);
static int compiler_next_instr(struct compiler *, basicblock *);
static int compiler_addop(struct compiler *, int);
static int compiler_addop_i(struct compiler *, int, Py_ssize_t);
static int compiler_addop_j(struct compiler *, int, basicblock *, int);
static int compiler_error(struct compiler *, const char *);
static int compiler_warn(struct compiler *, const char *, ...);
static int compiler_nameop(struct compiler *, identifier, expr_context_ty);

static PyCodeObject *compiler_mod(struct compiler *, mod_ty);
static int compiler_visit_stmt(struct compiler *, stmt_ty);
static int compiler_visit_keyword(struct compiler *, keyword_ty);
static int compiler_visit_expr(struct compiler *, expr_ty);
static int compiler_augassign(struct compiler *, stmt_ty);
static int compiler_annassign(struct compiler *, stmt_ty);
static int compiler_visit_slice(struct compiler *, slice_ty,
                                expr_context_ty);

static int inplace_binop(struct compiler *, operator_ty);
static int are_all_items_const(asdl_seq *, Py_ssize_t, Py_ssize_t);
static int expr_constant(expr_ty);

static int compiler_with(struct compiler *, stmt_ty, int);
static int compiler_async_with(struct compiler *, stmt_ty, int);
static int compiler_async_for(struct compiler *, stmt_ty);
static int compiler_call_helper(struct compiler *c, int n,
                                asdl_seq *args,
                                asdl_seq *keywords);
static int compiler_try_except(struct compiler *, stmt_ty);
static int compiler_set_qualname(struct compiler *);

static int compiler_sync_comprehension_generator(
                                      struct compiler *c,
                                      asdl_seq *generators, int gen_index,
                                      expr_ty elt, expr_ty val, int type);

static int compiler_async_comprehension_generator(
                                      struct compiler *c,
                                      asdl_seq *generators, int gen_index,
                                      expr_ty elt, expr_ty val, int type);

static PyCodeObject *assemble(struct compiler *, int addNone);
static PyObject *__doc__, *__annotations__;

#define CAPSULE_NAME "compile.c compiler unit"

PyObject *
_Py_Mangle(PyObject *privateobj, PyObject *ident)
{
    /* Name mangling: __private becomes _classname__private.
       This is independent from how the name is used. */
    PyObject *result;
    size_t nlen, plen, ipriv;
    Py_UCS4 maxchar;
    if (privateobj == NULL || !PyUnicode_Check(privateobj) ||
        PyUnicode_READ_CHAR(ident, 0) != '_' ||
        PyUnicode_READ_CHAR(ident, 1) != '_') {
        Py_INCREF(ident);
        return ident;
    }
    nlen = PyUnicode_GET_LENGTH(ident);
    plen = PyUnicode_GET_LENGTH(privateobj);
    /* Don't mangle __id__ or names with dots.

       The only time a name with a dot can occur is when
       we are compiling an import statement that has a
       package name.

       TODO(jhylton): Decide whether we want to support
       mangling of the module name, e.g. __M.X.
    */
    if ((PyUnicode_READ_CHAR(ident, nlen-1) == '_' &&
         PyUnicode_READ_CHAR(ident, nlen-2) == '_') ||
        PyUnicode_FindChar(ident, '.', 0, nlen, 1) != -1) {
        Py_INCREF(ident);
        return ident; /* Don't mangle __whatever__ */
    }
    /* Strip leading underscores from class name */
    ipriv = 0;
    while (PyUnicode_READ_CHAR(privateobj, ipriv) == '_')
        ipriv++;
    if (ipriv == plen) {
        Py_INCREF(ident);
        return ident; /* Don't mangle if class is just underscores */
    }
    plen -= ipriv;

    if (plen + nlen >= PY_SSIZE_T_MAX - 1) {
        PyErr_SetString(PyExc_OverflowError,
                        "private identifier too large to be mangled");
        return NULL;
    }

    maxchar = PyUnicode_MAX_CHAR_VALUE(ident);
    if (PyUnicode_MAX_CHAR_VALUE(privateobj) > maxchar)
        maxchar = PyUnicode_MAX_CHAR_VALUE(privateobj);

    result = PyUnicode_New(1 + nlen + plen, maxchar);
    if (!result)
        return 0;
    /* ident = "_" + priv[ipriv:] + ident # i.e. 1+plen+nlen bytes */
    PyUnicode_WRITE(PyUnicode_KIND(result), PyUnicode_DATA(result), 0, '_');
    if (PyUnicode_CopyCharacters(result, 1, privateobj, ipriv, plen) < 0) {
        Py_DECREF(result);
        return NULL;
    }
    if (PyUnicode_CopyCharacters(result, plen+1, ident, 0, nlen) < 0) {
        Py_DECREF(result);
        return NULL;
    }
    assert(_PyUnicode_CheckConsistency(result, 1));
    return result;
}

static int
compiler_init(struct compiler *c)
{
    memset(c, 0, sizeof(struct compiler));

    c->c_const_cache = PyDict_New();
    if (!c->c_const_cache) {
        return 0;
    }

    c->c_stack = PyList_New(0);
    if (!c->c_stack) {
        Py_CLEAR(c->c_const_cache);
        return 0;
    }

    return 1;
}

PyCodeObject *
PyAST_CompileObject(mod_ty mod, PyObject *filename, PyCompilerFlags *flags,
                   int optimize, PyArena *arena)
{
    struct compiler c;
    PyCodeObject *co = NULL;
    PyCompilerFlags local_flags = _PyCompilerFlags_INIT;
    int merged;
    PyConfig *config = &_PyInterpreterState_GET_UNSAFE()->config;

    if (!__doc__) {
        __doc__ = PyUnicode_InternFromString("__doc__");
        if (!__doc__)
            return NULL;
    }
    if (!__annotations__) {
        __annotations__ = PyUnicode_InternFromString("__annotations__");
        if (!__annotations__)
            return NULL;
    }
    if (!compiler_init(&c))
        return NULL;
    Py_INCREF(filename);
    c.c_filename = filename;
    c.c_arena = arena;
    c.c_future = PyFuture_FromASTObject(mod, filename);
    if (c.c_future == NULL)
        goto finally;
    if (!flags) {
        flags = &local_flags;
    }
    merged = c.c_future->ff_features | flags->cf_flags;
    c.c_future->ff_features = merged;
    flags->cf_flags = merged;
    c.c_flags = flags;
    c.c_optimize = (optimize == -1) ? config->optimization_level : optimize;
    c.c_nestlevel = 0;
    c.c_do_not_emit_bytecode = 0;

    if (!_PyAST_Optimize(mod, arena, c.c_optimize)) {
        goto finally;
    }

    c.c_st = PySymtable_BuildObject(mod, filename, c.c_future);
    if (c.c_st == NULL) {
        if (!PyErr_Occurred())
            PyErr_SetString(PyExc_SystemError, "no symtable");
        goto finally;
    }

    co = compiler_mod(&c, mod);

 finally:
    compiler_free(&c);
    assert(co || PyErr_Occurred());
    return co;
}

PyCodeObject *
PyAST_CompileEx(mod_ty mod, const char *filename_str, PyCompilerFlags *flags,
                int optimize, PyArena *arena)
{
    PyObject *filename;
    PyCodeObject *co;
    filename = PyUnicode_DecodeFSDefault(filename_str);
    if (filename == NULL)
        return NULL;
    co = PyAST_CompileObject(mod, filename, flags, optimize, arena);
    Py_DECREF(filename);
    return co;

}

PyCodeObject *
PyNode_Compile(struct _node *n, const char *filename)
{
    PyCodeObject *co = NULL;
    mod_ty mod;
    PyArena *arena = PyArena_New();
    if (!arena)
        return NULL;
    mod = PyAST_FromNode(n, NULL, filename, arena);
    if (mod)
        co = PyAST_Compile(mod, filename, NULL, arena);
    PyArena_Free(arena);
    return co;
}

static void
compiler_free(struct compiler *c)
{
    if (c->c_st)
        PySymtable_Free(c->c_st);
    if (c->c_future)
        PyObject_Free(c->c_future);
    Py_XDECREF(c->c_filename);
    Py_DECREF(c->c_const_cache);
    Py_DECREF(c->c_stack);
}

static PyObject *
list2dict(PyObject *list)
{
    Py_ssize_t i, n;
    PyObject *v, *k;
    PyObject *dict = PyDict_New();
    if (!dict) return NULL;

    n = PyList_Size(list);
    for (i = 0; i < n; i++) {
        v = PyLong_FromSsize_t(i);
        if (!v) {
            Py_DECREF(dict);
            return NULL;
        }
        k = PyList_GET_ITEM(list, i);
        if (PyDict_SetItem(dict, k, v) < 0) {
            Py_DECREF(v);
            Py_DECREF(dict);
            return NULL;
        }
        Py_DECREF(v);
    }
    return dict;
}

/* Return new dict containing names from src that match scope(s).

src is a symbol table dictionary.  If the scope of a name matches
either scope_type or flag is set, insert it into the new dict.  The
values are integers, starting at offset and increasing by one for
each key.
*/

static PyObject *
dictbytype(PyObject *src, int scope_type, int flag, Py_ssize_t offset)
{
    Py_ssize_t i = offset, scope, num_keys, key_i;
    PyObject *k, *v, *dest = PyDict_New();
    PyObject *sorted_keys;

    assert(offset >= 0);
    if (dest == NULL)
        return NULL;

    /* Sort the keys so that we have a deterministic order on the indexes
       saved in the returned dictionary.  These indexes are used as indexes
       into the free and cell var storage.  Therefore if they aren't
       deterministic, then the generated bytecode is not deterministic.
    */
    sorted_keys = PyDict_Keys(src);
    if (sorted_keys == NULL)
        return NULL;
    if (PyList_Sort(sorted_keys) != 0) {
        Py_DECREF(sorted_keys);
        return NULL;
    }
    num_keys = PyList_GET_SIZE(sorted_keys);

    for (key_i = 0; key_i < num_keys; key_i++) {
        /* XXX this should probably be a macro in symtable.h */
        long vi;
        k = PyList_GET_ITEM(sorted_keys, key_i);
        v = PyDict_GetItem(src, k);
        assert(PyLong_Check(v));
        vi = PyLong_AS_LONG(v);
        scope = (vi >> SCOPE_OFFSET) & SCOPE_MASK;

        if (scope == scope_type || vi & flag) {
            PyObject *item = PyLong_FromSsize_t(i);
            if (item == NULL) {
                Py_DECREF(sorted_keys);
                Py_DECREF(dest);
                return NULL;
            }
            i++;
            if (PyDict_SetItem(dest, k, item) < 0) {
                Py_DECREF(sorted_keys);
                Py_DECREF(item);
                Py_DECREF(dest);
                return NULL;
            }
            Py_DECREF(item);
        }
    }
    Py_DECREF(sorted_keys);
    return dest;
}

static void
compiler_unit_check(struct compiler_unit *u)
{
    basicblock *block;
    for (block = u->u_blocks; block != NULL; block = block->b_list) {
        assert((uintptr_t)block != 0xcbcbcbcbU);
        assert((uintptr_t)block != 0xfbfbfbfbU);
        assert((uintptr_t)block != 0xdbdbdbdbU);
        if (block->b_instr != NULL) {
            assert(block->b_ialloc > 0);
            assert(block->b_iused > 0);
            assert(block->b_ialloc >= block->b_iused);
        }
        else {
            assert (block->b_iused == 0);
            assert (block->b_ialloc == 0);
        }
    }
}

static void
compiler_unit_free(struct compiler_unit *u)
{
    basicblock *b, *next;

    compiler_unit_check(u);
    b = u->u_blocks;
    while (b != NULL) {
        if (b->b_instr)
            PyObject_Free((void *)b->b_instr);
        next = b->b_list;
        PyObject_Free((void *)b);
        b = next;
    }
    Py_CLEAR(u->u_ste);
    Py_CLEAR(u->u_name);
    Py_CLEAR(u->u_qualname);
    Py_CLEAR(u->u_consts);
    Py_CLEAR(u->u_names);
    Py_CLEAR(u->u_varnames);
    Py_CLEAR(u->u_freevars);
    Py_CLEAR(u->u_cellvars);
    Py_CLEAR(u->u_private);
    PyObject_Free(u);
}

static int
compiler_enter_scope(struct compiler *c, identifier name,
                     int scope_type, void *key, int lineno)
{
    struct compiler_unit *u;
    basicblock *block;

    u = (struct compiler_unit *)PyObject_Malloc(sizeof(
                                            struct compiler_unit));
    if (!u) {
        PyErr_NoMemory();
        return 0;
    }
    memset(u, 0, sizeof(struct compiler_unit));
    u->u_scope_type = scope_type;
    u->u_argcount = 0;
    u->u_posonlyargcount = 0;
    u->u_kwonlyargcount = 0;
    u->u_ste = PySymtable_Lookup(c->c_st, key);
    if (!u->u_ste) {
        compiler_unit_free(u);
        return 0;
    }
    Py_INCREF(name);
    u->u_name = name;
    u->u_varnames = list2dict(u->u_ste->ste_varnames);
    u->u_cellvars = dictbytype(u->u_ste->ste_symbols, CELL, 0, 0);
    if (!u->u_varnames || !u->u_cellvars) {
        compiler_unit_free(u);
        return 0;
    }
    if (u->u_ste->ste_needs_class_closure) {
        /* Cook up an implicit __class__ cell. */
        _Py_IDENTIFIER(__class__);
        PyObject *name;
        int res;
        assert(u->u_scope_type == COMPILER_SCOPE_CLASS);
        assert(PyDict_GET_SIZE(u->u_cellvars) == 0);
        name = _PyUnicode_FromId(&PyId___class__);
        if (!name) {
            compiler_unit_free(u);
            return 0;
        }
        res = PyDict_SetItem(u->u_cellvars, name, _PyLong_Zero);
        if (res < 0) {
            compiler_unit_free(u);
            return 0;
        }
    }

    u->u_freevars = dictbytype(u->u_ste->ste_symbols, FREE, DEF_FREE_CLASS,
                               PyDict_GET_SIZE(u->u_cellvars));
    if (!u->u_freevars) {
        compiler_unit_free(u);
        return 0;
    }

    u->u_blocks = NULL;
    u->u_nfblocks = 0;
    u->u_firstlineno = lineno;
    u->u_lineno = 0;
    u->u_col_offset = 0;
    u->u_lineno_set = 0;
    u->u_consts = PyDict_New();
    if (!u->u_consts) {
        compiler_unit_free(u);
        return 0;
    }
    u->u_names = PyDict_New();
    if (!u->u_names) {
        compiler_unit_free(u);
        return 0;
    }

    u->u_private = NULL;

    /* Push the old compiler_unit on the stack. */
    if (c->u) {
        PyObject *capsule = PyCapsule_New(c->u, CAPSULE_NAME, NULL);
        if (!capsule || PyList_Append(c->c_stack, capsule) < 0) {
            Py_XDECREF(capsule);
            compiler_unit_free(u);
            return 0;
        }
        Py_DECREF(capsule);
        u->u_private = c->u->u_private;
        Py_XINCREF(u->u_private);
    }
    c->u = u;

    c->c_nestlevel++;

    block = compiler_new_block(c);
    if (block == NULL)
        return 0;
    c->u->u_curblock = block;

    if (u->u_scope_type != COMPILER_SCOPE_MODULE) {
        if (!compiler_set_qualname(c))
            return 0;
    }

    return 1;
}

static void
compiler_exit_scope(struct compiler *c)
{
    Py_ssize_t n;
    PyObject *capsule;

    c->c_nestlevel--;
    compiler_unit_free(c->u);
    /* Restore c->u to the parent unit. */
    n = PyList_GET_SIZE(c->c_stack) - 1;
    if (n >= 0) {
        capsule = PyList_GET_ITEM(c->c_stack, n);
        c->u = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
        assert(c->u);
        /* we are deleting from a list so this really shouldn't fail */
        if (PySequence_DelItem(c->c_stack, n) < 0)
            Py_FatalError("compiler_exit_scope()");
        compiler_unit_check(c->u);
    }
    else
        c->u = NULL;

}

static int
compiler_set_qualname(struct compiler *c)
{
    _Py_static_string(dot, ".");
    _Py_static_string(dot_locals, ".<locals>");
    Py_ssize_t stack_size;
    struct compiler_unit *u = c->u;
    PyObject *name, *base, *dot_str, *dot_locals_str;

    base = NULL;
    stack_size = PyList_GET_SIZE(c->c_stack);
    assert(stack_size >= 1);
    if (stack_size > 1) {
        int scope, force_global = 0;
        struct compiler_unit *parent;
        PyObject *mangled, *capsule;

        capsule = PyList_GET_ITEM(c->c_stack, stack_size - 1);
        parent = (struct compiler_unit *)PyCapsule_GetPointer(capsule, CAPSULE_NAME);
        assert(parent);

        if (u->u_scope_type == COMPILER_SCOPE_FUNCTION
            || u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
            || u->u_scope_type == COMPILER_SCOPE_CLASS) {
            assert(u->u_name);
            mangled = _Py_Mangle(parent->u_private, u->u_name);
            if (!mangled)
                return 0;
            scope = PyST_GetScope(parent->u_ste, mangled);
            Py_DECREF(mangled);
            assert(scope != GLOBAL_IMPLICIT);
            if (scope == GLOBAL_EXPLICIT)
                force_global = 1;
        }

        if (!force_global) {
            if (parent->u_scope_type == COMPILER_SCOPE_FUNCTION
                || parent->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION
                || parent->u_scope_type == COMPILER_SCOPE_LAMBDA) {
                dot_locals_str = _PyUnicode_FromId(&dot_locals);
                if (dot_locals_str == NULL)
                    return 0;
                base = PyUnicode_Concat(parent->u_qualname, dot_locals_str);
                if (base == NULL)
                    return 0;
            }
            else {
                Py_INCREF(parent->u_qualname);
                base = parent->u_qualname;
            }
        }
    }

    if (base != NULL) {
        dot_str = _PyUnicode_FromId(&dot);
        if (dot_str == NULL) {
            Py_DECREF(base);
            return 0;
        }
        name = PyUnicode_Concat(base, dot_str);
        Py_DECREF(base);
        if (name == NULL)
            return 0;
        PyUnicode_Append(&name, u->u_name);
        if (name == NULL)
            return 0;
    }
    else {
        Py_INCREF(u->u_name);
        name = u->u_name;
    }
    u->u_qualname = name;

    return 1;
}


/* Allocate a new block and return a pointer to it.
   Returns NULL on error.
*/

static basicblock *
compiler_new_block(struct compiler *c)
{
    basicblock *b;
    struct compiler_unit *u;

    u = c->u;
    b = (basicblock *)PyObject_Malloc(sizeof(basicblock));
    if (b == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    memset((void *)b, 0, sizeof(basicblock));
    /* Extend the singly linked list of blocks with new block. */
    b->b_list = u->u_blocks;
    u->u_blocks = b;
    return b;
}

static basicblock *
compiler_next_block(struct compiler *c)
{
    basicblock *block = compiler_new_block(c);
    if (block == NULL)
        return NULL;
    c->u->u_curblock->b_next = block;
    c->u->u_curblock = block;
    return block;
}

static basicblock *
compiler_use_next_block(struct compiler *c, basicblock *block)
{
    assert(block != NULL);
    c->u->u_curblock->b_next = block;
    c->u->u_curblock = block;
    return block;
}

/* Returns the offset of the next instruction in the current block's
   b_instr array.  Resizes the b_instr as necessary.
   Returns -1 on failure.
*/

static int
compiler_next_instr(struct compiler *c, basicblock *b)
{
    assert(b != NULL);
    if (b->b_instr == NULL) {
        b->b_instr = (struct instr *)PyObject_Malloc(
                         sizeof(struct instr) * DEFAULT_BLOCK_SIZE);
        if (b->b_instr == NULL) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_ialloc = DEFAULT_BLOCK_SIZE;
        memset((char *)b->b_instr, 0,
               sizeof(struct instr) * DEFAULT_BLOCK_SIZE);
    }
    else if (b->b_iused == b->b_ialloc) {
        struct instr *tmp;
        size_t oldsize, newsize;
        oldsize = b->b_ialloc * sizeof(struct instr);
        newsize = oldsize << 1;

        if (oldsize > (SIZE_MAX >> 1)) {
            PyErr_NoMemory();
            return -1;
        }

        if (newsize == 0) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_ialloc <<= 1;
        tmp = (struct instr *)PyObject_Realloc(
                                        (void *)b->b_instr, newsize);
        if (tmp == NULL) {
            PyErr_NoMemory();
            return -1;
        }
        b->b_instr = tmp;
        memset((char *)b->b_instr + oldsize, 0, newsize - oldsize);
    }
    return b->b_iused++;
}

/* Set the i_lineno member of the instruction at offset off if the
   line number for the current expression/statement has not
   already been set.  If it has been set, the call has no effect.

   The line number is reset in the following cases:
   - when entering a new scope
   - on each statement
   - on each expression that start a new line
   - before the "except" and "finally" clauses
   - before the "for" and "while" expressions
*/

static void
compiler_set_lineno(struct compiler *c, int off)
{
    basicblock *b;
    if (c->u->u_lineno_set)
        return;
    c->u->u_lineno_set = 1;
    b = c->u->u_curblock;
    b->b_instr[off].i_lineno = c->u->u_lineno;
}

/* Return the stack effect of opcode with argument oparg.

