diff options
author | William Joye <wjoye@cfa.harvard.edu> | 2019-05-10 19:05:35 (GMT) |
---|---|---|
committer | William Joye <wjoye@cfa.harvard.edu> | 2019-05-10 19:05:35 (GMT) |
commit | 51cd8ee68a63edc414c0fe3344ba0589ac5849dd (patch) | |
tree | 662741d231423544a0c4d8bec55d7c457a18c17e /ast/slamap.c | |
parent | beb90b7d3f526440250bba67e5ab07bb7eb7bbc3 (diff) | |
download | blt-51cd8ee68a63edc414c0fe3344ba0589ac5849dd.zip blt-51cd8ee68a63edc414c0fe3344ba0589ac5849dd.tar.gz blt-51cd8ee68a63edc414c0fe3344ba0589ac5849dd.tar.bz2 |
upgrade ast 8.7.1
Diffstat (limited to 'ast/slamap.c')
-rw-r--r-- | ast/slamap.c | 5027 |
1 files changed, 5027 insertions, 0 deletions
diff --git a/ast/slamap.c b/ast/slamap.c new file mode 100644 index 0000000..345bbf0 --- /dev/null +++ b/ast/slamap.c @@ -0,0 +1,5027 @@ +/* +*class++ +* Name: +* SlaMap + +* Purpose: +* Sequence of celestial coordinate conversions. + +* Constructor Function: +c astSlaMap (also see astSlaAdd) +f AST_SLAMAP (also see AST_SLAADD) + +* Description: +* An SlaMap is a specialised form of Mapping which can be used to +* represent a sequence of conversions between standard celestial +* (longitude, latitude) coordinate systems. +* +* When an SlaMap is first created, it simply performs a unit +c (null) Mapping on a pair of coordinates. Using the astSlaAdd +f (null) Mapping on a pair of coordinates. Using the AST_SLAADD +c function, a series of coordinate conversion steps may then be +f routine, a series of coordinate conversion steps may then be +* added, selected from those provided by the SLALIB Positional +* Astronomy Library (Starlink User Note SUN/67). This allows +* multi-step conversions between a variety of celestial coordinate +* systems to be assembled out of the building blocks provided by +* SLALIB. +* +* For details of the individual coordinate conversions available, +c see the description of the astSlaAdd function. +f see the description of the AST_SLAADD routine. + +* Inheritance: +* The SlaMap class inherits from the Mapping class. + +* Attributes: +* The SlaMap class does not define any new attributes beyond those +* which are applicable to all Mappings. + +* Functions: +c In addition to those functions applicable to all Mappings, the +c following function may also be applied to all SlaMaps: +f In addition to those routines applicable to all Mappings, the +f following routine may also be applied to all SlaMaps: +* +c - astSlaAdd: Add a celestial coordinate conversion to an SlaMap +f - AST_SLAADD: Add a celestial coordinate conversion to an SlaMap + +* Copyright: +* Copyright (C) 1997-2006 Council for the Central Laboratory of the +* Research Councils +* Copyright (C) 2013 Science & Technology Facilities Council. +* All Rights Reserved. + +* Licence: +* This program is free software: you can redistribute it and/or +* modify it under the terms of the GNU Lesser General Public +* License as published by the Free Software Foundation, either +* version 3 of the License, or (at your option) any later +* version. +* +* This program is distributed in the hope that it will be useful, +* but WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU Lesser General Public License for more details. +* +* You should have received a copy of the GNU Lesser General +* License along with this program. If not, see +* <http://www.gnu.org/licenses/>. + +* Authors: +* RFWS: R.F. Warren-Smith (Starlink) +* DSB: David S. Berry (Starlink) + +* History: +* 25-APR-1996 (RFWS): +* Original version. +* 28-MAY-1996 (RFWS): +* Fixed bug in argument order to palMappa for AST__SLA_AMP case. +* 26-SEP-1996 (RFWS): +* Added external interface and I/O facilities. +* 23-MAY-1997 (RFWS): +* Over-ride the astMapMerge method. +* 28-MAY-1997 (RFWS): +* Use strings to specify conversions for the public interface +* and convert to macros (from an enumerated type) for the +* internal representation. Tidy the public prologues. +* 8-JAN-2003 (DSB): +* - Changed private InitVtab method to protected astInitSlaMapVtab +* method. +* - Included STP conversion functions. +* 11-JUN-2003 (DSB): +* - Added HFK5Z and FK5HZ conversion functions. +* 28-SEP-2003 (DSB): +* - Added HEEQ and EQHE conversion functions. +* 2-DEC-2004 (DSB): +* - Added J2000H and HJ2000 conversion functions. +* 15-AUG-2005 (DSB): +* - Added H2E and E2H conversion functions. +* 14-FEB-2006 (DSB): +* Override astGetObjSize. +* 22-FEB-2006 (DSB): +* Cache results returned by palMappa in order to increase speed. +* 10-MAY-2006 (DSB): +* Override astEqual. +* 31-AUG-2007 (DSB): +* - Modify H2E and E2H conversion functions so that they convert to +* and from apparent (HA,Dec) rather than topocentric (HA,Dec) (i.e. +* include a correction for diurnal aberration). This requires an +* extra conversion argument holding the magnitude of the diurnal +* aberration vector. +* - Correct bug in the simplification of adjacent AMP and MAP +* conversions. +* 15-NOV-2013 (DSB): +* Fix bug in merging of adjacent AMP and MAP conversions (MapMerge +* did not take account of the fact that the arguments for these +* two conversions are stored in swapped order). +* 6-JUL-2015 (DSB): +* Added method astSlaIsEmpty. +* 30-NOV-2016 (DSB): +* Added a "narg" argumeent to astSlaAdd. + +*class-- +*/ + +/* Module Macros. */ +/* ============== */ +/* Set the name of the class we are implementing. This indicates to + the header files that define class interfaces that they should make + "protected" symbols available. */ +#define astCLASS SlaMap + +/* Codes to identify SLALIB sky coordinate conversions. */ +#define AST__SLA_NULL 0 /* Null value */ +#define AST__SLA_ADDET 1 /* Add E-terms of aberration */ +#define AST__SLA_SUBET 2 /* Subtract E-terms of aberration */ +#define AST__SLA_PREBN 3 /* Bessel-Newcomb (FK4) precession */ +#define AST__SLA_PREC 4 /* Apply IAU 1975 (FK5) precession model */ +#define AST__SLA_FK45Z 5 /* FK4 to FK5, no proper motion or parallax */ +#define AST__SLA_FK54Z 6 /* FK5 to FK4, no proper motion or parallax */ +#define AST__SLA_AMP 7 /* Geocentric apparent to mean place */ +#define AST__SLA_MAP 8 /* Mean place to geocentric apparent */ +#define AST__SLA_ECLEQ 9 /* Ecliptic to J2000.0 equatorial */ +#define AST__SLA_EQECL 10 /* Equatorial J2000.0 to ecliptic */ +#define AST__SLA_GALEQ 11 /* Galactic to J2000.0 equatorial */ +#define AST__SLA_EQGAL 12 /* J2000.0 equatorial to galactic */ +#define AST__SLA_GALSUP 13 /* Galactic to supergalactic */ +#define AST__SLA_SUPGAL 14 /* Supergalactic to galactic */ +#define AST__HPCEQ 15 /* Helioprojective-Cartesian to J2000.0 equatorial */ +#define AST__EQHPC 16 /* J2000.0 equatorial to Helioprojective-Cartesian */ +#define AST__HPREQ 17 /* Helioprojective-Radial to J2000.0 equatorial */ +#define AST__EQHPR 18 /* J2000.0 equatorial to Helioprojective-Radial */ +#define AST__SLA_HFK5Z 19 /* ICRS to FK5 J2000.0, no pm or parallax */ +#define AST__SLA_FK5HZ 20 /* FK5 J2000.0 to ICRS, no pm or parallax */ +#define AST__HEEQ 21 /* Helio-ecliptic to equatorial */ +#define AST__EQHE 22 /* Equatorial to helio-ecliptic */ +#define AST__J2000H 23 /* Dynamical J2000 to ICRS */ +#define AST__HJ2000 24 /* ICRS to dynamical J2000 */ +#define AST__SLA_DH2E 25 /* Horizon to equatorial coordinates */ +#define AST__SLA_DE2H 26 /* Equatorial coordinates to horizon */ +#define AST__R2H 27 /* RA to hour angle */ +#define AST__H2R 28 /* Hour to RA angle */ + +/* Maximum number of arguments required by an SLALIB conversion. */ +#define MAX_SLA_ARGS 4 + +/* The alphabet (used for generating keywords for arguments). */ +#define ALPHABET "abcdefghijklmnopqrstuvwxyz" + +/* Angle conversion (PI is from the SLALIB slamac.h file) */ +#define PI 3.1415926535897932384626433832795028841971693993751 +#define PIBY2 (PI/2.0) +#define D2R (PI/180.0) +#define R2D (180.0/PI) +#define AS2R (PI/648000.0) + +/* Include files. */ +/* ============== */ +/* Interface definitions. */ +/* ---------------------- */ +#include "pal.h" /* SLALIB interface */ + +#include "globals.h" /* Thread-safe global data access */ +#include "error.h" /* Error reporting facilities */ +#include "memory.h" /* Memory