summaryrefslogtreecommitdiffstats
path: root/ast/proj.c
diff options
context:
space:
mode:
authorWilliam Joye <wjoye@cfa.harvard.edu>2016-11-02 19:16:17 (GMT)
committerWilliam Joye <wjoye@cfa.harvard.edu>2016-11-02 19:16:17 (GMT)
commit293057bdd882685f8ddad66bf77196a5853b08da (patch)
tree22c02c3808f490432f5f785c8bb665438169662b /ast/proj.c
parent87f20cbc44f8f6b53c00c37f89bc134a1f4cf29e (diff)
parentd26ed8388f100a12996c0b92a98040ef2ba7fa8e (diff)
downloadblt-293057bdd882685f8ddad66bf77196a5853b08da.zip
blt-293057bdd882685f8ddad66bf77196a5853b08da.tar.gz
blt-293057bdd882685f8ddad66bf77196a5853b08da.tar.bz2
Merge commit 'd26ed8388f100a12996c0b92a98040ef2ba7fa8e' as 'ast'
Diffstat (limited to 'ast/proj.c')
-rw-r--r--ast/proj.c4840
1 files changed, 4840 insertions, 0 deletions
diff --git a/ast/proj.c b/ast/proj.c
new file mode 100644
index 0000000..8b92c21
--- /dev/null
+++ b/ast/proj.c
@@ -0,0 +1,4840 @@
+/*============================================================================
+*
+* WCSLIB - an implementation of the FITS WCS proposal.
+* Copyright (C) 1995-2002, Mark Calabretta
+*
+* This library is free software; you can redistribute it and/or modify it
+* under the terms of the GNU Library General Public License as published
+* by the Free Software Foundation; either version 2 of the License, or (at
+* your option) any later version.
+*
+* This library is distributed in the hope that it will be useful, but
+* WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library
+* General Public License for more details.
+*
+* You should have received a copy of the GNU Library General Public License
+* along with this library; if not, write to the Free Software Foundation,
+* Inc., 51 Franklin Street,Fifth Floor, Boston, MA 02110-1301, USA
+*
+* Correspondence concerning WCSLIB may be directed to:
+* Internet email: mcalabre@atnf.csiro.au
+* Postal address: Dr. Mark Calabretta,
+* Australia Telescope National Facility,
+* P.O. Box 76,
+* Epping, NSW, 2121,
+* AUSTRALIA
+*
+*
+*=============================================================================
+*
+* This version of proj.c is based on the version in wcslib-2.9, but has
+* been modified in the following ways by the Starlink project (e-mail:
+* ussc@star.rl.ac.uk):
+* - The copysign macro is now always defined within this file
+* instead of only being defined if the COPYSIGN macro has previously
+* been defined.
+* - Sine values which are slightly larger than 1.0 are now treated
+* as 1.0 in function astCYPrev.
+* - The maximum number of projection parameters has been changed from
+* 10 to 100.
+* - The maximum number of projection parameters is given by the
+* WCSLIB_MXPAR macro (defined in proj.h) instead of being hard-wired.
+* - The names of all functions and structures have been chanegd to avoid
+* clashes with wcslib. This involves adding "Ast" or "ast" at the
+* front and changing the capitalisation.
+* - Include string.h (for strcpy and strcmp prototypes).
+* - Include stdlib.h (for abs prototype).
+* - Comment out declarations of npcode and pcodes variables (they
+* are not needed by AST) in order to avoid clash with similar names
+* in other modules imported as part of other software systems (e.g.
+* SkyCat).
+* - astZPNfwd: Loop from prj->n to zero, not from MAXPAR to zero.
+* - astZPNfwd: Only return "2" if prj->n is larger than 2.
+* - Lots of variables are initialised to null values in order to
+* avoid "use of uninitialised variable" messages from compilers which
+* are not clever enough to work out that the uninitialised variable is
+* not in fact ever used.
+* - Use dynamic rather than static memory for the parameter arrays in
+* the AstPrjPrm structure.Override astGetObjSize. This is to
+* reduce the in-memory size of a WcsMap.
+* - HPX and XPH projections included from a more recent version of WCSLIB,
+* and modified to use scalar instead of vector positions
+* - The expressions for xc in astHPXrev and phic in astHPXfwd have
+* been conditioned differently to the WCSLIB code in order to improve
+* accuracy of the floor function for arguments very slightly below an
+* integer value.
+
+*=============================================================================
+*
+* C implementation of the spherical map projections recognized by the FITS
+* "World Coordinate System" (WCS) convention.
+*
+* Summary of routines
+* -------------------
+* Each projection is implemented via separate functions for the forward,
+* *fwd(), and reverse, *rev(), transformation.
+*
+* Initialization routines, *set(), compute intermediate values from the
+* projection parameters but need not be called explicitly - see the
+* explanation of prj.flag below.
+*
+* astPRJset astPRJfwd astPRJrev Driver routines (see below).
+*
+* astAZPset astAZPfwd astAZPrev AZP: zenithal/azimuthal perspective
+* astSZPset astSZPfwd astSZPrev SZP: slant zenithal perspective
+* astTANset astTANfwd astTANrev TAN: gnomonic
+* astSTGset astSTGfwd astSTGrev STG: stereographic
+* astSINset astSINfwd astSINrev SIN: orthographic/synthesis
+* astARCset astARCfwd astARCrev ARC: zenithal/azimuthal equidistant
+* astZPNset astZPNfwd astZPNrev ZPN: zenithal/azimuthal polynomial
+* astZEAset astZEAfwd astZEArev ZEA: zenithal/azimuthal equal area
+* astAIRset astAIRfwd astAIRrev AIR: Airy
+* astCYPset astCYPfwd astCYPrev CYP: cylindrical perspective
+* astCEAset astCEAfwd astCEArev CEA: cylindrical equal area
+* astCARset astCARfwd astCARrev CAR: Cartesian
+* astMERset astMERfwd astMERrev MER: Mercator
+* astSFLset astSFLfwd astSFLrev SFL: Sanson-Flamsteed
+* astPARset astPARfwd astPARrev PAR: parabolic
+* astMOLset astMOLfwd astMOLrev MOL: Mollweide
+* astAITset astAITfwd astAITrev AIT: Hammer-Aitoff
+* astCOPset astCOPfwd astCOPrev COP: conic perspective
+* astCOEset astCOEfwd astCOErev COE: conic equal area
+* astCODset astCODfwd astCODrev COD: conic equidistant
+* astCOOset astCOOfwd astCOOrev COO: conic orthomorphic
+* astBONset astBONfwd astBONrev BON: Bonne
+* astPCOset astPCOfwd astPCOrev PCO: polyconic
+* astTSCset astTSCfwd astTSCrev TSC: tangential spherical cube
+* astCSCset astCSCfwd astCSCrev CSC: COBE quadrilateralized spherical cube
+* astQSCset astQSCfwd astQSCrev QSC: quadrilateralized spherical cube
+* astHPXset astHPXfwd astHPXrev HPX: HEALPix projection
+* astXPHset astXPHfwd astXPHrev XPH: HEALPix polar, aka "butterfly"
+*
+*
+* Driver routines; astPRJset(), astPRJfwd() & astPRJrev()
+* ----------------------------------------------
+* A set of driver routines are available for use as a generic interface to
+* the specific projection routines. The interfaces to astPRJfwd() and astPRJrev()
+* are the same as those of the forward and reverse transformation routines
+* for the specific projections (see below).
+*
+* The interface to astPRJset() differs slightly from that of the initialization
+* routines for the specific projections and unlike them it must be invoked
+* explicitly to use astPRJfwd() and astPRJrev().
+*
+* Given:
+* pcode[4] const char
+* WCS projection code.
+*
+* Given and/or returned:
+* prj AstPrjPrm* Projection parameters (see below).
+*
+* Function return value:
+* int Error status
+* 0: Success.
+*
+*
+* Initialization routine; *set()
+* ------------------------------
+* Initializes members of a AstPrjPrm data structure which hold intermediate
+* values. Note that this routine need not be called directly; it will be
+* invoked by astPRJfwd() and astPRJrev() if the "flag" structure member is
+* anything other than a predefined magic value.
+*
+* Given and/or returned:
+* prj AstPrjPrm* Projection parameters (see below).
+*
+* Function return value:
+* int Error status
+* 0: Success.
+* 1: Invalid projection parameters.
+*
+* Forward transformation; *fwd()
+* -----------------------------
+* Compute (x,y) coordinates in the plane of projection from native spherical
+* coordinates (phi,theta).
+*
+* Given:
+* phi, const double
+* theta Longitude and latitude of the projected point in
+* native spherical coordinates, in degrees.
+*
+* Given and returned:
+* prj AstPrjPrm* Projection parameters (see below).
+*
+* Returned:
+* x,y double* Projected coordinates.
+*
+* Function return value:
+* int Error status
+* 0: Success.
+* 1: Invalid projection parameters.
+* 2: Invalid value of (phi,theta).
+*
+* Reverse transformation; *rev()
+* -----------------------------
+* Compute native spherical coordinates (phi,theta) from (x,y) coordinates in
+* the plane of projection.
+*
+* Given:
+* x,y const double
+* Projected coordinates.
+*
+* Given and returned:
+* prj AstPrjPrm* Projection parameters (see below).
+*
+* Returned:
+* phi, double* Longitude and latitude of the projected point in
+* theta native spherical coordinates, in degrees.
+*
+* Function return value:
+* int Error status
+* 0: Success.
+* 1: Invalid projection parameters.
+* 2: Invalid value of (x,y).
+* 1: Invalid projection parameters.
+*
+* Projection parameters
+* ---------------------
+* The AstPrjPrm struct consists of the following:
+*
+* int flag
+* This flag must be set to zero whenever any of p[] or r0 are set
+* or changed. This signals the initialization routine to recompute
+* intermediaries. flag may also be set to -1 to disable strict bounds
+* checking for the AZP, SZP, TAN, SIN, ZPN, and COP projections.
+*
+* double r0
+* r0; The radius of the generating sphere for the projection, a linear
+* scaling parameter. If this is zero, it will be reset to the default
+* value of 180/pi (the value for FITS WCS).
+*
+* double p[]
+* Contains the projection parameters associated with the
+* longitude axis.
+*
+* The remaining members of the AstPrjPrm struct are maintained by the
+* initialization routines and should not be modified. This is done for the
+* sake of efficiency and to allow an arbitrary number of contexts to be
+* maintained simultaneously.
+*
+* char code[4]
+* Three-letter projection code.
+*
+* double phi0, theta0
+* Native longitude and latitude of the reference point, in degrees.
+*
+* double w[10]
+* int n
+* Intermediate values derived from the projection parameters.
+*
+* int (*astPRJfwd)()
+* int (*astPRJrev)()
+* Pointers to the forward and reverse projection routines.
+*
+* Usage of the p[] array as it applies to each projection is described in
+* the prologue to each trio of projection routines.
+*
+* Argument checking
+* -----------------
+* Forward routines:
+*
+* The values of phi and theta (the native longitude and latitude)
+* normally lie in the range [-180,180] for phi, and [-90,90] for theta.
+* However, all forward projections will accept any value of phi and will
+* not normalize it.
+*
+* The forward projection routines do not explicitly check that theta lies
+* within the range [-90,90]. They do check for any value of theta which
+* produces an invalid argument to the projection equations (e.g. leading
+* to division by zero). The forward routines for AZP, SZP, TAN, SIN,
+* ZPN, and COP also return error 2 if (phi,theta) corresponds to the
+* overlapped (far) side of the projection but also return the
+* corresponding value of (x,y). This strict bounds checking may be
+* relaxed by setting prj->flag to -1 (rather than 0) when these
+* projections are initialized.
+*
+* Reverse routines:
+*
+* Error checking on the projected coordinates (x,y) is limited to that
+* required to ascertain whether a solution exists. Where a solution does
+* exist no check is made that the value of phi and theta obtained lie
+* within the ranges [-180,180] for phi, and [-90,90] for theta.
+*
+* Accuracy
+* --------
+* Closure to a precision of at least 1E-10 degree of longitude and latitude
+* has been verified for typical projection parameters on the 1 degree grid
+* of native longitude and latitude (to within 5 degrees of any latitude
+* where the projection may diverge).
+*
+* Author: Mark Calabretta, Australia Telescope National Facility
+* $Id$
+*===========================================================================*/
+
+/* Set the name of the module we are implementing. This indicates to
+ the header files that define class interfaces that they should make
+ "protected" symbols available. NB, this module is not a proper AST
+ class, but it defines this macro sanyway in order to get the protected
+ symbols defined in memory.h */
+
+#include <math.h>
+#include <string.h>
+#include <stdlib.h>
+#include "wcsmath.h"
+#include "wcstrig.h"
+#include "memory.h"
+#include "proj.h"
+
+/* Following variables are not needed in AST and are commented out to
+ avoid name clashes with other software systems (e.g. SkyCat) which
+ defines them.