   Some opcodes have different stack effect when jump to the target and
   when not jump. The 'jump' parameter specifies the case:

   * 0 -- when not jump
   * 1 -- when jump
   * -1 -- maximal
 */
/* XXX Make the stack effect of WITH_CLEANUP_START and
   WITH_CLEANUP_FINISH deterministic. */
static int
stack_effect(int opcode, int oparg, int jump)
{
    switch (opcode) {
        case NOP:
        case EXTENDED_ARG:
            return 0;

        /* Stack manipulation */
        case POP_TOP:
            return -1;
        case ROT_TWO:
        case ROT_THREE:
        case ROT_FOUR:
            return 0;
        case DUP_TOP:
            return 1;
        case DUP_TOP_TWO:
            return 2;

        /* Unary operators */
        case UNARY_POSITIVE:
        case UNARY_NEGATIVE:
        case UNARY_NOT:
        case UNARY_INVERT:
            return 0;

        case SET_ADD:
        case LIST_APPEND:
            return -1;
        case MAP_ADD:
            return -2;

        /* Binary operators */
        case BINARY_POWER:
        case BINARY_MULTIPLY:
        case BINARY_MATRIX_MULTIPLY:
        case BINARY_MODULO:
        case BINARY_ADD:
        case BINARY_SUBTRACT:
        case BINARY_SUBSCR:
        case BINARY_FLOOR_DIVIDE:
        case BINARY_TRUE_DIVIDE:
            return -1;
        case INPLACE_FLOOR_DIVIDE:
        case INPLACE_TRUE_DIVIDE:
            return -1;

        case INPLACE_ADD:
        case INPLACE_SUBTRACT:
        case INPLACE_MULTIPLY:
        case INPLACE_MATRIX_MULTIPLY:
        case INPLACE_MODULO:
            return -1;
        case STORE_SUBSCR:
            return -3;
        case DELETE_SUBSCR:
            return -2;

        case BINARY_LSHIFT:
        case BINARY_RSHIFT:
        case BINARY_AND:
        case BINARY_XOR:
        case BINARY_OR:
            return -1;
        case INPLACE_POWER:
            return -1;
        case GET_ITER:
            return 0;

        case PRINT_EXPR:
            return -1;
        case LOAD_BUILD_CLASS:
            return 1;
        case INPLACE_LSHIFT:
        case INPLACE_RSHIFT:
        case INPLACE_AND:
        case INPLACE_XOR:
        case INPLACE_OR:
            return -1;

        case SETUP_WITH:
            /* 1 in the normal flow.
             * Restore the stack position and push 6 values before jumping to
             * the handler if an exception be raised. */
            return jump ? 6 : 1;
        case RETURN_VALUE:
            return -1;
        case IMPORT_STAR:
            return -1;
        case SETUP_ANNOTATIONS:
            return 0;
        case YIELD_VALUE:
            return 0;
        case YIELD_FROM:
            return -1;
        case POP_BLOCK:
            return 0;
        case POP_EXCEPT:
            return -3;

        case STORE_NAME:
            return -1;
        case DELETE_NAME:
            return 0;
        case UNPACK_SEQUENCE:
            return oparg-1;
        case UNPACK_EX:
            return (oparg&0xFF) + (oparg>>8);
        case FOR_ITER:
            /* -1 at end of iterator, 1 if continue iterating. */
            return jump > 0 ? -1 : 1;

        case STORE_ATTR:
            return -2;
        case DELETE_ATTR:
            return -1;
        case STORE_GLOBAL:
            return -1;
        case DELETE_GLOBAL:
            return 0;
        case LOAD_CONST:
            return 1;
        case LOAD_NAME:
            return 1;
        case BUILD_TUPLE:
        case BUILD_LIST:
        case BUILD_SET:
        case BUILD_STRING:
            return 1-oparg;
        case BUILD_LIST_UNPACK:
        case BUILD_TUPLE_UNPACK:
        case BUILD_TUPLE_UNPACK_WITH_CALL:
        case BUILD_SET_UNPACK:
        case BUILD_MAP_UNPACK:
        case BUILD_MAP_UNPACK_WITH_CALL:
            return 1 - oparg;
        case BUILD_MAP:
            return 1 - 2*oparg;
        case BUILD_CONST_KEY_MAP:
            return -oparg;
        case LOAD_ATTR:
            return 0;
        case COMPARE_OP:
            return -1;
        case IMPORT_NAME:
            return -1;
        case IMPORT_FROM:
            return 1;

        /* Jumps */
        case JUMP_FORWARD:
        case JUMP_ABSOLUTE:
            return 0;

        case JUMP_IF_TRUE_OR_POP:
        case JUMP_IF_FALSE_OR_POP:
            return jump ? 0 : -1;

        case POP_JUMP_IF_FALSE:
        case POP_JUMP_IF_TRUE:
            return -1;

        case LOAD_GLOBAL:
            return 1;

        /* Exception handling */
        case SETUP_FINALLY:
            /* 0 in the normal flow.
             * Restore the stack position and push 6 values before jumping to
             * the handler if an exception be raised. */
            return jump ? 6 : 0;
        case RERAISE:
            return -3;

        case WITH_EXCEPT_START:
            return 1;

        case LOAD_FAST:
            return 1;
        case STORE_FAST:
            return -1;
        case DELETE_FAST:
            return 0;

        case RAISE_VARARGS:
            return -oparg;

        /* Functions and calls */
        case CALL_FUNCTION:
            return -oparg;
        case CALL_METHOD:
            return -oparg-1;
        case CALL_FUNCTION_KW:
            return -oparg-1;
        case CALL_FUNCTION_EX:
            return -1 - ((oparg & 0x01) != 0);
        case MAKE_FUNCTION:
            return -1 - ((oparg & 0x01) != 0) - ((oparg & 0x02) != 0) -
                ((oparg & 0x04) != 0) - ((oparg & 0x08) != 0);
        case BUILD_SLICE:
            if (oparg == 3)
                return -2;
            else
                return -1;

        /* Closures */
        case LOAD_CLOSURE:
            return 1;
        case LOAD_DEREF:
        case LOAD_CLASSDEREF:
            return 1;
        case STORE_DEREF:
            return -1;
        case DELETE_DEREF:
            return 0;

        /* Iterators and generators */
        case GET_AWAITABLE:
            return 0;
        case SETUP_ASYNC_WITH:
            /* 0 in the normal flow.
             * Restore the stack position to the position before the result
             * of __aenter__ and push 6 values before jumping to the handler
             * if an exception be raised. */
            return jump ? -1 + 6 : 0;
        case BEFORE_ASYNC_WITH:
            return 1;
        case GET_AITER:
            return 0;
        case GET_ANEXT:
            return 1;
        case GET_YIELD_FROM_ITER:
            return 0;
        case END_ASYNC_FOR:
            return -7;
        case FORMAT_VALUE:
            /* If there's a fmt_spec on the stack, we go from 2->1,
               else 1->1. */
            return (oparg & FVS_MASK) == FVS_HAVE_SPEC ? -1 : 0;
        case LOAD_METHOD:
            return 1;
        case LOAD_ASSERTION_ERROR:
            return 1;
        default:
            return PY_INVALID_STACK_EFFECT;
    }
    return PY_INVALID_STACK_EFFECT; /* not reachable */
}

int
PyCompile_OpcodeStackEffectWithJump(int opcode, int oparg, int jump)
{
    return stack_effect(opcode, oparg, jump);
}

int
PyCompile_OpcodeStackEffect(int opcode, int oparg)
{
    return stack_effect(opcode, oparg, -1);
}

/* Add an opcode with no argument.
   Returns 0 on failure, 1 on success.
*/

static int
compiler_addop(struct compiler *c, int opcode)
{
    basicblock *b;
    struct instr *i;
    int off;
    assert(!HAS_ARG(opcode));
    if (c->c_do_not_emit_bytecode) {
        return 1;
    }
    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    b = c->u->u_curblock;
    i = &b->b_instr[off];
    i->i_opcode = opcode;
    i->i_oparg = 0;
    if (opcode == RETURN_VALUE)
        b->b_return = 1;
    compiler_set_lineno(c, off);
    return 1;
}

static Py_ssize_t
compiler_add_o(struct compiler *c, PyObject *dict, PyObject *o)
{
    PyObject *v;
    Py_ssize_t arg;

    v = PyDict_GetItemWithError(dict, o);
    if (!v) {
        if (PyErr_Occurred()) {
            return -1;
        }
        arg = PyDict_GET_SIZE(dict);
        v = PyLong_FromSsize_t(arg);
        if (!v) {
            return -1;
        }
        if (PyDict_SetItem(dict, o, v) < 0) {
            Py_DECREF(v);
            return -1;
        }
        Py_DECREF(v);
    }
    else
        arg = PyLong_AsLong(v);
    return arg;
}

// Merge const *o* recursively and return constant key object.
static PyObject*
merge_consts_recursive(struct compiler *c, PyObject *o)
{
    // None and Ellipsis are singleton, and key is the singleton.
    // No need to merge object and key.
    if (o == Py_None || o == Py_Ellipsis) {
        Py_INCREF(o);
        return o;
    }

    PyObject *key = _PyCode_ConstantKey(o);
    if (key == NULL) {
        return NULL;
    }

    // t is borrowed reference
    PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key);
    if (t != key) {
        // o is registered in c_const_cache.  Just use it.
        Py_XINCREF(t);
        Py_DECREF(key);
        return t;
    }

    // We registered o in c_const_cache.
    // When o is a tuple or frozenset, we want to merge its
    // items too.
    if (PyTuple_CheckExact(o)) {
        Py_ssize_t len = PyTuple_GET_SIZE(o);
        for (Py_ssize_t i = 0; i < len; i++) {
            PyObject *item = PyTuple_GET_ITEM(o, i);
            PyObject *u = merge_consts_recursive(c, item);
            if (u == NULL) {
                Py_DECREF(key);
                return NULL;
            }

            // See _PyCode_ConstantKey()
            PyObject *v;  // borrowed
            if (PyTuple_CheckExact(u)) {
                v = PyTuple_GET_ITEM(u, 1);
            }
            else {
                v = u;
            }
            if (v != item) {
                Py_INCREF(v);
                PyTuple_SET_ITEM(o, i, v);
                Py_DECREF(item);
            }

            Py_DECREF(u);
        }
    }
    else if (PyFrozenSet_CheckExact(o)) {
        // *key* is tuple. And its first item is frozenset of
        // constant keys.
        // See _PyCode_ConstantKey() for detail.
        assert(PyTuple_CheckExact(key));
        assert(PyTuple_GET_SIZE(key) == 2);

        Py_ssize_t len = PySet_GET_SIZE(o);
        if (len == 0) {  // empty frozenset should not be re-created.
            return key;
        }
        PyObject *tuple = PyTuple_New(len);
        if (tuple == NULL) {
            Py_DECREF(key);
            return NULL;
        }
        Py_ssize_t i = 0, pos = 0;
        PyObject *item;
        Py_hash_t hash;
        while (_PySet_NextEntry(o, &pos, &item, &hash)) {
            PyObject *k = merge_consts_recursive(c, item);
            if (k == NULL) {
                Py_DECREF(tuple);
                Py_DECREF(key);
                return NULL;
            }
            PyObject *u;
            if (PyTuple_CheckExact(k)) {
                u = PyTuple_GET_ITEM(k, 1);
                Py_INCREF(u);
                Py_DECREF(k);
            }
            else {
                u = k;
            }
            PyTuple_SET_ITEM(tuple, i, u);  // Steals reference of u.
            i++;
        }

        // Instead of rewriting o, we create new frozenset and embed in the
        // key tuple.  Caller should get merged frozenset from the key tuple.
        PyObject *new = PyFrozenSet_New(tuple);
        Py_DECREF(tuple);
        if (new == NULL) {
            Py_DECREF(key);
            return NULL;
        }
        assert(PyTuple_GET_ITEM(key, 1) == o);
        Py_DECREF(o);
        PyTuple_SET_ITEM(key, 1, new);
    }

    return key;
}

static Py_ssize_t
compiler_add_const(struct compiler *c, PyObject *o)
{
    if (c->c_do_not_emit_bytecode) {
        return 0;
    }

    PyObject *key = merge_consts_recursive(c, o);
    if (key == NULL) {
        return -1;
    }

    Py_ssize_t arg = compiler_add_o(c, c->u->u_consts, key);
    Py_DECREF(key);
    return arg;
}

static int
compiler_addop_load_const(struct compiler *c, PyObject *o)
{
    if (c->c_do_not_emit_bytecode) {
        return 1;
    }

    Py_ssize_t arg = compiler_add_const(c, o);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, LOAD_CONST, arg);
}

static int
compiler_addop_o(struct compiler *c, int opcode, PyObject *dict,
                     PyObject *o)
{
    if (c->c_do_not_emit_bytecode) {
        return 1;
    }

    Py_ssize_t arg = compiler_add_o(c, dict, o);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, opcode, arg);
}

static int
compiler_addop_name(struct compiler *c, int opcode, PyObject *dict,
                    PyObject *o)
{
    Py_ssize_t arg;

    if (c->c_do_not_emit_bytecode) {
        return 1;
    }

    PyObject *mangled = _Py_Mangle(c->u->u_private, o);
    if (!mangled)
        return 0;
    arg = compiler_add_o(c, dict, mangled);
    Py_DECREF(mangled);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, opcode, arg);
}

/* Add an opcode with an integer argument.
   Returns 0 on failure, 1 on success.
*/

static int
compiler_addop_i(struct compiler *c, int opcode, Py_ssize_t oparg)
{
    struct instr *i;
    int off;

    if (c->c_do_not_emit_bytecode) {
        return 1;
    }

    /* oparg value is unsigned, but a signed C int is usually used to store
       it in the C code (like Python/ceval.c).

       Limit to 32-bit signed C int (rather than INT_MAX) for portability.

       The argument of a concrete bytecode instruction is limited to 8-bit.
       EXTENDED_ARG is used for 16, 24, and 32-bit arguments. */
    assert(HAS_ARG(opcode));
    assert(0 <= oparg && oparg <= 2147483647);

    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    i = &c->u->u_curblock->b_instr[off];
    i->i_opcode = opcode;
    i->i_oparg = Py_SAFE_DOWNCAST(oparg, Py_ssize_t, int);
    compiler_set_lineno(c, off);
    return 1;
}

static int
compiler_addop_j(struct compiler *c, int opcode, basicblock *b, int absolute)
{
    struct instr *i;
    int off;

    if (c->c_do_not_emit_bytecode) {
        return 1;
    }

    assert(HAS_ARG(opcode));
    assert(b != NULL);
    off = compiler_next_instr(c, c->u->u_curblock);
    if (off < 0)
        return 0;
    i = &c->u->u_curblock->b_instr[off];
    i->i_opcode = opcode;
    i->i_target = b;
    if (absolute)
        i->i_jabs = 1;
    else
        i->i_jrel = 1;
    compiler_set_lineno(c, off);
    return 1;
}

/* NEXT_BLOCK() creates an implicit jump from the current block
   to the new block.

   The returns inside this macro make it impossible to decref objects
   created in the local function. Local objects should use the arena.
*/
#define NEXT_BLOCK(C) { \
    if (compiler_next_block((C)) == NULL) \
        return 0; \
}

#define ADDOP(C, OP) { \
    if (!compiler_addop((C), (OP))) \
        return 0; \
}

#define ADDOP_IN_SCOPE(C, OP) { \
    if (!compiler_addop((C), (OP))) { \
        compiler_exit_scope(c); \
        return 0; \
    } \
}

#define ADDOP_LOAD_CONST(C, O) { \
    if (!compiler_addop_load_const((C), (O))) \
        return 0; \
}

/* Same as ADDOP_LOAD_CONST, but steals a reference. */
#define ADDOP_LOAD_CONST_NEW(C, O) { \
    PyObject *__new_const = (O); \
    if (__new_const == NULL) { \
        return 0; \
    } \
    if (!compiler_addop_load_const((C), __new_const)) { \
        Py_DECREF(__new_const); \
        return 0; \
    } \
    Py_DECREF(__new_const); \
}

#define ADDOP_O(C, OP, O, TYPE) { \
    if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) \
        return 0; \
}

/* Same as ADDOP_O, but steals a reference. */
#define ADDOP_N(C, OP, O, TYPE) { \
    if (!compiler_addop_o((C), (OP), (C)->u->u_ ## TYPE, (O))) { \
        Py_DECREF((O)); \
        return 0; \
    } \
    Py_DECREF((O)); \
}

#define ADDOP_NAME(C, OP, O, TYPE) { \
    if (!compiler_addop_name((C), (OP), (C)->u->u_ ## TYPE, (O))) \
        return 0; \
}

#define ADDOP_I(C, OP, O) { \
    if (!compiler_addop_i((C), (OP), (O))) \
        return 0; \
}

#define ADDOP_JABS(C, OP, O) { \
    if (!compiler_addop_j((C), (OP), (O), 1)) \
        return 0; \
}

#define ADDOP_JREL(C, OP, O) { \
    if (!compiler_addop_j((C), (OP), (O), 0)) \
        return 0; \
}

/* VISIT and VISIT_SEQ takes an ASDL type as their second argument.  They use
   the ASDL name to synthesize the name of the C type and the visit function.
*/

#define VISIT(C, TYPE, V) {\
    if (!compiler_visit_ ## TYPE((C), (V))) \
        return 0; \
}

#define VISIT_IN_SCOPE(C, TYPE, V) {\
    if (!compiler_visit_ ## TYPE((C), (V))) { \
        compiler_exit_scope(c); \
        return 0; \
    } \
}

#define VISIT_SLICE(C, V, CTX) {\
    if (!compiler_visit_slice((C), (V), (CTX))) \
        return 0; \
}

#define VISIT_SEQ(C, TYPE, SEQ) { \
    int _i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
        if (!compiler_visit_ ## TYPE((C), elt)) \
            return 0; \
    } \
}

#define VISIT_SEQ_IN_SCOPE(C, TYPE, SEQ) { \
    int _i; \
    asdl_seq *seq = (SEQ); /* avoid variable capture */ \
    for (_i = 0; _i < asdl_seq_LEN(seq); _i++) { \
        TYPE ## _ty elt = (TYPE ## _ty)asdl_seq_GET(seq, _i); \
        if (!compiler_visit_ ## TYPE((C), elt)) { \
            compiler_exit_scope(c); \
            return 0; \
        } \
    } \
}

/* These macros allows to check only for errors and not emmit bytecode
 * while visiting nodes.
*/

#define BEGIN_DO_NOT_EMIT_BYTECODE { \
    c->c_do_not_emit_bytecode++;

#define END_DO_NOT_EMIT_BYTECODE \
    c->c_do_not_emit_bytecode--; \
}

/* Search if variable annotations are present statically in a block. */

static int
find_ann(asdl_seq *stmts)
{
    int i, j, res = 0;
    stmt_ty st;

    for (i = 0; i < asdl_seq_LEN(stmts); i++) {
        st = (stmt_ty)asdl_seq_GET(stmts, i);
        switch (st->kind) {
        case AnnAssign_kind:
            return 1;
        case For_kind:
            res = find_ann(st->v.For.body) ||
                  find_ann(st->v.For.orelse);
            break;
        case AsyncFor_kind:
            res = find_ann(st->v.AsyncFor.body) ||
                  find_ann(st->v.AsyncFor.orelse);
            break;
        case While_kind:
            res = find_ann(st->v.While.body) ||
                  find_ann(st->v.While.orelse);
            break;
        case If_kind:
            res = find_ann(st->v.If.body) ||
                  find_ann(st->v.If.orelse);
            break;
        case With_kind:
            res = find_ann(st->v.With.body);
            break;
        case AsyncWith_kind:
            res = find_ann(st->v.AsyncWith.body);
            break;
        case Try_kind:
            for (j = 0; j < asdl_seq_LEN(st->v.Try.handlers); j++) {
                excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
                    st->v.Try.handlers, j);
                if (find_ann(handler->v.ExceptHandler.body)) {
                    return 1;
                }
            }
            res = find_ann(st->v.Try.body) ||
                  find_ann(st->v.Try.finalbody) ||
                  find_ann(st->v.Try.orelse);
            break;
        default:
            res = 0;
        }
        if (res) {
            break;
        }
    }
    return res;
}

/*
 * Frame block handling functions
 */

static int
compiler_push_fblock(struct compiler *c, enum fblocktype t, basicblock *b,
                     basicblock *exit, void *datum)
{
    struct fblockinfo *f;
    if (c->u->u_nfblocks >= CO_MAXBLOCKS) {
        PyErr_SetString(PyExc_SyntaxError,
                        "too many statically nested blocks");
        return 0;
    }
    f = &c->u->u_fblock[c->u->u_nfblocks++];
    f->fb_type = t;
    f->fb_block = b;
    f->fb_exit = exit;
    f->fb_datum = datum;
    return 1;
}

static void
compiler_pop_fblock(struct compiler *c, enum fblocktype t, basicblock *b)
{
    struct compiler_unit *u = c->u;
    assert(u->u_nfblocks > 0);
    u->u_nfblocks--;
    assert(u->u_fblock[u->u_nfblocks].fb_type == t);
    assert(u->u_fblock[u->u_nfblocks].fb_block == b);
}

static int
compiler_call_exit_with_nones(struct compiler *c) {
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, DUP_TOP);
    ADDOP(c, DUP_TOP);
    ADDOP_I(c, CALL_FUNCTION, 3);
    return 1;
}