allocation facilities */ +#include "globals.h" /* Thread-safe global data access */ +#include "object.h" /* Base Object class */ +#include "pointset.h" /* Sets of points/coordinates */ +#include "mapping.h" /* Coordinate Mappings (parent class) */ +#include "wcsmap.h" /* Required for AST__DPI */ +#include "unitmap.h" /* Unit (null) Mappings */ +#include "slamap.h" /* Interface definition for this class */ + +/* Error code definitions. */ +/* ----------------------- */ +#include "ast_err.h" /* AST error codes */ + +/* C header files. */ +/* --------------- */ +#include <ctype.h> +#include <stddef.h> +#include <stdio.h> +#include <string.h> + +/* Module Variables. */ +/* ================= */ + +/* Address of this static variable is used as a unique identifier for + member of this class. */ +static int class_check; + +/* Pointers to parent class methods which are extended by this class. */ +static int (* parent_getobjsize)( AstObject *, int * ); +static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * ); + + +/* Define macros for accessing each item of thread specific global data. */ +#ifdef THREAD_SAFE + +/* Define how to initialise thread-specific globals. */ +#define GLOBAL_inits \ + globals->Class_Init = 0; \ + globals->Eq_Cache = AST__BAD; \ + globals->Ep_Cache = AST__BAD; \ + +/* Create the function that initialises global data for this module. */ +astMAKE_INITGLOBALS(SlaMap) + +/* Define macros for accessing each item of thread specific global data. */ +#define class_init astGLOBAL(SlaMap,Class_Init) +#define class_vtab astGLOBAL(SlaMap,Class_Vtab) +#define eq_cache astGLOBAL(SlaMap,Eq_Cache) +#define ep_cache astGLOBAL(SlaMap,Ep_Cache) +#define amprms_cache astGLOBAL(SlaMap,Amprms_Cache) + + + +/* If thread safety is not needed, declare and initialise globals at static + variables. */ +#else + +/* A cache used to store the most recent results from palMappa in order + to avoid continuously recalculating the same values. */ +static double eq_cache = AST__BAD; +static double ep_cache = AST__BAD; +static double amprms_cache[ 21 ]; + + +/* Define the class virtual function table and its initialisation flag + as static variables. */ +static AstSlaMapVtab class_vtab; /* Virtual function table */ +static int class_init = 0; /* Virtual function table initialised? */ + +#endif + +/* External Interface Function Prototypes. */ +/* ======================================= */ +/* The following functions have public prototypes only (i.e. no + protected prototypes), so we must provide local prototypes for use + within this module. */ +AstSlaMap *astSlaMapId_( int, const char *, ... ); + +/* Prototypes for Private Member Functions. */ +/* ======================================== */ +static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * ); +static const char *CvtString( int, const char **, int *, const char *[ MAX_SLA_ARGS ], int * ); +static int CvtCode( const char *, int * ); +static int Equal( AstObject *, AstObject *, int * ); +static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int **, int * ); +static int SlaIsEmpty( AstSlaMap *, int * ); +static void AddSlaCvt( AstSlaMap *, int, int, const double *, int * ); +static void Copy( const AstObject *, AstObject *, int * ); +static void De2h( double, double, double, double, double *, double *, int * ); +static void Dh2e( double, double, double, double, double *, double *, int * ); +static void Delete( AstObject *, int * ); +static void Dump( AstObject *, AstChannel *, int * ); +static void Earth( double, double[3], int * ); +static void SlaAdd( AstSlaMap *, const char *, int, const double[], int * ); +static void SolarPole( double, double[3], int * ); +static void Hpcc( double, double[3], double[3][3], double[3], int * ); +static void Hprc( double, double[3], double[3][3], double[3], int * ); +static void Hgc( double, double[3][3], double[3], int * ); +static void Haec( double, double[3][3], double[3], int * ); +static void Haqc( double, double[3][3], double[3], int * ); +static void Gsec( double, double[3][3], double[3], int * ); +static void STPConv( double, int, int, int, double[3], double *[3], int, double[3], double *[3], int * ); +static void J2000H( int, int, double *, double *, int * ); + +static int GetObjSize( AstObject *, int * ); + +/* Member functions. */ +/* ================= */ + +static void De2h( double ha, double dec, double phi, double diurab, + double *az, double *el, int *status ){ + +/* Not quite like slaDe2h since it converts from apparent (ha,dec) to + topocentric (az,el). This includes a correction for diurnal + aberration. The magnitude of the diurnal aberration vector should be + supplied in parameter "diurab". The extra code is taken from the + Fortran routine SLA_AOPQK. */ + +/* Local Variables: */ + double a; + double cd; + double ch; + double cp; + double f; + double r; + double sd; + double sh; + double sp; + double x; + double xhd; + double xhdt; + double y; + double yhd; + double yhdt; + double z; + double zhd; + double zhdt; + +/* Check inherited status */ + if( !astOK ) return; + +/* Pre-compute common values */ + sh = sin( ha ); + ch = cos( ha ); + sd = sin( dec ); + cd = cos( dec ); + sp = sin( phi ); + cp = cos( phi ); + +/* Components of cartesian (-ha,dec) vector. */ + xhd = ch*cd; + yhd = -sh*cd; + zhd = sd; + +/* Modify the above vector to apply diurnal aberration. */ + f = ( 1.0 - diurab*yhd ); + xhdt = f*xhd; + yhdt = f*( yhd + diurab ); + zhdt = f*zhd; + +/* Convert to cartesian (az,el). */ + x = -xhdt*sp + zhdt*cp; + y = yhdt; + z = xhdt*cp + zhdt*sp; + +/* Convert to spherical (az,el). */ + r = sqrt( x*x + y*y ); + if( r == 0.0 ) { + a = 0.0; + } else { + a = atan2( y, x ); + } + + while( a < 0.0 ) a += 2*AST__DPI; + + *az = a; + *el = atan2( z, r ); +} + +static void Dh2e( double az, double el, double phi, double diurab, double *ha, + double *dec, int *status ){ + +/* Not quite like slaDh2e since it converts from topocentric (az,el) to + apparent (ha,dec). This includes a correction for diurnal aberration. + The magnitude of the diurnal aberration vector should be supplied in + parameter "diurab". The extra code is taken from the Fortran routine + SLA_OAPQK. */ + +/* Local Variables: */ + double ca; + double ce; + double cp; + double f; + double r; + double sa; + double se; + double sp; + double x; + double xmhda; + double y; + double ymhda; + double z; + double zmhda; + +/* Check inherited status */ + if( !astOK ) return; + +/* Pre-compute common values. */ + sa = sin( az ); + ca = cos( az ); + se = sin( el ); + ce = cos( el ); + sp = sin( phi ); + cp = cos( phi ); + +/* Cartesian (az,el) to Cartesian (ha,dec) - note, +ha, not -ha. */ + xmhda = -ca*ce*sp + se*cp; + ymhda = -sa*ce; + zmhda = ca*ce*cp + se*sp; + +/* Correct this vector for diurnal aberration. Since the above + expressions produce +ha rather than -ha, we do not negate "diurab" + before using it. Compare this to SLA_AOPQK. */ + f = ( 1 - diurab*ymhda ); + x = f*xmhda; + y = f*( ymhda + diurab ); + z = f*zmhda; + +/* Cartesian (ha,dec) to spherical (ha,dec). */ + r = sqrt( x*x + y*y ); + if( r == 0.0 ) { + *ha = 0.0; + } else { + *ha = atan2( y, x ); + } + *dec = atan2( z, r ); +} + +static int Equal( AstObject *this_object, AstObject *that_object, int *status ) { +/* +* Name: +* Equal + +* Purpose: +* Test if two SlaMaps are equivalent. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* int Equal( AstObject *this, AstObject *that, int *status ) + +* Class Membership: +* SlaMap member function (over-rides the astEqual protected +* method inherited from the astMapping class). + +* Description: +* This function returns a boolean result (0 or 1) to indicate whether +* two SlaMaps are equivalent. + +* Parameters: +* this +* Pointer to the first Object (a SlaMap). +* that +* Pointer to the second Object. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* One if the SlaMaps are equivalent, zero otherwise. + +* Notes: +* - A value of zero will be returned if this function is invoked +* with the global status set, or if it should fail for any reason. +*/ + +/* Local Variables: */ + AstSlaMap *that; + AstSlaMap *this; + const char *argdesc[ MAX_SLA_ARGS ]; + const char *comment; + int i, j; + int nargs; + int nin; + int nout; + int result; + +/* Initialise. */ + result = 0; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Obtain pointers to the two SlaMap structures. */ + this = (AstSlaMap *) this_object; + that = (AstSlaMap *) that_object; + +/* Check the second object is a SlaMap. We know the first is a + SlaMap since we have arrived at this implementation of the virtual + function. */ + if( astIsASlaMap( that ) ) { + +/* Get the number of inputs and outputs and check they are the same for both. */ + nin = astGetNin( this ); + nout = astGetNout( this ); + if( astGetNin( that ) == nin && astGetNout( that ) == nout ) { + +/* If the Invert flags for the two SlaMaps differ, it may still be possible + for them to be equivalent. First compare the SlaMaps if their Invert + flags are the same. In this case all the attributes of the two SlaMaps + must be identical. */ + if( astGetInvert( this ) == astGetInvert( that ) ) { + if( this->ncvt == that->ncvt ) { + result = 1; + for( i = 0; i < this->ncvt && result; i++ ) { + if( this->cvttype[ i ] != that->cvttype[ i ] ) { + result = 0; + } else { + CvtString( this->cvttype[ i ], &comment, &nargs, + argdesc, status ); + for( j = 0; j < nargs; j++ ) { + if( !astEQUAL( this->cvtargs[ i ][ j ], + that->cvtargs[ i ][ j ] ) ){ + result = 0; + break; + } + } + } + } + } + +/* If the Invert flags for the two SlaMaps differ, the attributes of the two + SlaMaps must be inversely related to each other. */ + } else { + +/* In the specific case of a SlaMap, Invert flags must be equal. */ + result = 0; + + } + } + } + +/* If an error occurred, clear the result value. */ + if ( !astOK ) result = 0; + +/* Return the result, */ + return result; +} + + +static int GetObjSize( AstObject *this_object, int *status ) { +/* +* Name: +* GetObjSize + +* Purpose: +* Return the in-memory size of an Object. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* int GetObjSize( AstObject *this, int *status ) + +* Class Membership: +* SlaMap member function (over-rides the astGetObjSize protected +* method inherited from the parent class). + +* Description: +* This function returns the in-memory size of the supplied SlaMap, +* in bytes. + +* Parameters: +* this +* Pointer to the SlaMap. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* The Object size, in bytes. + +* Notes: +* - A value of zero will be returned if this function is invoked +* with the global status set, or if it should fail for any reason. +*/ + +/* Local Variables: */ + AstSlaMap *this; /* Pointer to SlaMap structure */ + int result; /* Result value to return */ + int cvt; /* Loop counter for coordinate conversions */ + +/* Initialise. */ + result = 0; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Obtain a pointers to the SlaMap structure. */ + this = (AstSlaMap *) this_object; + +/* Invoke the GetObjSize method inherited from the parent class, and then + add on any components of the class structure defined by thsi class + which are stored in dynamically allocated memory. */ + result = (*parent_getobjsize)( this_object, status ); + for ( cvt = 0; cvt < this->ncvt; cvt++ ) { + result += astTSizeOf( this->cvtargs[ cvt ] ); + result += astTSizeOf( this->cvtextra[ cvt ] ); + } + + result += astTSizeOf( this->cvtargs ); + result += astTSizeOf( this->cvtextra ); + result += astTSizeOf( this->cvttype ); + +/* If an error occurred, clear the result value. */ + if ( !astOK ) result = 0; + +/* Return the result, */ + return result; +} + +static void AddSlaCvt( AstSlaMap *this, int cvttype, int narg, + const double *args, int *status ) { +/* +* Name: +* AddSlaCvt + +* Purpose: +* Add a coordinate conversion step to an SlaMap. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* void AddSlaCvt( AstSlaMap *this, int cvttype, int narg, +* const double *args ) + +* Class Membership: +* SlaMap member function. + +* Description: +* This function allows one of the sky coordinate conversions +* supported by SLALIB to be appended to an SlaMap. When an SlaMap +* is first created (using astSlaMap), it simply performs a unit +* mapping. By using AddSlaCvt repeatedly, a series of sky +* coordinate conversions may then be specified which the SlaMap +* will subsequently perform in sequence. This allows a complex +* coordinate conversion to be assembled out of the basic building +* blocks provided by SLALIB. The SlaMap will also perform the +* inverse coordinate conversion (applying the individual +* conversion steps in reverse) if required. + +* Parameters: +* this +* Pointer to the SlaMap. +* cvttype +* A code to identify which sky coordinate conversion is to be +* appended. See the "SLALIB Coordinate Conversions" section +* for details of those available. +* narg +* The number of argument values supplied in "args". +* args +* Pointer to an array of double containing the argument values +* required to fully specify the required coordinate +* conversion. The number of arguments depends on the conversion +* (see the "SLALIB Coordinate Conversions" section for +* details). This value is ignored and may be NULL if no +* arguments are required. + +* Returned Value: +* void. + +* SLALIB Coordinate Conversions: +* The following values may be supplied for the "cvttype" parameter +* in order to specify the sky coordinate conversion to be +* performed. In each case the value is named after the SLALIB +* routine that performs the conversion, and the relevant SLALIB +* documentation should be consulted for full details. +* +* The argument(s) required to fully specify each conversion are +* indicated in parentheses after each value. Values for these +* should be given in the array pointed at by "args". The argument +* names given match the corresponding SLALIB function arguments +* (in the Fortran 77 documentation - SUN/67) and their values +* should be given using the same units, time scale, calendar, +* etc. as in SLALIB. +* +* AST__SLA_ADDET( EQ ) +* Add E-terms of aberration. +* AST__SLA_SUBET( EQ ) +* Subtract E-terms of aberration. +* AST__SLA_PREBN( BEP0, BEP1 ) +* Apply Bessel-Newcomb pre-IAU 1976 (FK4) precession model. +* AST__SLA_PREC( EP0, EP1 ) +* Apply IAU 1975 (FK5) precession model. +* AST__SLA_FK45Z( BEPOCH ) +* Convert FK4 to FK5 (no proper motion or parallax). +* AST__SLA_FK54Z( BEPOCH ) +* Convert FK5 to FK4 (no proper motion or parallax). +* AST__SLA_AMP( DATE, EQ ) +* Convert geocentric apparent to mean place. +* AST__SLA_MAP( EQ, DATE ) +* Convert mean place to geocentric apparent. +* AST__SLA_ECLEQ( DATE ) +* Convert ecliptic coordinates to J2000.0 equatorial. +* AST__SLA_EQECL( DATE ) +* Convert equatorial J2000.0 to ecliptic coordinates. +* AST__SLA_GALEQ( ) +* Convert galactic coordinates to J2000.0 equatorial. +* AST__SLA_EQGAL( ) +* Convert J2000.0 equatorial to galactic coordinates. +* AST__SLA_HFK5Z( JEPOCH ) +* Convert ICRS coordinates to J2000.0 equatorial (no proper +* motion or parallax). +* AST__SLA_FK5HZ( JEPOCH ) +* Convert J2000.0 equatorial to ICRS coordinates (no proper +* motion or parallax). +* AST__SLA_GALSUP( ) +* Convert galactic to supergalactic coordinates. +* AST__SLA_SUPGAL( ) +* Convert supergalactic coordinates to galactic. +* AST__HPCEQ( DATE, OBSX, OBSY, OBSZ ) +* Convert Helioprojective-Cartesian coordinates to J2000.0 +* equatorial. This is not a native SLALIB conversion, but is +* implemented by functions within this module. The DATE argument +* is the MJD defining the HPC coordinate system. The OBSX, OBSY +* and OBSZ arguments are the AST__HAEC coordinates of the observer. +* AST__EQHPC( DATE, OBSX, OBSY, OBSZ ) +* Convert J2000.0 equatorial coordinates to Helioprojective-Cartesian. +* AST__HPREQ( DATE, OBSX, OBSY, OBSZ ) +* Convert Helioprojective-Radial coordinates to J2000.0 equatorial. +* AST__EQHPR( DATE, OBSX, OBSY, OBSZ ) +* Convert J2000.0 equatorial coordinates to Helioprojective-Radial. +* AST__HEEQ( DATE ) +* Convert helio-ecliptic to ecliptic coordinates. +* AST__EQHE( DATE ) +* Convert ecliptic to helio-ecliptic