+
+int npcode = 28;
+char pcodes[28][4] =
+ {"AZP", "SZP", "TAN", "STG", "SIN", "ARC", "ZPN", "ZEA", "AIR", "CYP",
+ "CEA", "CAR", "MER", "COP", "COE", "COD", "COO", "SFL", "PAR", "MOL",
+ "AIT", "BON", "PCO", "TSC", "CSC", "QSC", "HPX", "XPH"};
+*/
+
+const int WCS__AZP = 101;
+const int WCS__SZP = 102;
+const int WCS__TAN = 103;
+const int WCS__STG = 104;
+const int WCS__SIN = 105;
+const int WCS__ARC = 106;
+const int WCS__ZPN = 107;
+const int WCS__ZEA = 108;
+const int WCS__AIR = 109;
+const int WCS__CYP = 201;
+const int WCS__CEA = 202;
+const int WCS__CAR = 203;
+const int WCS__MER = 204;
+const int WCS__SFL = 301;
+const int WCS__PAR = 302;
+const int WCS__MOL = 303;
+const int WCS__AIT = 401;
+const int WCS__COP = 501;
+const int WCS__COE = 502;
+const int WCS__COD = 503;
+const int WCS__COO = 504;
+const int WCS__BON = 601;
+const int WCS__PCO = 602;
+const int WCS__TSC = 701;
+const int WCS__CSC = 702;
+const int WCS__QSC = 703;
+const int WCS__HPX = 801;
+const int WCS__XPH = 802;
+
+/* Map error number to error message for each function. */
+const char *astPRJset_errmsg[] = {
+ 0,
+ "Invalid projection parameters"};
+
+const char *astPRJfwd_errmsg[] = {
+ 0,
+ "Invalid projection parameters",
+ "Invalid value of (phi,theta)"};
+
+const char *astPRJrev_errmsg[] = {
+ 0,
+ "Invalid projection parameters",
+ "Invalid value of (x,y)"};
+
+
+#define copysign(X, Y) ((Y) < 0.0 ? -fabs(X) : fabs(X))
+#define icopysign(X, Y) ((Y) < 0.0 ? -abs(X) : abs(X))
+
+
+
+/*==========================================================================*/
+
+int astPRJset(pcode, prj)
+
+const char pcode[4];
+struct AstPrjPrm *prj;
+
+{
+ /* Set pointers to the forward and reverse projection routines. */
+ if (strcmp(pcode, "AZP") == 0) {
+ astAZPset(prj);
+ } else if (strcmp(pcode, "SZP") == 0) {
+ astSZPset(prj);
+ } else if (strcmp(pcode, "TAN") == 0) {
+ astTANset(prj);
+ } else if (strcmp(pcode, "STG") == 0) {
+ astSTGset(prj);
+ } else if (strcmp(pcode, "SIN") == 0) {
+ astSINset(prj);
+ } else if (strcmp(pcode, "ARC") == 0) {
+ astARCset(prj);
+ } else if (strcmp(pcode, "ZPN") == 0) {
+ astZPNset(prj);
+ } else if (strcmp(pcode, "ZEA") == 0) {
+ astZEAset(prj);
+ } else if (strcmp(pcode, "AIR") == 0) {
+ astAIRset(prj);
+ } else if (strcmp(pcode, "CYP") == 0) {
+ astCYPset(prj);
+ } else if (strcmp(pcode, "CEA") == 0) {
+ astCEAset(prj);
+ } else if (strcmp(pcode, "CAR") == 0) {
+ astCARset(prj);
+ } else if (strcmp(pcode, "MER") == 0) {
+ astMERset(prj);
+ } else if (strcmp(pcode, "SFL") == 0) {
+ astSFLset(prj);
+ } else if (strcmp(pcode, "PAR") == 0) {
+ astPARset(prj);
+ } else if (strcmp(pcode, "MOL") == 0) {
+ astMOLset(prj);
+ } else if (strcmp(pcode, "AIT") == 0) {
+ astAITset(prj);
+ } else if (strcmp(pcode, "COP") == 0) {
+ astCOPset(prj);
+ } else if (strcmp(pcode, "COE") == 0) {
+ astCOEset(prj);
+ } else if (strcmp(pcode, "COD") == 0) {
+ astCODset(prj);
+ } else if (strcmp(pcode, "COO") == 0) {
+ astCOOset(prj);
+ } else if (strcmp(pcode, "BON") == 0) {
+ astBONset(prj);
+ } else if (strcmp(pcode, "PCO") == 0) {
+ astPCOset(prj);
+ } else if (strcmp(pcode, "TSC") == 0) {
+ astTSCset(prj);
+ } else if (strcmp(pcode, "CSC") == 0) {
+ astCSCset(prj);
+ } else if (strcmp(pcode, "QSC") == 0) {
+ astQSCset(prj);
+ } else if (strcmp(pcode, "HPX") == 0) {
+ astHPXset(prj);
+ } else if (strcmp(pcode, "XPH") == 0) {
+ astXPHset(prj);
+ } else {
+ /* Unrecognized projection code. */
+ return 1;
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astPRJfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ return prj->astPRJfwd(phi, theta, prj, x, y);
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astPRJrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ return prj->astPRJrev(x, y, prj, phi, theta);
+}
+
+/*============================================================================
+* AZP: zenithal/azimuthal perspective projection.
+*
+* Given:
+* prj->p[1] Distance parameter, mu in units of r0.
+* prj->p[2] Tilt angle, gamma in degrees.
+*
+* Given and/or returned:
+* prj->flag AZP, or -AZP if prj->flag is given < 0.
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "AZP"
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->w[0] r0*(mu+1)
+* prj->w[1] tan(gamma)
+* prj->w[2] sec(gamma)
+* prj->w[3] cos(gamma)
+* prj->w[4] sin(gamma)
+* prj->w[5] asin(-1/mu) for |mu| >= 1, -90 otherwise
+* prj->w[6] mu*cos(gamma)
+* prj->w[7] 1 if |mu*cos(gamma)| < 1, 0 otherwise
+* prj->astPRJfwd Pointer to astAZPfwd().
+* prj->astPRJrev Pointer to astAZPrev().
+*===========================================================================*/
+
+int astAZPset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "AZP");
+ prj->flag = icopysign(WCS__AZP, prj->flag);
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ prj->w[0] = prj->r0*(prj->p[1] + 1.0);
+ if (prj->w[0] == 0.0) {
+ return 1;
+ }
+
+ prj->w[3] = astCosd(prj->p[2]);
+ if (prj->w[3] == 0.0) {
+ return 1;
+ }
+
+ prj->w[2] = 1.0/prj->w[3];
+ prj->w[4] = astSind(prj->p[2]);
+ prj->w[1] = prj->w[4] / prj->w[3];
+
+ if (fabs(prj->p[1]) > 1.0) {
+ prj->w[5] = astASind(-1.0/prj->p[1]);
+ } else {
+ prj->w[5] = -90.0;
+ }
+
+ prj->w[6] = prj->p[1] * prj->w[3];
+ prj->w[7] = (fabs(prj->w[6]) < 1.0) ? 1.0 : 0.0;
+
+ prj->astPRJfwd = astAZPfwd;
+ prj->astPRJrev = astAZPrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astAZPfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double a, b, cphi, cthe, r, s, t;
+
+ if (abs(prj->flag) != WCS__AZP) {
+ if (astAZPset(prj)) return 1;
+ }
+
+ cphi = astCosd(phi);
+ cthe = astCosd(theta);
+
+ s = prj->w[1]*cphi;
+ t = (prj->p[1] + astSind(theta)) + cthe*s;
+ if (t == 0.0) {
+ return 2;
+ }
+
+ r = prj->w[0]*cthe/t;
+ *x = r*astSind(phi);
+ *y = -r*cphi*prj->w[2];
+
+ /* Bounds checking. */
+ if (prj->flag > 0) {
+ /* Overlap. */
+ if (theta < prj->w[5]) {
+ return 2;
+ }
+
+ /* Divergence. */
+ if (prj->w[7] > 0.0) {
+ t = prj->p[1] / sqrt(1.0 + s*s);
+
+ if (fabs(t) <= 1.0) {
+ s = astATand(-s);
+ t = astASind(t);
+ a = s - t;
+ b = s + t + 180.0;
+
+ if (a > 90.0) a -= 360.0;
+ if (b > 90.0) b -= 360.0;
+
+ if (theta < ((a > b) ? a : b)) {
+ return 2;
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astAZPrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double a, b, r, s, t, ycosg;
+ const double tol = 1.0e-13;
+
+ if (abs(prj->flag) != WCS__AZP) {
+ if (astAZPset(prj)) return 1;
+ }
+
+ ycosg = y*prj->w[3];
+
+ r = sqrt(x*x + ycosg*ycosg);
+ if (r == 0.0) {
+ *phi = 0.0;
+ *theta = 90.0;
+ } else {
+ *phi = astATan2d(x, -ycosg);
+
+ s = r / (prj->w[0] + y*prj->w[4]);
+ t = s*prj->p[1]/sqrt(s*s + 1.0);
+
+ s = astATan2d(1.0, s);
+
+ if (fabs(t) > 1.0) {
+ t = copysign(90.0,t);
+ if (fabs(t) > 1.0+tol) {
+ return 2;
+ }
+ } else {
+ t = astASind(t);
+ }
+
+ a = s - t;
+ b = s + t + 180.0;
+
+ if (a > 90.0) a -= 360.0;
+ if (b > 90.0) b -= 360.0;
+
+ *theta = (a > b) ? a : b;
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* SZP: slant zenithal perspective projection.
+*
+* Given:
+* prj->p[1] Distance of the point of projection from the centre of the
+* generating sphere, mu in units of r0.
+* prj->p[2] Native longitude, phi_c, and ...
+* prj->p[3] Native latitude, theta_c, on the planewards side of the
+* intersection of the line through the point of projection
+* and the centre of the generating sphere, phi_c in degrees.
+*
+* Given and/or returned:
+* prj->flag SZP, or -SZP if prj->flag is given < 0.
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "SZP"
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->w[0] 1/r0
+* prj->w[1] xp = -mu*cos(theta_c)*sin(phi_c)
+* prj->w[2] yp = mu*cos(theta_c)*cos(phi_c)
+* prj->w[3] zp = mu*sin(theta_c) + 1
+* prj->w[4] r0*xp
+* prj->w[5] r0*yp
+* prj->w[6] r0*zp
+* prj->w[7] (zp - 1)^2
+* prj->w[8] asin(1-zp) if |1 - zp| < 1, -90 otherwise
+* prj->astPRJfwd Pointer to astSZPfwd().
+* prj->astPRJrev Pointer to astSZPrev().
+*===========================================================================*/
+
+int astSZPset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "SZP");
+ prj->flag = icopysign(WCS__SZP, prj->flag);
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ prj->w[0] = 1.0/prj->r0;
+
+ prj->w[3] = prj->p[1] * astSind(prj->p[3]) + 1.0;
+ if (prj->w[3] == 0.0) {
+ return 1;
+ }
+
+ prj->w[1] = -prj->p[1] * astCosd(prj->p[3]) * astSind(prj->p[2]);
+ prj->w[2] = prj->p[1] * astCosd(prj->p[3]) * astCosd(prj->p[2]);
+ prj->w[4] = prj->r0 * prj->w[1];
+ prj->w[5] = prj->r0 * prj->w[2];
+ prj->w[6] = prj->r0 * prj->w[3];
+ prj->w[7] = (prj->w[3] - 1.0) * prj->w[3] - 1.0;
+
+ if (fabs(prj->w[3] - 1.0) < 1.0) {
+ prj->w[8] = astASind(1.0 - prj->w[3]);
+ } else {
+ prj->w[8] = -90.0;
+ }
+
+ prj->astPRJfwd = astSZPfwd;
+ prj->astPRJrev = astSZPrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astSZPfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double a, b, cphi, cthe, s, sphi, t;
+
+ if (abs(prj->flag) != WCS__SZP) {
+ if (astSZPset(prj)) return 1;
+ }
+
+ cphi = astCosd(phi);
+ sphi = astSind(phi);
+ cthe = astCosd(theta);
+ s = 1.0 - astSind(theta);
+
+ t = prj->w[3] - s;
+ if (t == 0.0) {
+ return 2;
+ }
+
+ *x = (prj->w[6]*cthe*sphi - prj->w[4]*s)/t;
+ *y = -(prj->w[6]*cthe*cphi + prj->w[5]*s)/t;
+
+ /* Bounds checking. */
+ if (prj->flag > 0) {
+ /* Divergence. */
+ if (theta < prj->w[8]) {
+ return 2;
+ }
+
+ /* Overlap. */
+ if (fabs(prj->p[1]) > 1.0) {
+ s = prj->w[1]*sphi - prj->w[2]*cphi;
+ t = 1.0/sqrt(prj->w[7] + s*s);
+
+ if (fabs(t) <= 1.0) {
+ s = astATan2d(s, prj->w[3] - 1.0);
+ t = astASind(t);
+ a = s - t;
+ b = s + t + 180.0;
+
+ if (a > 90.0) a -= 360.0;
+ if (b > 90.0) b -= 360.0;
+
+ if (theta < ((a > b) ? a : b)) {
+ return 2;
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astSZPrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double a, b, c, d, r2, sth1, sth2, sthe, sxy, t, x1, xp, y1, yp, z;
+ const double tol = 1.0e-13;
+
+ if (abs(prj->flag) != WCS__SZP) {
+ if (astSZPset(prj)) return 1;
+ }
+
+ xp = x*prj->w[0];
+ yp = y*prj->w[0];
+ r2 = xp*xp + yp*yp;
+
+ x1 = (xp - prj->w[1])/prj->w[3];
+ y1 = (yp - prj->w[2])/prj->w[3];
+ sxy = xp*x1 + yp*y1;
+
+ if (r2 < 1.0e-10) {
+ /* Use small angle formula. */
+ z = r2/2.0;
+ *theta = 90.0 - R2D*sqrt(r2/(1.0 + sxy));
+
+ } else {
+ t = x1*x1 + y1*y1;
+ a = t + 1.0;
+ b = sxy - t;
+ c = r2 - sxy - sxy + t - 1.0;
+ d = b*b - a*c;
+
+ /* Check for a solution. */
+ if (d < 0.0) {
+ return 2;
+ }
+ d = sqrt(d);
+
+ /* Choose solution closest to pole. */
+ sth1 = (-b + d)/a;
+ sth2 = (-b - d)/a;
+ sthe = (sth1 > sth2) ? sth1 : sth2;
+ if (sthe > 1.0) {
+ if (sthe-1.0 < tol) {
+ sthe = 1.0;
+ } else {
+ sthe = (sth1 < sth2) ? sth1 : sth2;
+ }
+ }
+
+ if (sthe < -1.0) {
+ if (sthe+1.0 > -tol) {
+ sthe = -1.0;
+ }
+ }
+
+ if (sthe > 1.0 || sthe < -1.0) {
+ return 2;
+ }
+
+ *theta = astASind(sthe);
+
+ z = 1.0 - sthe;
+ }
+
+ *phi = astATan2d(xp - x1*z, -(yp - y1*z));
+
+ return 0;
+}
+
+/*============================================================================
+* TAN: gnomonic projection.
+*
+* Given and/or returned:
+* prj->flag TAN, or -TAN if prj->flag is given < 0.
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "TAN"
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->astPRJfwd Pointer to astTANfwd().
+* prj->astPRJrev Pointer to astTANrev().
+*===========================================================================*/
+
+int astTANset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "TAN");
+ prj->flag = icopysign(WCS__TAN, prj->flag);
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ prj->astPRJfwd = astTANfwd;
+ prj->astPRJrev = astTANrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astTANfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double r, s;
+
+ if (abs(prj->flag) != WCS__TAN) {
+ if(astTANset(prj)) return 1;
+ }
+
+ s = astSind(theta);
+ if (s == 0.0) {
+ return 2;
+ }
+
+ r = prj->r0*astCosd(theta)/s;
+ *x = r*astSind(phi);
+ *y = -r*astCosd(phi);
+
+ if (prj->flag > 0 && s < 0.0) {
+ return 2;
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astTANrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double r;
+
+ if (abs(prj->flag) != WCS__TAN) {
+ if (astTANset(prj)) return 1;
+ }
+
+ r = sqrt(x*x + y*y);
+ if (r == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(x, -y);
+ }
+ *theta = astATan2d(prj->r0, r);
+
+ return 0;
+}
+
+/*============================================================================
+* STG: stereographic projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "STG"
+* prj->flag STG
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->w[0] 2*r0
+* prj->w[1] 1/(2*r0)
+* prj->astPRJfwd Pointer to astSTGfwd().
+* prj->astPRJrev Pointer to astSTGrev().