/* Unwind a frame block.  If preserve_tos is true, the TOS before
 * popping the blocks will be restored afterwards, unless another
 * return, break or continue is found. In which case, the TOS will
 * be popped.
 */
static int
compiler_unwind_fblock(struct compiler *c, struct fblockinfo *info,
                       int preserve_tos)
{
    switch (info->fb_type) {
        case WHILE_LOOP:
            return 1;

        case FOR_LOOP:
            /* Pop the iterator */
            if (preserve_tos) {
                ADDOP(c, ROT_TWO);
            }
            ADDOP(c, POP_TOP);
            return 1;

        case EXCEPT:
            ADDOP(c, POP_BLOCK);
            return 1;

        case FINALLY_TRY:
            ADDOP(c, POP_BLOCK);
            if (preserve_tos) {
                if (!compiler_push_fblock(c, POP_VALUE, NULL, NULL, NULL)) {
                    return 0;
                }
            }
            /* Emit the finally block, restoring the line number when done */
            int saved_lineno = c->u->u_lineno;
            VISIT_SEQ(c, stmt, info->fb_datum);
            c->u->u_lineno = saved_lineno;
            c->u->u_lineno_set = 0;
            if (preserve_tos) {
                compiler_pop_fblock(c, POP_VALUE, NULL);
            }
            return 1;
            
        case FINALLY_END:
            if (preserve_tos) {
                ADDOP(c, ROT_FOUR);
            }
            ADDOP(c, POP_TOP);
            ADDOP(c, POP_TOP);
            ADDOP(c, POP_TOP);
            if (preserve_tos) {
                ADDOP(c, ROT_FOUR);
            }
            ADDOP(c, POP_EXCEPT);
            return 1;

        case WITH:
        case ASYNC_WITH:
            ADDOP(c, POP_BLOCK);
            if (preserve_tos) {
                ADDOP(c, ROT_TWO);
            }
            if(!compiler_call_exit_with_nones(c)) {
                return 0;
            }
            if (info->fb_type == ASYNC_WITH) {
                ADDOP(c, GET_AWAITABLE);
                ADDOP_LOAD_CONST(c, Py_None);
                ADDOP(c, YIELD_FROM);
            }
            ADDOP(c, POP_TOP);
            return 1;

        case HANDLER_CLEANUP:
            if (info->fb_datum) {
                ADDOP(c, POP_BLOCK);
            }
            if (preserve_tos) {
                ADDOP(c, ROT_FOUR);
            }
            ADDOP(c, POP_EXCEPT);
            if (info->fb_datum) {
                ADDOP_LOAD_CONST(c, Py_None);
                compiler_nameop(c, info->fb_datum, Store);
                compiler_nameop(c, info->fb_datum, Del);
            }
            return 1;

        case POP_VALUE:
            if (preserve_tos) {
                ADDOP(c, ROT_TWO);
            }
            ADDOP(c, POP_TOP);
            return 1;
    }
    Py_UNREACHABLE();
}

/** Unwind block stack. If loop is not NULL, then stop when the first loop is encountered. */
static int
compiler_unwind_fblock_stack(struct compiler *c, int preserve_tos, struct fblockinfo **loop) {
    if (c->u->u_nfblocks == 0) {
        return 1;
    }
    struct fblockinfo *top = &c->u->u_fblock[c->u->u_nfblocks-1];
    if (loop != NULL && (top->fb_type == WHILE_LOOP || top->fb_type == FOR_LOOP)) {
        *loop = top;
        return 1;
    }
    struct fblockinfo copy = *top;
    c->u->u_nfblocks--;
    if (!compiler_unwind_fblock(c, &copy, preserve_tos)) {
        return 0;
    }
    if (!compiler_unwind_fblock_stack(c, preserve_tos, loop)) {
        return 0;
    }
    c->u->u_fblock[c->u->u_nfblocks] = copy;
    c->u->u_nfblocks++;
    return 1;
}

/* Compile a sequence of statements, checking for a docstring
   and for annotations. */

static int
compiler_body(struct compiler *c, asdl_seq *stmts)
{
    int i = 0;
    stmt_ty st;
    PyObject *docstring;

    /* Set current line number to the line number of first statement.
       This way line number for SETUP_ANNOTATIONS will always
       coincide with the line number of first "real" statement in module.
       If body is empty, then lineno will be set later in assemble. */
    if (c->u->u_scope_type == COMPILER_SCOPE_MODULE &&
        !c->u->u_lineno && asdl_seq_LEN(stmts)) {
        st = (stmt_ty)asdl_seq_GET(stmts, 0);
        c->u->u_lineno = st->lineno;
    }
    /* Every annotated class and module should have __annotations__. */
    if (find_ann(stmts)) {
        ADDOP(c, SETUP_ANNOTATIONS);
    }
    if (!asdl_seq_LEN(stmts))
        return 1;
    /* if not -OO mode, set docstring */
    if (c->c_optimize < 2) {
        docstring = _PyAST_GetDocString(stmts);
        if (docstring) {
            i = 1;
            st = (stmt_ty)asdl_seq_GET(stmts, 0);
            assert(st->kind == Expr_kind);
            VISIT(c, expr, st->v.Expr.value);
            if (!compiler_nameop(c, __doc__, Store))
                return 0;
        }
    }
    for (; i < asdl_seq_LEN(stmts); i++)
        VISIT(c, stmt, (stmt_ty)asdl_seq_GET(stmts, i));
    return 1;
}

static PyCodeObject *
compiler_mod(struct compiler *c, mod_ty mod)
{
    PyCodeObject *co;
    int addNone = 1;
    static PyObject *module;
    if (!module) {
        module = PyUnicode_InternFromString("<module>");
        if (!module)
            return NULL;
    }
    /* Use 0 for firstlineno initially, will fixup in assemble(). */
    if (!compiler_enter_scope(c, module, COMPILER_SCOPE_MODULE, mod, 0))
        return NULL;
    switch (mod->kind) {
    case Module_kind:
        if (!compiler_body(c, mod->v.Module.body)) {
            compiler_exit_scope(c);
            return 0;
        }
        break;
    case Interactive_kind:
        if (find_ann(mod->v.Interactive.body)) {
            ADDOP(c, SETUP_ANNOTATIONS);
        }
        c->c_interactive = 1;
        VISIT_SEQ_IN_SCOPE(c, stmt,
                                mod->v.Interactive.body);
        break;
    case Expression_kind:
        VISIT_IN_SCOPE(c, expr, mod->v.Expression.body);
        addNone = 0;
        break;
    case Suite_kind:
        PyErr_SetString(PyExc_SystemError,
                        "suite should not be possible");
        return 0;
    default:
        PyErr_Format(PyExc_SystemError,
                     "module kind %d should not be possible",
                     mod->kind);
        return 0;
    }
    co = assemble(c, addNone);
    compiler_exit_scope(c);
    return co;
}

/* The test for LOCAL must come before the test for FREE in order to
   handle classes where name is both local and free.  The local var is
   a method and the free var is a free var referenced within a method.
*/

static int
get_ref_type(struct compiler *c, PyObject *name)
{
    int scope;
    if (c->u->u_scope_type == COMPILER_SCOPE_CLASS &&
        _PyUnicode_EqualToASCIIString(name, "__class__"))
        return CELL;
    scope = PyST_GetScope(c->u->u_ste, name);
    if (scope == 0) {
        char buf[350];
        PyOS_snprintf(buf, sizeof(buf),
                      "unknown scope for %.100s in %.100s(%s)\n"
                      "symbols: %s\nlocals: %s\nglobals: %s",
                      PyUnicode_AsUTF8(name),
                      PyUnicode_AsUTF8(c->u->u_name),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_id)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_ste->ste_symbols)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_varnames)),
                      PyUnicode_AsUTF8(PyObject_Repr(c->u->u_names))
        );
        Py_FatalError(buf);
    }

    return scope;
}

static int
compiler_lookup_arg(PyObject *dict, PyObject *name)
{
    PyObject *v;
    v = PyDict_GetItem(dict, name);
    if (v == NULL)
        return -1;
    return PyLong_AS_LONG(v);
}

static int
compiler_make_closure(struct compiler *c, PyCodeObject *co, Py_ssize_t flags, PyObject *qualname)
{
    Py_ssize_t i, free = PyCode_GetNumFree(co);
    if (qualname == NULL)
        qualname = co->co_name;

    if (free) {
        for (i = 0; i < free; ++i) {
            /* Bypass com_addop_varname because it will generate
               LOAD_DEREF but LOAD_CLOSURE is needed.
            */
            PyObject *name = PyTuple_GET_ITEM(co->co_freevars, i);
            int arg, reftype;

            /* Special case: If a class contains a method with a
               free variable that has the same name as a method,
               the name will be considered free *and* local in the
               class.  It should be handled by the closure, as
               well as by the normal name lookup logic.
            */
            reftype = get_ref_type(c, name);
            if (reftype == CELL)
                arg = compiler_lookup_arg(c->u->u_cellvars, name);
            else /* (reftype == FREE) */
                arg = compiler_lookup_arg(c->u->u_freevars, name);
            if (arg == -1) {
                fprintf(stderr,
                    "lookup %s in %s %d %d\n"
                    "freevars of %s: %s\n",
                    PyUnicode_AsUTF8(PyObject_Repr(name)),
                    PyUnicode_AsUTF8(c->u->u_name),
                    reftype, arg,
                    PyUnicode_AsUTF8(co->co_name),
                    PyUnicode_AsUTF8(PyObject_Repr(co->co_freevars)));
                Py_FatalError("compiler_make_closure()");
            }
            ADDOP_I(c, LOAD_CLOSURE, arg);
        }
        flags |= 0x08;
        ADDOP_I(c, BUILD_TUPLE, free);
    }
    ADDOP_LOAD_CONST(c, (PyObject*)co);
    ADDOP_LOAD_CONST(c, qualname);
    ADDOP_I(c, MAKE_FUNCTION, flags);
    return 1;
}

static int
compiler_decorators(struct compiler *c, asdl_seq* decos)
{
    int i;

    if (!decos)
        return 1;

    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(decos, i));
    }
    return 1;
}

static int
compiler_visit_kwonlydefaults(struct compiler *c, asdl_seq *kwonlyargs,
                              asdl_seq *kw_defaults)
{
    /* Push a dict of keyword-only default values.

       Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed.
       */
    int i;
    PyObject *keys = NULL;

    for (i = 0; i < asdl_seq_LEN(kwonlyargs); i++) {
        arg_ty arg = asdl_seq_GET(kwonlyargs, i);
        expr_ty default_ = asdl_seq_GET(kw_defaults, i);
        if (default_) {
            PyObject *mangled = _Py_Mangle(c->u->u_private, arg->arg);
            if (!mangled) {
                goto error;
            }
            if (keys == NULL) {
                keys = PyList_New(1);
                if (keys == NULL) {
                    Py_DECREF(mangled);
                    return 0;
                }
                PyList_SET_ITEM(keys, 0, mangled);
            }
            else {
                int res = PyList_Append(keys, mangled);
                Py_DECREF(mangled);
                if (res == -1) {
                    goto error;
                }
            }
            if (!compiler_visit_expr(c, default_)) {
                goto error;
            }
        }
    }
    if (keys != NULL) {
        Py_ssize_t default_count = PyList_GET_SIZE(keys);
        PyObject *keys_tuple = PyList_AsTuple(keys);
        Py_DECREF(keys);
        ADDOP_LOAD_CONST_NEW(c, keys_tuple);
        ADDOP_I(c, BUILD_CONST_KEY_MAP, default_count);
        assert(default_count > 0);
        return 1;
    }
    else {
        return -1;
    }

error:
    Py_XDECREF(keys);
    return 0;
}

static int
compiler_visit_annexpr(struct compiler *c, expr_ty annotation)
{
    ADDOP_LOAD_CONST_NEW(c, _PyAST_ExprAsUnicode(annotation));
    return 1;
}

static int
compiler_visit_argannotation(struct compiler *c, identifier id,
    expr_ty annotation, PyObject *names)
{
    if (annotation) {
        PyObject *mangled;
        if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) {
            VISIT(c, annexpr, annotation)
        }
        else {
            VISIT(c, expr, annotation);
        }
        mangled = _Py_Mangle(c->u->u_private, id);
        if (!mangled)
            return 0;
        if (PyList_Append(names, mangled) < 0) {
            Py_DECREF(mangled);
            return 0;
        }
        Py_DECREF(mangled);
    }
    return 1;
}

static int
compiler_visit_argannotations(struct compiler *c, asdl_seq* args,
                              PyObject *names)
{
    int i;
    for (i = 0; i < asdl_seq_LEN(args); i++) {
        arg_ty arg = (arg_ty)asdl_seq_GET(args, i);
        if (!compiler_visit_argannotation(
                        c,
                        arg->arg,
                        arg->annotation,
                        names))
            return 0;
    }
    return 1;
}

static int
compiler_visit_annotations(struct compiler *c, arguments_ty args,
                           expr_ty returns)
{
    /* Push arg annotation dict.
       The expressions are evaluated out-of-order wrt the source code.

       Return 0 on error, -1 if no dict pushed, 1 if a dict is pushed.
       */
    static identifier return_str;
    PyObject *names;
    Py_ssize_t len;
    names = PyList_New(0);
    if (!names)
        return 0;

    if (!compiler_visit_argannotations(c, args->args, names))
        goto error;
    if (!compiler_visit_argannotations(c, args->posonlyargs, names))
        goto error;
    if (args->vararg && args->vararg->annotation &&
        !compiler_visit_argannotation(c, args->vararg->arg,
                                     args->vararg->annotation, names))
        goto error;
    if (!compiler_visit_argannotations(c, args->kwonlyargs, names))
        goto error;
    if (args->kwarg && args->kwarg->annotation &&
        !compiler_visit_argannotation(c, args->kwarg->arg,
                                     args->kwarg->annotation, names))
        goto error;

    if (!return_str) {
        return_str = PyUnicode_InternFromString("return");
        if (!return_str)
            goto error;
    }
    if (!compiler_visit_argannotation(c, return_str, returns, names)) {
        goto error;
    }

    len = PyList_GET_SIZE(names);
    if (len) {
        PyObject *keytuple = PyList_AsTuple(names);
        Py_DECREF(names);
        ADDOP_LOAD_CONST_NEW(c, keytuple);
        ADDOP_I(c, BUILD_CONST_KEY_MAP, len);
        return 1;
    }
    else {
        Py_DECREF(names);
        return -1;
    }

error:
    Py_DECREF(names);
    return 0;
}

static int
compiler_visit_defaults(struct compiler *c, arguments_ty args)
{
    VISIT_SEQ(c, expr, args->defaults);
    ADDOP_I(c, BUILD_TUPLE, asdl_seq_LEN(args->defaults));
    return 1;
}

static Py_ssize_t
compiler_default_arguments(struct compiler *c, arguments_ty args)
{
    Py_ssize_t funcflags = 0;
    if (args->defaults && asdl_seq_LEN(args->defaults) > 0) {
        if (!compiler_visit_defaults(c, args))
            return -1;
        funcflags |= 0x01;
    }
    if (args->kwonlyargs) {
        int res = compiler_visit_kwonlydefaults(c, args->kwonlyargs,
                                                args->kw_defaults);
        if (res == 0) {
            return -1;
        }
        else if (res > 0) {
            funcflags |= 0x02;
        }
    }
    return funcflags;
}

static int
compiler_function(struct compiler *c, stmt_ty s, int is_async)
{
    PyCodeObject *co;
    PyObject *qualname, *docstring = NULL;
    arguments_ty args;
    expr_ty returns;
    identifier name;
    asdl_seq* decos;
    asdl_seq *body;
    Py_ssize_t i, funcflags;
    int annotations;
    int scope_type;
    int firstlineno;

    if (is_async) {
        assert(s->kind == AsyncFunctionDef_kind);

        args = s->v.AsyncFunctionDef.args;
        returns = s->v.AsyncFunctionDef.returns;
        decos = s->v.AsyncFunctionDef.decorator_list;
        name = s->v.AsyncFunctionDef.name;
        body = s->v.AsyncFunctionDef.body;

        scope_type = COMPILER_SCOPE_ASYNC_FUNCTION;
    } else {
        assert(s->kind == FunctionDef_kind);

        args = s->v.FunctionDef.args;
        returns = s->v.FunctionDef.returns;
        decos = s->v.FunctionDef.decorator_list;
        name = s->v.FunctionDef.name;
        body = s->v.FunctionDef.body;

        scope_type = COMPILER_SCOPE_FUNCTION;
    }

    if (!compiler_decorators(c, decos))
        return 0;

    firstlineno = s->lineno;
    if (asdl_seq_LEN(decos)) {
        firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
    }

    funcflags = compiler_default_arguments(c, args);
    if (funcflags == -1) {
        return 0;
    }

    annotations = compiler_visit_annotations(c, args, returns);
    if (annotations == 0) {
        return 0;
    }
    else if (annotations > 0) {
        funcflags |= 0x04;
    }

    if (!compiler_enter_scope(c, name, scope_type, (void *)s, firstlineno)) {
        return 0;
    }

    /* if not -OO mode, add docstring */
    if (c->c_optimize < 2) {
        docstring = _PyAST_GetDocString(body);
    }
    if (compiler_add_const(c, docstring ? docstring : Py_None) < 0) {
        compiler_exit_scope(c);
        return 0;
    }

    c->u->u_argcount = asdl_seq_LEN(args->args);
    c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
    c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
    VISIT_SEQ_IN_SCOPE(c, stmt, body);
    co = assemble(c, 1);
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL) {
        Py_XDECREF(qualname);
        Py_XDECREF(co);
        return 0;
    }

    compiler_make_closure(c, co, funcflags, qualname);
    Py_DECREF(qualname);
    Py_DECREF(co);

    /* decorators */
    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        ADDOP_I(c, CALL_FUNCTION, 1);
    }

    return compiler_nameop(c, name, Store);
}

static int
compiler_class(struct compiler *c, stmt_ty s)
{
    PyCodeObject *co;
    PyObject *str;
    int i, firstlineno;
    asdl_seq* decos = s->v.ClassDef.decorator_list;

    if (!compiler_decorators(c, decos))
        return 0;

    firstlineno = s->lineno;
    if (asdl_seq_LEN(decos)) {
        firstlineno = ((expr_ty)asdl_seq_GET(decos, 0))->lineno;
    }

    /* ultimately generate code for:
         <name> = __build_class__(<func>, <name>, *<bases>, **<keywords>)
       where:
         <func> is a function/closure created from the class body;
            it has a single argument (__locals__) where the dict
            (or MutableSequence) representing the locals is passed
         <name> is the class name
         <bases> is the positional arguments and *varargs argument
         <keywords> is the keyword arguments and **kwds argument
       This borrows from compiler_call.
    */

    /* 1. compile the class body into a code object */
    if (!compiler_enter_scope(c, s->v.ClassDef.name,
                              COMPILER_SCOPE_CLASS, (void *)s, firstlineno))
        return 0;
    /* this block represents what we do in the new scope */
    {
        /* use the class name for name mangling */
        Py_INCREF(s->v.ClassDef.name);
        Py_XSETREF(c->u->u_private, s->v.ClassDef.name);
        /* load (global) __name__ ... */
        str = PyUnicode_InternFromString("__name__");
        if (!str || !compiler_nameop(c, str, Load)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        /* ... and store it as __module__ */
        str = PyUnicode_InternFromString("__module__");
        if (!str || !compiler_nameop(c, str, Store)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        assert(c->u->u_qualname);
        ADDOP_LOAD_CONST(c, c->u->u_qualname);
        str = PyUnicode_InternFromString("__qualname__");
        if (!str || !compiler_nameop(c, str, Store)) {
            Py_XDECREF(str);
            compiler_exit_scope(c);
            return 0;
        }
        Py_DECREF(str);
        /* compile the body proper */
        if (!compiler_body(c, s->v.ClassDef.body)) {
            compiler_exit_scope(c);
            return 0;
        }
        /* Return __classcell__ if it is referenced, otherwise return None */
        if (c->u->u_ste->ste_needs_class_closure) {
            /* Store __classcell__ into class namespace & return it */
            str = PyUnicode_InternFromString("__class__");
            if (str == NULL) {
                compiler_exit_scope(c);
                return 0;
            }
            i = compiler_lookup_arg(c->u->u_cellvars, str);
            Py_DECREF(str);
            if (i < 0) {
                compiler_exit_scope(c);
                return 0;
            }
            assert(i == 0);

            ADDOP_I(c, LOAD_CLOSURE, i);
            ADDOP(c, DUP_TOP);
            str = PyUnicode_InternFromString("__classcell__");
            if (!str || !compiler_nameop(c, str, Store)) {
                Py_XDECREF(str);
                compiler_exit_scope(c);
                return 0;
            }
            Py_DECREF(str);
        }
        else {
            /* No methods referenced __class__, so just return None */
            assert(PyDict_GET_SIZE(c->u->u_cellvars) == 0);
            ADDOP_LOAD_CONST(c, Py_None);
        }
        ADDOP_IN_SCOPE(c, RETURN_VALUE);
        /* create the code object */
        co = assemble(c, 1);
    }
    /* leave the new scope */
    compiler_exit_scope(c);
    if (co == NULL)
        return 0;

    /* 2. load the 'build_class' function */
    ADDOP(c, LOAD_BUILD_CLASS);

    /* 3. load a function (or closure) made from the code object */
    compiler_make_closure(c, co, 0, NULL);
    Py_DECREF(co);

    /* 4. load class name */
    ADDOP_LOAD_CONST(c, s->v.ClassDef.name);

    /* 5. generate the rest of the code for the call */
    if (!compiler_call_helper(c, 2,
                              s->v.ClassDef.bases,
                              s->v.ClassDef.keywords))
        return 0;

    /* 6. apply decorators */
    for (i = 0; i < asdl_seq_LEN(decos); i++) {
        ADDOP_I(c, CALL_FUNCTION, 1);
    }

    /* 7. store into <name> */
    if (!compiler_nameop(c, s->v.ClassDef.name, Store))
        return 0;
    return 1;
}

/* Return 0 if the expression is a constant value except named singletons.
   Return 1 otherwise. */
static int
check_is_arg(expr_ty e)
{
    if (e->kind != Constant_kind) {
        return 1;
    }
    PyObject *value = e->v.Constant.value;
    return (value == Py_None
         || value == Py_False
         || value == Py_True
         || value == Py_Ellipsis);
}