coordinates. +* AST__J2000H( ) +* Convert dynamical J2000 to ICRS. +* AST__HJ2000( ) +* Convert ICRS to dynamical J2000. +* AST__SLA_DH2E( LAT, DIURAB ) +* Convert horizon to equatorial coordinates +* AST__SLA_DE2H( LAT, DIURAB ) +* Convert equatorial to horizon coordinates +* AST__R2H( LAST ) +* Convert RA to Hour Angle. +* AST__H2R( LAST ) +* Convert Hour Angle to RA. + +* Notes: +* - The specified conversion is appended only if the SlaMap's +* Invert attribute is zero. If it is non-zero, this function +* effectively prefixes the inverse of the conversion specified +* instead. +* - Sky coordinate values are in radians (as for SLALIB) and all +* conversions are performed using double arithmetic. +*/ + +/* Local Variables: */ + const char *argdesc[ MAX_SLA_ARGS ]; /* Pointers to argument descriptions */ + const char *comment; /* Pointer to comment string */ + const char *cvt_string; /* Pointer to conversion type string */ + int nargs; /* Number of arguments */ + int ncvt; /* Number of coordinate conversions */ + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Validate the coordinate conversion type and obtain the number of + required arguments. */ + cvt_string = CvtString( cvttype, &comment, &nargs, argdesc, status ); + +/* If the sky coordinate conversion type was not valid, then report an + error. */ + if ( astOK && !cvt_string ) { + astError( AST__SLAIN, "AddSlaCvt(%s): Invalid SLALIB sky coordinate " + "conversion type (%d).", status, astGetClass( this ), + (int) cvttype ); + } + +/* If the number of supplied arguments is incorrect, then report an error. */ + if ( astOK && nargs != narg ) { + astError( AST__TIMIN, "AddSlaCvt(%s): Invalid no. of arguments for SLALIB " + "coordinate conversion type %d - %d supplied, %d required.", + status, astGetClass( this ), (int) cvttype, narg, nargs ); + } + +/* Note the number of coordinate conversions already stored in the SlaMap. */ + if ( astOK ) { + ncvt = this->ncvt; + +/* Extend the array of conversion types and the array of pointers to + their argument lists to accommodate the new one. */ + this->cvttype = (int *) astGrow( this->cvttype, ncvt + 1, + sizeof( int ) ); + this->cvtargs = (double **) astGrow( this->cvtargs, ncvt + 1, + sizeof( double * ) ); + this->cvtextra = (double **) astGrow( this->cvtextra, ncvt + 1, + sizeof( double * ) ); + +/* If OK, allocate memory and store a copy of the argument list, + putting a pointer to the copy into the SlaMap. */ + if ( astOK ) { + this->cvtargs[ ncvt ] = astStore( NULL, args, + sizeof( double ) * (size_t) nargs ); + this->cvtextra[ ncvt ] = NULL; + } + +/* Store the conversion type and increment the conversion count. */ + if ( astOK ) { + this->cvttype[ ncvt ] = cvttype; + this->ncvt++; + } + } +} + +static int CvtCode( const char *cvt_string, int *status ) { +/* +* Name: +* CvtCode + +* Purpose: +* Convert a conversion type from a string representation to a code value. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* int CvtCode( const char *cvt_string, int *status ) + +* Class Membership: +* SlaMap member function. + +* Description: +* This function accepts a string used to repersent one of the +* SLALIB sky coordinate conversions and converts it into a code +* value for internal use. + +* Parameters: +* cvt_string +* Pointer to a constant null-terminated string representing a +* sky coordinate conversion. This is case sensitive and should +* contain no unnecessary white space. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* The equivalent conversion code. If the string was not +* recognised, the code AST__SLA_NULL is returned, without error. + +* Notes: +* - A value of AST__SLA_NULL will be returned if this function is +* invoked with the global error status set, or if it should fail +* for any reason. +*/ + +/* Local Variables: */ + int result; /* Result value to return */ + +/* Initialise. */ + result = AST__SLA_NULL; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Test the string against each recognised value in turn and assign + the result. */ + if ( astChrMatch( cvt_string, "ADDET" ) ) { + result = AST__SLA_ADDET; + + } else if ( astChrMatch( cvt_string, "SUBET" ) ) { + result = AST__SLA_SUBET; + + } else if ( astChrMatch( cvt_string, "PREBN" ) ) { + result = AST__SLA_PREBN; + + } else if ( astChrMatch( cvt_string, "PREC" ) ) { + result = AST__SLA_PREC; + + } else if ( astChrMatch( cvt_string, "FK45Z" ) ) { + result = AST__SLA_FK45Z; + + } else if ( astChrMatch( cvt_string, "FK54Z" ) ) { + result = AST__SLA_FK54Z; + + } else if ( astChrMatch( cvt_string, "AMP" ) ) { + result = AST__SLA_AMP; + + } else if ( astChrMatch( cvt_string, "MAP" ) ) { + result = AST__SLA_MAP; + + } else if ( astChrMatch( cvt_string, "ECLEQ" ) ) { + result = AST__SLA_ECLEQ; + + } else if ( astChrMatch( cvt_string, "EQECL" ) ) { + result = AST__SLA_EQECL; + + } else if ( astChrMatch( cvt_string, "GALEQ" ) ) { + result = AST__SLA_GALEQ; + + } else if ( astChrMatch( cvt_string, "EQGAL" ) ) { + result = AST__SLA_EQGAL; + + } else if ( astChrMatch( cvt_string, "FK5HZ" ) ) { + result = AST__SLA_FK5HZ; + + } else if ( astChrMatch( cvt_string, "HFK5Z" ) ) { + result = AST__SLA_HFK5Z; + + } else if ( astChrMatch( cvt_string, "GALSUP" ) ) { + result = AST__SLA_GALSUP; + + } else if ( astChrMatch( cvt_string, "SUPGAL" ) ) { + result = AST__SLA_SUPGAL; + + } else if ( astChrMatch( cvt_string, "HPCEQ" ) ) { + result = AST__HPCEQ; + + } else if ( astChrMatch( cvt_string, "EQHPC" ) ) { + result = AST__EQHPC; + + } else if ( astChrMatch( cvt_string, "HPREQ" ) ) { + result = AST__HPREQ; + + } else if ( astChrMatch( cvt_string, "EQHPR" ) ) { + result = AST__EQHPR; + + } else if ( astChrMatch( cvt_string, "HEEQ" ) ) { + result = AST__HEEQ; + + } else if ( astChrMatch( cvt_string, "EQHE" ) ) { + result = AST__EQHE; + + } else if ( astChrMatch( cvt_string, "J2000H" ) ) { + result = AST__J2000H; + + } else if ( astChrMatch( cvt_string, "HJ2000" ) ) { + result = AST__HJ2000; + + } else if ( astChrMatch( cvt_string, "H2E" ) ) { + result = AST__SLA_DH2E; + + } else if ( astChrMatch( cvt_string, "E2H" ) ) { + result = AST__SLA_DE2H; + + } else if ( astChrMatch( cvt_string, "R2H" ) ) { + result = AST__R2H; + + } else if ( astChrMatch( cvt_string, "H2R" ) ) { + result = AST__H2R; + + } + +/* Return the result. */ + return result; +} + +static const char *CvtString( int cvt_code, const char **comment, + int *nargs, const char *arg[ MAX_SLA_ARGS ], int *status ) { +/* +* Name: +* CvtString + +* Purpose: +* Convert a conversion type from a code value to a string representation. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* const char *CvtString( int cvt_code, const char **comment, +* int *nargs, const char *arg[ MAX_SLA_ARGS ], int *status ) + +* Class Membership: +* SlaMap member function. + +* Description: +* This function accepts a code value used to represent one of the +* SLALIB sky coordinate conversions and converts it into an +* equivalent string representation. It also returns a descriptive +* comment and information about the arguments required in order to +* perform the conversion. + +* Parameters: +* cvt_code +* The conversion code. +* comment +* Address of a location to return a pointer to a constant +* null-terminated string containing a description of the +* conversion. +* nargs +* Address of an int in which to return the number of arguments +* required in order to perform the conversion (may be zero). +* arg +* An array in which to return a pointer to a constant +* null-terminated string for each argument (above) containing a +* description of what each argument represents. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* Pointer to a constant null-terminated string representation of +* the conversion code value supplied. If the code supplied is not +* valid, a NULL pointer will be returned, without error. + +* Notes: +* - A NULL pointer value will be returned if this function is +* invoked with the global error status set, or if it should fail +* for any reason. +*/ + +/* Local Variables: */ + const char *result; /* Result pointer to return */ + +/* Initialise the returned values. */ + *comment = NULL; + *nargs = 0; + result = NULL; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* Test for each valid code value in turn and assign the appropriate + return values. */ + switch ( cvt_code ) { + + case AST__SLA_ADDET: + result = "ADDET"; + *comment = "Add E-terms of aberration"; + *nargs = 1; + arg[ 0 ] = "Besselian epoch of mean equinox (FK4)"; + break; + + case AST__SLA_SUBET: + result = "SUBET"; + *comment = "Subtract E-terms of aberration"; + *nargs = 1; + arg[ 0 ] = "Besselian epoch of mean equinox (FK4)"; + break; + + case AST__SLA_PREBN: + result = "PREBN"; + *comment = "Apply Bessel-Newcomb (FK4) precession"; + *nargs = 2; + arg[ 0 ] = "From Besselian epoch"; + arg[ 1 ] = "To Besselian epoch"; + break; + + case AST__SLA_PREC: + result = "PREC"; + *comment = "Apply IAU 1975 (FK5) precession"; + *nargs = 2; + arg[ 0 ] = "From Julian epoch"; + arg[ 1 ] = "To Julian epoch"; + break; + + case AST__SLA_FK45Z: + result = "FK45Z"; + *comment = "FK4 to FK5 J2000.0 (no PM or parallax)"; + arg[ 0 ] = "Besselian epoch of FK4 coordinates"; + *nargs = 1; + break; + + case AST__SLA_FK54Z: + result = "FK54Z"; + *comment = "FK5 J2000.0 to FK4 (no PM or parallax)"; + *nargs = 1; + arg[ 0 ] = "Besselian epoch of FK4 system"; + break; + + case AST__SLA_AMP: + result = "AMP"; + *comment = "Geocentric apparent to mean place (FK5)"; + *nargs = 2; + arg[ 0 ] = "TDB of apparent place (as MJD)"; + arg[ 1 ] = "Julian epoch of mean equinox (FK5)"; + break; + + case AST__SLA_MAP: + result = "MAP"; + *comment = "Mean place (FK5) to geocentric apparent"; + *nargs = 2; + arg[ 0 ] = "Julian epoch of mean equinox (FK5)"; + arg[ 1 ] = "TDB of apparent place (as MJD)"; + break; + + case AST__SLA_ECLEQ: + result = "ECLEQ"; + *comment = "Ecliptic (IAU 1980) to J2000.0 equatorial (FK5)"; + *nargs = 1; + arg[ 0 ] = "TDB of mean ecliptic (as MJD)"; + break; + + case AST__SLA_EQECL: + result = "EQECL"; + *comment = "Equatorial J2000.0 (FK5) to ecliptic (IAU 1980)"; + *nargs = 1; + arg[ 0 ] = "TDB of mean ecliptic (as MJD)"; + break; + + case AST__SLA_GALEQ: + result = "GALEQ"; + *comment = "Galactic (IAU 1958) to J2000.0 equatorial (FK5)"; + *nargs = 0; + break; + + case AST__SLA_EQGAL: + result = "EQGAL"; + *comment = "J2000.0 equatorial (FK5) to galactic (IAU 1958)"; + *nargs = 0; + break; + + case AST__SLA_FK5HZ: + result = "FK5HZ"; + *comment = "J2000.0 FK5 to ICRS (no PM or parallax)"; + arg[ 0 ] = "Julian epoch of FK5 coordinates"; + *nargs = 1; + break; + + case AST__SLA_HFK5Z: + result = "HFK5Z"; + *comment = "ICRS to J2000.0 FK5 (no PM or parallax)"; + arg[ 0 ] = "Julian epoch of FK5 coordinates"; + *nargs = 1; + break; + + case AST__SLA_GALSUP: + result = "GALSUP"; + *comment = "Galactic (IAU 1958) to supergalactic"; + *nargs = 0; + break; + + case AST__SLA_SUPGAL: + result = "SUPGAL"; + *comment = "Supergalactic to galactic (IAU 1958)"; + *nargs = 0; + break; + + case AST__HPCEQ: + result = "HPCEQ"; + *comment = "Helioprojective-Cartesian to J2000.0 equatorial (FK5)"; + *nargs = 4; + arg[ 0 ] = "Modified Julian Date of observation"; + arg[ 1 ] = "Heliocentric-Aries-Ecliptic X value at observer"; + arg[ 2 ] = "Heliocentric-Aries-Ecliptic Y value at observer"; + arg[ 3 ] = "Heliocentric-Aries-Ecliptic Z value at observer"; + break; + + case AST__EQHPC: + result = "EQHPC"; + *comment = "J2000.0 equatorial (FK5) to Helioprojective-Cartesian"; + *nargs = 4; + arg[ 0 ] = "Modified Julian Date of observation"; + arg[ 1 ] = "Heliocentric-Aries-Ecliptic X value at observer"; + arg[ 2 ] = "Heliocentric-Aries-Ecliptic Y value at observer"; + arg[ 3 ] = "Heliocentric-Aries-Ecliptic Z value at observer"; + break; + + case AST__HPREQ: + result = "HPREQ"; + *comment = "Helioprojective-Radial to J2000.0 equatorial (FK5)"; + *nargs = 4; + arg[ 0 ] = "Modified Julian Date of observation"; + arg[ 1 ] = "Heliocentric-Aries-Ecliptic X value at observer"; + arg[ 2 ] = "Heliocentric-Aries-Ecliptic Y value at observer"; + arg[ 3 ] = "Heliocentric-Aries-Ecliptic Z value at observer"; + break; + + case AST__EQHPR: + result = "EQHPR"; + *comment = "J2000.0 equatorial (FK5) to Helioprojective-Radial"; + *nargs = 4; + arg[ 0 ] = "Modified Julian Date of observation"; + arg[ 1 ] = "Heliocentric-Aries-Ecliptic X value at observer"; + arg[ 2 ] = "Heliocentric-Aries-Ecliptic Y value at observer"; + arg[ 3 ] = "Heliocentric-Aries-Ecliptic Z value at observer"; + break; + + case AST__HEEQ: + result = "HEEQ"; + *comment = "Helio-ecliptic to equatorial"; + *nargs = 1; + arg[ 0 ] = "Modified Julian Date of observation"; + break; + + case AST__EQHE: + result = "EQHE"; + *comment = "Equatorial to helio-ecliptic"; + *nargs = 1; + arg[ 0 ] = "Modified Julian Date of observation"; + break; + + case AST__J2000H: + result = "J2000H"; + *comment = "J2000 equatorial (dynamical) to ICRS"; + *nargs = 0; + break; + + case AST__HJ2000: + result = "HJ2000"; + *comment = "ICRS to J2000 equatorial (dynamical)"; + *nargs = 0; + break; + + case AST__SLA_DH2E: + result = "H2E"; + *comment = "Horizon to equatorial"; + *nargs = 2; + arg[ 0 ] = "Geodetic latitude of observer"; + arg[ 1 ] = "Magnitude of diurnal aberration vector"; + break; + + case AST__SLA_DE2H: + result = "E2H"; + *comment = "Equatorial to horizon"; + *nargs = 2; + arg[ 0 ] = "Geodetic latitude of observer"; + arg[ 1 ] = "Magnitude of diurnal aberration vector"; + break; + + case AST__R2H: + result = "R2H"; + *comment = "RA to Hour Angle"; + *nargs = 1; + arg[ 0 ] = "Local apparent sidereal time (radians)"; + break; + + case AST__H2R: + result = "H2R"; + *comment = "Hour Angle to RA"; + *nargs = 1; + arg[ 0 ] = "Local apparent sidereal time (radians)"; + break; + + } + +/* Return the result. */ + return result; +} + +static void Earth( double mjd, double earth[3], int *status ) { +/* +*+ +* Name: +* Earth + +* Purpose: +* Returns the AST__HAEC position of the earth at the specified time. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void Earth( double mjd, double earth[3], int *status ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function returns the AST__HAEC position of the earth at the +* specified time. See astSTPConv for a description of the AST__HAEC +* coordinate systems. + +* Parameters: +* mjd +* Modified Julian date. +* earth +* The AST__HAEC position of the earth at the given date. +*- +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + double dpb[3]; /* Earth position (barycentric) */ + double dph[3]; /* Earth position (heliocentric) */ + double dvb[3]; /* Earth velocity (barycentric) */ + double dvh[3]; /* Earth velocity (heliocentric, AST__HAQC) */ + double ecmat[3][3];/* Equatorial to ecliptic matrix */ + int i; /* Loop count */ + +/* Initialize. */ + for( i = 0; i < 3; i++ ) earth[ i ] = 0.0; + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Get the position of the earth at the given date in the AST__HAQC coord + system (dph). */ + palEvp( mjd, 2000.0, dvb, dpb, dvh, dph ); + +/* Now rotate the earths position vector into AST__HAEC coords. */ + palEcmat( palEpj2d( 2000.0 ), ecmat ); + palDmxv( ecmat, dph, earth ); + +/* Convert from AU to metres. */ + earth[0] *= AST__AU; + earth[1] *= AST__AU; + earth[2] *= AST__AU; + +} + +static void Hgc( double mjd, double mat[3][3], double offset[3], int *status ) { +/* +*+ +* Name: +* Hgc + +* Purpose: +* Returns matrix and offset for converting AST__HGC positions to AST__HAEC. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void Hgc( double mjd, double mat[3][3], double offset[3], int *status ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function returns a 3x3 matrix which rotates direction vectors +* given in the AST__HGC system to the AST__HAEC system at the +* specified date. It also returns the position of the origin of the +* AST__HGC system as an AST__HAEC position. See astSTPConv for a +* description of these coordinate systems. + +* Parameters: +* mjd +* Modified Julian date defining the coordinate systems. +* mat +* Matrix which rotates from AST__HGC to AST__HAEC. +* offset +* The origin of the AST__HGC system within the AST__HAEC system. +*- +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + double earth[3]; /* Earth position (heliocentric, AST__HAEC) */ + double len; /* Vector length */ + double xhg[3]; /* Unix X vector of AST__HGC system in AST__HAEC */ + double yhg[3]; /* Unix Y vector of AST__HGC system in AST__HAEC */ + double ytemp[3]; /* Un-normalized Y vector */ + double zhg[3]; /* Unix Z vector of AST__HGC system in AST__HAEC */ + int i; /* Loop count */ + int j; /* Loop count */ + +/* Initialize. */ + for( i = 0; i < 3; i++ ) { + for( j = 0; j < 3; j++ ) { + mat[i][j] = (i==j)?1.0:0.0; + } + offset[ i ] = 0.0; + } + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Get a unit vector parallel to the solar north pole at the given date. + This vector is expressed in AST__HAEC coords. This is the Z axis of the + AST__HGC system. */ + SolarPole( mjd, zhg, status ); + +/* Get the position of the earth at the given date in the AST__HAEC coord + system. */ + Earth( mjd, earth, status ); + +/* The HG Y axis is perpendicular to both the polar axis and the + sun-earth line. Obtain a Y vector by taking the cross product of the + two vectors, and then normalize it into a unit vector. */ + palDvxv( zhg, earth, ytemp ); + palDvn( ytemp, yhg, &len ); + +/* The HG X axis is perpendicular to both Z and Y, */ + palDvxv( yhg, zhg, xhg ); + +/* The HG X, Y and Z unit vectors form the columns of the required matrix. + The origins of the two systems are co-incident, so return the zero offset + vector initialised earlier. */ + for( i = 0; i < 3; i++ ) { + mat[ i ][ 0 ] = xhg[ i ]; + mat[ i ][ 1 ] = yhg[ i ]; + mat[ i ][ 2 ] = zhg[ i ]; + } + +} + +static void Gsec( double mjd, double mat[3][3], double offset[3], int *status ) { +/* +*+ +* Name: +* Gsec + +* Purpose: +* Returns matrix and offset for converting AST__GSEC positions to AST__HAEC. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void Gsec( double mjd, double mat[3][3], double offset[3], int *status ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function returns a 3x3 matrix which rotates direction vectors +* given in the AST__GSEC system to the AST__HAEC system at the +* specified date. It also returns the position of the origin of the +* AST__GSEC system as an AST__HAEC position. See astSTPConv for a +* description of these coordinate systems. + +* Parameters: +* mjd +* Modified Julian date defining the coordinate systems. +* mat +* Matrix which rotates from AST__GSEC to AST__HAEC. +* offset +* The origin of the AST__GSEC system within the AST__HAEC system. +*- +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + double earth[3]; /* Earth position (heliocentric, AST__HAEC) */ + double pole[3]; /* Solar pole (AST__HAEC) */ + double len; /* Vector length */ + double xgs[3]; /* Unix X vector of AST__GSEC system in AST__HAEC */ + double ygs[3]; /* Unix Y vector of AST__GSEC system in AST__HAEC */ + double ytemp[3]; /* Un-normalized Y vector */ + double zgs[3]; /* Unix Z vector of AST__GSEC system in AST__HAEC */ + int i; /* Loop count */ + int j; /* Loop count */ + +/* Initialize. */ + for( i = 0; i < 3; i++ ) { + for( j = 0; j < 3; j++ ) { + mat[i][j] = (i==j)?1.0:0.0; + } + offset[ i ] = 0.0; + } + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Get the position of the earth at the given date in the AST__HAEC coord + system. */ + Earth( mjd, earth, status ); + +/* We need to find unit vectors parallel to the GSEC (X,Y,Z) axes, expressed + in terms of the AST__HAEC (X,Y,Z) axes. The GSEC X axis starts at the + earth and passes through the centre of the sun. This is just the + normalized opposite of the earth's position vector. */ + palDvn( earth, xgs, &len ); + xgs[0] *= -1.0; + xgs[1] *= -1.0; + xgs[2] *= -1.0; + +/* The GSEC Y axis is perpendicular to both the X axis and the ecliptic north + pole vector. So find the ecliptic north pole vector in AST__HAEC coords. */ + pole[ 0 ] = 0.0; + pole[ 1 ] = 0.0; + pole[ 2 ] = 1.0; + +/* Find the GSEC Y axis by taking the vector product of the X axis and + the ecliptic north pole vector, and then normalize it into a unit + vector. */ + palDvxv( pole, xgs, ytemp ); + palDvn( ytemp, ygs, &len ); + +/* The GSEC Z axis is perpendicular to both X and Y axis, and forms a + right-handed system. The resulting vector will be of unit length + since the x and y vectors are both of unit length, and are + perpendicular to each other. It therefore does not need to be + normalized.*/ + palDvxv( xgs, ygs, zgs ); + +/* The GSEC X, Y and Z unit vectors form the columns of the required matrix. */ + for( i = 0; i < 3; i++ ) { + mat[ i ][ 0 ] = xgs[ i ]; + mat[ i ][ 1 ] = ygs[ i ]; + mat[ i ][ 2 ] = zgs[ i ]; + offset[i] = earth[ i ]; + } + +} + +static void Haec( double mjd, double mat[3][3], double offset[3], int *status ) { +/* +*+ +* Name: +* Haec + +* Purpose: +* Returns matrix and offset for converting AST__HAEC positions to AST__HAEC. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void Haec( double mjd, double mat[3][3], double offset[3], int *status ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function returns a 3x3 matrix which rotates direction vectors +* given in the AST__HAEC system to the AST__HAEC system at the +* specified date. It also returns the position of the origin of the +* AST__HAEC system as an AST__HAEC position. See astSTPConv for a +* description of these coordinate systems. + +* Parameters: +* mjd +* Modified Julian date defining the coordinate systems. +* mat +* Matrix which rotates from AST__HAEC to AST__HAEC. +* offset +* The origin of the AST__HAEC system within the AST__HAEC system. +*- +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + int i; /* Loop count */ + int j; /* Loop count */ + +/* Return an identity matrix and a zero offset vector. */ + for( i = 0; i < 3; i++ ) { + for( j = 0; j < 3; j++ ) { + mat[i][j] = (i==j)?1.0:0.0; + } + offset[ i ] = 0.0; + } + +} + +static void Haqc( double mjd, double mat[3][3], double offset[3], int *status ) { +/* +*+ +* Name: +* Haqc + +* Purpose: +* Returns matrix and offset for converting AST__HAQC positions to AST__HAEC. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void Haqc( double mjd, double mat[3][3], double offset[3], int *status ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function returns a 3x3 matrix which rotates direction vectors +* given in the AST__HAQC system to the AST__HAEC system at the +* specified date. It also returns the position of the origin of the +* AST__HAQC system as an AST__HAEC position. See astSTPConv for a +* description of these coordinate systems. + +* Parameters: +* mjd +* Modified Julian date defining the coordinate systems. +* mat +* Matrix which rotates from AST__HAQC to AST__HAEC. +* offset +* The origin of the AST__HAQC system within the AST__HAEC system. +*- +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + int i; /* Loop count */ + int j; /* Loop count */ + +/* Initialise an identity matrix and a zero offset vector. */ + for( i = 0; i < 3; i++ ) { + for( j = 0; j < 3; j++ ) { + mat[i][j] = (i==j)?1.0:0.0; + } + offset[ i ] = 0.0; + } + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Return the required matrix. */ + palEcmat( palEpj2d( 2000.0 ), mat ); + return; +} + +static void Hpcc( double mjd, double obs[3], double mat[3][3], double offset[3], int *status ) { +/* +*+ +* Name: +* Hpcc + +* Purpose: +* Returns matrix and offset for converting AST__HPCC positions to +* AST__HAEC. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void Hpcc( double mjd, double obs[3], double mat[3][3], double offset[3], int *status ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function returns a 3x3 matrix which rotates direction vectors +* given in the AST__HPCC system to the AST__HAEC system at the +* specified date. It also returns the position of the origin of the +* AST__HPCC system as an AST__HAEC position. See astSTPConv for a +* description of these coordinate systems. + +* Parameters: +* mjd +* Modified Julian date defining the coordinate systems. +* obs +* The observers position, in AST__HAEC, or NULL if the observer is +* at the centre of the earth. +* mat +* Matrix which rotates from AST__HPCC to AST__HAEC. +* offset +* The origin of the AST__HPCC system within the AST__HAEC system. +*- +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + double earth[3]; /* Earth position (heliocentric, AST__HAEC) */ + double pole[3]; /* Solar pole vector (AST__HAEC) */ + double len; /* Vector length */ + double xhpc[3]; /* Unix X vector of AST__HPCC system in AST__HAEC */ + double yhpc[3]; /* Unix Y vector of AST__HPCC system in AST__HAEC */ + double ytemp[3]; /* Un-normalized Y vector */ + double zhpc[3]; /* Unix Z vector of AST__HPCC system in AST__HAEC */ + int i; /* Loop count */ + int j; /* Loop count */ + +/* Initialize. */ + for( i = 0; i < 3; i++ ) { + for( j = 0; j < 3; j++ ) { + mat[i][j] = (i==j)?1.0:0.0; + } + offset[i] = 0.0; + } + +/* Check the global error status. */ + if ( !astOK ) return; + +/* If no observers position was supplied, use the position of the earth + at the specified date in AST__HAEC coords. */ + if( !obs ) { + Earth( mjd, earth, status ); + obs = earth; + } + +/* We need to find unit vectors parallel to the HPCC (X,Y,Z) axes, expressed + in terms of the AST__HAEC (X,Y,Z) axes. The HPCC X axis starts at the + observer and passes through the centre of the sun. This is just the + normalized opposite of the supplied observer's position vector. */ + palDvn( obs, xhpc, &len ); + xhpc[0] *= -1.0; + xhpc[1] *= -1.0; + xhpc[2] *= -1.0; + +/* The HPC Y axis is perpendicular to both the X axis and the solar north + pole vector. So find the solar north pole vector in AST__HAEC coords. */ + SolarPole( mjd, pole, status ); + +/* Find the HPC Y axis by taking the vector product of the X axis and + the solar north pole vector, and then normalize it into a unit vector. + Note, HPC (X,Y,Z) axes form a left-handed system! */ + palDvxv( xhpc, pole, ytemp ); + palDvn( ytemp, yhpc, &len ); + +/* The HPC Z axis is perpendicular to both X and Y axis, and forms a + left-handed system. The resulting vector will be of unit length + since the x and y vectors are both of unit length, and are + perpendicular to each other. It therefore does not need to be + normalized.*/ + palDvxv( yhpc, xhpc, zhpc ); + +/* The HPC X, Y and Z unit vectors form the columns of the required matrix. */ + for( i = 0; i < 3; i++ ) { + mat[ i ][ 0 ] = xhpc[ i ]; + mat[ i ][ 1 ] = yhpc[ i ]; + mat[ i ][ 2 ] = zhpc[ i ]; + offset[i] = obs[ i ]; + } + +} + +static void Hprc( double mjd, double obs[3], double mat[3][3], double offset[3], int *status ) { +/* +*+ +* Name: +* Hprc + +* Purpose: +* Returns matrix and offset for converting AST__HPRC positions to +* AST__HAEC. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void Hprc( double mjd, double obs[3], double mat[3][3], double offset[3], int *status ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function returns a 3x3 matrix which rotates direction vectors +* given in the AST__HPRC system to the AST__HAEC system at the +* specified date. It also returns the position of the origin of the +* AST__HPRC system as an AST__HAEC position. See astSTPConv for a +* description of these coordinate systems. + +* Parameters: +* mjd +* Modified Julian date defining the coordinate systems. +* obs +* The observers position, in AST__HAEC, or NULL if the observer is +* at the centre of the earth. +* mat +* Matrix which rotates from AST__HPRC to AST__HAEC. +* offset +* The origin of the AST__HPRC system within the AST__HAEC system. +*- +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + double pole[3]; /* Solar pole (AST__HAEC) */ + double earth[3]; /* Earth position (heliocentric, AST__HAEC) */ + double len; /* Vector length */ + double xhpr[3]; /* Unix X vector of AST__HPRC system in AST__HAEC */ + double yhpr[3]; /* Unix Y vector of AST__HPRC system in AST__HAEC */ + double ytemp[3]; /* Un-normalized Y vector */ + double zhpr[3]; /* Unix Z vector of AST__HPRC system in AST__HAEC */ + int i; /* Loop count */ + int j; /* Loop count */ + +/* Initialize. */ + for( i = 0; i < 3; i++ ) { + for( j = 0; j < 3; j++ ) { + mat[i][j] = (i==j)?1.0:0.0; + } + offset[i] = 0.0; + } + +/* Check the global error status. */ + if ( !astOK ) return; + +/* If no observers position was supplied, use the position of the earth + at the specified date in AST__HAEC coords. */ + if( !obs ) { + Earth( mjd, earth, status ); + obs = earth; + } + +/* We need to find unit vectors parallel to the HPRC (X,Y,Z) axes, expressed + in terms of the AST__HAEC (X,Y,Z) axes. The HPRC Z axis starts at the + observer and passes through the centre of the sun. This is just the + normalized opposite of the supplied observer's position vector. */ + palDvn( obs, zhpr, &len ); + zhpr[0] *= -1.0; + zhpr[1] *= -1.0; + zhpr[2] *= -1.0; + +/* The HPR Y axis is perpendicular to both the Z axis and the solar north + pole vector. So find the solar north pole vector in AST__HAEC coords. */ + SolarPole( mjd, pole, status ); + +/* Find the HPR Y axis by taking the vector product of the Z axis and + the solar north pole vector, and then normalize it into a unit vector. + Note, HPR (X,Y,Z) axes form a left-handed system! */ + palDvxv( pole, zhpr, ytemp ); + palDvn( ytemp, yhpr, &len ); + +/* The HPRC X axis is perpendicular to both Y and Z axis, and forms a + left-handed system. The resulting vector will be of unit length + since the y and z vectors are both of unit length, and are + perpendicular to each other. It therefore does not need to be + normalized.*/ + palDvxv( zhpr, yhpr, xhpr ); + +/* The HPRC X, Y and Z unit vectors form the columns of the required matrix. */ + for( i = 0; i < 3; i++ ) { + mat[ i ][ 0 ] = xhpr[ i ]; + mat[ i ][ 1 ] = yhpr[ i ]; + mat[ i ][ 2 ] = zhpr[ i ]; + offset[ i ] = obs[ i ]; + } +} + +static void J2000H( int forward, int npoint, double *alpha, double *delta, int *status ){ +/* +* Name: +* J2000H + +* Purpose: +* Convert dynamical J2000 equatorial coords to ICRS. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void J2000H( int forward, int npoint, double *alpha, double *delta, int *status ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function converts the supplied dynamical J2000 equatorial coords +* to ICRS (or vice-versa). + +* Parameters: +* forward +* Do forward transformation? +* npoint +* Number of points to transform. +* alpha +* Pointer to longitude values. +* delta +* Pointer to latitude values. +* status +* Pointer to the inherited status variable. +*/ + +/* Local Variables: */ + int i; /* Loop count */ + double rmat[3][3]; /* J2000 -> ICRS rotation matrix */ + double v1[3]; /* J2000 vector */ + double v2[3]; /* ICRS vector */ + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Get the J2000 to ICRS rotation matrix (supplied by P.T. Wallace) */ + palDeuler( "XYZ", -0.0068192*AS2R, 0.0166172*AS2R, 0.0146000*AS2R, + rmat ); + +/* Loop round all points. */ + for( i = 0; i < npoint; i++ ) { + +/* Convert from (alpha,delta) to 3-vector */ + palDcs2c( alpha[ i ], delta[ i ], v1 ); + +/* Rotate the 3-vector */ + if( forward ) { + palDmxv( rmat, v1, v2 ); + } else { + palDimxv( rmat, v1, v2 ); + } + +/* Convert from 3-vector to (alpha,delta) */ + palDcc2s( v2, alpha + i, delta + i ); + } +} + +void astSTPConv1_( double mjd, int in_sys, double in_obs[3], double in[3], + int out_sys, double out_obs[3], double out[3], int *status ){ +/* +*+ +* Name: +* astSTPConv1 + +* Purpose: +* Converts a 3D solar system position between specified STP coordinate +* systems. + +* Type: +* Protected function. + +* Synopsis: +* #include "slamap.h" +* void astSTPConv1( double mjd, int in_sys, double in_obs[3], +* double in[3], int out_sys, double out_obs[3], +* double out[3] ) + +* Class Membership: +* Frame method. + +* Description: +* This function converts a single 3D solar-system position from the +* specified input coordinate system to the specified output coordinate +* system. See astSTPConv for a list of supported coordinate systems. + +* Parameters: +* mjd +* The Modified Julian Date to which the coordinate systems refer. +* in_sys +* The coordinate system in which the input positions are supplied. +* in_obs +* The position of the observer