+*===========================================================================*/
+
+int astSTGset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "STG");
+ prj->flag = WCS__STG;
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 360.0/PI;
+ prj->w[1] = PI/360.0;
+ } else {
+ prj->w[0] = 2.0*prj->r0;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astSTGfwd;
+ prj->astPRJrev = astSTGrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astSTGfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double r, s;
+
+ if (prj->flag != WCS__STG) {
+ if (astSTGset(prj)) return 1;
+ }
+
+ s = 1.0 + astSind(theta);
+ if (s == 0.0) {
+ return 2;
+ }
+
+ r = prj->w[0]*astCosd(theta)/s;
+ *x = r*astSind(phi);
+ *y = -r*astCosd(phi);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astSTGrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double r;
+
+ if (prj->flag != WCS__STG) {
+ if (astSTGset(prj)) return 1;
+ }
+
+ r = sqrt(x*x + y*y);
+ if (r == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(x, -y);
+ }
+ *theta = 90.0 - 2.0*astATand(r*prj->w[1]);
+
+ return 0;
+}
+
+/*============================================================================
+* SIN: orthographic/synthesis projection.
+*
+* Given:
+* prj->p[1:2] Obliqueness parameters, xi and eta.
+*
+* Given and/or returned:
+* prj->flag SIN, or -SIN if prj->flag is given < 0.
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "SIN"
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->w[0] 1/r0
+* prj->w[1] xi**2 + eta**2
+* prj->w[2] xi**2 + eta**2 + 1
+* prj->w[3] xi**2 + eta**2 - 1
+* prj->astPRJfwd Pointer to astSINfwd().
+* prj->astPRJrev Pointer to astSINrev().
+*===========================================================================*/
+
+int astSINset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "SIN");
+ prj->flag = icopysign(WCS__SIN, prj->flag);
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ prj->w[0] = 1.0/prj->r0;
+ prj->w[1] = prj->p[1]*prj->p[1] + prj->p[2]*prj->p[2];
+ prj->w[2] = prj->w[1] + 1.0;
+ prj->w[3] = prj->w[1] - 1.0;
+
+ prj->astPRJfwd = astSINfwd;
+ prj->astPRJrev = astSINrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astSINfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double cphi, cthe, sphi, t, z;
+
+ if (abs(prj->flag) != WCS__SIN) {
+ if (astSINset(prj)) return 1;
+ }
+
+ t = (90.0 - fabs(theta))*D2R;
+ if (t < 1.0e-5) {
+ if (theta > 0.0) {
+ z = t*t/2.0;
+ } else {
+ z = 2.0 - t*t/2.0;
+ }
+ cthe = t;
+ } else {
+ z = 1.0 - astSind(theta);
+ cthe = astCosd(theta);
+ }
+
+ cphi = astCosd(phi);
+ sphi = astSind(phi);
+ *x = prj->r0*(cthe*sphi + prj->p[1]*z);
+ *y = -prj->r0*(cthe*cphi - prj->p[2]*z);
+
+ /* Validate this solution. */
+ if (prj->flag > 0) {
+ if (prj->w[1] == 0.0) {
+ /* Orthographic projection. */
+ if (theta < 0.0) {
+ return 2;
+ }
+ } else {
+ /* "Synthesis" projection. */
+ t = -astATand(prj->p[1]*sphi - prj->p[2]*cphi);
+ if (theta < t) {
+ return 2;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astSINrev (x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ const double tol = 1.0e-13;
+ double a, b, c, d, r2, sth1, sth2, sthe, sxy, x0, x1, xp, y0, y1, yp, z;
+
+ if (abs(prj->flag) != WCS__SIN) {
+ if (astSINset(prj)) return 1;
+ }
+
+ /* Compute intermediaries. */
+ x0 = x*prj->w[0];
+ y0 = y*prj->w[0];
+ r2 = x0*x0 + y0*y0;
+
+ if (prj->w[1] == 0.0) {
+ /* Orthographic projection. */
+ if (r2 != 0.0) {
+ *phi = astATan2d(x0, -y0);
+ } else {
+ *phi = 0.0;
+ }
+
+ if (r2 < 0.5) {
+ *theta = astACosd(sqrt(r2));
+ } else if (r2 <= 1.0) {
+ *theta = astASind(sqrt(1.0 - r2));
+ } else {
+ return 2;
+ }
+
+ } else {
+ /* "Synthesis" projection. */
+ x1 = prj->p[1];
+ y1 = prj->p[2];
+ sxy = x0*x1 + y0*y1;
+
+ if (r2 < 1.0e-10) {
+ /* Use small angle formula. */
+ z = r2/2.0;
+ *theta = 90.0 - R2D*sqrt(r2/(1.0 + sxy));
+
+ } else {
+ a = prj->w[2];
+ b = sxy - prj->w[1];
+ c = r2 - sxy - sxy + prj->w[3];
+ d = b*b - a*c;
+
+ /* Check for a solution. */
+ if (d < 0.0) {
+ return 2;
+ }
+ d = sqrt(d);
+
+ /* Choose solution closest to pole. */
+ sth1 = (-b + d)/a;
+ sth2 = (-b - d)/a;
+ sthe = (sth1 > sth2) ? sth1 : sth2;
+ if (sthe > 1.0) {
+ if (sthe-1.0 < tol) {
+ sthe = 1.0;
+ } else {
+ sthe = (sth1 < sth2) ? sth1 : sth2;
+ }
+ }
+
+ if (sthe < -1.0) {
+ if (sthe+1.0 > -tol) {
+ sthe = -1.0;
+ }
+ }
+
+ if (sthe > 1.0 || sthe < -1.0) {
+ return 2;
+ }
+
+ *theta = astASind(sthe);
+ z = 1.0 - sthe;
+ }
+
+ xp = -y0 + prj->p[2]*z;
+ yp = x0 - prj->p[1]*z;
+ if (xp == 0.0 && yp == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(yp,xp);
+ }
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* ARC: zenithal/azimuthal equidistant projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "ARC"
+* prj->flag ARC
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->w[0] r0*(pi/180)
+* prj->w[1] (180/pi)/r0
+* prj->astPRJfwd Pointer to astARCfwd().
+* prj->astPRJrev Pointer to astARCrev().
+*===========================================================================*/
+
+int astARCset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "ARC");
+ prj->flag = WCS__ARC;
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astARCfwd;
+ prj->astPRJrev = astARCrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astARCfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double r;
+
+ if (prj->flag != WCS__ARC) {
+ if (astARCset(prj)) return 1;
+ }
+
+ r = prj->w[0]*(90.0 - theta);
+ *x = r*astSind(phi);
+ *y = -r*astCosd(phi);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astARCrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double r;
+
+ if (prj->flag != WCS__ARC) {
+ if (astARCset(prj)) return 1;
+ }
+
+ r = sqrt(x*x + y*y);
+ if (r == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(x, -y);
+ }
+ *theta = 90.0 - r*prj->w[1];
+
+ return 0;
+}
+
+/*============================================================================
+* ZPN: zenithal/azimuthal polynomial projection.
+*
+* Given:
+* prj->p[0:WCSLIB_MXPAR-1] Polynomial coefficients.
+*
+* Given and/or returned:
+* prj->flag ZPN, or -ZPN if prj->flag is given < 0.
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "ZPN"
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->n Degree of the polynomial, N.
+* prj->w[0] Co-latitude of the first point of inflection (N > 2).
+* prj->w[1] Radius of the first point of inflection (N > 2).
+* prj->astPRJfwd Pointer to astZPNfwd().
+* prj->astPRJrev Pointer to astZPNrev().
+*===========================================================================*/
+
+int astZPNset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ int i, j, k, plen;
+ double d, d1, d2, r, zd, zd1, zd2;
+ const double tol = 1.0e-13;
+
+ strcpy(prj->code, "ZPN");
+ prj->flag = icopysign(WCS__ZPN, prj->flag);
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ /* Find the highest non-zero coefficient. */
+ plen = astSizeOf( prj->p )/sizeof( double );
+ for (k = plen-1; k >= 0 && prj->p[k] == 0.0; k--);
+ if (k < 0) return 1;
+
+ prj->n = k;
+
+ if (k >= 3) {
+ /* Find the point of inflection closest to the pole. */
+ zd1 = 0.0;
+ d1 = prj->p[1];
+ if (d1 <= 0.0) {
+ return 1;
+ }
+
+ /* Find the point where the derivative first goes negative. */
+ for (i = 0; i < 180; i++) {
+ zd2 = i*D2R;
+ d2 = 0.0;
+ for (j = k; j > 0; j--) {
+ d2 = d2*zd2 + j*prj->p[j];
+ }
+
+ if (d2 <= 0.0) break;
+ zd1 = zd2;
+ d1 = d2;
+ }
+
+ if (i == 180) {
+ /* No negative derivative -> no point of inflection. */
+ zd = PI;
+ } else {
+ /* Find where the derivative is zero. */
+ for (i = 1; i <= 10; i++) {
+ zd = zd1 - d1*(zd2-zd1)/(d2-d1);
+
+ d = 0.0;
+ for (j = k; j > 0; j--) {
+ d = d*zd + j*prj->p[j];
+ }
+
+ if (fabs(d) < tol) break;
+
+ if (d < 0.0) {
+ zd2 = zd;
+ d2 = d;
+ } else {
+ zd1 = zd;
+ d1 = d;
+ }
+ }
+ }
+
+ r = 0.0;
+ for (j = k; j >= 0; j--) {
+ r = r*zd + prj->p[j];
+ }
+ prj->w[0] = zd;
+ prj->w[1] = r;
+ }
+
+ prj->astPRJfwd = astZPNfwd;
+ prj->astPRJrev = astZPNrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astZPNfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ int j;
+ double r, s;
+
+ if (abs(prj->flag) != WCS__ZPN) {
+ if (astZPNset(prj)) return 1;
+ }
+
+ s = (90.0 - theta)*D2R;
+
+ r = 0.0;
+ for (j = prj->n; j >= 0; j--) {
+ r = r*s + prj->p[j];
+ }
+ r = prj->r0*r;
+
+ *x = r*astSind(phi);
+ *y = -r*astCosd(phi);
+
+ if (prj->flag > 0 && s > prj->w[0] && prj->n > 2 ) {
+ return 2;
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astZPNrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ int i, j, k;
+ double a, b, c, d, lambda, r, r1, r2, rt, zd, zd1, zd2;
+ const double tol = 1.0e-13;
+
+ if (abs(prj->flag) != WCS__ZPN) {
+ if (astZPNset(prj)) return 1;
+ }
+
+ k = prj->n;
+
+ r = sqrt(x*x + y*y)/prj->r0;
+
+ if (k < 1) {
+ /* Constant - no solution. */
+ return 1;
+ } else if (k == 1) {
+ /* Linear. */
+ zd = (r - prj->p[0])/prj->p[1];
+ } else if (k == 2) {
+ /* Quadratic. */
+ a = prj->p[2];
+ b = prj->p[1];
+ c = prj->p[0] - r;
+
+ d = b*b - 4.0*a*c;
+ if (d < 0.0) {
+ return 2;
+ }
+ d = sqrt(d);
+
+ /* Choose solution closest to pole. */
+ zd1 = (-b + d)/(2.0*a);
+ zd2 = (-b - d)/(2.0*a);
+ zd = (zd1<zd2) ? zd1 : zd2;
+ if (zd < -tol) zd = (zd1>zd2) ? zd1 : zd2;
+ if (zd < 0.0) {
+ if (zd < -tol) {
+ return 2;
+ }
+ zd = 0.0;
+ } else if (zd > PI) {
+ if (zd > PI+tol) {
+ return 2;
+ }
+ zd = PI;
+ }
+ } else {
+ /* Higher order - solve iteratively. */
+ zd1 = 0.0;
+ r1 = prj->p[0];
+ zd2 = prj->w[0];
+ r2 = prj->w[1];
+
+ if (r < r1) {
+ if (r < r1-tol) {
+ return 2;
+ }
+ zd = zd1;
+ } else if (r > r2) {
+ if (r > r2+tol) {
+ return 2;
+ }
+ zd = zd2;
+ } else {
+ /* Disect the interval. */
+ for (j = 0; j < 100; j++) {
+ lambda = (r2 - r)/(r2 - r1);
+ if (lambda < 0.1) {
+ lambda = 0.1;
+ } else if (lambda > 0.9) {
+ lambda = 0.9;
+ }
+
+ zd = zd2 - lambda*(zd2 - zd1);
+
+ rt = 0.0;
+ for (i = k; i >= 0; i--) {
+ rt = (rt * zd) + prj->p[i];
+ }
+
+ if (rt < r) {
+ if (r-rt < tol) break;
+ r1 = rt;
+ zd1 = zd;
+ } else {
+ if (rt-r < tol) break;
+ r2 = rt;
+ zd2 = zd;
+ }
+
+ if (fabs(zd2-zd1) < tol) break;
+ }
+ }
+ }
+
+ if (r == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(x, -y);
+ }
+ *theta = 90.0 - zd*R2D;
+
+ return 0;
+}
+
+/*============================================================================
+* ZEA: zenithal/azimuthal equal area projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "ZEA"
+* prj->flag ZEA
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->w[0] 2*r0
+* prj->w[1] 1/(2*r0)
+* prj->astPRJfwd Pointer to astZEAfwd().
+* prj->astPRJrev Pointer to astZEArev().
+*===========================================================================*/
+
+int astZEAset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "ZEA");
+ prj->flag = WCS__ZEA;
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 360.0/PI;
+ prj->w[1] = PI/360.0;
+ } else {
+ prj->w[0] = 2.0*prj->r0;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astZEAfwd;
+ prj->astPRJrev = astZEArev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astZEAfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double r;
+
+ if (prj->flag != WCS__ZEA) {
+ if (astZEAset(prj)) return 1;
+ }
+
+ r = prj->w[0]*astSind((90.0 - theta)/2.0);
+ *x = r*astSind(phi);
+ *y = -r*astCosd(phi);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astZEArev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double r, s;
+ const double tol = 1.0e-12;
+
+ if (prj->flag != WCS__ZEA) {
+ if (astZEAset(prj)) return 1;
+ }
+
+ r = sqrt(x*x + y*y);
+ if (r == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(x, -y);
+ }
+
+ s = r*prj->w[1];
+ if (fabs(s) > 1.0) {
+ if (fabs(r - prj->w[0]) < tol) {
+ *theta = -90.0;
+ } else {
+ return 2;
+ }
+ } else {
+ *theta = 90.0 - 2.0*astASind(s);
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* AIR: Airy's projection.
+*
+* Given:
+* prj->p[1] Latitude theta_b within which the error is minimized, in
+* degrees.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "AIR"
+* prj->flag AIR
+* prj->phi0 0.0
+* prj->theta0 90.0
+* prj->w[0] 2*r0
+* prj->w[1] ln(cos(xi_b))/tan(xi_b)**2, where xi_b = (90-theta_b)/2
+* prj->w[2] 1/2 - prj->w[1]
+* prj->w[3] 2*r0*prj->w[2]
+* prj->w[4] tol, cutoff for using small angle approximation, in
+* radians.
+* prj->w[5] prj->w[2]*tol
+* prj->w[6] (180/pi)/prj->w[2]
+* prj->astPRJfwd Pointer to astAIRfwd().