/* Check operands of identity chacks ("is" and "is not").
   Emit a warning if any operand is a constant except named singletons.
   Return 0 on error.
 */
static int
check_compare(struct compiler *c, expr_ty e)
{
    Py_ssize_t i, n;
    int left = check_is_arg(e->v.Compare.left);
    n = asdl_seq_LEN(e->v.Compare.ops);
    for (i = 0; i < n; i++) {
        cmpop_ty op = (cmpop_ty)asdl_seq_GET(e->v.Compare.ops, i);
        int right = check_is_arg((expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
        if (op == Is || op == IsNot) {
            if (!right || !left) {
                const char *msg = (op == Is)
                        ? "\"is\" with a literal. Did you mean \"==\"?"
                        : "\"is not\" with a literal. Did you mean \"!=\"?";
                return compiler_warn(c, msg);
            }
        }
        left = right;
    }
    return 1;
}

static int
cmpop(cmpop_ty op)
{
    switch (op) {
    case Eq:
        return PyCmp_EQ;
    case NotEq:
        return PyCmp_NE;
    case Lt:
        return PyCmp_LT;
    case LtE:
        return PyCmp_LE;
    case Gt:
        return PyCmp_GT;
    case GtE:
        return PyCmp_GE;
    case Is:
        return PyCmp_IS;
    case IsNot:
        return PyCmp_IS_NOT;
    case In:
        return PyCmp_IN;
    case NotIn:
        return PyCmp_NOT_IN;
    default:
        return PyCmp_BAD;
    }
}

static int
compiler_jump_if(struct compiler *c, expr_ty e, basicblock *next, int cond)
{
    switch (e->kind) {
    case UnaryOp_kind:
        if (e->v.UnaryOp.op == Not)
            return compiler_jump_if(c, e->v.UnaryOp.operand, next, !cond);
        /* fallback to general implementation */
        break;
    case BoolOp_kind: {
        asdl_seq *s = e->v.BoolOp.values;
        Py_ssize_t i, n = asdl_seq_LEN(s) - 1;
        assert(n >= 0);
        int cond2 = e->v.BoolOp.op == Or;
        basicblock *next2 = next;
        if (!cond2 != !cond) {
            next2 = compiler_new_block(c);
            if (next2 == NULL)
                return 0;
        }
        for (i = 0; i < n; ++i) {
            if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, i), next2, cond2))
                return 0;
        }
        if (!compiler_jump_if(c, (expr_ty)asdl_seq_GET(s, n), next, cond))
            return 0;
        if (next2 != next)
            compiler_use_next_block(c, next2);
        return 1;
    }
    case IfExp_kind: {
        basicblock *end, *next2;
        end = compiler_new_block(c);
        if (end == NULL)
            return 0;
        next2 = compiler_new_block(c);
        if (next2 == NULL)
            return 0;
        if (!compiler_jump_if(c, e->v.IfExp.test, next2, 0))
            return 0;
        if (!compiler_jump_if(c, e->v.IfExp.body, next, cond))
            return 0;
        ADDOP_JREL(c, JUMP_FORWARD, end);
        compiler_use_next_block(c, next2);
        if (!compiler_jump_if(c, e->v.IfExp.orelse, next, cond))
            return 0;
        compiler_use_next_block(c, end);
        return 1;
    }
    case Compare_kind: {
        Py_ssize_t i, n = asdl_seq_LEN(e->v.Compare.ops) - 1;
        if (n > 0) {
            if (!check_compare(c, e)) {
                return 0;
            }
            basicblock *cleanup = compiler_new_block(c);
            if (cleanup == NULL)
                return 0;
            VISIT(c, expr, e->v.Compare.left);
            for (i = 0; i < n; i++) {
                VISIT(c, expr,
                    (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
                ADDOP(c, DUP_TOP);
                ADDOP(c, ROT_THREE);
                ADDOP_I(c, COMPARE_OP,
                    cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, i))));
                ADDOP_JABS(c, POP_JUMP_IF_FALSE, cleanup);
                NEXT_BLOCK(c);
            }
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
            ADDOP_I(c, COMPARE_OP,
                   cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, n))));
            ADDOP_JABS(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
            basicblock *end = compiler_new_block(c);
            if (end == NULL)
                return 0;
            ADDOP_JREL(c, JUMP_FORWARD, end);
            compiler_use_next_block(c, cleanup);
            ADDOP(c, POP_TOP);
            if (!cond) {
                ADDOP_JREL(c, JUMP_FORWARD, next);
            }
            compiler_use_next_block(c, end);
            return 1;
        }
        /* fallback to general implementation */
        break;
    }
    default:
        /* fallback to general implementation */
        break;
    }

    /* general implementation */
    VISIT(c, expr, e);
    ADDOP_JABS(c, cond ? POP_JUMP_IF_TRUE : POP_JUMP_IF_FALSE, next);
    return 1;
}

static int
compiler_ifexp(struct compiler *c, expr_ty e)
{
    basicblock *end, *next;

    assert(e->kind == IfExp_kind);
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    next = compiler_new_block(c);
    if (next == NULL)
        return 0;
    if (!compiler_jump_if(c, e->v.IfExp.test, next, 0))
        return 0;
    VISIT(c, expr, e->v.IfExp.body);
    ADDOP_JREL(c, JUMP_FORWARD, end);
    compiler_use_next_block(c, next);
    VISIT(c, expr, e->v.IfExp.orelse);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_lambda(struct compiler *c, expr_ty e)
{
    PyCodeObject *co;
    PyObject *qualname;
    static identifier name;
    Py_ssize_t funcflags;
    arguments_ty args = e->v.Lambda.args;
    assert(e->kind == Lambda_kind);

    if (!name) {
        name = PyUnicode_InternFromString("<lambda>");
        if (!name)
            return 0;
    }

    funcflags = compiler_default_arguments(c, args);
    if (funcflags == -1) {
        return 0;
    }

    if (!compiler_enter_scope(c, name, COMPILER_SCOPE_LAMBDA,
                              (void *)e, e->lineno))
        return 0;

    /* Make None the first constant, so the lambda can't have a
       docstring. */
    if (compiler_add_const(c, Py_None) < 0)
        return 0;

    c->u->u_argcount = asdl_seq_LEN(args->args);
    c->u->u_posonlyargcount = asdl_seq_LEN(args->posonlyargs);
    c->u->u_kwonlyargcount = asdl_seq_LEN(args->kwonlyargs);
    VISIT_IN_SCOPE(c, expr, e->v.Lambda.body);
    if (c->u->u_ste->ste_generator) {
        co = assemble(c, 0);
    }
    else {
        ADDOP_IN_SCOPE(c, RETURN_VALUE);
        co = assemble(c, 1);
    }
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL)
        return 0;

    compiler_make_closure(c, co, funcflags, qualname);
    Py_DECREF(qualname);
    Py_DECREF(co);

    return 1;
}

static int
compiler_if(struct compiler *c, stmt_ty s)
{
    basicblock *end, *next;
    int constant;
    assert(s->kind == If_kind);
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;

    constant = expr_constant(s->v.If.test);
    /* constant = 0: "if 0"
     * constant = 1: "if 1", "if 2", ...
     * constant = -1: rest */
    if (constant == 0) {
        BEGIN_DO_NOT_EMIT_BYTECODE
        VISIT_SEQ(c, stmt, s->v.If.body);
        END_DO_NOT_EMIT_BYTECODE
        if (s->v.If.orelse) {
            VISIT_SEQ(c, stmt, s->v.If.orelse);
        }
    } else if (constant == 1) {
        VISIT_SEQ(c, stmt, s->v.If.body);
        if (s->v.If.orelse) {
            BEGIN_DO_NOT_EMIT_BYTECODE
            VISIT_SEQ(c, stmt, s->v.If.orelse);
            END_DO_NOT_EMIT_BYTECODE
        }
    } else {
        if (asdl_seq_LEN(s->v.If.orelse)) {
            next = compiler_new_block(c);
            if (next == NULL)
                return 0;
        }
        else {
            next = end;
        }
        if (!compiler_jump_if(c, s->v.If.test, next, 0)) {
            return 0;
        }
        VISIT_SEQ(c, stmt, s->v.If.body);
        if (asdl_seq_LEN(s->v.If.orelse)) {
            ADDOP_JREL(c, JUMP_FORWARD, end);
            compiler_use_next_block(c, next);
            VISIT_SEQ(c, stmt, s->v.If.orelse);
        }
    }
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_for(struct compiler *c, stmt_ty s)
{
    basicblock *start, *cleanup, *end;

    start = compiler_new_block(c);
    cleanup = compiler_new_block(c);
    end = compiler_new_block(c);
    if (start == NULL || end == NULL || cleanup == NULL) {
        return 0;
    }
    if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) {
        return 0;
    }
    VISIT(c, expr, s->v.For.iter);
    ADDOP(c, GET_ITER);
    compiler_use_next_block(c, start);
    ADDOP_JREL(c, FOR_ITER, cleanup);
    VISIT(c, expr, s->v.For.target);
    VISIT_SEQ(c, stmt, s->v.For.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, start);
    compiler_use_next_block(c, cleanup);

    compiler_pop_fblock(c, FOR_LOOP, start);

    VISIT_SEQ(c, stmt, s->v.For.orelse);
    compiler_use_next_block(c, end);
    return 1;
}


static int
compiler_async_for(struct compiler *c, stmt_ty s)
{
    basicblock *start, *except, *end;
    if (c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT){
        c->u->u_ste->ste_coroutine = 1;
    } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION) {
        return compiler_error(c, "'async for' outside async function");
    }

    start = compiler_new_block(c);
    except = compiler_new_block(c);
    end = compiler_new_block(c);

    if (start == NULL || except == NULL || end == NULL) {
        return 0;
    }
    VISIT(c, expr, s->v.AsyncFor.iter);
    ADDOP(c, GET_AITER);

    compiler_use_next_block(c, start);
    if (!compiler_push_fblock(c, FOR_LOOP, start, end, NULL)) {
        return 0;
    }
    /* SETUP_FINALLY to guard the __anext__ call */
    ADDOP_JREL(c, SETUP_FINALLY, except);
    ADDOP(c, GET_ANEXT);
    ADDOP_LOAD_CONST(c, Py_None);
    ADDOP(c, YIELD_FROM);
    ADDOP(c, POP_BLOCK);  /* for SETUP_FINALLY */

    /* Success block for __anext__ */
    VISIT(c, expr, s->v.AsyncFor.target);
    VISIT_SEQ(c, stmt, s->v.AsyncFor.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, start);

    compiler_pop_fblock(c, FOR_LOOP, start);

    /* Except block for __anext__ */
    compiler_use_next_block(c, except);
    ADDOP(c, END_ASYNC_FOR);

    /* `else` block */
    VISIT_SEQ(c, stmt, s->v.For.orelse);

    compiler_use_next_block(c, end);

    return 1;
}

static int
compiler_while(struct compiler *c, stmt_ty s)
{
    basicblock *loop, *orelse, *end, *anchor = NULL;
    int constant = expr_constant(s->v.While.test);

    if (constant == 0) {
        BEGIN_DO_NOT_EMIT_BYTECODE
        // Push a dummy block so the VISIT_SEQ knows that we are
        // inside a while loop so it can correctly evaluate syntax
        // errors.
        if (!compiler_push_fblock(c, WHILE_LOOP, NULL, NULL, NULL)) {
            return 0;
        }
        VISIT_SEQ(c, stmt, s->v.While.body);
        // Remove the dummy block now that is not needed.
        compiler_pop_fblock(c, WHILE_LOOP, NULL);
        END_DO_NOT_EMIT_BYTECODE
        if (s->v.While.orelse) {
            VISIT_SEQ(c, stmt, s->v.While.orelse);
        }
        return 1;
    }
    loop = compiler_new_block(c);
    end = compiler_new_block(c);
    if (constant == -1) {
        anchor = compiler_new_block(c);
        if (anchor == NULL)
            return 0;
    }
    if (loop == NULL || end == NULL)
        return 0;
    if (s->v.While.orelse) {
        orelse = compiler_new_block(c);
        if (orelse == NULL)
            return 0;
    }
    else
        orelse = NULL;

    compiler_use_next_block(c, loop);
    if (!compiler_push_fblock(c, WHILE_LOOP, loop, end, NULL))
        return 0;
    if (constant == -1) {
        if (!compiler_jump_if(c, s->v.While.test, anchor, 0))
            return 0;
    }
    VISIT_SEQ(c, stmt, s->v.While.body);
    ADDOP_JABS(c, JUMP_ABSOLUTE, loop);

    /* XXX should the two POP instructions be in a separate block
       if there is no else clause ?
    */

    if (constant == -1)
        compiler_use_next_block(c, anchor);
    compiler_pop_fblock(c, WHILE_LOOP, loop);

    if (orelse != NULL) /* what if orelse is just pass? */
        VISIT_SEQ(c, stmt, s->v.While.orelse);
    compiler_use_next_block(c, end);

    return 1;
}

static int
compiler_return(struct compiler *c, stmt_ty s)
{
    int preserve_tos = ((s->v.Return.value != NULL) &&
                        (s->v.Return.value->kind != Constant_kind));
    if (c->u->u_ste->ste_type != FunctionBlock)
        return compiler_error(c, "'return' outside function");
    if (s->v.Return.value != NULL &&
        c->u->u_ste->ste_coroutine && c->u->u_ste->ste_generator)
    {
            return compiler_error(
                c, "'return' with value in async generator");
    }
    if (preserve_tos) {
        VISIT(c, expr, s->v.Return.value);
    }
    if (!compiler_unwind_fblock_stack(c, preserve_tos, NULL))
        return 0;
    if (s->v.Return.value == NULL) {
        ADDOP_LOAD_CONST(c, Py_None);
    }
    else if (!preserve_tos) {
        VISIT(c, expr, s->v.Return.value);
    }
    ADDOP(c, RETURN_VALUE);

    return 1;
}

static int
compiler_break(struct compiler *c)
{
    struct fblockinfo *loop = NULL;
    if (!compiler_unwind_fblock_stack(c, 0, &loop)) {
        return 0;
    }
    if (loop == NULL) {
        return compiler_error(c, "'break' outside loop");
    }
    if (!compiler_unwind_fblock(c, loop, 0)) {
        return 0;
    }
    ADDOP_JABS(c, JUMP_ABSOLUTE, loop->fb_exit);
    return 1;
}

static int
compiler_continue(struct compiler *c)
{
    struct fblockinfo *loop = NULL;
    if (!compiler_unwind_fblock_stack(c, 0, &loop)) {
        return 0;
    }
    if (loop == NULL) {
        return compiler_error(c, "'continue' not properly in loop");
    }
    ADDOP_JABS(c, JUMP_ABSOLUTE, loop->fb_block);
    return 1;
}


/* Code generated for "try: <body> finally: <finalbody>" is as follows:

        SETUP_FINALLY           L
        <code for body>
        POP_BLOCK
        <code for finalbody>
        JUMP E
    L:
        <code for finalbody>
    E:

   The special instructions use the block stack.  Each block
   stack entry contains the instruction that created it (here
   SETUP_FINALLY), the level of the value stack at the time the
   block stack entry was created, and a label (here L).

   SETUP_FINALLY:
    Pushes the current value stack level and the label
    onto the block stack.
   POP_BLOCK:
    Pops en entry from the block stack.

   The block stack is unwound when an exception is raised:
   when a SETUP_FINALLY entry is found, the raised and the caught
   exceptions are pushed onto the value stack (and the exception
   condition is cleared), and the interpreter jumps to the label
   gotten from the block stack.
*/

static int
compiler_try_finally(struct compiler *c, stmt_ty s)
{
    basicblock *body, *end, *exit;

    body = compiler_new_block(c);
    end = compiler_new_block(c);
    exit = compiler_new_block(c);
    if (body == NULL || end == NULL || exit == NULL)
        return 0;

    /* `try` block */
    ADDOP_JREL(c, SETUP_FINALLY, end);
    compiler_use_next_block(c, body);
    if (!compiler_push_fblock(c, FINALLY_TRY, body, end, s->v.Try.finalbody))
        return 0;
    if (s->v.Try.handlers && asdl_seq_LEN(s->v.Try.handlers)) {
        if (!compiler_try_except(c, s))
            return 0;
    }
    else {
        VISIT_SEQ(c, stmt, s->v.Try.body);
    }
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, FINALLY_TRY, body);
    VISIT_SEQ(c, stmt, s->v.Try.finalbody);
    ADDOP_JREL(c, JUMP_FORWARD, exit);
    /* `finally` block */
    compiler_use_next_block(c, end);
    if (!compiler_push_fblock(c, FINALLY_END, end, NULL, NULL))
        return 0;
    VISIT_SEQ(c, stmt, s->v.Try.finalbody);
    compiler_pop_fblock(c, FINALLY_END, end);
    ADDOP(c, RERAISE);
    compiler_use_next_block(c, exit);
    return 1;
}

/*
   Code generated for "try: S except E1 as V1: S1 except E2 as V2: S2 ...":
   (The contents of the value stack is shown in [], with the top
   at the right; 'tb' is trace-back info, 'val' the exception's
   associated value, and 'exc' the exception.)

   Value stack          Label   Instruction     Argument
   []                           SETUP_FINALLY   L1
   []                           <code for S>
   []                           POP_BLOCK
   []                           JUMP_FORWARD    L0

   [tb, val, exc]       L1:     DUP                             )
   [tb, val, exc, exc]          <evaluate E1>                   )
   [tb, val, exc, exc, E1]      COMPARE_OP      EXC_MATCH       ) only if E1
   [tb, val, exc, 1-or-0]       POP_JUMP_IF_FALSE       L2      )
   [tb, val, exc]               POP
   [tb, val]                    <assign to V1>  (or POP if no V1)
   [tb]                         POP
   []                           <code for S1>
                                JUMP_FORWARD    L0

   [tb, val, exc]       L2:     DUP
   .............................etc.......................

   [tb, val, exc]       Ln+1:   RERAISE     # re-raise exception

   []                   L0:     <next statement>

   Of course, parts are not generated if Vi or Ei is not present.
*/
static int
compiler_try_except(struct compiler *c, stmt_ty s)
{
    basicblock *body, *orelse, *except, *end;
    Py_ssize_t i, n;

    body = compiler_new_block(c);
    except = compiler_new_block(c);
    orelse = compiler_new_block(c);
    end = compiler_new_block(c);
    if (body == NULL || except == NULL || orelse == NULL || end == NULL)
        return 0;
    ADDOP_JREL(c, SETUP_FINALLY, except);
    compiler_use_next_block(c, body);
    if (!compiler_push_fblock(c, EXCEPT, body, NULL, NULL))
        return 0;
    VISIT_SEQ(c, stmt, s->v.Try.body);
    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, EXCEPT, body);
    ADDOP_JREL(c, JUMP_FORWARD, orelse);
    n = asdl_seq_LEN(s->v.Try.handlers);
    compiler_use_next_block(c, except);
    for (i = 0; i < n; i++) {
        excepthandler_ty handler = (excepthandler_ty)asdl_seq_GET(
            s->v.Try.handlers, i);
        if (!handler->v.ExceptHandler.type && i < n-1)
            return compiler_error(c, "default 'except:' must be last");
        c->u->u_lineno_set = 0;
        c->u->u_lineno = handler->lineno;
        c->u->u_col_offset = handler->col_offset;
        except = compiler_new_block(c);
        if (except == NULL)
            return 0;
        if (handler->v.ExceptHandler.type) {
            ADDOP(c, DUP_TOP);
            VISIT(c, expr, handler->v.ExceptHandler.type);
            ADDOP_I(c, COMPARE_OP, PyCmp_EXC_MATCH);
            ADDOP_JABS(c, POP_JUMP_IF_FALSE, except);
        }
        ADDOP(c, POP_TOP);
        if (handler->v.ExceptHandler.name) {
            basicblock *cleanup_end, *cleanup_body;

            cleanup_end = compiler_new_block(c);
            cleanup_body = compiler_new_block(c);
            if (cleanup_end == NULL || cleanup_body == NULL) {
                return 0;
            }

            compiler_nameop(c, handler->v.ExceptHandler.name, Store);
            ADDOP(c, POP_TOP);

            /*
              try:
                  # body
              except type as name:
                  try:
                      # body
                  finally:
                      name = None # in case body contains "del name"
                      del name
            */

            /* second try: */
            ADDOP_JREL(c, SETUP_FINALLY, cleanup_end);
            compiler_use_next_block(c, cleanup_body);
            if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, handler->v.ExceptHandler.name))
                return 0;

            /* second # body */
            VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
            compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
            ADDOP(c, POP_BLOCK);
            ADDOP(c, POP_EXCEPT);
            /* name = None; del name */
            ADDOP_LOAD_CONST(c, Py_None);
            compiler_nameop(c, handler->v.ExceptHandler.name, Store);
            compiler_nameop(c, handler->v.ExceptHandler.name, Del);
            ADDOP_JREL(c, JUMP_FORWARD, end);

            /* except: */
            compiler_use_next_block(c, cleanup_end);

            /* name = None; del name */
            ADDOP_LOAD_CONST(c, Py_None);
            compiler_nameop(c, handler->v.ExceptHandler.name, Store);
            compiler_nameop(c, handler->v.ExceptHandler.name, Del);

            ADDOP(c, RERAISE);
        }
        else {
            basicblock *cleanup_body;

            cleanup_body = compiler_new_block(c);
            if (!cleanup_body)
                return 0;

            ADDOP(c, POP_TOP);
            ADDOP(c, POP_TOP);
            compiler_use_next_block(c, cleanup_body);
            if (!compiler_push_fblock(c, HANDLER_CLEANUP, cleanup_body, NULL, NULL))
                return 0;
            VISIT_SEQ(c, stmt, handler->v.ExceptHandler.body);
            compiler_pop_fblock(c, HANDLER_CLEANUP, cleanup_body);
            ADDOP(c, POP_EXCEPT);
            ADDOP_JREL(c, JUMP_FORWARD, end);
        }
        compiler_use_next_block(c, except);
    }
    ADDOP(c, RERAISE);
    compiler_use_next_block(c, orelse);
    VISIT_SEQ(c, stmt, s->v.Try.orelse);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_try(struct compiler *c, stmt_ty s) {
    if (s->v.Try.finalbody && asdl_seq_LEN(s->v.Try.finalbody))
        return compiler_try_finally(c, s);
    else
        return compiler_try_except(c, s);
}


static int
compiler_import_as(struct compiler *c, identifier name, identifier asname)
{
    /* The IMPORT_NAME opcode was already generated.  This function
       merely needs to bind the result to a name.