+* prj->astPRJrev Pointer to astAIRrev().
+*===========================================================================*/
+
+int astAIRset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ const double tol = 1.0e-4;
+ double cxi;
+
+ strcpy(prj->code, "AIR");
+ prj->flag = WCS__AIR;
+ prj->phi0 = 0.0;
+ prj->theta0 = 90.0;
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ prj->w[0] = 2.0*prj->r0;
+ if (prj->p[1] == 90.0) {
+ prj->w[1] = -0.5;
+ prj->w[2] = 1.0;
+ } else if (prj->p[1] > -90.0) {
+ cxi = astCosd((90.0 - prj->p[1])/2.0);
+ prj->w[1] = log(cxi)*(cxi*cxi)/(1.0-cxi*cxi);
+ prj->w[2] = 0.5 - prj->w[1];
+ } else {
+ return 1;
+ }
+
+ prj->w[3] = prj->w[0] * prj->w[2];
+ prj->w[4] = tol;
+ prj->w[5] = prj->w[2]*tol;
+ prj->w[6] = R2D/prj->w[2];
+
+ prj->astPRJfwd = astAIRfwd;
+ prj->astPRJrev = astAIRrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astAIRfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double cxi, r, txi, xi;
+
+ if (prj->flag != WCS__AIR) {
+ if (astAIRset(prj)) return 1;
+ }
+
+ if (theta == 90.0) {
+ r = 0.0;
+ } else if (theta > -90.0) {
+ xi = D2R*(90.0 - theta)/2.0;
+ if (xi < prj->w[4]) {
+ r = xi*prj->w[3];
+ } else {
+ cxi = astCosd((90.0 - theta)/2.0);
+ txi = sqrt(1.0-cxi*cxi)/cxi;
+ r = -prj->w[0]*(log(cxi)/txi + prj->w[1]*txi);
+ }
+ } else {
+ return 2;
+ }
+
+ *x = r*astSind(phi);
+ *y = -r*astCosd(phi);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astAIRrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ int j;
+ double cxi, lambda, r, r1, r2, rt, txi, x1, x2, xi;
+ const double tol = 1.0e-12;
+
+ if (prj->flag != WCS__AIR) {
+ if (astAIRset(prj)) return 1;
+ }
+
+ r = sqrt(x*x + y*y)/prj->w[0];
+
+ if (r == 0.0) {
+ xi = 0.0;
+ } else if (r < prj->w[5]) {
+ xi = r*prj->w[6];
+ } else {
+ /* Find a solution interval. */
+ x1 = 1.0;
+ r1 = 0.0;
+ for (j = 0; j < 30; j++) {
+ x2 = x1/2.0;
+ txi = sqrt(1.0-x2*x2)/x2;
+ r2 = -(log(x2)/txi + prj->w[1]*txi);
+
+ if (r2 >= r) break;
+ x1 = x2;
+ r1 = r2;
+ }
+ if (j == 30) return 2;
+
+ for (j = 0; j < 100; j++) {
+ /* Weighted division of the interval. */
+ lambda = (r2-r)/(r2-r1);
+ if (lambda < 0.1) {
+ lambda = 0.1;
+ } else if (lambda > 0.9) {
+ lambda = 0.9;
+ }
+ cxi = x2 - lambda*(x2-x1);
+
+ txi = sqrt(1.0-cxi*cxi)/cxi;
+ rt = -(log(cxi)/txi + prj->w[1]*txi);
+
+ if (rt < r) {
+ if (r-rt < tol) break;
+ r1 = rt;
+ x1 = cxi;
+ } else {
+ if (rt-r < tol) break;
+ r2 = rt;
+ x2 = cxi;
+ }
+ }
+ if (j == 100) return 2;
+
+ xi = astACosd(cxi);
+ }
+
+ if (r == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(x, -y);
+ }
+ *theta = 90.0 - 2.0*xi;
+
+ return 0;
+}
+
+/*============================================================================
+* CYP: cylindrical perspective projection.
+*
+* Given:
+* prj->p[1] Distance of point of projection from the centre of the
+* generating sphere, mu, in units of r0.
+* prj->p[2] Radius of the cylinder of projection, lambda, in units of
+* r0.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "CYP"
+* prj->flag CYP
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*lambda*(pi/180)
+* prj->w[1] (180/pi)/(r0*lambda)
+* prj->w[2] r0*(mu + lambda)
+* prj->w[3] 1/(r0*(mu + lambda))
+* prj->astPRJfwd Pointer to astCYPfwd().
+* prj->astPRJrev Pointer to astCYPrev().
+*===========================================================================*/
+
+int astCYPset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "CYP");
+ prj->flag = WCS__CYP;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+
+ prj->w[0] = prj->p[2];
+ if (prj->w[0] == 0.0) {
+ return 1;
+ }
+
+ prj->w[1] = 1.0/prj->w[0];
+
+ prj->w[2] = R2D*(prj->p[1] + prj->p[2]);
+ if (prj->w[2] == 0.0) {
+ return 1;
+ }
+
+ prj->w[3] = 1.0/prj->w[2];
+ } else {
+ prj->w[0] = prj->r0*prj->p[2]*D2R;
+ if (prj->w[0] == 0.0) {
+ return 1;
+ }
+
+ prj->w[1] = 1.0/prj->w[0];
+
+ prj->w[2] = prj->r0*(prj->p[1] + prj->p[2]);
+ if (prj->w[2] == 0.0) {
+ return 1;
+ }
+
+ prj->w[3] = 1.0/prj->w[2];
+ }
+
+ prj->astPRJfwd = astCYPfwd;
+ prj->astPRJrev = astCYPrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCYPfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double s;
+
+ if (prj->flag != WCS__CYP) {
+ if (astCYPset(prj)) return 1;
+ }
+
+ s = prj->p[1] + astCosd(theta);
+ if (s == 0.0) {
+ return 2;
+ }
+
+ *x = prj->w[0]*phi;
+ *y = prj->w[2]*astSind(theta)/s;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCYPrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double eta;
+ double a;
+ const double tol = 1.0e-13;
+
+ if (prj->flag != WCS__CYP) {
+ if (astCYPset(prj)) return 1;
+ }
+
+ *phi = x*prj->w[1];
+ eta = y*prj->w[3];
+
+ a = eta*prj->p[1]/sqrt(eta*eta+1.0);
+ if( fabs( a ) < 1.0 ) {
+ *theta = astATan2d(eta,1.0) + astASind( a );
+
+ } else if( fabs( a ) < 1.0 + tol ) {
+ if( a > 0.0 ){
+ *theta = astATan2d(eta,1.0) + 90.0;
+ } else {
+ *theta = astATan2d(eta,1.0) - 90.0;
+ }
+
+ } else {
+ return 2;
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* CEA: cylindrical equal area projection.
+*
+* Given:
+* prj->p[1] Square of the cosine of the latitude at which the
+* projection is conformal, lambda.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "CEA"
+* prj->flag CEA
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/180)
+* prj->w[1] (180/pi)/r0
+* prj->w[2] r0/lambda
+* prj->w[3] lambda/r0
+* prj->astPRJfwd Pointer to astCEAfwd().
+* prj->astPRJrev Pointer to astCEArev().
+*===========================================================================*/
+
+int astCEAset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "CEA");
+ prj->flag = WCS__CEA;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ if (prj->p[1] <= 0.0 || prj->p[1] > 1.0) {
+ return 1;
+ }
+ prj->w[2] = prj->r0/prj->p[1];
+ prj->w[3] = prj->p[1]/prj->r0;
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = R2D/prj->r0;
+ if (prj->p[1] <= 0.0 || prj->p[1] > 1.0) {
+ return 1;
+ }
+ prj->w[2] = prj->r0/prj->p[1];
+ prj->w[3] = prj->p[1]/prj->r0;
+ }
+
+ prj->astPRJfwd = astCEAfwd;
+ prj->astPRJrev = astCEArev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCEAfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ if (prj->flag != WCS__CEA) {
+ if (astCEAset(prj)) return 1;
+ }
+
+ *x = prj->w[0]*phi;
+ *y = prj->w[2]*astSind(theta);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCEArev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double s;
+ const double tol = 1.0e-13;
+
+ if (prj->flag != WCS__CEA) {
+ if (astCEAset(prj)) return 1;
+ }
+
+ s = y*prj->w[3];
+ if (fabs(s) > 1.0) {
+ if (fabs(s) > 1.0+tol) {
+ return 2;
+ }
+ s = copysign(1.0,s);
+ }
+
+ *phi = x*prj->w[1];
+ *theta = astASind(s);
+
+ return 0;
+}
+
+/*============================================================================
+* CAR: Cartesian projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "CAR"
+* prj->flag CAR
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/180)
+* prj->w[1] (180/pi)/r0
+* prj->astPRJfwd Pointer to astCARfwd().
+* prj->astPRJrev Pointer to astCARrev().
+*===========================================================================*/
+
+int astCARset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "CAR");
+ prj->flag = WCS__CAR;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astCARfwd;
+ prj->astPRJrev = astCARrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCARfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ if (prj->flag != WCS__CAR) {
+ if (astCARset(prj)) return 1;
+ }
+
+ *x = prj->w[0]*phi;
+ *y = prj->w[0]*theta;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCARrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ if (prj->flag != WCS__CAR) {
+ if (astCARset(prj)) return 1;
+ }
+
+ *phi = prj->w[1]*x;
+ *theta = prj->w[1]*y;
+
+ return 0;
+}
+
+/*============================================================================
+* MER: Mercator's projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "MER"
+* prj->flag MER
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/180)
+* prj->w[1] (180/pi)/r0
+* prj->astPRJfwd Pointer to astMERfwd().
+* prj->astPRJrev Pointer to astMERrev().
+*===========================================================================*/
+
+int astMERset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "MER");
+ prj->flag = WCS__MER;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astMERfwd;
+ prj->astPRJrev = astMERrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astMERfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ if (prj->flag != WCS__MER) {
+ if (astMERset(prj)) return 1;
+ }
+
+ if (theta <= -90.0 || theta >= 90.0) {
+ return 2;
+ }
+
+ *x = prj->w[0]*phi;
+ *y = prj->r0*log(astTand((90.0+theta)/2.0));
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astMERrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ if (prj->flag != WCS__MER) {
+ if (astMERset(prj)) return 1;
+ }
+
+ *phi = x*prj->w[1];
+ *theta = 2.0*astATand(exp(y/prj->r0)) - 90.0;
+
+ return 0;
+}
+
+/*============================================================================
+* SFL: Sanson-Flamsteed ("global sinusoid") projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "SFL"
+* prj->flag SFL
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/180)
+* prj->w[1] (180/pi)/r0
+* prj->astPRJfwd Pointer to astSFLfwd().
+* prj->astPRJrev Pointer to astSFLrev().
+*===========================================================================*/
+
+int astSFLset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "SFL");
+ prj->flag = WCS__SFL;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astSFLfwd;
+ prj->astPRJrev = astSFLrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astSFLfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ if (prj->flag != WCS__SFL) {
+ if (astSFLset(prj)) return 1;
+ }
+
+ *x = prj->w[0]*phi*astCosd(theta);
+ *y = prj->w[0]*theta;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astSFLrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double w;
+
+ if (prj->flag != WCS__SFL) {
+ if (astSFLset(prj)) return 1;
+ }
+
+ w = cos(y/prj->r0);
+ if (w == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = x*prj->w[1]/cos(y/prj->r0);
+ }
+ *theta = y*prj->w[1];
+
+ return 0;
+}
+
+/*============================================================================
+* PAR: parabolic projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "PAR"
+* prj->flag PAR
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/180)
+* prj->w[1] (180/pi)/r0
+* prj->w[2] pi*r0
+* prj->w[3] 1/(pi*r0)
+* prj->astPRJfwd Pointer to astPARfwd().
+* prj->astPRJrev Pointer to astPARrev().
+*===========================================================================*/
+
+int astPARset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "PAR");
+ prj->flag = WCS__PAR;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ prj->w[2] = 180.0;
+ prj->w[3] = 1.0/prj->w[2];
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = 1.0/prj->w[0];
+ prj->w[2] = PI*prj->r0;
+ prj->w[3] = 1.0/prj->w[2];
+ }
+
+ prj->astPRJfwd = astPARfwd;
+ prj->astPRJrev = astPARrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astPARfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double s;
+
+ if (prj->flag != WCS__PAR) {
+ if (astPARset(prj)) return 1;
+ }
+
+ s = astSind(theta/3.0);
+ *x = prj->w[0]*phi*(1.0 - 4.0*s*s);
+ *y = prj->w[2]*s;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astPARrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double s, t;
+
+ if (prj->flag != WCS__PAR) {
+ if (astPARset(prj)) return 1;
+ }
+
+ s = y*prj->w[3];
+ if (s > 1.0 || s < -1.0) {
+ return 2;
+ }
+
+ t = 1.0 - 4.0*s*s;
+ if (t == 0.0) {
+ if (x == 0.0) {
+ *phi = 0.0;
+ } else {
+ return 2;
+ }
+ } else {
+ *phi = prj->w[1]*x/t;
+ }
+
+ *theta = 3.0*astASind(s);
+
+ return 0;
+}
+
+/*============================================================================
+* MOL: Mollweide's projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "MOL"
+* prj->flag MOL
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] sqrt(2)*r0
+* prj->w[1] sqrt(2)*r0/90
+* prj->w[2] 1/(sqrt(2)*r0)
+* prj->w[3] 90/r0
+* prj->astPRJfwd Pointer to astMOLfwd().
+* prj->astPRJrev Pointer to astMOLrev().
+*===========================================================================*/
+
+int astMOLset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "MOL");
+ prj->flag = WCS__MOL;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ prj->w[0] = SQRT2*prj->r0;
+ prj->w[1] = prj->w[0]/90.0;
+ prj->w[2] = 1.0/prj->w[0];
+ prj->w[3] = 90.0/prj->r0;
+ prj->w[4] = 2.0/PI;
+
+ prj->astPRJfwd = astMOLfwd;
+ prj->astPRJrev = astMOLrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astMOLfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ int j;
+ double gamma, resid, u, v, v0, v1;
+ const double tol = 1.0e-13;
+
+ if (prj->flag != WCS__MOL) {
+ if (astMOLset(prj)) return 1;
+ }
+
+ if (fabs(theta) == 90.0) {
+ *x = 0.0;
+ *y = copysign(prj->w[0],theta);
+ } else if (theta == 0.0) {
+ *x = prj->w[1]*phi;
+ *y = 0.0;
+ } else {
+ u = PI*astSind(theta);
+ v0 = -PI;
+ v1 = PI;
+ v = u;
+ for (j = 0; j < 100; j++) {
+ resid = (v - u) + sin(v);
+ if (resid < 0.0) {
+ if (resid > -tol) break;
+ v0 = v;
+ } else {
+ if (resid < tol) break;
+ v1 = v;
+ }
+ v = (v0 + v1)/2.0;
+ }
+
+ gamma = v/2.0;
+ *x = prj->w[1]*phi*cos(gamma);
+ *y = prj->w[0]*sin(gamma);
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astMOLrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double s, y0, z;
+ const double tol = 1.0e-12;
+
+ if (prj->flag != WCS__MOL) {
+ if (astMOLset(prj)) return 1;
+ }
+
+ y0 = y/prj->r0;
+ s = 2.0 - y0*y0;
+ if (s <= tol) {
+ if (s < -tol) {
+ return 2;
+ }
+ s = 0.0;
+
+ if (fabs(x) > tol) {
+ return 2;
+ }
+ *phi = 0.0;
+ } else {
+ s = sqrt(s);
+ *phi = prj->w[3]*x/s;
+ }
+
+ z = y*prj->w[2];
+ if (fabs(z) > 1.0) {
+ if (fabs(z) > 1.0+tol) {
+ return 2;
+ }
+ z = copysign(1.0,z) + y0*s/PI;
+ } else {
+ z = asin(z)*prj->w[4] + y0*s/PI;
+ }
+
+ if (fabs(z) > 1.0) {
+ if (fabs(z) > 1.0+tol) {
+ return 2;
+ }
+ z = copysign(1.0,z);
+ }
+
+ *theta = astASind(z);
+
+ return 0;
+}
+
+/*============================================================================
+* AIT: Hammer-Aitoff projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "AIT"
+* prj->flag AIT
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] 2*r0**2
+* prj->w[1] 1/(2*r0)**2
+* prj->w[2] 1/(4*r0)**2
+* prj->w[3] 1/(2*r0)
+* prj->astPRJfwd Pointer to astAITfwd().
+* prj->astPRJrev Pointer to astAITrev().
+*===========================================================================*/
+
+int astAITset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "AIT");
+ prj->flag = WCS__AIT;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ prj->w[0] = 2.0*prj->r0*prj->r0;
+ prj->w[1] = 1.0/(2.0*prj->w[0]);
+ prj->w[2] = prj->w[1]/4.0;
+ prj->w[3] = 1.0/(2.0*prj->r0);
+
+ prj->astPRJfwd = astAITfwd;
+ prj->astPRJrev = astAITrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astAITfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double cthe, w;
+
+ if (prj->flag != WCS__AIT) {
+ if (astAITset(prj)) return 1;
+ }
+
+ cthe = astCosd(theta);
+ w = sqrt(prj->w[0]/(1.0 + cthe*astCosd(phi/2.0)));
+ *x = 2.0*w*cthe*astSind(phi/2.0);
+ *y = w*astSind(theta);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astAITrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double s, u, xp, yp, z;
+ const double tol = 1.0e-13;
+
+ if (prj->flag != WCS__AIT) {
+ if (astAITset(prj)) return 1;
+ }
+
+ u = 1.0 - x*x*prj->w[2] - y*y*prj->w[1];
+ if (u < 0.0) {
+ if (u < -tol) {
+ return 2;
+ }
+
+ u = 0.0;
+ }
+
+ z = sqrt(u);
+ s = z*y/prj->r0;
+ if (fabs(s) > 1.0) {
+ if (fabs(s) > 1.0+tol) {
+ return 2;
+ }
+ s = copysign(1.0,s);
+ }
+
+ xp = 2.0*z*z - 1.0;
+ yp = z*x*prj->w[3];
+ if (xp == 0.0 && yp == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = 2.0*astATan2d(yp, xp);
+ }
+ *theta = astASind(s);
+
+ return 0;
+}
+
+/*============================================================================
+* COP: conic perspective projection.
+*
+* Given:
+* prj->p[1] sigma = (theta2+theta1)/2
+* prj->p[2] delta = (theta2-theta1)/2, where theta1 and theta2 are the
+* latitudes of the standard parallels, in degrees.
+*
+* Given and/or returned:
+* prj->flag COP, or -COP if prj->flag is given < 0.
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "COP"
+* prj->phi0 0.0
+* prj->theta0 sigma
+* prj->w[0] C = sin(sigma)
+* prj->w[1] 1/C
+* prj->w[2] Y0 = r0*cos(delta)*cot(sigma)
+* prj->w[3] r0*cos(delta)
+* prj->w[4] 1/(r0*cos(delta)
+* prj->w[5] cot(sigma)
+* prj->astPRJfwd Pointer to astCOPfwd().
+* prj->astPRJrev Pointer to astCOPrev().
+*===========================================================================*/
+
+int astCOPset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "COP");
+ prj->flag = icopysign(WCS__COP, prj->flag);
+ prj->phi0 = 0.0;
+ prj->theta0 = prj->p[1];
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ prj->w[0] = astSind(prj->p[1]);
+ if (prj->w[0] == 0.0) {
+ return 1;
+ }
+
+ prj->w[1] = 1.0/prj->w[0];
+
+ prj->w[3] = prj->r0*astCosd(prj->p[2]);
+ if (prj->w[3] == 0.0) {
+ return 1;
+ }
+
+ prj->w[4] = 1.0/prj->w[3];
+ prj->w[5] = 1.0/astTand(prj->p[1]);
+
+ prj->w[2] = prj->w[3]*prj->w[5];
+
+ prj->astPRJfwd = astCOPfwd;
+ prj->astPRJrev = astCOPrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCOPfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double a, r, s, t;
+
+ if (abs(prj->flag) != WCS__COP) {
+ if (astCOPset(prj)) return 1;
+ }
+
+ t = theta - prj->p[1];
+ s = astCosd(t);
+ if (s == 0.0) {
+ return 2;
+ }
+
+ a = prj->w[0]*phi;
+ r = prj->w[2] - prj->w[3]*astSind(t)/s;
+
+ *x = r*astSind(a);
+ *y = prj->w[2] - r*astCosd(a);
+
+ if (prj->flag > 0 && r*prj->w[0] < 0.0) {
+ return 2;
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCOPrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double a, dy, r;
+
+ if (abs(prj->flag) != WCS__COP) {
+ if (astCOPset(prj)) return 1;
+ }
+
+ dy = prj->w[2] - y;
+ r = sqrt(x*x + dy*dy);
+ if (prj->p[1] < 0.0) r = -r;
+
+ if (r == 0.0) {
+ a = 0.0;
+ } else {
+ a = astATan2d(x/r, dy/r);
+ }
+
+ *phi = a*prj->w[1];
+ *theta = prj->p[1] + astATand(prj->w[5] - r*prj->w[4]);
+
+ return 0;
+}
+
+/*============================================================================
+* COE: conic equal area projection.
+*
+* Given:
+* prj->p[1] sigma = (theta2+theta1)/2
+* prj->p[2] delta = (theta2-theta1)/2, where theta1 and theta2 are the
+* latitudes of the standard parallels, in degrees.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "COE"
+* prj->flag COE
+* prj->phi0 0.0
+* prj->theta0 sigma
+* prj->w[0] C = (sin(theta1) + sin(theta2))/2
+* prj->w[1] 1/C
+* prj->w[2] Y0 = chi*sqrt(psi - 2C*astSind(sigma))
+* prj->w[3] chi = r0/C
+* prj->w[4] psi = 1 + sin(theta1)*sin(theta2)
+* prj->w[5] 2C
+* prj->w[6] (1 + sin(theta1)*sin(theta2))*(r0/C)**2
+* prj->w[7] C/(2*r0**2)
+* prj->w[8] chi*sqrt(psi + 2C)
+* prj->astPRJfwd Pointer to astCOEfwd().
+* prj->astPRJrev Pointer to astCOErev().
+*===========================================================================*/
+
+int astCOEset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ double theta1, theta2;
+
+ strcpy(prj->code, "COE");
+ prj->flag = WCS__COE;
+ prj->phi0 = 0.0;
+ prj->theta0 = prj->p[1];
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ theta1 = prj->p[1] - prj->p[2];
+ theta2 = prj->p[1] + prj->p[2];
+
+ prj->w[0] = (astSind(theta1) + astSind(theta2))/2.0;
+ if (prj->w[0] == 0.0) {
+ return 1;
+ }
+
+ prj->w[1] = 1.0/prj->w[0];
+
+ prj->w[3] = prj->r0/prj->w[0];
+ prj->w[4] = 1.0 + astSind(theta1)*astSind(theta2);
+ prj->w[5] = 2.0*prj->w[0];
+ prj->w[6] = prj->w[3]*prj->w[3]*prj->w[4];
+ prj->w[7] = 1.0/(2.0*prj->r0*prj->w[3]);
+ prj->w[8] = prj->w[3]*sqrt(prj->w[4] + prj->w[5]);
+
+ prj->w[2] = prj->w[3]*sqrt(prj->w[4] - prj->w[5]*astSind(prj->p[1]));
+
+ prj->astPRJfwd = astCOEfwd;
+ prj->astPRJrev = astCOErev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCOEfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double a, r;
+
+ if (prj->flag != WCS__COE) {
+ if (astCOEset(prj)) return 1;
+ }
+
+ a = phi*prj->w[0];
+ if (theta == -90.0) {
+ r = prj->w[8];
+ } else {
+ r = prj->w[3]*sqrt(prj->w[4] - prj->w[5]*astSind(theta));
+ }
+
+ *x = r*astSind(a);
+ *y = prj->w[2] - r*astCosd(a);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCOErev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double a, dy, r, w;
+ const double tol = 1.0e-12;
+
+ if (prj->flag != WCS__COE) {
+ if (astCOEset(prj)) return 1;
+ }
+
+ dy = prj->w[2] - y;
+ r = sqrt(x*x + dy*dy);
+ if (prj->p[1] < 0.0) r = -r;
+
+ if (r == 0.0) {
+ a = 0.0;
+ } else {
+ a = astATan2d(x/r, dy/r);
+ }
+
+ *phi = a*prj->w[1];
+ if (fabs(r - prj->w[8]) < tol) {
+ *theta = -90.0;
+ } else {
+ w = (prj->w[6] - r*r)*prj->w[7];
+ if (fabs(w) > 1.0) {
+ if (fabs(w-1.0) < tol) {
+ *theta = 90.0;
+ } else if (fabs(w+1.0) < tol) {
+ *theta = -90.0;
+ } else {
+ return 2;
+ }
+ } else {
+ *theta = astASind(w);
+ }
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* COD: conic equidistant projection.
+*
+* Given:
+* prj->p[1] sigma = (theta2+theta1)/2
+* prj->p[2] delta = (theta2-theta1)/2, where theta1 and theta2 are the
+* latitudes of the standard parallels, in degrees.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "COD"
+* prj->flag COD
+* prj->phi0 0.0
+* prj->theta0 sigma
+* prj->w[0] C = r0*sin(sigma)*sin(delta)/delta
+* prj->w[1] 1/C
+* prj->w[2] Y0 = delta*cot(delta)*cot(sigma)
+* prj->w[3] Y0 + sigma
+* prj->astPRJfwd Pointer to astCODfwd().
+* prj->astPRJrev Pointer to astCODrev().
+*===========================================================================*/
+
+int astCODset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "COD");
+ prj->flag = WCS__COD;
+ prj->phi0 = 0.0;
+ prj->theta0 = prj->p[1];
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ if (prj->p[2] == 0.0) {
+ prj->w[0] = prj->r0*astSind(prj->p[1])*D2R;
+ } else {
+ prj->w[0] = prj->r0*astSind(prj->p[1])*astSind(prj->p[2])/prj->p[2];
+ }
+
+ if (prj->w[0] == 0.0) {
+ return 1;
+ }
+
+ prj->w[1] = 1.0/prj->w[0];
+ prj->w[2] = prj->r0*astCosd(prj->p[2])*astCosd(prj->p[1])/prj->w[0];
+ prj->w[3] = prj->w[2] + prj->p[1];
+
+ prj->astPRJfwd = astCODfwd;
+ prj->astPRJrev = astCODrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCODfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double a, r;
+
+ if (prj->flag != WCS__COD) {
+ if (astCODset(prj)) return 1;
+ }
+
+ a = prj->w[0]*phi;
+ r = prj->w[3] - theta;
+
+ *x = r*astSind(a);
+ *y = prj->w[2] - r*astCosd(a);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCODrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double a, dy, r;
+
+ if (prj->flag != WCS__COD) {
+ if (astCODset(prj)) return 1;
+ }
+
+ dy = prj->w[2] - y;
+ r = sqrt(x*x + dy*dy);
+ if (prj->p[1] < 0.0) r = -r;
+
+ if (r == 0.0) {
+ a = 0.0;
+ } else {
+ a = astATan2d(x/r, dy/r);
+ }
+
+ *phi = a*prj->w[1];
+ *theta = prj->w[3] - r;
+
+ return 0;
+}
+
+/*============================================================================
+* COO: conic orthomorphic projection.
+*
+* Given:
+* prj->p[1] sigma = (theta2+theta1)/2
+* prj->p[2] delta = (theta2-theta1)/2, where theta1 and theta2 are the
+* latitudes of the standard parallels, in degrees.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "COO"
+* prj->flag COO
+* prj->phi0 0.0
+* prj->theta0 sigma
+* prj->w[0] C = ln(cos(theta2)/cos(theta1))/ln(tan(tau2)/tan(tau1))
+* where tau1 = (90 - theta1)/2
+* tau2 = (90 - theta2)/2
+* prj->w[1] 1/C
+* prj->w[2] Y0 = psi*tan((90-sigma)/2)**C
+* prj->w[3] psi = (r0*cos(theta1)/C)/tan(tau1)**C
+* prj->w[4] 1/psi
+* prj->astPRJfwd Pointer to astCOOfwd().
+* prj->astPRJrev Pointer to astCOOrev().
+*===========================================================================*/
+
+int astCOOset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ double cos1, cos2, tan1, tan2, theta1, theta2;
+
+ strcpy(prj->code, "COO");
+ prj->flag = WCS__COO;
+ prj->phi0 = 0.0;
+ prj->theta0 = prj->p[1];
+
+ if (prj->r0 == 0.0) prj->r0 = R2D;
+
+ theta1 = prj->p[1] - prj->p[2];
+ theta2 = prj->p[1] + prj->p[2];
+
+ tan1 = astTand((90.0 - theta1)/2.0);
+ cos1 = astCosd(theta1);
+
+ if (theta1 == theta2) {
+ prj->w[0] = astSind(theta1);
+ } else {
+ tan2 = astTand((90.0 - theta2)/2.0);
+ cos2 = astCosd(theta2);
+ prj->w[0] = log(cos2/cos1)/log(tan2/tan1);
+ }
+ if (prj->w[0] == 0.0) {
+ return 1;
+ }
+
+ prj->w[1] = 1.0/prj->w[0];
+
+ prj->w[3] = prj->r0*(cos1/prj->w[0])/pow(tan1,prj->w[0]);
+ if (prj->w[3] == 0.0) {
+ return 1;
+ }
+ prj->w[2] = prj->w[3]*pow(astTand((90.0 - prj->p[1])/2.0),prj->w[0]);
+ prj->w[4] = 1.0/prj->w[3];
+
+ prj->astPRJfwd = astCOOfwd;
+ prj->astPRJrev = astCOOrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCOOfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double a, r;
+
+ if (prj->flag != WCS__COO) {
+ if (astCOOset(prj)) return 1;
+ }
+
+ a = prj->w[0]*phi;
+ if (theta == -90.0) {
+ if (prj->w[0] < 0.0) {
+ r = 0.0;
+ } else {
+ return 2;
+ }
+ } else {
+ r = prj->w[3]*pow(astTand((90.0 - theta)/2.0),prj->w[0]);
+ }
+
+ *x = r*astSind(a);
+ *y = prj->w[2] - r*astCosd(a);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCOOrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double a, dy, r;
+
+ if (prj->flag != WCS__COO) {
+ if (astCOOset(prj)) return 1;
+ }
+
+ dy = prj->w[2] - y;
+ r = sqrt(x*x + dy*dy);
+ if (prj->p[1] < 0.0) r = -r;
+
+ if (r == 0.0) {
+ a = 0.0;
+ } else {
+ a = astATan2d(x/r, dy/r);
+ }
+
+ *phi = a*prj->w[1];
+ if (r == 0.0) {
+ if (prj->w[0] < 0.0) {
+ *theta = -90.0;
+ } else {
+ return 2;
+ }
+ } else {
+ *theta = 90.0 - 2.0*astATand(pow(r*prj->w[4],prj->w[1]));
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* BON: Bonne's projection.