       If there is a dot in name, we need to split it and emit a
       IMPORT_FROM for each name.
    */
    Py_ssize_t len = PyUnicode_GET_LENGTH(name);
    Py_ssize_t dot = PyUnicode_FindChar(name, '.', 0, len, 1);
    if (dot == -2)
        return 0;
    if (dot != -1) {
        /* Consume the base module name to get the first attribute */
        while (1) {
            Py_ssize_t pos = dot + 1;
            PyObject *attr;
            dot = PyUnicode_FindChar(name, '.', pos, len, 1);
            if (dot == -2)
                return 0;
            attr = PyUnicode_Substring(name, pos, (dot != -1) ? dot : len);
            if (!attr)
                return 0;
            ADDOP_N(c, IMPORT_FROM, attr, names);
            if (dot == -1) {
                break;
            }
            ADDOP(c, ROT_TWO);
            ADDOP(c, POP_TOP);
        }
        if (!compiler_nameop(c, asname, Store)) {
            return 0;
        }
        ADDOP(c, POP_TOP);
        return 1;
    }
    return compiler_nameop(c, asname, Store);
}

static int
compiler_import(struct compiler *c, stmt_ty s)
{
    /* The Import node stores a module name like a.b.c as a single
       string.  This is convenient for all cases except
         import a.b.c as d
       where we need to parse that string to extract the individual
       module names.
       XXX Perhaps change the representation to make this case simpler?
     */
    Py_ssize_t i, n = asdl_seq_LEN(s->v.Import.names);

    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.Import.names, i);
        int r;

        ADDOP_LOAD_CONST(c, _PyLong_Zero);
        ADDOP_LOAD_CONST(c, Py_None);
        ADDOP_NAME(c, IMPORT_NAME, alias->name, names);

        if (alias->asname) {
            r = compiler_import_as(c, alias->name, alias->asname);
            if (!r)
                return r;
        }
        else {
            identifier tmp = alias->name;
            Py_ssize_t dot = PyUnicode_FindChar(
                alias->name, '.', 0, PyUnicode_GET_LENGTH(alias->name), 1);
            if (dot != -1) {
                tmp = PyUnicode_Substring(alias->name, 0, dot);
                if (tmp == NULL)
                    return 0;
            }
            r = compiler_nameop(c, tmp, Store);
            if (dot != -1) {
                Py_DECREF(tmp);
            }
            if (!r)
                return r;
        }
    }
    return 1;
}

static int
compiler_from_import(struct compiler *c, stmt_ty s)
{
    Py_ssize_t i, n = asdl_seq_LEN(s->v.ImportFrom.names);
    PyObject *names;
    static PyObject *empty_string;

    if (!empty_string) {
        empty_string = PyUnicode_FromString("");
        if (!empty_string)
            return 0;
    }

    ADDOP_LOAD_CONST_NEW(c, PyLong_FromLong(s->v.ImportFrom.level));

    names = PyTuple_New(n);
    if (!names)
        return 0;

    /* build up the names */
    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
        Py_INCREF(alias->name);
        PyTuple_SET_ITEM(names, i, alias->name);
    }

    if (s->lineno > c->c_future->ff_lineno && s->v.ImportFrom.module &&
        _PyUnicode_EqualToASCIIString(s->v.ImportFrom.module, "__future__")) {
        Py_DECREF(names);
        return compiler_error(c, "from __future__ imports must occur "
                              "at the beginning of the file");
    }
    ADDOP_LOAD_CONST_NEW(c, names);

    if (s->v.ImportFrom.module) {
        ADDOP_NAME(c, IMPORT_NAME, s->v.ImportFrom.module, names);
    }
    else {
        ADDOP_NAME(c, IMPORT_NAME, empty_string, names);
    }
    for (i = 0; i < n; i++) {
        alias_ty alias = (alias_ty)asdl_seq_GET(s->v.ImportFrom.names, i);
        identifier store_name;

        if (i == 0 && PyUnicode_READ_CHAR(alias->name, 0) == '*') {
            assert(n == 1);
            ADDOP(c, IMPORT_STAR);
            return 1;
        }

        ADDOP_NAME(c, IMPORT_FROM, alias->name, names);
        store_name = alias->name;
        if (alias->asname)
            store_name = alias->asname;

        if (!compiler_nameop(c, store_name, Store)) {
            return 0;
        }
    }
    /* remove imported module */
    ADDOP(c, POP_TOP);
    return 1;
}

static int
compiler_assert(struct compiler *c, stmt_ty s)
{
    basicblock *end;

    if (c->c_optimize)
        return 1;
    if (s->v.Assert.test->kind == Tuple_kind &&
        asdl_seq_LEN(s->v.Assert.test->v.Tuple.elts) > 0)
    {
        if (!compiler_warn(c, "assertion is always true, "
                              "perhaps remove parentheses?"))
        {
            return 0;
        }
    }
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    if (!compiler_jump_if(c, s->v.Assert.test, end, 1))
        return 0;
    ADDOP(c, LOAD_ASSERTION_ERROR);
    if (s->v.Assert.msg) {
        VISIT(c, expr, s->v.Assert.msg);
        ADDOP_I(c, CALL_FUNCTION, 1);
    }
    ADDOP_I(c, RAISE_VARARGS, 1);
    compiler_use_next_block(c, end);
    return 1;
}

static int
compiler_visit_stmt_expr(struct compiler *c, expr_ty value)
{
    if (c->c_interactive && c->c_nestlevel <= 1) {
        VISIT(c, expr, value);
        ADDOP(c, PRINT_EXPR);
        return 1;
    }

    if (value->kind == Constant_kind) {
        /* ignore constant statement */
        return 1;
    }

    VISIT(c, expr, value);
    ADDOP(c, POP_TOP);
    return 1;
}

static int
compiler_visit_stmt(struct compiler *c, stmt_ty s)
{
    Py_ssize_t i, n;

    /* Always assign a lineno to the next instruction for a stmt. */
    c->u->u_lineno = s->lineno;
    c->u->u_col_offset = s->col_offset;
    c->u->u_lineno_set = 0;

    switch (s->kind) {
    case FunctionDef_kind:
        return compiler_function(c, s, 0);
    case ClassDef_kind:
        return compiler_class(c, s);
    case Return_kind:
        return compiler_return(c, s);
    case Delete_kind:
        VISIT_SEQ(c, expr, s->v.Delete.targets)
        break;
    case Assign_kind:
        n = asdl_seq_LEN(s->v.Assign.targets);
        VISIT(c, expr, s->v.Assign.value);
        for (i = 0; i < n; i++) {
            if (i < n - 1)
                ADDOP(c, DUP_TOP);
            VISIT(c, expr,
                  (expr_ty)asdl_seq_GET(s->v.Assign.targets, i));
        }
        break;
    case AugAssign_kind:
        return compiler_augassign(c, s);
    case AnnAssign_kind:
        return compiler_annassign(c, s);
    case For_kind:
        return compiler_for(c, s);
    case While_kind:
        return compiler_while(c, s);
    case If_kind:
        return compiler_if(c, s);
    case Raise_kind:
        n = 0;
        if (s->v.Raise.exc) {
            VISIT(c, expr, s->v.Raise.exc);
            n++;
            if (s->v.Raise.cause) {
                VISIT(c, expr, s->v.Raise.cause);
                n++;
            }
        }
        ADDOP_I(c, RAISE_VARARGS, (int)n);
        break;
    case Try_kind:
        return compiler_try(c, s);
    case Assert_kind:
        return compiler_assert(c, s);
    case Import_kind:
        return compiler_import(c, s);
    case ImportFrom_kind:
        return compiler_from_import(c, s);
    case Global_kind:
    case Nonlocal_kind:
        break;
    case Expr_kind:
        return compiler_visit_stmt_expr(c, s->v.Expr.value);
    case Pass_kind:
        break;
    case Break_kind:
        return compiler_break(c);
    case Continue_kind:
        return compiler_continue(c);
    case With_kind:
        return compiler_with(c, s, 0);
    case AsyncFunctionDef_kind:
        return compiler_function(c, s, 1);
    case AsyncWith_kind:
        return compiler_async_with(c, s, 0);
    case AsyncFor_kind:
        return compiler_async_for(c, s);
    }

    return 1;
}

static int
unaryop(unaryop_ty op)
{
    switch (op) {
    case Invert:
        return UNARY_INVERT;
    case Not:
        return UNARY_NOT;
    case UAdd:
        return UNARY_POSITIVE;
    case USub:
        return UNARY_NEGATIVE;
    default:
        PyErr_Format(PyExc_SystemError,
            "unary op %d should not be possible", op);
        return 0;
    }
}

static int
binop(struct compiler *c, operator_ty op)
{
    switch (op) {
    case Add:
        return BINARY_ADD;
    case Sub:
        return BINARY_SUBTRACT;
    case Mult:
        return BINARY_MULTIPLY;
    case MatMult:
        return BINARY_MATRIX_MULTIPLY;
    case Div:
        return BINARY_TRUE_DIVIDE;
    case Mod:
        return BINARY_MODULO;
    case Pow:
        return BINARY_POWER;
    case LShift:
        return BINARY_LSHIFT;
    case RShift:
        return BINARY_RSHIFT;
    case BitOr:
        return BINARY_OR;
    case BitXor:
        return BINARY_XOR;
    case BitAnd:
        return BINARY_AND;
    case FloorDiv:
        return BINARY_FLOOR_DIVIDE;
    default:
        PyErr_Format(PyExc_SystemError,
            "binary op %d should not be possible", op);
        return 0;
    }
}

static int
inplace_binop(struct compiler *c, operator_ty op)
{
    switch (op) {
    case Add:
        return INPLACE_ADD;
    case Sub:
        return INPLACE_SUBTRACT;
    case Mult:
        return INPLACE_MULTIPLY;
    case MatMult:
        return INPLACE_MATRIX_MULTIPLY;
    case Div:
        return INPLACE_TRUE_DIVIDE;
    case Mod:
        return INPLACE_MODULO;
    case Pow:
        return INPLACE_POWER;
    case LShift:
        return INPLACE_LSHIFT;
    case RShift:
        return INPLACE_RSHIFT;
    case BitOr:
        return INPLACE_OR;
    case BitXor:
        return INPLACE_XOR;
    case BitAnd:
        return INPLACE_AND;
    case FloorDiv:
        return INPLACE_FLOOR_DIVIDE;
    default:
        PyErr_Format(PyExc_SystemError,
            "inplace binary op %d should not be possible", op);
        return 0;
    }
}

static int
compiler_nameop(struct compiler *c, identifier name, expr_context_ty ctx)
{
    int op, scope;
    Py_ssize_t arg;
    enum { OP_FAST, OP_GLOBAL, OP_DEREF, OP_NAME } optype;

    PyObject *dict = c->u->u_names;
    PyObject *mangled;
    /* XXX AugStore isn't used anywhere! */

    assert(!_PyUnicode_EqualToASCIIString(name, "None") &&
           !_PyUnicode_EqualToASCIIString(name, "True") &&
           !_PyUnicode_EqualToASCIIString(name, "False"));

    mangled = _Py_Mangle(c->u->u_private, name);
    if (!mangled)
        return 0;

    op = 0;
    optype = OP_NAME;
    scope = PyST_GetScope(c->u->u_ste, mangled);
    switch (scope) {
    case FREE:
        dict = c->u->u_freevars;
        optype = OP_DEREF;
        break;
    case CELL:
        dict = c->u->u_cellvars;
        optype = OP_DEREF;
        break;
    case LOCAL:
        if (c->u->u_ste->ste_type == FunctionBlock)
            optype = OP_FAST;
        break;
    case GLOBAL_IMPLICIT:
        if (c->u->u_ste->ste_type == FunctionBlock)
            optype = OP_GLOBAL;
        break;
    case GLOBAL_EXPLICIT:
        optype = OP_GLOBAL;
        break;
    default:
        /* scope can be 0 */
        break;
    }

    /* XXX Leave assert here, but handle __doc__ and the like better */
    assert(scope || PyUnicode_READ_CHAR(name, 0) == '_');

    switch (optype) {
    case OP_DEREF:
        switch (ctx) {
        case Load:
            op = (c->u->u_ste->ste_type == ClassBlock) ? LOAD_CLASSDEREF : LOAD_DEREF;
            break;
        case Store:
            op = STORE_DEREF;
            break;
        case AugLoad:
        case AugStore:
            break;
        case Del: op = DELETE_DEREF; break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for deref variable");
            return 0;
        }
        break;
    case OP_FAST:
        switch (ctx) {
        case Load: op = LOAD_FAST; break;
        case Store:
            op = STORE_FAST;
            break;
        case Del: op = DELETE_FAST; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for local variable");
            return 0;
        }
        ADDOP_N(c, op, mangled, varnames);
        return 1;
    case OP_GLOBAL:
        switch (ctx) {
        case Load: op = LOAD_GLOBAL; break;
        case Store:
            op = STORE_GLOBAL;
            break;
        case Del: op = DELETE_GLOBAL; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for global variable");
            return 0;
        }
        break;
    case OP_NAME:
        switch (ctx) {
        case Load: op = LOAD_NAME; break;
        case Store:
            op = STORE_NAME;
            break;
        case Del: op = DELETE_NAME; break;
        case AugLoad:
        case AugStore:
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid for name variable");
            return 0;
        }
        break;
    }

    assert(op);
    arg = compiler_add_o(c, dict, mangled);
    Py_DECREF(mangled);
    if (arg < 0)
        return 0;
    return compiler_addop_i(c, op, arg);
}

static int
compiler_boolop(struct compiler *c, expr_ty e)
{
    basicblock *end;
    int jumpi;
    Py_ssize_t i, n;
    asdl_seq *s;

    assert(e->kind == BoolOp_kind);
    if (e->v.BoolOp.op == And)
        jumpi = JUMP_IF_FALSE_OR_POP;
    else
        jumpi = JUMP_IF_TRUE_OR_POP;
    end = compiler_new_block(c);
    if (end == NULL)
        return 0;
    s = e->v.BoolOp.values;
    n = asdl_seq_LEN(s) - 1;
    assert(n >= 0);
    for (i = 0; i < n; ++i) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(s, i));
        ADDOP_JABS(c, jumpi, end);
    }
    VISIT(c, expr, (expr_ty)asdl_seq_GET(s, n));
    compiler_use_next_block(c, end);
    return 1;
}

static int
starunpack_helper(struct compiler *c, asdl_seq *elts,
                  int single_op, int inner_op, int outer_op)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    Py_ssize_t i, nsubitems = 0, nseen = 0;
    if (n > 2 && are_all_items_const(elts, 0, n)) {
        PyObject *folded = PyTuple_New(n);
        if (folded == NULL) {
            return 0;
        }
        PyObject *val;
        for (i = 0; i < n; i++) {
            val = ((expr_ty)asdl_seq_GET(elts, i))->v.Constant.value;
            Py_INCREF(val);
            PyTuple_SET_ITEM(folded, i, val);
        }
        if (outer_op == BUILD_SET_UNPACK) {
            Py_SETREF(folded, PyFrozenSet_New(folded));
            if (folded == NULL) {
                return 0;
            }
        }
        ADDOP_LOAD_CONST_NEW(c, folded);
        ADDOP_I(c, outer_op, 1);
        return 1;
    }
    for (i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind) {
            if (nseen) {
                ADDOP_I(c, inner_op, nseen);
                nseen = 0;
                nsubitems++;
            }
            VISIT(c, expr, elt->v.Starred.value);
            nsubitems++;
        }
        else {
            VISIT(c, expr, elt);
            nseen++;
        }
    }
    if (nsubitems) {
        if (nseen) {
            ADDOP_I(c, inner_op, nseen);
            nsubitems++;
        }
        ADDOP_I(c, outer_op, nsubitems);
    }
    else
        ADDOP_I(c, single_op, nseen);
    return 1;
}

static int
assignment_helper(struct compiler *c, asdl_seq *elts)
{
    Py_ssize_t n = asdl_seq_LEN(elts);
    Py_ssize_t i;
    int seen_star = 0;
    for (i = 0; i < n; i++) {
        expr_ty elt = asdl_seq_GET(elts, i);
        if (elt->kind == Starred_kind && !seen_star) {
            if ((i >= (1 << 8)) ||
                (n-i-1 >= (INT_MAX >> 8)))
                return compiler_error(c,
                    "too many expressions in "
                    "star-unpacking assignment");
            ADDOP_I(c, UNPACK_EX, (i + ((n-i-1) << 8)));
            seen_star = 1;
            asdl_seq_SET(elts, i, elt->v.Starred.value);
        }
        else if (elt->kind == Starred_kind) {
            return compiler_error(c,
                "two starred expressions in assignment");
        }
    }
    if (!seen_star) {
        ADDOP_I(c, UNPACK_SEQUENCE, n);
    }
    VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_list(struct compiler *c, expr_ty e)
{
    asdl_seq *elts = e->v.List.elts;
    if (e->v.List.ctx == Store) {
        return assignment_helper(c, elts);
    }
    else if (e->v.List.ctx == Load) {
        return starunpack_helper(c, elts,
                                 BUILD_LIST, BUILD_TUPLE, BUILD_LIST_UNPACK);
    }
    else
        VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_tuple(struct compiler *c, expr_ty e)
{
    asdl_seq *elts = e->v.Tuple.elts;
    if (e->v.Tuple.ctx == Store) {
        return assignment_helper(c, elts);
    }
    else if (e->v.Tuple.ctx == Load) {
        return starunpack_helper(c, elts,
                                 BUILD_TUPLE, BUILD_TUPLE, BUILD_TUPLE_UNPACK);
    }
    else
        VISIT_SEQ(c, expr, elts);
    return 1;
}

static int
compiler_set(struct compiler *c, expr_ty e)
{
    return starunpack_helper(c, e->v.Set.elts, BUILD_SET,
                             BUILD_SET, BUILD_SET_UNPACK);
}

static int
are_all_items_const(asdl_seq *seq, Py_ssize_t begin, Py_ssize_t end)
{
    Py_ssize_t i;
    for (i = begin; i < end; i++) {
        expr_ty key = (expr_ty)asdl_seq_GET(seq, i);
        if (key == NULL || key->kind != Constant_kind)
            return 0;
    }
    return 1;
}

static int
compiler_subdict(struct compiler *c, expr_ty e, Py_ssize_t begin, Py_ssize_t end)
{
    Py_ssize_t i, n = end - begin;
    PyObject *keys, *key;
    if (n > 1 && are_all_items_const(e->v.Dict.keys, begin, end)) {
        for (i = begin; i < end; i++) {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
        }
        keys = PyTuple_New(n);
        if (keys == NULL) {
            return 0;
        }
        for (i = begin; i < end; i++) {
            key = ((expr_ty)asdl_seq_GET(e->v.Dict.keys, i))->v.Constant.value;
            Py_INCREF(key);
            PyTuple_SET_ITEM(keys, i - begin, key);
        }
        ADDOP_LOAD_CONST_NEW(c, keys);
        ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
    }
    else {
        for (i = begin; i < end; i++) {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.keys, i));
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
        }
        ADDOP_I(c, BUILD_MAP, n);
    }
    return 1;
}

static int
compiler_dict(struct compiler *c, expr_ty e)
{
    Py_ssize_t i, n, elements;
    int containers;
    int is_unpacking = 0;
    n = asdl_seq_LEN(e->v.Dict.values);
    containers = 0;
    elements = 0;
    for (i = 0; i < n; i++) {
        is_unpacking = (expr_ty)asdl_seq_GET(e->v.Dict.keys, i) == NULL;
        if (elements == 0xFFFF || (elements && is_unpacking)) {
            if (!compiler_subdict(c, e, i - elements, i))
                return 0;
            containers++;
            elements = 0;
        }
        if (is_unpacking) {
            VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Dict.values, i));
            containers++;
        }
        else {
            elements++;
        }
    }
    if (elements || containers == 0) {
        if (!compiler_subdict(c, e, n - elements, n))
            return 0;
        containers++;
    }
    /* If there is more than one dict, they need to be merged into a new
     * dict.  If there is one dict and it's an unpacking, then it needs
     * to be copied into a new dict." */
    if (containers > 1 || is_unpacking) {
        ADDOP_I(c, BUILD_MAP_UNPACK, containers);
    }
    return 1;
}

static int
compiler_compare(struct compiler *c, expr_ty e)
{
    Py_ssize_t i, n;

    if (!check_compare(c, e)) {
        return 0;
    }
    VISIT(c, expr, e->v.Compare.left);
    assert(asdl_seq_LEN(e->v.Compare.ops) > 0);
    n = asdl_seq_LEN(e->v.Compare.ops) - 1;
    if (n == 0) {
        VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, 0));
        ADDOP_I(c, COMPARE_OP,
            cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, 0))));
    }
    else {
        basicblock *cleanup = compiler_new_block(c);
        if (cleanup == NULL)
            return 0;
        for (i = 0; i < n; i++) {
            VISIT(c, expr,
                (expr_ty)asdl_seq_GET(e->v.Compare.comparators, i));
            ADDOP(c, DUP_TOP);
            ADDOP(c, ROT_THREE);
            ADDOP_I(c, COMPARE_OP,
                cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, i))));
            ADDOP_JABS(c, JUMP_IF_FALSE_OR_POP, cleanup);
            NEXT_BLOCK(c);
        }
        VISIT(c, expr, (expr_ty)asdl_seq_GET(e->v.Compare.comparators, n));
        ADDOP_I(c, COMPARE_OP,
            cmpop((cmpop_ty)(asdl_seq_GET(e->v.Compare.ops, n))));
        basicblock *end = compiler_new_block(c);
        if (end == NULL)
            return 0;
        ADDOP_JREL(c, JUMP_FORWARD, end);
        compiler_use_next_block(c, cleanup);
        ADDOP(c, ROT_TWO);
        ADDOP(c, POP_TOP);
        compiler_use_next_block(c, end);
    }
    return 1;
}

static PyTypeObject *
infer_type(expr_ty e)
{
    switch (e->kind) {
    case Tuple_kind:
        return &PyTuple_Type;
    case List_kind:
    case ListComp_kind:
        return &PyList_Type;
    case Dict_kind:
    case DictComp_kind:
        return &PyDict_Type;
    case Set_kind:
    case SetComp_kind:
        return &PySet_Type;
    case GeneratorExp_kind:
        return &PyGen_Type;
    case Lambda_kind:
        return &PyFunction_Type;
    case JoinedStr_kind:
    case FormattedValue_kind:
        return &PyUnicode_Type;
    case Constant_kind:
        return e->v.Constant.value->ob_type;
    default:
        return NULL;
    }
}

static int
check_caller(struct compiler *c, expr_ty e)
{
    switch (e->kind) {
    case Constant_kind:
    case Tuple_kind:
    case List_kind:
    case ListComp_kind:
    case Dict_kind:
    case DictComp_kind:
    case Set_kind:
    case SetComp_kind:
    case GeneratorExp_kind:
    case JoinedStr_kind:
    case FormattedValue_kind:
        return compiler_warn(c, "'%.200s' object is not callable; "
                                "perhaps you missed a comma?",
                                infer_type(e)->tp_name);
    default:
        return 1;
    }
}

static int
check_subscripter(struct compiler *c, expr_ty e)
{
    PyObject *v;

    switch (e->kind) {
    case Constant_kind:
        v = e->v.Constant.value;
        if (!(v == Py_None || v == Py_Ellipsis ||
              PyLong_Check(v) || PyFloat_Check(v) || PyComplex_Check(v) ||
              PyAnySet_Check(v)))
        {
            return 1;
        }
        /* fall through */
    case Set_kind:
    case SetComp_kind:
    case GeneratorExp_kind:
    case Lambda_kind:
        return compiler_warn(c, "'%.200s' object is not subscriptable; "
                                "perhaps you missed a comma?",
                                infer_type(e)->tp_name);
    default:
        return 1;
    }
}

static int
check_index(struct compiler *c, expr_ty e, slice_ty s)
{
    PyObject *v;

    if (s->kind != Index_kind) {
        return 1;
    }
    PyTypeObject *index_type = infer_type(s->v.Index.value);
    if (index_type == NULL
        || PyType_FastSubclass(index_type, Py_TPFLAGS_LONG_SUBCLASS)
        || index_type == &PySlice_Type) {
        return 1;
    }

    switch (e->kind) {
    case Constant_kind:
        v = e->v.Constant.value;
        if (!(PyUnicode_Check(v) || PyBytes_Check(v) || PyTuple_Check(v))) {
            return 1;
        }
        /* fall through */
    case Tuple_kind:
    case List_kind:
    case ListComp_kind:
    case JoinedStr_kind:
    case FormattedValue_kind:
        return compiler_warn(c, "%.200s indices must be integers or slices, "
                                "not %.200s; "
                                "perhaps you missed a comma?",
                                infer_type(e)->tp_name,
                                index_type->tp_name);
    default:
        return 1;
    }
}