+*
+* Given:
+* prj->p[1] Bonne conformal latitude, theta1, in degrees.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "BON"
+* prj->flag BON
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[1] r0*pi/180
+* prj->w[2] Y0 = r0*(cot(theta1) + theta1*pi/180)
+* prj->astPRJfwd Pointer to astBONfwd().
+* prj->astPRJrev Pointer to astBONrev().
+*===========================================================================*/
+
+int astBONset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "BON");
+ prj->flag = WCS__BON;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[1] = 1.0;
+ prj->w[2] = prj->r0*astCosd(prj->p[1])/astSind(prj->p[1]) + prj->p[1];
+ } else {
+ prj->w[1] = prj->r0*D2R;
+ prj->w[2] = prj->r0*(astCosd(prj->p[1])/astSind(prj->p[1]) + prj->p[1]*D2R);
+ }
+
+ prj->astPRJfwd = astBONfwd;
+ prj->astPRJrev = astBONrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astBONfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double a, r;
+
+ if (prj->p[1] == 0.0) {
+ /* Sanson-Flamsteed. */
+ return astSFLfwd(phi, theta, prj, x, y);
+ }
+
+ if (prj->flag != WCS__BON) {
+ if (astBONset(prj)) return 1;
+ }
+
+ r = prj->w[2] - theta*prj->w[1];
+ a = prj->r0*phi*astCosd(theta)/r;
+
+ *x = r*astSind(a);
+ *y = prj->w[2] - r*astCosd(a);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astBONrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double a, cthe, dy, r;
+
+ if (prj->p[1] == 0.0) {
+ /* Sanson-Flamsteed. */
+ return astSFLrev(x, y, prj, phi, theta);
+ }
+
+ if (prj->flag != WCS__BON) {
+ if (astBONset(prj)) return 1;
+ }
+
+ dy = prj->w[2] - y;
+ r = sqrt(x*x + dy*dy);
+ if (prj->p[1] < 0.0) r = -r;
+
+ if (r == 0.0) {
+ a = 0.0;
+ } else {
+ a = astATan2d(x/r, dy/r);
+ }
+
+ *theta = (prj->w[2] - r)/prj->w[1];
+ cthe = astCosd(*theta);
+ if (cthe == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = a*(r/prj->r0)/cthe;
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* PCO: polyconic projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "PCO"
+* prj->flag PCO
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/180)
+* prj->w[1] 1/r0
+* prj->w[2] 2*r0
+* prj->astPRJfwd Pointer to astPCOfwd().
+* prj->astPRJrev Pointer to astPCOrev().
+*===========================================================================*/
+
+int astPCOset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "PCO");
+ prj->flag = WCS__PCO;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ prj->w[2] = 360.0/PI;
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = 1.0/prj->w[0];
+ prj->w[2] = 2.0*prj->r0;
+ }
+
+ prj->astPRJfwd = astPCOfwd;
+ prj->astPRJrev = astPCOrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astPCOfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double a, cthe, cotthe, sthe;
+
+ if (prj->flag != WCS__PCO) {
+ if (astPCOset(prj)) return 1;
+ }
+
+ cthe = astCosd(theta);
+ sthe = astSind(theta);
+ a = phi*sthe;
+
+ if (sthe == 0.0) {
+ *x = prj->w[0]*phi;
+ *y = 0.0;
+ } else {
+ cotthe = cthe/sthe;
+ *x = prj->r0*cotthe*astSind(a);
+ *y = prj->r0*(cotthe*(1.0 - astCosd(a)) + theta*D2R);
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astPCOrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ int j;
+ double f, fneg, fpos, lambda, tanthe, theneg, thepos, w, xp, xx, ymthe, yp;
+ const double tol = 1.0e-12;
+
+ if (prj->flag != WCS__PCO) {
+ if (astPCOset(prj)) return 1;
+ }
+
+ w = fabs(y*prj->w[1]);
+ if (w < tol) {
+ *phi = x*prj->w[1];
+ *theta = 0.0;
+ } else if (fabs(w-90.0) < tol) {
+ *phi = 0.0;
+ *theta = copysign(90.0,y);
+ } else {
+ /* Iterative solution using weighted division of the interval. */
+ if (y > 0.0) {
+ thepos = 90.0;
+ } else {
+ thepos = -90.0;
+ }
+ theneg = 0.0;
+
+ xx = x*x;
+ ymthe = y - prj->w[0]*thepos;
+ fpos = xx + ymthe*ymthe;
+ fneg = -999.0;
+
+ for (j = 0; j < 64; j++) {
+ if (fneg < -100.0) {
+ /* Equal division of the interval. */
+ *theta = (thepos+theneg)/2.0;
+ } else {
+ /* Weighted division of the interval. */
+ lambda = fpos/(fpos-fneg);
+ if (lambda < 0.1) {
+ lambda = 0.1;
+ } else if (lambda > 0.9) {
+ lambda = 0.9;
+ }
+ *theta = thepos - lambda*(thepos-theneg);
+ }
+
+ /* Compute the residue. */
+ ymthe = y - prj->w[0]*(*theta);
+ tanthe = astTand(*theta);
+ f = xx + ymthe*(ymthe - prj->w[2]/tanthe);
+
+ /* Check for convergence. */
+ if (fabs(f) < tol) break;
+ if (fabs(thepos-theneg) < tol) break;
+
+ /* Redefine the interval. */
+ if (f > 0.0) {
+ thepos = *theta;
+ fpos = f;
+ } else {
+ theneg = *theta;
+ fneg = f;
+ }
+ }
+
+ xp = prj->r0 - ymthe*tanthe;
+ yp = x*tanthe;
+ if (xp == 0.0 && yp == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(yp, xp)/astSind(*theta);
+ }
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* TSC: tangential spherical cube projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "TSC"
+* prj->flag TSC
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/4)
+* prj->w[1] (4/pi)/r0
+* prj->astPRJfwd Pointer to astTSCfwd().
+* prj->astPRJrev Pointer to astTSCrev().
+*===========================================================================*/
+
+int astTSCset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "TSC");
+ prj->flag = WCS__TSC;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 45.0;
+ prj->w[1] = 1.0/45.0;
+ } else {
+ prj->w[0] = prj->r0*PI/4.0;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astTSCfwd;
+ prj->astPRJrev = astTSCrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astTSCfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ int face;
+ double cthe, l, m, n, rho, x0, xf, y0, yf;
+ const double tol = 1.0e-12;
+
+ x0 = 0.0;
+ xf = 0.0;
+ y0 = 0.0;
+ yf = 0.0;
+
+ if (prj->flag != WCS__TSC) {
+ if (astTSCset(prj)) return 1;
+ }
+
+ cthe = astCosd(theta);
+ l = cthe*astCosd(phi);
+ m = cthe*astSind(phi);
+ n = astSind(theta);
+
+ face = 0;
+ rho = n;
+ if (l > rho) {
+ face = 1;
+ rho = l;
+ }
+ if (m > rho) {
+ face = 2;
+ rho = m;
+ }
+ if (-l > rho) {
+ face = 3;
+ rho = -l;
+ }
+ if (-m > rho) {
+ face = 4;
+ rho = -m;
+ }
+ if (-n > rho) {
+ face = 5;
+ rho = -n;
+ }
+
+ if (face == 0) {
+ xf = m/rho;
+ yf = -l/rho;
+ x0 = 0.0;
+ y0 = 2.0;
+ } else if (face == 1) {
+ xf = m/rho;
+ yf = n/rho;
+ x0 = 0.0;
+ y0 = 0.0;
+ } else if (face == 2) {
+ xf = -l/rho;
+ yf = n/rho;
+ x0 = 2.0;
+ y0 = 0.0;
+ } else if (face == 3) {
+ xf = -m/rho;
+ yf = n/rho;
+ x0 = 4.0;
+ y0 = 0.0;
+ } else if (face == 4) {
+ xf = l/rho;
+ yf = n/rho;
+ x0 = 6.0;
+ y0 = 0.0;
+ } else if (face == 5) {
+ xf = m/rho;
+ yf = l/rho;
+ x0 = 0.0;
+ y0 = -2.0;
+ }
+
+ if (fabs(xf) > 1.0) {
+ if (fabs(xf) > 1.0+tol) {
+ return 2;
+ }
+ xf = copysign(1.0,xf);
+ }
+ if (fabs(yf) > 1.0) {
+ if (fabs(yf) > 1.0+tol) {
+ return 2;
+ }
+ yf = copysign(1.0,yf);
+ }
+
+ *x = prj->w[0]*(xf + x0);
+ *y = prj->w[0]*(yf + y0);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astTSCrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double l, m, n, xf, yf;
+
+ if (prj->flag != WCS__TSC) {
+ if (astTSCset(prj)) return 1;
+ }
+
+ xf = x*prj->w[1];
+ yf = y*prj->w[1];
+
+ /* Check bounds. */
+ if (fabs(xf) <= 1.0) {
+ if (fabs(yf) > 3.0) return 2;
+ } else {
+ if (fabs(xf) > 7.0) return 2;
+ if (fabs(yf) > 1.0) return 2;
+ }
+
+ /* Map negative faces to the other side. */
+ if (xf < -1.0) xf += 8.0;
+
+ /* Determine the face. */
+ if (xf > 5.0) {
+ /* face = 4 */
+ xf = xf - 6.0;
+ m = -1.0/sqrt(1.0 + xf*xf + yf*yf);
+ l = -m*xf;
+ n = -m*yf;
+ } else if (xf > 3.0) {
+ /* face = 3 */
+ xf = xf - 4.0;
+ l = -1.0/sqrt(1.0 + xf*xf + yf*yf);
+ m = l*xf;
+ n = -l*yf;
+ } else if (xf > 1.0) {
+ /* face = 2 */
+ xf = xf - 2.0;
+ m = 1.0/sqrt(1.0 + xf*xf + yf*yf);
+ l = -m*xf;
+ n = m*yf;
+ } else if (yf > 1.0) {
+ /* face = 0 */
+ yf = yf - 2.0;
+ n = 1.0/sqrt(1.0 + xf*xf + yf*yf);
+ l = -n*yf;
+ m = n*xf;
+ } else if (yf < -1.0) {
+ /* face = 5 */
+ yf = yf + 2.0;
+ n = -1.0/sqrt(1.0 + xf*xf + yf*yf);
+ l = -n*yf;
+ m = -n*xf;
+ } else {
+ /* face = 1 */
+ l = 1.0/sqrt(1.0 + xf*xf + yf*yf);
+ m = l*xf;
+ n = l*yf;
+ }
+
+ if (l == 0.0 && m == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(m, l);
+ }
+ *theta = astASind(n);
+
+ return 0;
+}
+
+/*============================================================================
+* CSC: COBE quadrilateralized spherical cube projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "CSC"
+* prj->flag CSC
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/4)
+* prj->w[1] (4/pi)/r0
+* prj->astPRJfwd Pointer to astCSCfwd().
+* prj->astPRJrev Pointer to astCSCrev().