// Return 1 if the method call was optimized, -1 if not, and 0 on error.
static int
maybe_optimize_method_call(struct compiler *c, expr_ty e)
{
    Py_ssize_t argsl, i;
    expr_ty meth = e->v.Call.func;
    asdl_seq *args = e->v.Call.args;

    /* Check that the call node is an attribute access, and that
       the call doesn't have keyword parameters. */
    if (meth->kind != Attribute_kind || meth->v.Attribute.ctx != Load ||
            asdl_seq_LEN(e->v.Call.keywords))
        return -1;

    /* Check that there are no *varargs types of arguments. */
    argsl = asdl_seq_LEN(args);
    for (i = 0; i < argsl; i++) {
        expr_ty elt = asdl_seq_GET(args, i);
        if (elt->kind == Starred_kind) {
            return -1;
        }
    }

    /* Alright, we can optimize the code. */
    VISIT(c, expr, meth->v.Attribute.value);
    ADDOP_NAME(c, LOAD_METHOD, meth->v.Attribute.attr, names);
    VISIT_SEQ(c, expr, e->v.Call.args);
    ADDOP_I(c, CALL_METHOD, asdl_seq_LEN(e->v.Call.args));
    return 1;
}

static int
compiler_call(struct compiler *c, expr_ty e)
{
    int ret = maybe_optimize_method_call(c, e);
    if (ret >= 0) {
        return ret;
    }
    if (!check_caller(c, e->v.Call.func)) {
        return 0;
    }
    VISIT(c, expr, e->v.Call.func);
    return compiler_call_helper(c, 0,
                                e->v.Call.args,
                                e->v.Call.keywords);
}

static int
compiler_joined_str(struct compiler *c, expr_ty e)
{
    VISIT_SEQ(c, expr, e->v.JoinedStr.values);
    if (asdl_seq_LEN(e->v.JoinedStr.values) != 1)
        ADDOP_I(c, BUILD_STRING, asdl_seq_LEN(e->v.JoinedStr.values));
    return 1;
}

/* Used to implement f-strings. Format a single value. */
static int
compiler_formatted_value(struct compiler *c, expr_ty e)
{
    /* Our oparg encodes 2 pieces of information: the conversion
       character, and whether or not a format_spec was provided.

       Convert the conversion char to 3 bits:
           : 000  0x0  FVC_NONE   The default if nothing specified.
       !s  : 001  0x1  FVC_STR
       !r  : 010  0x2  FVC_REPR
       !a  : 011  0x3  FVC_ASCII

       next bit is whether or not we have a format spec:
       yes : 100  0x4
       no  : 000  0x0
    */

    int conversion = e->v.FormattedValue.conversion;
    int oparg;

    /* The expression to be formatted. */
    VISIT(c, expr, e->v.FormattedValue.value);

    switch (conversion) {
    case 's': oparg = FVC_STR;   break;
    case 'r': oparg = FVC_REPR;  break;
    case 'a': oparg = FVC_ASCII; break;
    case -1:  oparg = FVC_NONE;  break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "Unrecognized conversion character %d", conversion);
        return 0;
    }
    if (e->v.FormattedValue.format_spec) {
        /* Evaluate the format spec, and update our opcode arg. */
        VISIT(c, expr, e->v.FormattedValue.format_spec);
        oparg |= FVS_HAVE_SPEC;
    }

    /* And push our opcode and oparg */
    ADDOP_I(c, FORMAT_VALUE, oparg);

    return 1;
}

static int
compiler_subkwargs(struct compiler *c, asdl_seq *keywords, Py_ssize_t begin, Py_ssize_t end)
{
    Py_ssize_t i, n = end - begin;
    keyword_ty kw;
    PyObject *keys, *key;
    assert(n > 0);
    if (n > 1) {
        for (i = begin; i < end; i++) {
            kw = asdl_seq_GET(keywords, i);
            VISIT(c, expr, kw->value);
        }
        keys = PyTuple_New(n);
        if (keys == NULL) {
            return 0;
        }
        for (i = begin; i < end; i++) {
            key = ((keyword_ty) asdl_seq_GET(keywords, i))->arg;
            Py_INCREF(key);
            PyTuple_SET_ITEM(keys, i - begin, key);
        }
        ADDOP_LOAD_CONST_NEW(c, keys);
        ADDOP_I(c, BUILD_CONST_KEY_MAP, n);
    }
    else {
        /* a for loop only executes once */
        for (i = begin; i < end; i++) {
            kw = asdl_seq_GET(keywords, i);
            ADDOP_LOAD_CONST(c, kw->arg);
            VISIT(c, expr, kw->value);
        }
        ADDOP_I(c, BUILD_MAP, n);
    }
    return 1;
}

/* shared code between compiler_call and compiler_class */
static int
compiler_call_helper(struct compiler *c,
                     int n, /* Args already pushed */
                     asdl_seq *args,
                     asdl_seq *keywords)
{
    Py_ssize_t i, nseen, nelts, nkwelts;
    int mustdictunpack = 0;

    /* the number of tuples and dictionaries on the stack */
    Py_ssize_t nsubargs = 0, nsubkwargs = 0;

    nelts = asdl_seq_LEN(args);
    nkwelts = asdl_seq_LEN(keywords);

    for (i = 0; i < nkwelts; i++) {
        keyword_ty kw = asdl_seq_GET(keywords, i);
        if (kw->arg == NULL) {
            mustdictunpack = 1;
            break;
        }
    }

    nseen = n;  /* the number of positional arguments on the stack */
    for (i = 0; i < nelts; i++) {
        expr_ty elt = asdl_seq_GET(args, i);
        if (elt->kind == Starred_kind) {
            /* A star-arg. If we've seen positional arguments,
               pack the positional arguments into a tuple. */
            if (nseen) {
                ADDOP_I(c, BUILD_TUPLE, nseen);
                nseen = 0;
                nsubargs++;
            }
            VISIT(c, expr, elt->v.Starred.value);
            nsubargs++;
        }
        else {
            VISIT(c, expr, elt);
            nseen++;
        }
    }

    /* Same dance again for keyword arguments */
    if (nsubargs || mustdictunpack) {
        if (nseen) {
            /* Pack up any trailing positional arguments. */
            ADDOP_I(c, BUILD_TUPLE, nseen);
            nsubargs++;
        }
        if (nsubargs > 1) {
            /* If we ended up with more than one stararg, we need
               to concatenate them into a single sequence. */
            ADDOP_I(c, BUILD_TUPLE_UNPACK_WITH_CALL, nsubargs);
        }
        else if (nsubargs == 0) {
            ADDOP_I(c, BUILD_TUPLE, 0);
        }
        nseen = 0;  /* the number of keyword arguments on the stack following */
        for (i = 0; i < nkwelts; i++) {
            keyword_ty kw = asdl_seq_GET(keywords, i);
            if (kw->arg == NULL) {
                /* A keyword argument unpacking. */
                if (nseen) {
                    if (!compiler_subkwargs(c, keywords, i - nseen, i))
                        return 0;
                    nsubkwargs++;
                    nseen = 0;
                }
                VISIT(c, expr, kw->value);
                nsubkwargs++;
            }
            else {
                nseen++;
            }
        }
        if (nseen) {
            /* Pack up any trailing keyword arguments. */
            if (!compiler_subkwargs(c, keywords, nkwelts - nseen, nkwelts))
                return 0;
            nsubkwargs++;
        }
        if (nsubkwargs > 1) {
            /* Pack it all up */
            ADDOP_I(c, BUILD_MAP_UNPACK_WITH_CALL, nsubkwargs);
        }
        ADDOP_I(c, CALL_FUNCTION_EX, nsubkwargs > 0);
        return 1;
    }
    else if (nkwelts) {
        PyObject *names;
        VISIT_SEQ(c, keyword, keywords);
        names = PyTuple_New(nkwelts);
        if (names == NULL) {
            return 0;
        }
        for (i = 0; i < nkwelts; i++) {
            keyword_ty kw = asdl_seq_GET(keywords, i);
            Py_INCREF(kw->arg);
            PyTuple_SET_ITEM(names, i, kw->arg);
        }
        ADDOP_LOAD_CONST_NEW(c, names);
        ADDOP_I(c, CALL_FUNCTION_KW, n + nelts + nkwelts);
        return 1;
    }
    else {
        ADDOP_I(c, CALL_FUNCTION, n + nelts);
        return 1;
    }
}


/* List and set comprehensions and generator expressions work by creating a
  nested function to perform the actual iteration. This means that the
  iteration variables don't leak into the current scope.
  The defined function is called immediately following its definition, with the
  result of that call being the result of the expression.
  The LC/SC version returns the populated container, while the GE version is
  flagged in symtable.c as a generator, so it returns the generator object
  when the function is called.

  Possible cleanups:
    - iterate over the generator sequence instead of using recursion
*/


static int
compiler_comprehension_generator(struct compiler *c,
                                 asdl_seq *generators, int gen_index,
                                 expr_ty elt, expr_ty val, int type)
{
    comprehension_ty gen;
    gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);
    if (gen->is_async) {
        return compiler_async_comprehension_generator(
            c, generators, gen_index, elt, val, type);
    } else {
        return compiler_sync_comprehension_generator(
            c, generators, gen_index, elt, val, type);
    }
}

static int
compiler_sync_comprehension_generator(struct compiler *c,
                                      asdl_seq *generators, int gen_index,
                                      expr_ty elt, expr_ty val, int type)
{
    /* generate code for the iterator, then each of the ifs,
       and then write to the element */

    comprehension_ty gen;
    basicblock *start, *anchor, *skip, *if_cleanup;
    Py_ssize_t i, n;

    start = compiler_new_block(c);
    skip = compiler_new_block(c);
    if_cleanup = compiler_new_block(c);
    anchor = compiler_new_block(c);

    if (start == NULL || skip == NULL || if_cleanup == NULL ||
        anchor == NULL)
        return 0;

    gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);

    if (gen_index == 0) {
        /* Receive outermost iter as an implicit argument */
        c->u->u_argcount = 1;
        ADDOP_I(c, LOAD_FAST, 0);
    }
    else {
        /* Sub-iter - calculate on the fly */
        VISIT(c, expr, gen->iter);
        ADDOP(c, GET_ITER);
    }
    compiler_use_next_block(c, start);
    ADDOP_JREL(c, FOR_ITER, anchor);
    NEXT_BLOCK(c);
    VISIT(c, expr, gen->target);

    /* XXX this needs to be cleaned up...a lot! */
    n = asdl_seq_LEN(gen->ifs);
    for (i = 0; i < n; i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
        if (!compiler_jump_if(c, e, if_cleanup, 0))
            return 0;
        NEXT_BLOCK(c);
    }

    if (++gen_index < asdl_seq_LEN(generators))
        if (!compiler_comprehension_generator(c,
                                              generators, gen_index,
                                              elt, val, type))
        return 0;

    /* only append after the last for generator */
    if (gen_index >= asdl_seq_LEN(generators)) {
        /* comprehension specific code */
        switch (type) {
        case COMP_GENEXP:
            VISIT(c, expr, elt);
            ADDOP(c, YIELD_VALUE);
            ADDOP(c, POP_TOP);
            break;
        case COMP_LISTCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, LIST_APPEND, gen_index + 1);
            break;
        case COMP_SETCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, SET_ADD, gen_index + 1);
            break;
        case COMP_DICTCOMP:
            /* With '{k: v}', k is evaluated before v, so we do
               the same. */
            VISIT(c, expr, elt);
            VISIT(c, expr, val);
            ADDOP_I(c, MAP_ADD, gen_index + 1);
            break;
        default:
            return 0;
        }

        compiler_use_next_block(c, skip);
    }
    compiler_use_next_block(c, if_cleanup);
    ADDOP_JABS(c, JUMP_ABSOLUTE, start);
    compiler_use_next_block(c, anchor);

    return 1;
}

static int
compiler_async_comprehension_generator(struct compiler *c,
                                      asdl_seq *generators, int gen_index,
                                      expr_ty elt, expr_ty val, int type)
{
    comprehension_ty gen;
    basicblock *start, *if_cleanup, *except;
    Py_ssize_t i, n;
    start = compiler_new_block(c);
    except = compiler_new_block(c);
    if_cleanup = compiler_new_block(c);

    if (start == NULL || if_cleanup == NULL || except == NULL) {
        return 0;
    }

    gen = (comprehension_ty)asdl_seq_GET(generators, gen_index);

    if (gen_index == 0) {
        /* Receive outermost iter as an implicit argument */
        c->u->u_argcount = 1;
        ADDOP_I(c, LOAD_FAST, 0);
    }
    else {
        /* Sub-iter - calculate on the fly */
        VISIT(c, expr, gen->iter);
        ADDOP(c, GET_AITER);
    }

    compiler_use_next_block(c, start);

    ADDOP_JREL(c, SETUP_FINALLY, except);
    ADDOP(c, GET_ANEXT);
    ADDOP_LOAD_CONST(c, Py_None);
    ADDOP(c, YIELD_FROM);
    ADDOP(c, POP_BLOCK);
    VISIT(c, expr, gen->target);

    n = asdl_seq_LEN(gen->ifs);
    for (i = 0; i < n; i++) {
        expr_ty e = (expr_ty)asdl_seq_GET(gen->ifs, i);
        if (!compiler_jump_if(c, e, if_cleanup, 0))
            return 0;
        NEXT_BLOCK(c);
    }

    if (++gen_index < asdl_seq_LEN(generators))
        if (!compiler_comprehension_generator(c,
                                              generators, gen_index,
                                              elt, val, type))
        return 0;

    /* only append after the last for generator */
    if (gen_index >= asdl_seq_LEN(generators)) {
        /* comprehension specific code */
        switch (type) {
        case COMP_GENEXP:
            VISIT(c, expr, elt);
            ADDOP(c, YIELD_VALUE);
            ADDOP(c, POP_TOP);
            break;
        case COMP_LISTCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, LIST_APPEND, gen_index + 1);
            break;
        case COMP_SETCOMP:
            VISIT(c, expr, elt);
            ADDOP_I(c, SET_ADD, gen_index + 1);
            break;
        case COMP_DICTCOMP:
            /* With '{k: v}', k is evaluated before v, so we do
               the same. */
            VISIT(c, expr, elt);
            VISIT(c, expr, val);
            ADDOP_I(c, MAP_ADD, gen_index + 1);
            break;
        default:
            return 0;
        }
    }
    compiler_use_next_block(c, if_cleanup);
    ADDOP_JABS(c, JUMP_ABSOLUTE, start);

    compiler_use_next_block(c, except);
    ADDOP(c, END_ASYNC_FOR);

    return 1;
}

static int
compiler_comprehension(struct compiler *c, expr_ty e, int type,
                       identifier name, asdl_seq *generators, expr_ty elt,
                       expr_ty val)
{
    PyCodeObject *co = NULL;
    comprehension_ty outermost;
    PyObject *qualname = NULL;
    int is_async_function = c->u->u_ste->ste_coroutine;
    int is_async_generator = 0;

    outermost = (comprehension_ty) asdl_seq_GET(generators, 0);

    if (!compiler_enter_scope(c, name, COMPILER_SCOPE_COMPREHENSION,
                              (void *)e, e->lineno))
    {
        goto error;
    }

    is_async_generator = c->u->u_ste->ste_coroutine;

    if (is_async_generator && !is_async_function && type != COMP_GENEXP) {
        compiler_error(c, "asynchronous comprehension outside of "
                          "an asynchronous function");
        goto error_in_scope;
    }

    if (type != COMP_GENEXP) {
        int op;
        switch (type) {
        case COMP_LISTCOMP:
            op = BUILD_LIST;
            break;
        case COMP_SETCOMP:
            op = BUILD_SET;
            break;
        case COMP_DICTCOMP:
            op = BUILD_MAP;
            break;
        default:
            PyErr_Format(PyExc_SystemError,
                         "unknown comprehension type %d", type);
            goto error_in_scope;
        }

        ADDOP_I(c, op, 0);
    }

    if (!compiler_comprehension_generator(c, generators, 0, elt,
                                          val, type))
        goto error_in_scope;

    if (type != COMP_GENEXP) {
        ADDOP(c, RETURN_VALUE);
    }

    co = assemble(c, 1);
    qualname = c->u->u_qualname;
    Py_INCREF(qualname);
    compiler_exit_scope(c);
    if (co == NULL)
        goto error;

    if (!compiler_make_closure(c, co, 0, qualname))
        goto error;
    Py_DECREF(qualname);
    Py_DECREF(co);

    VISIT(c, expr, outermost->iter);

    if (outermost->is_async) {
        ADDOP(c, GET_AITER);
    } else {
        ADDOP(c, GET_ITER);
    }

    ADDOP_I(c, CALL_FUNCTION, 1);

    if (is_async_generator && type != COMP_GENEXP) {
        ADDOP(c, GET_AWAITABLE);
        ADDOP_LOAD_CONST(c, Py_None);
        ADDOP(c, YIELD_FROM);
    }

    return 1;
error_in_scope:
    compiler_exit_scope(c);
error:
    Py_XDECREF(qualname);
    Py_XDECREF(co);
    return 0;
}

static int
compiler_genexp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_InternFromString("<genexpr>");
        if (!name)
            return 0;
    }
    assert(e->kind == GeneratorExp_kind);
    return compiler_comprehension(c, e, COMP_GENEXP, name,
                                  e->v.GeneratorExp.generators,
                                  e->v.GeneratorExp.elt, NULL);
}

static int
compiler_listcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_InternFromString("<listcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == ListComp_kind);
    return compiler_comprehension(c, e, COMP_LISTCOMP, name,
                                  e->v.ListComp.generators,
                                  e->v.ListComp.elt, NULL);
}

static int
compiler_setcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_InternFromString("<setcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == SetComp_kind);
    return compiler_comprehension(c, e, COMP_SETCOMP, name,
                                  e->v.SetComp.generators,
                                  e->v.SetComp.elt, NULL);
}


static int
compiler_dictcomp(struct compiler *c, expr_ty e)
{
    static identifier name;
    if (!name) {
        name = PyUnicode_InternFromString("<dictcomp>");
        if (!name)
            return 0;
    }
    assert(e->kind == DictComp_kind);
    return compiler_comprehension(c, e, COMP_DICTCOMP, name,
                                  e->v.DictComp.generators,
                                  e->v.DictComp.key, e->v.DictComp.value);
}


static int
compiler_visit_keyword(struct compiler *c, keyword_ty k)
{
    VISIT(c, expr, k->value);
    return 1;
}

/* Test whether expression is constant.  For constants, report
   whether they are true or false.

   Return values: 1 for true, 0 for false, -1 for non-constant.
 */

static int
expr_constant(expr_ty e)
{
    if (e->kind == Constant_kind) {
        return PyObject_IsTrue(e->v.Constant.value);
    }
    return -1;
}

static int
compiler_with_except_finish(struct compiler *c) {
    basicblock *exit;
    exit = compiler_new_block(c);
    if (exit == NULL)
        return 0;
    ADDOP_JABS(c, POP_JUMP_IF_TRUE, exit);
    ADDOP(c, RERAISE);
    compiler_use_next_block(c, exit);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_TOP);
    ADDOP(c, POP_EXCEPT);
    ADDOP(c, POP_TOP);
    return 1;
}

/*
   Implements the async with statement.

   The semantics outlined in that PEP are as follows:

   async with EXPR as VAR:
       BLOCK

   It is implemented roughly as:

   context = EXPR
   exit = context.__aexit__  # not calling it
   value = await context.__aenter__()
   try:
       VAR = value  # if VAR present in the syntax
       BLOCK
   finally:
       if an exception was raised:
           exc = copy of (exception, instance, traceback)
       else:
           exc = (None, None, None)
       if not (await exit(*exc)):
           raise
 */
static int
compiler_async_with(struct compiler *c, stmt_ty s, int pos)
{
    basicblock *block, *final, *exit;
    withitem_ty item = asdl_seq_GET(s->v.AsyncWith.items, pos);

    assert(s->kind == AsyncWith_kind);
    if (c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT){
        c->u->u_ste->ste_coroutine = 1;
    } else if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION){
        return compiler_error(c, "'async with' outside async function");
    }

    block = compiler_new_block(c);
    final = compiler_new_block(c);
    exit = compiler_new_block(c);
    if (!block || !final || !exit)
        return 0;

    /* Evaluate EXPR */
    VISIT(c, expr, item->context_expr);

    ADDOP(c, BEFORE_ASYNC_WITH);
    ADDOP(c, GET_AWAITABLE);
    ADDOP_LOAD_CONST(c, Py_None);
    ADDOP(c, YIELD_FROM);

    ADDOP_JREL(c, SETUP_ASYNC_WITH, final);

    /* SETUP_ASYNC_WITH pushes a finally block. */
    compiler_use_next_block(c, block);
    if (!compiler_push_fblock(c, ASYNC_WITH, block, final, NULL)) {
        return 0;
    }

    if (item->optional_vars) {
        VISIT(c, expr, item->optional_vars);
    }
    else {
    /* Discard result from context.__aenter__() */
        ADDOP(c, POP_TOP);
    }

    pos++;
    if (pos == asdl_seq_LEN(s->v.AsyncWith.items))
        /* BLOCK code */
        VISIT_SEQ(c, stmt, s->v.AsyncWith.body)
    else if (!compiler_async_with(c, s, pos))
            return 0;

    compiler_pop_fblock(c, ASYNC_WITH, block);
    ADDOP(c, POP_BLOCK);
    /* End of body; start the cleanup */

    /* For successful outcome:
     * call __exit__(None, None, None)
     */
    if(!compiler_call_exit_with_nones(c))
        return 0;
    ADDOP(c, GET_AWAITABLE);
    ADDOP_O(c, LOAD_CONST, Py_None, consts);
    ADDOP(c, YIELD_FROM);

    ADDOP(c, POP_TOP);

    ADDOP_JABS(c, JUMP_ABSOLUTE, exit);

    /* For exceptional outcome: */
    compiler_use_next_block(c, final);

    ADDOP(c, WITH_EXCEPT_START);
    ADDOP(c, GET_AWAITABLE);
    ADDOP_LOAD_CONST(c, Py_None);
    ADDOP(c, YIELD_FROM);
    compiler_with_except_finish(c);

compiler_use_next_block(c, exit);
    return 1;
}


/*
   Implements the with statement from PEP 343.
   with EXPR as VAR:
       BLOCK
   is implemented as:
        <code for EXPR>
        SETUP_WITH  E
        <code to store to VAR> or POP_TOP
        <code for BLOCK>
        LOAD_CONST (None, None, None)
        CALL_FUNCTION_EX 0
        JUMP_FORWARD  EXIT
    E:  WITH_EXCEPT_START (calls EXPR.__exit__)
        POP_JUMP_IF_TRUE T:
        RERAISE
    T:  POP_TOP * 3 (remove exception from stack)
        POP_EXCEPT
        POP_TOP
    EXIT:
 */

static int
compiler_with(struct compiler *c, stmt_ty s, int pos)
{
    basicblock *block, *final, *exit;
    withitem_ty item = asdl_seq_GET(s->v.With.items, pos);

    assert(s->kind == With_kind);

    block = compiler_new_block(c);
    final = compiler_new_block(c);
    exit = compiler_new_block(c);
    if (!block || !final || !exit)
        return 0;

    /* Evaluate EXPR */
    VISIT(c, expr, item->context_expr);
    /* Will push bound __exit__ */
    ADDOP_JREL(c, SETUP_WITH, final);

    /* SETUP_WITH pushes a finally block. */
    compiler_use_next_block(c, block);
    if (!compiler_push_fblock(c, WITH, block, final, NULL)) {
        return 0;
    }

    if (item->optional_vars) {
        VISIT(c, expr, item->optional_vars);
    }
    else {
    /* Discard result from context.__enter__() */
        ADDOP(c, POP_TOP);
    }

    pos++;
    if (pos == asdl_seq_LEN(s->v.With.items))
        /* BLOCK code */
        VISIT_SEQ(c, stmt, s->v.With.body)
    else if (!compiler_with(c, s, pos))
            return 0;

    ADDOP(c, POP_BLOCK);
    compiler_pop_fblock(c, WITH, block);
    
    /* End of body; start the cleanup. */
    
    /* For successful outcome:
     * call __exit__(None, None, None)
     */
    if (!compiler_call_exit_with_nones(c))
        return 0;
    ADDOP(c, POP_TOP);
    ADDOP_JREL(c, JUMP_FORWARD, exit);

    /* For exceptional outcome: */
    compiler_use_next_block(c, final);

    ADDOP(c, WITH_EXCEPT_START);
    compiler_with_except_finish(c);

    compiler_use_next_block(c, exit);
    return 1;
}

static int
compiler_visit_expr1(struct compiler *c, expr_ty e)
{
    switch (e->kind) {
    case NamedExpr_kind:
        VISIT(c, expr, e->v.NamedExpr.value);
        ADDOP(c, DUP_TOP);
        VISIT(c, expr, e->v.NamedExpr.target);
        break;
    case BoolOp_kind:
        return compiler_boolop(c, e);
    case BinOp_kind:
        VISIT(c, expr, e->v.BinOp.left);
        VISIT(c, expr, e->v.BinOp.right);
        ADDOP(c, binop(c, e->v.BinOp.op));
        break;
    case UnaryOp_kind:
        VISIT(c, expr, e->v.UnaryOp.operand);
        ADDOP(c, unaryop(e->v.UnaryOp.op));
        break;
    case Lambda_kind:
        return compiler_lambda(c, e);
    case IfExp_kind:
        return compiler_ifexp(c, e);
    case Dict_kind:
        return compiler_dict(c, e);
    case Set_kind:
        return compiler_set(c, e);
    case GeneratorExp_kind:
        return compiler_genexp(c, e);
    case ListComp_kind:
        return compiler_listcomp(c, e);
    case SetComp_kind:
        return compiler_setcomp(c, e);
    case DictComp_kind:
        return compiler_dictcomp(c, e);
    case Yield_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'yield' outside function");
        if (e->v.Yield.value) {
            VISIT(c, expr, e->v.Yield.value);
        }
        else {
            ADDOP_LOAD_CONST(c, Py_None);
        }
        ADDOP(c, YIELD_VALUE);
        break;
    case YieldFrom_kind:
        if (c->u->u_ste->ste_type != FunctionBlock)
            return compiler_error(c, "'yield' outside function");

        if (c->u->u_scope_type == COMPILER_SCOPE_ASYNC_FUNCTION)
            return compiler_error(c, "'yield from' inside async function");

        VISIT(c, expr, e->v.YieldFrom.value);
        ADDOP(c, GET_YIELD_FROM_ITER);
        ADDOP_LOAD_CONST(c, Py_None);
        ADDOP(c, YIELD_FROM);
        break;
    case Await_kind:
        if (!(c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT)){
            if (c->u->u_ste->ste_type != FunctionBlock){
                return compiler_error(c, "'await' outside function");
            }

            if (c->u->u_scope_type != COMPILER_SCOPE_ASYNC_FUNCTION &&
                    c->u->u_scope_type != COMPILER_SCOPE_COMPREHENSION){
                return compiler_error(c, "'await' outside async function");
            }
        }

        VISIT(c, expr, e->v.Await.value);
        ADDOP(c, GET_AWAITABLE);
        ADDOP_LOAD_CONST(c, Py_None);
        ADDOP(c, YIELD_FROM);
        break;
    case Compare_kind:
        return compiler_compare(c, e);
    case Call_kind:
        return compiler_call(c, e);
    case Constant_kind:
        ADDOP_LOAD_CONST(c, e->v.Constant.value);
        break;
    case JoinedStr_kind:
        return compiler_joined_str(c, e);
    case FormattedValue_kind:
        return compiler_formatted_value(c, e);
    /* The following exprs can be assignment targets. */
    case Attribute_kind:
        if (e->v.Attribute.ctx != AugStore)
            VISIT(c, expr, e->v.Attribute.value);
        switch (e->v.Attribute.ctx) {
        case AugLoad:
            ADDOP(c, DUP_TOP);
            /* Fall through */
        case Load:
            ADDOP_NAME(c, LOAD_ATTR, e->v.Attribute.attr, names);
            break;
        case AugStore:
            ADDOP(c, ROT_TWO);
            /* Fall through */
        case Store:
            ADDOP_NAME(c, STORE_ATTR, e->v.Attribute.attr, names);
            break;
        case Del:
            ADDOP_NAME(c, DELETE_ATTR, e->v.Attribute.attr, names);
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                            "param invalid in attribute expression");
            return 0;
        }
        break;
    case Subscript_kind:
        switch (e->v.Subscript.ctx) {
        case AugLoad:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, AugLoad);
            break;
        case Load:
            if (!check_subscripter(c, e->v.Subscript.value)) {
                return 0;
            }
            if (!check_index(c, e->v.Subscript.value, e->v.Subscript.slice)) {
                return 0;
            }
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Load);
            break;
        case AugStore:
            VISIT_SLICE(c, e->v.Subscript.slice, AugStore);
            break;
        case Store:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Store);
            break;
        case Del:
            VISIT(c, expr, e->v.Subscript.value);
            VISIT_SLICE(c, e->v.Subscript.slice, Del);
            break;
        case Param:
        default:
            PyErr_SetString(PyExc_SystemError,
                "param invalid in subscript expression");
            return 0;
        }
        break;
    case Starred_kind:
        switch (e->v.Starred.ctx) {
        case Store:
            /* In all legitimate cases, the Starred node was already replaced
             * by compiler_list/compiler_tuple. XXX: is that okay? */
            return compiler_error(c,
                "starred assignment target must be in a list or tuple");
        default:
            return compiler_error(c,
                "can't use starred expression here");
        }
    case Name_kind:
        return compiler_nameop(c, e->v.Name.id, e->v.Name.ctx);
    /* child nodes of List and Tuple will have expr_context set */
    case List_kind:
        return compiler_list(c, e);
    case Tuple_kind:
        return compiler_tuple(c, e);
    }
    return 1;
}

static int
compiler_visit_expr(struct compiler *c, expr_ty e)
{
    /* If expr e has a different line number than the last expr/stmt,
       set a new line number for the next instruction.
    */
    int old_lineno = c->u->u_lineno;
    int old_col_offset = c->u->u_col_offset;
    if (e->lineno != c->u->u_lineno) {
        c->u->u_lineno = e->lineno;
        c->u->u_lineno_set = 0;
    }
    /* Updating the column offset is always harmless. */
    c->u->u_col_offset = e->col_offset;

    int res = compiler_visit_expr1(c, e);

    if (old_lineno != c->u->u_lineno) {
        c->u->u_lineno = old_lineno;
        c->u->u_lineno_set = 0;
    }
    c->u->u_col_offset = old_col_offset;
    return res;
}

static int
compiler_augassign(struct compiler *c, stmt_ty s)
{
    expr_ty e = s->v.AugAssign.target;
    expr_ty auge;

    assert(s->kind == AugAssign_kind);

    switch (e->kind) {
    case Attribute_kind:
        auge = Attribute(e->v.Attribute.value, e->v.Attribute.attr,
                         AugLoad, e->lineno, e->col_offset,
                         e->end_lineno, e->end_col_offset, c->c_arena);
        if (auge == NULL)
            return 0;
        VISIT(c, expr, auge);
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        auge->v.Attribute.ctx = AugStore;
        VISIT(c, expr, auge);
        break;
    case Subscript_kind:
        auge = Subscript(e->v.Subscript.value, e->v.Subscript.slice,
                         AugLoad, e->lineno, e->col_offset,
                         e->end_lineno, e->end_col_offset, c->c_arena);
        if (auge == NULL)
            return 0;
        VISIT(c, expr, auge);
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        auge->v.Subscript.ctx = AugStore;
        VISIT(c, expr, auge);
        break;
    case Name_kind:
        if (!compiler_nameop(c, e->v.Name.id, Load))
            return 0;
        VISIT(c, expr, s->v.AugAssign.value);
        ADDOP(c, inplace_binop(c, s->v.AugAssign.op));
        return compiler_nameop(c, e->v.Name.id, Store);
    default:
        PyErr_Format(PyExc_SystemError,
            "invalid node type (%d) for augmented assignment",
            e->kind);
        return 0;
    }
    return 1;
}

static int
check_ann_expr(struct compiler *c, expr_ty e)
{
    VISIT(c, expr, e);
    ADDOP(c, POP_TOP);
    return 1;
}

static int
check_annotation(struct compiler *c, stmt_ty s)
{
    /* Annotations are only evaluated in a module or class. */
    if (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
        c->u->u_scope_type == COMPILER_SCOPE_CLASS) {
        return check_ann_expr(c, s->v.AnnAssign.annotation);
    }
    return 1;
}

static int
check_ann_slice(struct compiler *c, slice_ty sl)
{
    switch(sl->kind) {
    case Index_kind:
        return check_ann_expr(c, sl->v.Index.value);
    case Slice_kind:
        if (sl->v.Slice.lower && !check_ann_expr(c, sl->v.Slice.lower)) {
            return 0;
        }
        if (sl->v.Slice.upper && !check_ann_expr(c, sl->v.Slice.upper)) {
            return 0;
        }
        if (sl->v.Slice.step && !check_ann_expr(c, sl->v.Slice.step)) {
            return 0;
        }
        break;
    default:
        PyErr_SetString(PyExc_SystemError,
                        "unexpected slice kind");
        return 0;
    }
    return 1;
}

static int
check_ann_subscr(struct compiler *c, slice_ty sl)
{
    /* We check that everything in a subscript is defined at runtime. */
    Py_ssize_t i, n;

    switch (sl->kind) {
    case Index_kind:
    case Slice_kind:
        if (!check_ann_slice(c, sl)) {
            return 0;
        }
        break;
    case ExtSlice_kind:
        n = asdl_seq_LEN(sl->v.ExtSlice.dims);
        for (i = 0; i < n; i++) {
            slice_ty subsl = (slice_ty)asdl_seq_GET(sl->v.ExtSlice.dims, i);
            switch (subsl->kind) {
            case Index_kind:
            case Slice_kind:
                if (!check_ann_slice(c, subsl)) {
                    return 0;
                }
                break;
            case ExtSlice_kind:
            default:
                PyErr_SetString(PyExc_SystemError,
                                "extended slice invalid in nested slice");
                return 0;
            }
        }
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "invalid subscript kind %d", sl->kind);
        return 0;
    }
    return 1;
}

static int
compiler_annassign(struct compiler *c, stmt_ty s)
{
    expr_ty targ = s->v.AnnAssign.target;
    PyObject* mangled;

    assert(s->kind == AnnAssign_kind);

    /* We perform the actual assignment first. */
    if (s->v.AnnAssign.value) {
        VISIT(c, expr, s->v.AnnAssign.value);
        VISIT(c, expr, targ);
    }
    switch (targ->kind) {
    case Name_kind:
        /* If we have a simple name in a module or class, store annotation. */
        if (s->v.AnnAssign.simple &&
            (c->u->u_scope_type == COMPILER_SCOPE_MODULE ||
             c->u->u_scope_type == COMPILER_SCOPE_CLASS)) {
            if (c->c_future->ff_features & CO_FUTURE_ANNOTATIONS) {
                VISIT(c, annexpr, s->v.AnnAssign.annotation)
            }
            else {
                VISIT(c, expr, s->v.AnnAssign.annotation);
            }
            ADDOP_NAME(c, LOAD_NAME, __annotations__, names);
            mangled = _Py_Mangle(c->u->u_private, targ->v.Name.id);
            ADDOP_LOAD_CONST_NEW(c, mangled);
            ADDOP(c, STORE_SUBSCR);
        }
        break;
    case Attribute_kind:
        if (!s->v.AnnAssign.value &&
            !check_ann_expr(c, targ->v.Attribute.value)) {
            return 0;
        }
        break;
    case Subscript_kind:
        if (!s->v.AnnAssign.value &&
            (!check_ann_expr(c, targ->v.Subscript.value) ||
             !check_ann_subscr(c, targ->v.Subscript.slice))) {
                return 0;
        }
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "invalid node type (%d) for annotated assignment",
                     targ->kind);
            return 0;
    }
    /* Annotation is evaluated last. */
    if (!s->v.AnnAssign.simple && !check_annotation(c, s)) {
        return 0;
    }
    return 1;
}

/* Raises a SyntaxError and returns 0.
   If something goes wrong, a different exception may be raised.
*/

static int
compiler_error(struct compiler *c, const char *errstr)
{
    PyObject *loc;
    PyObject *u = NULL, *v = NULL;

    loc = PyErr_ProgramTextObject(c->c_filename, c->u->u_lineno);
    if (!loc) {
        Py_INCREF(Py_None);
        loc = Py_None;
    }
    u = Py_BuildValue("(OiiO)", c->c_filename, c->u->u_lineno,
                      c->u->u_col_offset + 1, loc);
    if (!u)
        goto exit;
    v = Py_BuildValue("(zO)", errstr, u);
    if (!v)
        goto exit;
    PyErr_SetObject(PyExc_SyntaxError, v);
 exit:
    Py_DECREF(loc);
    Py_XDECREF(u);
    Py_XDECREF(v);
    return 0;
}

/* Emits a SyntaxWarning and returns 1 on success.
   If a SyntaxWarning raised as error, replaces it with a SyntaxError
   and returns 0.
*/
static int
compiler_warn(struct compiler *c, const char *format, ...)
{
    va_list vargs;
#ifdef HAVE_STDARG_PROTOTYPES
    va_start(vargs, format);
#else
    va_start(vargs);
#endif
    PyObject *msg = PyUnicode_FromFormatV(format, vargs);
    va_end(vargs);
    if (msg == NULL) {
        return 0;
    }
    if (PyErr_WarnExplicitObject(PyExc_SyntaxWarning, msg, c->c_filename,
                                 c->u->u_lineno, NULL, NULL) < 0)
    {
        if (PyErr_ExceptionMatches(PyExc_SyntaxWarning)) {
            /* Replace the SyntaxWarning exception with a SyntaxError
               to get a more accurate error report */
            PyErr_Clear();
            assert(PyUnicode_AsUTF8(msg) != NULL);
            compiler_error(c, PyUnicode_AsUTF8(msg));
        }
        Py_DECREF(msg);
        return 0;
    }
    Py_DECREF(msg);
    return 1;
}

static int
compiler_handle_subscr(struct compiler *c, const char *kind,
                       expr_context_ty ctx)
{
    int op = 0;

    /* XXX this code is duplicated */
    switch (ctx) {
        case AugLoad: /* fall through to Load */
        case Load:    op = BINARY_SUBSCR; break;
        case AugStore:/* fall through to Store */
        case Store:   op = STORE_SUBSCR; break;
        case Del:     op = DELETE_SUBSCR; break;
        case Param:
            PyErr_Format(PyExc_SystemError,
                         "invalid %s kind %d in subscript\n",
                         kind, ctx);
            return 0;
    }
    if (ctx == AugLoad) {
        ADDOP(c, DUP_TOP_TWO);
    }
    else if (ctx == AugStore) {
        ADDOP(c, ROT_THREE);
    }
    ADDOP(c, op);
    return 1;
}

static int
compiler_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
{
    int n = 2;
    assert(s->kind == Slice_kind);

    /* only handles the cases where BUILD_SLICE is emitted */
    if (s->v.Slice.lower) {
        VISIT(c, expr, s->v.Slice.lower);
    }
    else {
        ADDOP_LOAD_CONST(c, Py_None);
    }

    if (s->v.Slice.upper) {
        VISIT(c, expr, s->v.Slice.upper);
    }
    else {
        ADDOP_LOAD_CONST(c, Py_None);
    }

    if (s->v.Slice.step) {
        n++;
        VISIT(c, expr, s->v.Slice.step);
    }
    ADDOP_I(c, BUILD_SLICE, n);
    return 1;
}

static int
compiler_visit_nested_slice(struct compiler *c, slice_ty s,
                            expr_context_ty ctx)
{
    switch (s->kind) {
    case Slice_kind:
        return compiler_slice(c, s, ctx);
    case Index_kind:
        VISIT(c, expr, s->v.Index.value);
        break;
    case ExtSlice_kind:
    default:
        PyErr_SetString(PyExc_SystemError,
                        "extended slice invalid in nested slice");
        return 0;
    }
    return 1;
}

static int
compiler_visit_slice(struct compiler *c, slice_ty s, expr_context_ty ctx)
{
    const char * kindname = NULL;
    switch (s->kind) {
    case Index_kind:
        kindname = "index";
        if (ctx != AugStore) {
            VISIT(c, expr, s->v.Index.value);
        }
        break;
    case Slice_kind:
        kindname = "slice";
        if (ctx != AugStore) {
            if (!compiler_slice(c, s, ctx))
                return 0;
        }
        break;
    case ExtSlice_kind:
        kindname = "extended slice";
        if (ctx != AugStore) {
            Py_ssize_t i, n = asdl_seq_LEN(s->v.ExtSlice.dims);
            for (i = 0; i < n; i++) {
                slice_ty sub = (slice_ty)asdl_seq_GET(
                    s->v.ExtSlice.dims, i);
                if (!compiler_visit_nested_slice(c, sub, ctx))
                    return 0;
            }
            ADDOP_I(c, BUILD_TUPLE, n);
        }
        break;
    default:
        PyErr_Format(PyExc_SystemError,
                     "invalid subscript kind %d", s->kind);
        return 0;
    }
    return compiler_handle_subscr(c, kindname, ctx);
}

/* End of the compiler section, beginning of the assembler section */

/* do depth-first search of basic block graph, starting with block.
   post records the block indices in post-order.