+*===========================================================================*/
+
+int astCSCset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "CSC");
+ prj->flag = WCS__CSC;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 45.0;
+ prj->w[1] = 1.0/45.0;
+ } else {
+ prj->w[0] = prj->r0*PI/4.0;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astCSCfwd;
+ prj->astPRJrev = astCSCrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCSCfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ int face;
+ float cthe, eta, l, m, n, rho, xi;
+ const float tol = 1.0e-7;
+
+ float a, a2, a2b2, a4, ab, b, b2, b4, ca2, cb2, x0, xf, y0, yf;
+ const float gstar = 1.37484847732;
+ const float mm = 0.004869491981;
+ const float gamma = -0.13161671474;
+ const float omega1 = -0.159596235474;
+ const float d0 = 0.0759196200467;
+ const float d1 = -0.0217762490699;
+ const float c00 = 0.141189631152;
+ const float c10 = 0.0809701286525;
+ const float c01 = -0.281528535557;
+ const float c11 = 0.15384112876;
+ const float c20 = -0.178251207466;
+ const float c02 = 0.106959469314;
+
+ eta = 0.0;
+ xi = 0.0;
+ x0 = 0.0;
+ y0 = 0.0;
+
+ if (prj->flag != WCS__CSC) {
+ if (astCSCset(prj)) return 1;
+ }
+
+ cthe = astCosd(theta);
+ l = cthe*astCosd(phi);
+ m = cthe*astSind(phi);
+ n = astSind(theta);
+
+ face = 0;
+ rho = n;
+ if (l > rho) {
+ face = 1;
+ rho = l;
+ }
+ if (m > rho) {
+ face = 2;
+ rho = m;
+ }
+ if (-l > rho) {
+ face = 3;
+ rho = -l;
+ }
+ if (-m > rho) {
+ face = 4;
+ rho = -m;
+ }
+ if (-n > rho) {
+ face = 5;
+ rho = -n;
+ }
+
+ if (face == 0) {
+ xi = m;
+ eta = -l;
+ x0 = 0.0;
+ y0 = 2.0;
+ } else if (face == 1) {
+ xi = m;
+ eta = n;
+ x0 = 0.0;
+ y0 = 0.0;
+ } else if (face == 2) {
+ xi = -l;
+ eta = n;
+ x0 = 2.0;
+ y0 = 0.0;
+ } else if (face == 3) {
+ xi = -m;
+ eta = n;
+ x0 = 4.0;
+ y0 = 0.0;
+ } else if (face == 4) {
+ xi = l;
+ eta = n;
+ x0 = 6.0;
+ y0 = 0.0;
+ } else if (face == 5) {
+ xi = m;
+ eta = l;
+ x0 = 0.0;
+ y0 = -2.0;
+ }
+
+ a = xi/rho;
+ b = eta/rho;
+
+ a2 = a*a;
+ b2 = b*b;
+ ca2 = 1.0 - a2;
+ cb2 = 1.0 - b2;
+
+ /* Avoid floating underflows. */
+ ab = fabs(a*b);
+ a4 = (a2 > 1.0e-16) ? a2*a2 : 0.0;
+ b4 = (b2 > 1.0e-16) ? b2*b2 : 0.0;
+ a2b2 = (ab > 1.0e-16) ? a2*b2 : 0.0;
+
+ xf = a*(a2 + ca2*(gstar + b2*(gamma*ca2 + mm*a2 +
+ cb2*(c00 + c10*a2 + c01*b2 + c11*a2b2 + c20*a4 + c02*b4)) +
+ a2*(omega1 - ca2*(d0 + d1*a2))));
+ yf = b*(b2 + cb2*(gstar + a2*(gamma*cb2 + mm*b2 +
+ ca2*(c00 + c10*b2 + c01*a2 + c11*a2b2 + c20*b4 + c02*a4)) +
+ b2*(omega1 - cb2*(d0 + d1*b2))));
+
+ if (fabs(xf) > 1.0) {
+ if (fabs(xf) > 1.0+tol) {
+ return 2;
+ }
+ xf = copysign(1.0,xf);
+ }
+ if (fabs(yf) > 1.0) {
+ if (fabs(yf) > 1.0+tol) {
+ return 2;
+ }
+ yf = copysign(1.0,yf);
+ }
+
+ *x = prj->w[0]*(x0 + xf);
+ *y = prj->w[0]*(y0 + yf);
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astCSCrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ int face;
+ float l, m, n;
+
+ float a, b, xf, xx, yf, yy, z0, z1, z2, z3, z4, z5, z6;
+ const float p00 = -0.27292696;
+ const float p10 = -0.07629969;
+ const float p20 = -0.22797056;
+ const float p30 = 0.54852384;
+ const float p40 = -0.62930065;
+ const float p50 = 0.25795794;
+ const float p60 = 0.02584375;
+ const float p01 = -0.02819452;
+ const float p11 = -0.01471565;
+ const float p21 = 0.48051509;
+ const float p31 = -1.74114454;
+ const float p41 = 1.71547508;
+ const float p51 = -0.53022337;
+ const float p02 = 0.27058160;
+ const float p12 = -0.56800938;
+ const float p22 = 0.30803317;
+ const float p32 = 0.98938102;
+ const float p42 = -0.83180469;
+ const float p03 = -0.60441560;
+ const float p13 = 1.50880086;
+ const float p23 = -0.93678576;
+ const float p33 = 0.08693841;
+ const float p04 = 0.93412077;
+ const float p14 = -1.41601920;
+ const float p24 = 0.33887446;
+ const float p05 = -0.63915306;
+ const float p15 = 0.52032238;
+ const float p06 = 0.14381585;
+
+ l = 0.0;
+ m = 0.0;
+ n = 0.0;
+
+ if (prj->flag != WCS__CSC) {
+ if (astCSCset(prj)) return 1;
+ }
+
+ xf = x*prj->w[1];
+ yf = y*prj->w[1];
+
+ /* Check bounds. */
+ if (fabs(xf) <= 1.0) {
+ if (fabs(yf) > 3.0) return 2;
+ } else {
+ if (fabs(xf) > 7.0) return 2;
+ if (fabs(yf) > 1.0) return 2;
+ }
+
+ /* Map negative faces to the other side. */
+ if (xf < -1.0) xf += 8.0;
+
+ /* Determine the face. */
+ if (xf > 5.0) {
+ face = 4;
+ xf = xf - 6.0;
+ } else if (xf > 3.0) {
+ face = 3;
+ xf = xf - 4.0;
+ } else if (xf > 1.0) {
+ face = 2;
+ xf = xf - 2.0;
+ } else if (yf > 1.0) {
+ face = 0;
+ yf = yf - 2.0;
+ } else if (yf < -1.0) {
+ face = 5;
+ yf = yf + 2.0;
+ } else {
+ face = 1;
+ }
+
+ xx = xf*xf;
+ yy = yf*yf;
+
+ z0 = p00 + xx*(p10 + xx*(p20 + xx*(p30 + xx*(p40 + xx*(p50 + xx*(p60))))));
+ z1 = p01 + xx*(p11 + xx*(p21 + xx*(p31 + xx*(p41 + xx*(p51)))));
+ z2 = p02 + xx*(p12 + xx*(p22 + xx*(p32 + xx*(p42))));
+ z3 = p03 + xx*(p13 + xx*(p23 + xx*(p33)));
+ z4 = p04 + xx*(p14 + xx*(p24));
+ z5 = p05 + xx*(p15);
+ z6 = p06;
+
+ a = z0 + yy*(z1 + yy*(z2 + yy*(z3 + yy*(z4 + yy*(z5 + yy*z6)))));
+ a = xf + xf*(1.0 - xx)*a;
+
+ z0 = p00 + yy*(p10 + yy*(p20 + yy*(p30 + yy*(p40 + yy*(p50 + yy*(p60))))));
+ z1 = p01 + yy*(p11 + yy*(p21 + yy*(p31 + yy*(p41 + yy*(p51)))));
+ z2 = p02 + yy*(p12 + yy*(p22 + yy*(p32 + yy*(p42))));
+ z3 = p03 + yy*(p13 + yy*(p23 + yy*(p33)));
+ z4 = p04 + yy*(p14 + yy*(p24));
+ z5 = p05 + yy*(p15);
+ z6 = p06;
+
+ b = z0 + xx*(z1 + xx*(z2 + xx*(z3 + xx*(z4 + xx*(z5 + xx*z6)))));
+ b = yf + yf*(1.0 - yy)*b;
+
+ if (face == 0) {
+ n = 1.0/sqrt(a*a + b*b + 1.0);
+ l = -b*n;
+ m = a*n;
+ } else if (face == 1) {
+ l = 1.0/sqrt(a*a + b*b + 1.0);
+ m = a*l;
+ n = b*l;
+ } else if (face == 2) {
+ m = 1.0/sqrt(a*a + b*b + 1.0);
+ l = -a*m;
+ n = b*m;
+ } else if (face == 3) {
+ l = -1.0/sqrt(a*a + b*b + 1.0);
+ m = a*l;
+ n = -b*l;
+ } else if (face == 4) {
+ m = -1.0/sqrt(a*a + b*b + 1.0);
+ l = -a*m;
+ n = -b*m;
+ } else if (face == 5) {
+ n = -1.0/sqrt(a*a + b*b + 1.0);
+ l = -b*n;
+ m = -a*n;
+ }
+
+ if (l == 0.0 && m == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(m, l);
+ }
+ *theta = astASind(n);
+
+ return 0;
+}
+
+/*============================================================================
+* QSC: quadrilaterilized spherical cube projection.
+*
+* Given and/or returned:
+* prj->r0 r0; reset to 180/pi if 0.
+*
+* Returned:
+* prj->code "QSC"
+* prj->flag QSC
+* prj->phi0 0.0
+* prj->theta0 0.0
+* prj->w[0] r0*(pi/4)
+* prj->w[1] (4/pi)/r0
+* prj->astPRJfwd Pointer to astQSCfwd().
+* prj->astPRJrev Pointer to astQSCrev().
+*===========================================================================*/
+
+int astQSCset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "QSC");
+ prj->flag = WCS__QSC;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 45.0;
+ prj->w[1] = 1.0/45.0;
+ } else {
+ prj->w[0] = prj->r0*PI/4.0;
+ prj->w[1] = 1.0/prj->w[0];
+ }
+
+ prj->astPRJfwd = astQSCfwd;
+ prj->astPRJrev = astQSCrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astQSCfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ int face;
+ double cthe, eta, l, m, n, omega, p, rho, rhu, t, tau, x0, xf, xi, y0, yf;
+ const double tol = 1.0e-12;
+
+ eta = 0.0;
+ x0 = 0.0;
+ xf = 0.0;
+ xi = 0.0;
+ y0 = 0.0;
+ yf = 0.0;
+
+ if (prj->flag != WCS__QSC) {
+ if (astQSCset(prj)) return 1;
+ }
+
+ if (fabs(theta) == 90.0) {
+ *x = 0.0;
+ *y = copysign(2.0*prj->w[0],theta);
+ return 0;
+ }
+
+ cthe = astCosd(theta);
+ l = cthe*astCosd(phi);
+ m = cthe*astSind(phi);
+ n = astSind(theta);
+
+ face = 0;
+ rho = n;
+ if (l > rho) {
+ face = 1;
+ rho = l;
+ }
+ if (m > rho) {
+ face = 2;
+ rho = m;
+ }
+ if (-l > rho) {
+ face = 3;
+ rho = -l;
+ }
+ if (-m > rho) {
+ face = 4;
+ rho = -m;
+ }
+ if (-n > rho) {
+ face = 5;
+ rho = -n;
+ }
+
+ rhu = 1.0 - rho;
+
+ if (face == 0) {
+ xi = m;
+ eta = -l;
+ if (rhu < 1.0e-8) {
+ /* Small angle formula. */
+ t = (90.0 - theta)*D2R;
+ rhu = t*t/2.0;
+ }
+ x0 = 0.0;
+ y0 = 2.0;
+ } else if (face == 1) {
+ xi = m;
+ eta = n;
+ if (rhu < 1.0e-8) {
+ /* Small angle formula. */
+ t = theta*D2R;
+ p = fmod(phi,360.0);
+ if (p < -180.0) p += 360.0;
+ if (p > 180.0) p -= 360.0;
+ p *= D2R;
+ rhu = (p*p + t*t)/2.0;
+ }
+ x0 = 0.0;
+ y0 = 0.0;
+ } else if (face == 2) {
+ xi = -l;
+ eta = n;
+ if (rhu < 1.0e-8) {
+ /* Small angle formula. */
+ t = theta*D2R;
+ p = fmod(phi,360.0);
+ if (p < -180.0) p += 360.0;
+ p = (90.0 - p)*D2R;
+ rhu = (p*p + t*t)/2.0;
+ }
+ x0 = 2.0;
+ y0 = 0.0;
+ } else if (face == 3) {
+ xi = -m;
+ eta = n;
+ if (rhu < 1.0e-8) {
+ /* Small angle formula. */
+ t = theta*D2R;
+ p = fmod(phi,360.0);
+ if (p < 0.0) p += 360.0;
+ p = (180.0 - p)*D2R;
+ rhu = (p*p + t*t)/2.0;
+ }
+ x0 = 4.0;
+ y0 = 0.0;
+ } else if (face == 4) {
+ xi = l;
+ eta = n;
+ if (rhu < 1.0e-8) {
+ /* Small angle formula. */
+ t = theta*D2R;
+ p = fmod(phi,360.0);
+ if (p > 180.0) p -= 360.0;
+ p *= (90.0 + p)*D2R;
+ rhu = (p*p + t*t)/2.0;
+ }
+ x0 = 6;
+ y0 = 0.0;
+ } else if (face == 5) {
+ xi = m;
+ eta = l;
+ if (rhu < 1.0e-8) {
+ /* Small angle formula. */
+ t = (90.0 + theta)*D2R;
+ rhu = t*t/2.0;
+ }
+ x0 = 0.0;
+ y0 = -2;
+ }
+
+ if (xi == 0.0 && eta == 0.0) {
+ xf = 0.0;
+ yf = 0.0;
+ } else if (-xi >= fabs(eta)) {
+ omega = eta/xi;
+ tau = 1.0 + omega*omega;
+ xf = -sqrt(rhu/(1.0-1.0/sqrt(1.0+tau)));
+ yf = (xf/15.0)*(astATand(omega) - astASind(omega/sqrt(tau+tau)));
+ } else if (xi >= fabs(eta)) {
+ omega = eta/xi;
+ tau = 1.0 + omega*omega;
+ xf = sqrt(rhu/(1.0-1.0/sqrt(1.0+tau)));
+ yf = (xf/15.0)*(astATand(omega) - astASind(omega/sqrt(tau+tau)));
+ } else if (-eta > fabs(xi)) {
+ omega = xi/eta;
+ tau = 1.0 + omega*omega;
+ yf = -sqrt(rhu/(1.0-1.0/sqrt(1.0+tau)));
+ xf = (yf/15.0)*(astATand(omega) - astASind(omega/sqrt(tau+tau)));
+ } else if (eta > fabs(xi)) {
+ omega = xi/eta;
+ tau = 1.0 + omega*omega;
+ yf = sqrt(rhu/(1.0-1.0/sqrt(1.0+tau)));
+ xf = (yf/15.0)*(astATand(omega) - astASind(omega/sqrt(tau+tau)));
+ }
+
+ if (fabs(xf) > 1.0) {
+ if (fabs(xf) > 1.0+tol) {
+ return 2;
+ }
+ xf = copysign(1.0,xf);
+ }
+ if (fabs(yf) > 1.0) {
+ if (fabs(yf) > 1.0+tol) {
+ return 2;
+ }
+ yf = copysign(1.0,yf);
+ }
+
+ *x = prj->w[0]*(xf + x0);
+ *y = prj->w[0]*(yf + y0);
+
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astQSCrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ int direct, face;
+ double l, m, n, omega, rho, rhu, tau, xf, yf, w;
+ const double tol = 1.0e-12;
+
+ l = 0.0;
+ m = 0.0;
+ n = 0.0;
+
+ if (prj->flag != WCS__QSC) {
+ if (astQSCset(prj)) return 1;
+ }
+
+ xf = x*prj->w[1];
+ yf = y*prj->w[1];
+
+ /* Check bounds. */
+ if (fabs(xf) <= 1.0) {
+ if (fabs(yf) > 3.0) return 2;
+ } else {
+ if (fabs(xf) > 7.0) return 2;
+ if (fabs(yf) > 1.0) return 2;
+ }
+
+ /* Map negative faces to the other side. */
+ if (xf < -1.0) xf += 8.0;
+
+ /* Determine the face. */
+ if (xf > 5.0) {
+ face = 4;
+ xf = xf - 6.0;
+ } else if (xf > 3.0) {
+ face = 3;
+ xf = xf - 4.0;
+ } else if (xf > 1.0) {
+ face = 2;
+ xf = xf - 2.0;
+ } else if (yf > 1.0) {
+ face = 0;
+ yf = yf - 2.0;
+ } else if (yf < -1.0) {
+ face = 5;
+ yf = yf + 2.0;
+ } else {
+ face = 1;
+ }
+
+ direct = (fabs(xf) > fabs(yf));
+ if (direct) {
+ if (xf == 0.0) {
+ omega = 0.0;
+ tau = 1.0;
+ rho = 1.0;
+ rhu = 0.0;
+ } else {
+ w = 15.0*yf/xf;
+ omega = astSind(w)/(astCosd(w) - SQRT2INV);
+ tau = 1.0 + omega*omega;
+ rhu = xf*xf*(1.0 - 1.0/sqrt(1.0 + tau));
+ rho = 1.0 - rhu;
+ }
+ } else {
+ if (yf == 0.0) {
+ omega = 0.0;
+ tau = 1.0;
+ rho = 1.0;
+ rhu = 0.0;
+ } else {
+ w = 15.0*xf/yf;
+ omega = astSind(w)/(astCosd(w) - SQRT2INV);
+ tau = 1.0 + omega*omega;
+ rhu = yf*yf*(1.0 - 1.0/sqrt(1.0 + tau));
+ rho = 1.0 - rhu;
+ }
+ }
+
+ if (rho < -1.0) {
+ if (rho < -1.0-tol) {
+ return 2;
+ }
+
+ rho = -1.0;
+ rhu = 2.0;
+ w = 0.0;
+ } else {
+ w = sqrt(rhu*(2.0-rhu)/tau);
+ }
+
+ if (face == 0) {
+ n = rho;
+ if (direct) {
+ m = w;
+ if (xf < 0.0) m = -m;
+ l = -m*omega;
+ } else {
+ l = w;
+ if (yf > 0.0) l = -l;
+ m = -l*omega;
+ }
+ } else if (face == 1) {
+ l = rho;
+ if (direct) {
+ m = w;
+ if (xf < 0.0) m = -m;
+ n = m*omega;
+ } else {
+ n = w;
+ if (yf < 0.0) n = -n;
+ m = n*omega;
+ }
+ } else if (face == 2) {
+ m = rho;
+ if (direct) {
+ l = w;
+ if (xf > 0.0) l = -l;
+ n = -l*omega;
+ } else {
+ n = w;
+ if (yf < 0.0) n = -n;
+ l = -n*omega;
+ }
+ } else if (face == 3) {
+ l = -rho;
+ if (direct) {
+ m = w;
+ if (xf > 0.0) m = -m;
+ n = -m*omega;
+ } else {
+ n = w;
+ if (yf < 0.0) n = -n;
+ m = -n*omega;
+ }
+ } else if (face == 4) {
+ m = -rho;
+ if (direct) {
+ l = w;
+ if (xf < 0.0) l = -l;
+ n = l*omega;
+ } else {
+ n = w;
+ if (yf < 0.0) n = -n;
+ l = n*omega;
+ }
+ } else if (face == 5) {
+ n = -rho;
+ if (direct) {
+ m = w;
+ if (xf < 0.0) m = -m;
+ l = m*omega;
+ } else {
+ l = w;
+ if (yf < 0.0) l = -l;
+ m = l*omega;
+ }
+ }
+
+ if (l == 0.0 && m == 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = astATan2d(m, l);
+ }
+ *theta = astASind(n);
+
+ return 0;
+}
+
+/*============================================================================
+* HPX: HEALPix projection.