   XXX must handle implicit jumps from one block to next
*/

struct assembler {
    PyObject *a_bytecode;  /* string containing bytecode */
    int a_offset;              /* offset into bytecode */
    int a_nblocks;             /* number of reachable blocks */
    basicblock **a_postorder; /* list of blocks in dfs postorder */
    PyObject *a_lnotab;    /* string containing lnotab */
    int a_lnotab_off;      /* offset into lnotab */
    int a_lineno;              /* last lineno of emitted instruction */
    int a_lineno_off;      /* bytecode offset of last lineno */
};

static void
dfs(struct compiler *c, basicblock *b, struct assembler *a, int end)
{
    int i, j;

    /* Get rid of recursion for normal control flow.
       Since the number of blocks is limited, unused space in a_postorder
       (from a_nblocks to end) can be used as a stack for still not ordered
       blocks. */
    for (j = end; b && !b->b_seen; b = b->b_next) {
        b->b_seen = 1;
        assert(a->a_nblocks < j);
        a->a_postorder[--j] = b;
    }
    while (j < end) {
        b = a->a_postorder[j++];
        for (i = 0; i < b->b_iused; i++) {
            struct instr *instr = &b->b_instr[i];
            if (instr->i_jrel || instr->i_jabs)
                dfs(c, instr->i_target, a, j);
        }
        assert(a->a_nblocks < j);
        a->a_postorder[a->a_nblocks++] = b;
    }
}

Py_LOCAL_INLINE(void)
stackdepth_push(basicblock ***sp, basicblock *b, int depth)
{
    assert(b->b_startdepth < 0 || b->b_startdepth == depth);
    if (b->b_startdepth < depth && b->b_startdepth < 100) {
        assert(b->b_startdepth < 0);
        b->b_startdepth = depth;
        *(*sp)++ = b;
    }
}

/* Find the flow path that needs the largest stack.  We assume that
 * cycles in the flow graph have no net effect on the stack depth.
 */
static int
stackdepth(struct compiler *c)
{
    basicblock *b, *entryblock = NULL;
    basicblock **stack, **sp;
    int nblocks = 0, maxdepth = 0;
    for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
        b->b_startdepth = INT_MIN;
        entryblock = b;
        nblocks++;
    }
    if (!entryblock)
        return 0;
    stack = (basicblock **)PyObject_Malloc(sizeof(basicblock *) * nblocks);
    if (!stack) {
        PyErr_NoMemory();
        return -1;
    }

    sp = stack;
    stackdepth_push(&sp, entryblock, 0);
    while (sp != stack) {
        b = *--sp;
        int depth = b->b_startdepth;
        assert(depth >= 0);
        basicblock *next = b->b_next;
        for (int i = 0; i < b->b_iused; i++) {
            struct instr *instr = &b->b_instr[i];
            int effect = stack_effect(instr->i_opcode, instr->i_oparg, 0);
            if (effect == PY_INVALID_STACK_EFFECT) {
                fprintf(stderr, "opcode = %d\n", instr->i_opcode);
                Py_FatalError("PyCompile_OpcodeStackEffect()");
            }
            int new_depth = depth + effect;
            if (new_depth > maxdepth) {
                maxdepth = new_depth;
            }
            assert(depth >= 0); /* invalid code or bug in stackdepth() */
            if (instr->i_jrel || instr->i_jabs) {
                effect = stack_effect(instr->i_opcode, instr->i_oparg, 1);
                assert(effect != PY_INVALID_STACK_EFFECT);
                int target_depth = depth + effect;
                if (target_depth > maxdepth) {
                    maxdepth = target_depth;
                }
                assert(target_depth >= 0); /* invalid code or bug in stackdepth() */
                stackdepth_push(&sp, instr->i_target, target_depth);
            }
            depth = new_depth;
            if (instr->i_opcode == JUMP_ABSOLUTE ||
                instr->i_opcode == JUMP_FORWARD ||
                instr->i_opcode == RETURN_VALUE ||
                instr->i_opcode == RAISE_VARARGS ||
                instr->i_opcode == RERAISE)
            {
                /* remaining code is dead */
                next = NULL;
                break;
            }
        }
        if (next != NULL) {
            stackdepth_push(&sp, next, depth);
        }
    }
    PyObject_Free(stack);
    return maxdepth;
}

static int
assemble_init(struct assembler *a, int nblocks, int firstlineno)
{
    memset(a, 0, sizeof(struct assembler));
    a->a_lineno = firstlineno;
    a->a_bytecode = PyBytes_FromStringAndSize(NULL, DEFAULT_CODE_SIZE);
    if (!a->a_bytecode)
        return 0;
    a->a_lnotab = PyBytes_FromStringAndSize(NULL, DEFAULT_LNOTAB_SIZE);
    if (!a->a_lnotab)
        return 0;
    if ((size_t)nblocks > SIZE_MAX / sizeof(basicblock *)) {
        PyErr_NoMemory();
        return 0;
    }
    a->a_postorder = (basicblock **)PyObject_Malloc(
                                        sizeof(basicblock *) * nblocks);
    if (!a->a_postorder) {
        PyErr_NoMemory();
        return 0;
    }
    return 1;
}

static void
assemble_free(struct assembler *a)
{
    Py_XDECREF(a->a_bytecode);
    Py_XDECREF(a->a_lnotab);
    if (a->a_postorder)
        PyObject_Free(a->a_postorder);
}

static int
blocksize(basicblock *b)
{
    int i;
    int size = 0;

    for (i = 0; i < b->b_iused; i++)
        size += instrsize(b->b_instr[i].i_oparg);
    return size;
}

/* Appends a pair to the end of the line number table, a_lnotab, representing
   the instruction's bytecode offset and line number.  See
   Objects/lnotab_notes.txt for the description of the line number table. */

static int
assemble_lnotab(struct assembler *a, struct instr *i)
{
    int d_bytecode, d_lineno;
    Py_ssize_t len;
    unsigned char *lnotab;

    d_bytecode = (a->a_offset - a->a_lineno_off) * sizeof(_Py_CODEUNIT);
    d_lineno = i->i_lineno - a->a_lineno;

    assert(d_bytecode >= 0);

    if(d_bytecode == 0 && d_lineno == 0)
        return 1;

    if (d_bytecode > 255) {
        int j, nbytes, ncodes = d_bytecode / 255;
        nbytes = a->a_lnotab_off + 2 * ncodes;
        len = PyBytes_GET_SIZE(a->a_lnotab);
        if (nbytes >= len) {
            if ((len <= INT_MAX / 2) && (len * 2 < nbytes))
                len = nbytes;
            else if (len <= INT_MAX / 2)
                len *= 2;
            else {
                PyErr_NoMemory();
                return 0;
            }
            if (_PyBytes_Resize(&a->a_lnotab, len) < 0)
                return 0;
        }
        lnotab = (unsigned char *)
                   PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
        for (j = 0; j < ncodes; j++) {
            *lnotab++ = 255;
            *lnotab++ = 0;
        }
        d_bytecode -= ncodes * 255;
        a->a_lnotab_off += ncodes * 2;
    }
    assert(0 <= d_bytecode && d_bytecode <= 255);

    if (d_lineno < -128 || 127 < d_lineno) {
        int j, nbytes, ncodes, k;
        if (d_lineno < 0) {
            k = -128;
            /* use division on positive numbers */
            ncodes = (-d_lineno) / 128;
        }
        else {
            k = 127;
            ncodes = d_lineno / 127;
        }
        d_lineno -= ncodes * k;
        assert(ncodes >= 1);
        nbytes = a->a_lnotab_off + 2 * ncodes;
        len = PyBytes_GET_SIZE(a->a_lnotab);
        if (nbytes >= len) {
            if ((len <= INT_MAX / 2) && len * 2 < nbytes)
                len = nbytes;
            else if (len <= INT_MAX / 2)
                len *= 2;
            else {
                PyErr_NoMemory();
                return 0;
            }
            if (_PyBytes_Resize(&a->a_lnotab, len) < 0)
                return 0;
        }
        lnotab = (unsigned char *)
                   PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;
        *lnotab++ = d_bytecode;
        *lnotab++ = k;
        d_bytecode = 0;
        for (j = 1; j < ncodes; j++) {
            *lnotab++ = 0;
            *lnotab++ = k;
        }
        a->a_lnotab_off += ncodes * 2;
    }
    assert(-128 <= d_lineno && d_lineno <= 127);

    len = PyBytes_GET_SIZE(a->a_lnotab);
    if (a->a_lnotab_off + 2 >= len) {
        if (_PyBytes_Resize(&a->a_lnotab, len * 2) < 0)
            return 0;
    }
    lnotab = (unsigned char *)
                    PyBytes_AS_STRING(a->a_lnotab) + a->a_lnotab_off;

    a->a_lnotab_off += 2;
    if (d_bytecode) {
        *lnotab++ = d_bytecode;
        *lnotab++ = d_lineno;
    }
    else {      /* First line of a block; def stmt, etc. */
        *lnotab++ = 0;
        *lnotab++ = d_lineno;
    }
    a->a_lineno = i->i_lineno;
    a->a_lineno_off = a->a_offset;
    return 1;
}

/* assemble_emit()
   Extend the bytecode with a new instruction.
   Update lnotab if necessary.
*/

static int
assemble_emit(struct assembler *a, struct instr *i)
{
    int size, arg = 0;
    Py_ssize_t len = PyBytes_GET_SIZE(a->a_bytecode);
    _Py_CODEUNIT *code;

    arg = i->i_oparg;
    size = instrsize(arg);
    if (i->i_lineno && !assemble_lnotab(a, i))
        return 0;
    if (a->a_offset + size >= len / (int)sizeof(_Py_CODEUNIT)) {
        if (len > PY_SSIZE_T_MAX / 2)
            return 0;
        if (_PyBytes_Resize(&a->a_bytecode, len * 2) < 0)
            return 0;
    }
    code = (_Py_CODEUNIT *)PyBytes_AS_STRING(a->a_bytecode) + a->a_offset;
    a->a_offset += size;
    write_op_arg(code, i->i_opcode, arg, size);
    return 1;
}

static void
assemble_jump_offsets(struct assembler *a, struct compiler *c)
{
    basicblock *b;
    int bsize, totsize, extended_arg_recompile;
    int i;

    /* Compute the size of each block and fixup jump args.
       Replace block pointer with position in bytecode. */
    do {
        totsize = 0;
        for (i = a->a_nblocks - 1; i >= 0; i--) {
            b = a->a_postorder[i];
            bsize = blocksize(b);
            b->b_offset = totsize;
            totsize += bsize;
        }
        extended_arg_recompile = 0;
        for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
            bsize = b->b_offset;
            for (i = 0; i < b->b_iused; i++) {
                struct instr *instr = &b->b_instr[i];
                int isize = instrsize(instr->i_oparg);
                /* Relative jumps are computed relative to
                   the instruction pointer after fetching
                   the jump instruction.
                */
                bsize += isize;
                if (instr->i_jabs || instr->i_jrel) {
                    instr->i_oparg = instr->i_target->b_offset;
                    if (instr->i_jrel) {
                        instr->i_oparg -= bsize;
                    }
                    instr->i_oparg *= sizeof(_Py_CODEUNIT);
                    if (instrsize(instr->i_oparg) != isize) {
                        extended_arg_recompile = 1;
                    }
                }
            }
        }

    /* XXX: This is an awful hack that could hurt performance, but
        on the bright side it should work until we come up
        with a better solution.

        The issue is that in the first loop blocksize() is called
        which calls instrsize() which requires i_oparg be set
        appropriately. There is a bootstrap problem because
        i_oparg is calculated in the second loop above.

        So we loop until we stop seeing new EXTENDED_ARGs.
        The only EXTENDED_ARGs that could be popping up are
        ones in jump instructions.  So this should converge
        fairly quickly.
    */
    } while (extended_arg_recompile);
}

static PyObject *
dict_keys_inorder(PyObject *dict, Py_ssize_t offset)
{
    PyObject *tuple, *k, *v;
    Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);

    tuple = PyTuple_New(size);
    if (tuple == NULL)
        return NULL;
    while (PyDict_Next(dict, &pos, &k, &v)) {
        i = PyLong_AS_LONG(v);
        Py_INCREF(k);
        assert((i - offset) < size);
        assert((i - offset) >= 0);
        PyTuple_SET_ITEM(tuple, i - offset, k);
    }
    return tuple;
}

static PyObject *
consts_dict_keys_inorder(PyObject *dict)
{
    PyObject *consts, *k, *v;
    Py_ssize_t i, pos = 0, size = PyDict_GET_SIZE(dict);

    consts = PyList_New(size);   /* PyCode_Optimize() requires a list */
    if (consts == NULL)
        return NULL;
    while (PyDict_Next(dict, &pos, &k, &v)) {
        i = PyLong_AS_LONG(v);
        /* The keys of the dictionary can be tuples wrapping a contant.
         * (see compiler_add_o and _PyCode_ConstantKey). In that case
         * the object we want is always second. */
        if (PyTuple_CheckExact(k)) {
            k = PyTuple_GET_ITEM(k, 1);
        }
        Py_INCREF(k);
        assert(i < size);
        assert(i >= 0);
        PyList_SET_ITEM(consts, i, k);
    }
    return consts;
}

static int
compute_code_flags(struct compiler *c)
{
    PySTEntryObject *ste = c->u->u_ste;
    int flags = 0;
    if (ste->ste_type == FunctionBlock) {
        flags |= CO_NEWLOCALS | CO_OPTIMIZED;
        if (ste->ste_nested)
            flags |= CO_NESTED;
        if (ste->ste_generator && !ste->ste_coroutine)
            flags |= CO_GENERATOR;
        if (!ste->ste_generator && ste->ste_coroutine)
            flags |= CO_COROUTINE;
        if (ste->ste_generator && ste->ste_coroutine)
            flags |= CO_ASYNC_GENERATOR;
        if (ste->ste_varargs)
            flags |= CO_VARARGS;
        if (ste->ste_varkeywords)
            flags |= CO_VARKEYWORDS;
    }

    /* (Only) inherit compilerflags in PyCF_MASK */
    flags |= (c->c_flags->cf_flags & PyCF_MASK);

    if ((c->c_flags->cf_flags & PyCF_ALLOW_TOP_LEVEL_AWAIT) &&
         ste->ste_coroutine &&
         !ste->ste_generator) {
        flags |= CO_COROUTINE;
    }

    return flags;
}

// Merge *tuple* with constant cache.
// Unlike merge_consts_recursive(), this function doesn't work recursively.
static int
merge_const_tuple(struct compiler *c, PyObject **tuple)
{
    assert(PyTuple_CheckExact(*tuple));

    PyObject *key = _PyCode_ConstantKey(*tuple);
    if (key == NULL) {
        return 0;
    }

    // t is borrowed reference
    PyObject *t = PyDict_SetDefault(c->c_const_cache, key, key);
    Py_DECREF(key);
    if (t == NULL) {
        return 0;
    }
    if (t == key) {  // tuple is new constant.
        return 1;
    }

    PyObject *u = PyTuple_GET_ITEM(t, 1);
    Py_INCREF(u);
    Py_DECREF(*tuple);
    *tuple = u;
    return 1;
}

static PyCodeObject *
makecode(struct compiler *c, struct assembler *a)
{
    PyObject *tmp;
    PyCodeObject *co = NULL;
    PyObject *consts = NULL;
    PyObject *names = NULL;
    PyObject *varnames = NULL;
    PyObject *name = NULL;
    PyObject *freevars = NULL;
    PyObject *cellvars = NULL;
    PyObject *bytecode = NULL;
    Py_ssize_t nlocals;
    int nlocals_int;
    int flags;
    int posorkeywordargcount, posonlyargcount, kwonlyargcount, maxdepth;

    consts = consts_dict_keys_inorder(c->u->u_consts);
    names = dict_keys_inorder(c->u->u_names, 0);
    varnames = dict_keys_inorder(c->u->u_varnames, 0);
    if (!consts || !names || !varnames)
        goto error;

    cellvars = dict_keys_inorder(c->u->u_cellvars, 0);
    if (!cellvars)
        goto error;
    freevars = dict_keys_inorder(c->u->u_freevars, PyTuple_GET_SIZE(cellvars));
    if (!freevars)
        goto error;

    if (!merge_const_tuple(c, &names) ||
            !merge_const_tuple(c, &varnames) ||
            !merge_const_tuple(c, &cellvars) ||
            !merge_const_tuple(c, &freevars))
    {
        goto error;
    }

    nlocals = PyDict_GET_SIZE(c->u->u_varnames);
    assert(nlocals < INT_MAX);
    nlocals_int = Py_SAFE_DOWNCAST(nlocals, Py_ssize_t, int);

    flags = compute_code_flags(c);
    if (flags < 0)
        goto error;

    bytecode = PyCode_Optimize(a->a_bytecode, consts, names, a->a_lnotab);
    if (!bytecode)
        goto error;

    tmp = PyList_AsTuple(consts); /* PyCode_New requires a tuple */
    if (!tmp)
        goto error;
    Py_DECREF(consts);
    consts = tmp;
    if (!merge_const_tuple(c, &consts)) {
        goto error;
    }

    posonlyargcount = Py_SAFE_DOWNCAST(c->u->u_posonlyargcount, Py_ssize_t, int);
    posorkeywordargcount = Py_SAFE_DOWNCAST(c->u->u_argcount, Py_ssize_t, int);
    kwonlyargcount = Py_SAFE_DOWNCAST(c->u->u_kwonlyargcount, Py_ssize_t, int);
    maxdepth = stackdepth(c);
    if (maxdepth < 0) {
        goto error;
    }
    co = PyCode_NewWithPosOnlyArgs(posonlyargcount+posorkeywordargcount,
                                   posonlyargcount, kwonlyargcount, nlocals_int, 
                                   maxdepth, flags, bytecode, consts, names,
                                   varnames, freevars, cellvars, c->c_filename,
                                   c->u->u_name, c->u->u_firstlineno, a->a_lnotab);
 error:
    Py_XDECREF(consts);
    Py_XDECREF(names);
    Py_XDECREF(varnames);
    Py_XDECREF(name);
    Py_XDECREF(freevars);
    Py_XDECREF(cellvars);
    Py_XDECREF(bytecode);
    return co;
}


/* For debugging purposes only */
#if 0
static void
dump_instr(const struct instr *i)
{
    const char *jrel = i->i_jrel ? "jrel " : "";
    const char *jabs = i->i_jabs ? "jabs " : "";
    char arg[128];

    *arg = '\0';
    if (HAS_ARG(i->i_opcode)) {
        sprintf(arg, "arg: %d ", i->i_oparg);
    }
    fprintf(stderr, "line: %d, opcode: %d %s%s%s\n",
                    i->i_lineno, i->i_opcode, arg, jabs, jrel);
}

static void
dump_basicblock(const basicblock *b)
{
    const char *seen = b->b_seen ? "seen " : "";
    const char *b_return = b->b_return ? "return " : "";
    fprintf(stderr, "used: %d, depth: %d, offset: %d %s%s\n",
        b->b_iused, b->b_startdepth, b->b_offset, seen, b_return);
    if (b->b_instr) {
        int i;
        for (i = 0; i < b->b_iused; i++) {
            fprintf(stderr, "  [%02d] ", i);
            dump_instr(b->b_instr + i);
        }
    }
}
#endif

static PyCodeObject *
assemble(struct compiler *c, int addNone)
{
    basicblock *b, *entryblock;
    struct assembler a;
    int i, j, nblocks;
    PyCodeObject *co = NULL;

    /* Make sure every block that falls off the end returns None.
       XXX NEXT_BLOCK() isn't quite right, because if the last
       block ends with a jump or return b_next shouldn't set.
     */
    if (!c->u->u_curblock->b_return) {
        NEXT_BLOCK(c);
        if (addNone)
            ADDOP_LOAD_CONST(c, Py_None);
        ADDOP(c, RETURN_VALUE);
    }

    nblocks = 0;
    entryblock = NULL;
    for (b = c->u->u_blocks; b != NULL; b = b->b_list) {
        nblocks++;
        entryblock = b;
    }

    /* Set firstlineno if it wasn't explicitly set. */
    if (!c->u->u_firstlineno) {
        if (entryblock && entryblock->b_instr && entryblock->b_instr->i_lineno)
            c->u->u_firstlineno = entryblock->b_instr->i_lineno;
        else
            c->u->u_firstlineno = 1;
    }
    if (!assemble_init(&a, nblocks, c->u->u_firstlineno))
        goto error;
    dfs(c, entryblock, &a, nblocks);

    /* Can't modify the bytecode after computing jump offsets. */
    assemble_jump_offsets(&a, c);

    /* Emit code in reverse postorder from dfs. */
    for (i = a.a_nblocks - 1; i >= 0; i--) {
        b = a.a_postorder[i];
        for (j = 0; j < b->b_iused; j++)
            if (!assemble_emit(&a, &b->b_instr[j]))
                goto error;
    }

    if (_PyBytes_Resize(&a.a_lnotab, a.a_lnotab_off) < 0)
        goto error;
    if (_PyBytes_Resize(&a.a_bytecode, a.a_offset * sizeof(_Py_CODEUNIT)) < 0)
        goto error;

    co = makecode(c, &a);
 error:
    assemble_free(&a);
    return co;
}

#undef PyAST_Compile
PyCodeObject *
PyAST_Compile(mod_ty mod, const char *filename, PyCompilerFlags *flags,
              PyArena *arena)
{
    return PyAST_CompileEx(mod, filename, flags, -1, arena);
}