+*
+* Given:
+* prj->p[1] H - the number of facets in longitude.
+* prj->p[2] K - the number of facets in latitude
+*
+* Given and/or returned:
+* prj->r0 Reset to 180/pi if 0.
+* prj->phi0 Reset to 0.0
+* prj->theta0 Reset to 0.0
+*
+* Returned:
+* prj->flag HPX
+* prj->code "HPX"
+* prj->n True if K is odd.
+* prj->w[0] r0*(pi/180)
+* prj->w[1] (180/pi)/r0
+* prj->w[2] (K-1)/K
+* prj->w[3] 90*K/H
+* prj->w[4] (K+1)/2
+* prj->w[5] 90*(K-1)/H
+* prj->w[6] 180/H
+* prj->w[7] H/360
+* prj->w[8] (90*K/H)*r0*(pi/180)
+* prj->w[9] (180/H)*r0*(pi/180)
+* prj->astPRJfwd Pointer to astHPXfwd().
+* prj->astPRJrev Pointer to astHPXrev().
+
+
+*===========================================================================*/
+
+int astHPXset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "HPX");
+ prj->flag = WCS__HPX;
+ prj->phi0 = 0.0;
+ prj->theta0 = 0.0;
+
+ prj->n = ((int)prj->p[2])%2;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = R2D/prj->r0;
+ }
+
+ prj->w[2] = (prj->p[2] - 1.0) / prj->p[2];
+ prj->w[3] = 90.0 * prj->p[2] / prj->p[1];
+ prj->w[4] = (prj->p[2] + 1.0) / 2.0;
+ prj->w[5] = 90.0 * (prj->p[2] - 1.0) / prj->p[1];
+ prj->w[6] = 180.0 / prj->p[1];
+ prj->w[7] = prj->p[1] / 360.0;
+ prj->w[8] = prj->w[3] * prj->w[0];
+ prj->w[9] = prj->w[6] * prj->w[0];
+
+ prj->astPRJfwd = astHPXfwd;
+ prj->astPRJrev = astHPXrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astHPXfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double abssin, sigma, sinthe, phic;
+ int hodd;
+
+ if( prj->flag != WCS__HPX ) {
+ if( astHPXset( prj ) ) return 1;
+ }
+
+ sinthe = astSind( theta );
+ abssin = fabs( sinthe );
+
+/* Equatorial zone */
+ if( abssin <= prj->w[2] ) {
+ *x = prj->w[0] * phi;
+ *y = prj->w[8] * sinthe;
+
+/* Polar zone */
+ } else {
+
+/* DSB - The expression for phic is conditioned differently to the
+ WCSLIB code in order to improve accuracy of the floor function for
+ arguments very slightly below an integer value. */
+ hodd = ((int)prj->p[1]) % 2;
+ if( !prj->n && theta <= 0.0 ) hodd = 1 - hodd;
+ if( hodd ) {
+ phic = -180.0 + (2.0*floor( prj->w[7] * phi + 1/2 ) + prj->p[1] ) * prj->w[6];
+ } else {
+ phic = -180.0 + (2.0*floor( prj->w[7] * phi ) + prj->p[1] + 1 ) * prj->w[6];
+ }
+
+ sigma = sqrt( prj->p[2]*( 1.0 - abssin ));
+
+ *x = prj->w[0] *( phic + ( phi - phic )*sigma );
+
+ *y = prj->w[9] * ( prj->w[4] - sigma );
+ if( theta < 0 ) *y = -*y;
+
+ }
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astHPXrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double absy, sigma, t, yr, xc;
+ int hodd;
+
+ if (prj->flag != WCS__HPX) {
+ if (astHPXset(prj)) return 1;
+ }
+
+ yr = prj->w[1]*y;
+ absy = fabs( yr );
+
+/* Equatorial zone */
+ if( absy <= prj->w[5] ) {
+ *phi = prj->w[1] * x;
+ t = yr/prj->w[3];
+ if( t < -1.0 || t > 1.0 ) {
+ return 2;
+ } else {
+ *theta = astASind( t );
+ }
+
+/* Polar zone */
+ } else if( absy <= 90 ){
+
+
+/* DSB - The expression for xc is conditioned differently to the
+ WCSLIB code in order to improve accuracy of the floor function for
+ arguments very slightly below an integer value. */
+ hodd = ((int)prj->p[1]) % 2;
+ if( !prj->n && yr <= 0.0 ) hodd = 1 - hodd;
+ if( hodd ) {
+ xc = -180.0 + (2.0*floor( prj->w[7] * x + 1/2 ) + prj->p[1] ) * prj->w[6];
+ } else {
+ xc = -180.0 + (2.0*floor( prj->w[7] * x ) + prj->p[1] + 1 ) * prj->w[6];
+ }
+
+ sigma = prj->w[4] - absy / prj->w[6];
+
+ if( sigma == 0.0 ) {
+ return 2;
+ } else {
+
+ t = ( x - xc )/sigma;
+ if( fabs( t ) <= prj->w[6] ) {
+ *phi = prj->w[1] *( xc + t );
+ } else {
+ return 2;
+ }
+ }
+
+ t = 1.0 - sigma*sigma/prj->p[2];
+ if( t < -1.0 || t > 1.0 ) {
+ return 2;
+ } else {
+ *theta = astASind( t );
+ if( y < 0 ) *theta = -*theta;
+ }
+
+ } else {
+ return 2;
+ }
+
+ return 0;
+}
+
+/*============================================================================
+* XPH: HEALPix polar, aka "butterfly" projection.
+*
+* Given and/or returned:
+* prj->r0 Reset to 180/pi if 0.
+* prj->phi0 Reset to 0.0 if undefined.
+* prj->theta0 Reset to 0.0 if undefined.
+*
+* Returned:
+* prj->flag XPH
+* prj->code "XPH"
+* prj->w[0] r0*(pi/180)/sqrt(2)
+* prj->w[1] (180/pi)/r0/sqrt(2)
+* prj->w[2] 2/3
+* prj->w[3] tol (= 1e-4)
+* prj->w[4] sqrt(2/3)*(180/pi)
+* prj->w[5] 90 - tol*sqrt(2/3)*(180/pi)
+* prj->w[6] sqrt(3/2)*(pi/180)
+* prj->astPRJfwd Pointer to astXPHfwd().
+* prj->astPRJrev Pointer to astXPHrev().
+*===========================================================================*/
+
+int astXPHset(prj)
+
+struct AstPrjPrm *prj;
+
+{
+ strcpy(prj->code, "XPH");
+ prj->flag = WCS__XPH;
+
+ if (prj->r0 == 0.0) {
+ prj->r0 = R2D;
+ prj->w[0] = 1.0;
+ prj->w[1] = 1.0;
+ } else {
+ prj->w[0] = prj->r0*D2R;
+ prj->w[1] = R2D/prj->r0;
+ }
+
+ prj->w[0] /= sqrt(2.0);
+ prj->w[1] /= sqrt(2.0);
+ prj->w[2] = 2.0/3.0;
+ prj->w[3] = 1e-4;
+ prj->w[4] = sqrt(prj->w[2])*R2D;
+ prj->w[5] = 90.0 - prj->w[3]*prj->w[4];
+ prj->w[6] = sqrt(1.5)*D2R;
+
+ prj->astPRJfwd = astXPHfwd;
+ prj->astPRJrev = astXPHrev;
+
+ return 0;
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astXPHfwd(phi, theta, prj, x, y)
+
+const double phi, theta;
+struct AstPrjPrm *prj;
+double *x, *y;
+
+{
+ double abssin, chi, eta, psi, sigma, sinthe, xi;
+
+ if (prj->flag != WCS__XPH) {
+ if (astXPHset(prj)) return 1;
+ }
+
+ /* Do phi dependence. */
+ chi = phi;
+ if (180.0 <= fabs(chi)) {
+ chi = fmod(chi, 360.0);
+ if (chi < -180.0) {
+ chi += 360.0;
+ } else if (180.0 <= chi) {
+ chi -= 360.0;
+ }
+ }
+
+ /* phi is also recomputed from chi to avoid rounding problems. */
+ chi += 180.0;
+ psi = fmod(chi, 90.0);
+
+ /* y is used to hold phi (rounded). */
+ *x = psi;
+ *y = chi - 180.0;
+
+ /* Do theta dependence. */
+ sinthe = astSind(theta);
+ abssin = fabs(sinthe);
+
+ if (abssin <= prj->w[2]) {
+ /* Equatorial regime. */
+ xi = *x;
+ eta = 67.5 * sinthe;
+
+ } else {
+ /* Polar regime. */
+ if (theta < prj->w[5]) {
+ sigma = sqrt(3.0*(1.0 - abssin));
+ } else {
+ sigma = (90.0 - theta)*prj->w[6];
+ }
+
+ xi = 45.0 + (*x - 45.0)*sigma;
+ eta = 45.0 * (2.0 - sigma);
+ if (theta < 0.0) eta = -eta;
+ }
+
+ xi -= 45.0;
+ eta -= 90.0;
+
+ /* Recall that y holds phi. */
+ if (*y < -90.0) {
+ *x = prj->w[0]*(-xi + eta);
+ *y = prj->w[0]*(-xi - eta);
+
+ } else if (*y < 0.0) {
+ *x = prj->w[0]*(+xi + eta);
+ *y = prj->w[0]*(-xi + eta);
+
+ } else if (*y < 90.0) {
+ *x = prj->w[0]*( xi - eta);
+ *y = prj->w[0]*( xi + eta);
+
+ } else {
+ *x = prj->w[0]*(-xi - eta);
+ *y = prj->w[0]*( xi - eta);
+ }
+
+ return 0;
+
+}
+
+/*--------------------------------------------------------------------------*/
+
+int astXPHrev(x, y, prj, phi, theta)
+
+const double x, y;
+struct AstPrjPrm *prj;
+double *phi, *theta;
+
+{
+ double abseta, eta, eta1, sigma, xi, xi1, xr, yr;
+ const double tol = 1.0e-12;
+
+ if (prj->flag != WCS__XPH) {
+ if (astXPHset(prj)) return 1;
+ }
+
+
+ xr = x*prj->w[1];
+ yr = y*prj->w[1];
+ if (xr <= 0.0 && 0.0 < yr) {
+ xi1 = -xr - yr;
+ eta1 = xr - yr;
+ *phi = -180.0;
+ } else if (xr < 0.0 && yr <= 0.0) {
+ xi1 = xr - yr;
+ eta1 = xr + yr;
+ *phi = -90.0;
+ } else if (0.0 <= xr && yr < 0.0) {
+ xi1 = xr + yr;
+ eta1 = -xr + yr;
+ *phi = 0.0;
+ } else {
+ xi1 = -xr + yr;
+ eta1 = -xr - yr;
+ *phi = 90.0;
+ }
+
+ xi = xi1 + 45.0;
+ eta = eta1 + 90.0;
+ abseta = fabs(eta);
+
+ if (abseta <= 90.0) {
+ if (abseta <= 45.0) {
+ /* Equatorial regime. */
+ *phi += xi;
+ *theta = astASind(eta/67.5);
+
+ /* Bounds checking. */
+ if (45.0+tol < fabs(xi1)) return 2;
+
+ } else {
+ /* Polar regime. */
+ sigma = (90.0 - abseta) / 45.0;
+
+ /* Ensure an exact result for points on the boundary. */
+ if (xr == 0.0) {
+ if (yr <= 0.0) {
+ *phi = 0.0;
+ } else {
+ *phi = 180.0;
+ }
+ } else if (yr == 0.0) {
+ if (xr < 0.0) {
+ *phi = -90.0;
+ } else {
+ *phi = 90.0;
+ }
+ } else {
+ *phi += 45.0 + xi1/sigma;
+ }
+
+ if (sigma < prj->w[3]) {
+ *theta = 90.0 - sigma*prj->w[4];
+ } else {
+ *theta = astASind(1.0 - sigma*sigma/3.0);
+ }
+ if (eta < 0.0) *theta = -(*theta);
+
+ /* Bounds checking. */
+ if (eta < -45.0 && eta+90.0+tol < fabs(xi1)) return 2;
+ }
+
+ } else {
+ /* Beyond latitude range. */
+ *phi = 0.0;
+ *theta = 0.0;
+ return 2;
+ }
+
+ return 0;
+}
+
+