in AST__HAEC coordinates. This is only +* needed if the input system is an observer-centric system. If this +* is not the case, a NULL pointer can be supplied. A NULL pointer +* can also be supplied to indicate that he observer is at the centre of +* the earth at the specified date. +* in +* A 3-element array holding the input position. +* out_sys +* The coordinate system in which the input positions are supplied. +* out_obs +* The position of the observer in AST__HAEC coordinates. This is only +* needed if the output system is an observer-centric system. If this +* is not the case, a NULL pointer can be supplied. A NULL pointer +* can also be supplied to indicate that he observer is at the centre of +* the earth at the specified date. +* out +* A 3-element array holding the output position. + +* Notes: +* - The "in" and "out" arrays may safely point to the same memory. +* - Output longitude values are always in the range 0 - 2.PI. + +*- +*/ + +/* Local Variables: */ + double *ins[ 3 ]; /* The input position */ + double *outs[ 3 ]; /* The output position */ + +/* Store pointers to the supplied arrays suitable for passing to STPConv. */ + ins[ 0 ] = in; + ins[ 1 ] = in + 1; + ins[ 2 ] = in + 2; + outs[ 0 ] = out; + outs[ 1 ] = out + 1; + outs[ 2 ] = out + 2; + +/* Convert the position. */ + STPConv( mjd, 0, 1, in_sys, in_obs, ins, out_sys, out_obs, outs, status ); + +} + +void astSTPConv_( double mjd, int n, int in_sys, double in_obs[3], + double *in[3], int out_sys, double out_obs[3], + double *out[3], int *status ){ +/* +*+ +* Name: +* astSTPConv + +* Purpose: +* Converts a set of 3D solar system positions between specified STP +* coordinate systems. + +* Type: +* Protected function. + +* Synopsis: +* #include "slamap.h" +* void astSTPConv( double mjd, int n, int in_sys, double in_obs[3], +* double *in[3], int out_sys, double out_obs[3], +* double *out[3] ) + +* Class Membership: +* Frame method. + +* Description: +* This function converts a set of 3D solar-system positions from +* the specified input coordinate system to the specified output +* coordinate system. + +* Parameters: +* mjd +* The Modified Julian Date to which the coordinate systems refer. +* in_sys +* The coordinate system in which the input positions are supplied +* (see below). +* in_obs +* The position of the observer in AST__HAEC coordinates. This is only +* needed if the input system is an observer-centric system. If this +* is not the case, a NULL pointer can be supplied. A NULL pointer +* can also be supplied to indicate that he observer is at the centre of +* the earth at the specified date. +* in +* A 3-element array holding the input positions. Each of the 3 +* elements should point to an array of "n" axis values. For spherical +* input systems, in[3] can be supplied as NULL, in which case a +* constant value of 1 AU will be used. +* out_sys +* The coordinate system in which the input positions are supplied +* (see below). +* out_obs +* The position of the observer in AST__HAEC coordinates. This is only +* needed if the output system is an observer-centric system. If this +* is not the case, a NULL pointer can be supplied. A NULL pointer +* can also be supplied to indicate that he observer is at the centre of +* the earth at the specified date. +* out +* A 3-element array holding the output positions. Each of the 3 +* elements should point to an array of "n" axis values. If in[3] is +* NULL, no values will be assigned to out[3]. + +* Notes: +* - The "in" and "out" arrays may safely point to the same memory. +* - Output longitude values are always in the range 0 - 2.PI. + +* Supported Coordinate Systems: +* Coordinate systems are either spherical or Cartesian, and are right +* handed (unless otherwise indicated). Spherical systems use axis 0 for +* longitude, axis 1 for latitude, and axis 2 for radius. Cartesian systems +* use 3 mutually perpendicular axes; X is axis 0 and points towards the +* intersection of the equator and the zero longitude meridian of the +* corresponding spherical system, Y is axis 1 and points towards longitude +* of +90 degrees, Z is axis 2 and points twowards the north pole. All +* angles are in radians and all distances are in metres. The following +* systems are supported: +* +* - AST__HAE: Heliocentric-aries-ecliptic spherical coordinates. Centred +* at the centre of the sun. The north pole points towards the J2000 +* ecliptic north pole, and meridian of zero longitude includes the +* J2000 equinox. +* +* - AST__HAEC: Heliocentric-aries-ecliptic cartesian coordinates. Origin +* at the centre of the sun. The Z axis points towards the J2000 ecliptic +* north pole, and the X axis points towards the J2000 equinox. +* +* - AST__HAQ: Heliocentric-aries-equatorial spherical coordinates. Centred +* at the centre of the sun. The north pole points towards the FK5 J2000 +* equatorial north pole, and meridian of zero longitude includes the +* FK5 J2000 equinox. +* +* - AST__HAQC: Heliocentric-aries-equatorial cartesian coordinates. Origin +* at the centre of the sun. The Z axis points towards the FK5 J2000 +* equatorial north pole, and the X axis points towards the FK5 J2000 +* equinox. +* +* - AST__HG: Heliographic spherical coordinates. Centred at the centre of +* the sun. North pole points towards the solar north pole at the given +* date. The meridian of zero longitude includes the sun-earth line at +* the given date. +* +* - AST__HGC: Heliographic cartesian coordinates. Origin at the centre of +* the sun. The Z axis points towards the solar north pole at the given +* date. The X axis is in the plane spanned by the Z axis, and the +* sun-earth line at the given date. +* +* - AST__HPC: Helioprojective-cartesian spherical coordinates. A +* left-handed system (that is, longitude increases westwards), centred +* at the specified observer position. The intersection of the +* zero-longitude meridian and the equator coincides with the centre of +* the sun as seen from the observers position. The zero longitude +* meridian includes the solar north pole at the specified date. +* +* - AST__HPCC: Helioprojective-cartesian cartesian coordinates. A +* left-handed system with origin at the specified observer position. The +* X axis points towards the centre of the sun as seen from the observers +* position. The X-Z plane includes the solar north pole at the specified +* date. +* +* - AST__HPR: Helioprojective-radial spherical coordinates. A left-handed +* system (that is, longitude increases westwards), centred at the +* specified observer position. The north pole points towards the centre +* of the sun as seen from the observers position. The zero longitude +* meridian includes the solar north pole at the specified date. +* +* - AST__HPRC: Helioprojective-radial cartesian coordinates. A left-handed +* system with origin at the specified observer position. The Z axis points +* towards the centre of the sun as seen from the observers position. The +* X-Z plane includes the solar north pole at the specified date. +* +* - AST__GSE: Geocentric-solar-ecliptic spherical coordinates. Centred at +* the centre of the earth at the given date. The north pole points towards +* the J2000 ecliptic north pole, and the meridian of zero longitude +* includes the Sun. +* +* - AST__GSEC: Geocentric-solar-ecliptic cartesian coordinates. Origin at +* the centre of the earth at the given date. The X axis points towards the +* centre of sun, and the X-Z plane contains the J2000 ecliptic north +* pole. Since the earth may not be exactly in the mean ecliptic of +* J2000, the Z axis will not in general correspond exactly to the +* ecliptic north pole. +*- +*/ + STPConv( mjd, 0, n, in_sys, in_obs, in, out_sys, out_obs, out, status ); +} + +static void STPConv( double mjd, int ignore_origins, int n, int in_sys, + double in_obs[3], double *in[3], int out_sys, + double out_obs[3], double *out[3], int *status ){ +/* +* Name: +* STPConv + +* Purpose: +* Convert a set of 3D solar system positions between specified STP +* coordinate systems. + +* Type: +* Private member function. + +* Synopsis: +* #include "slamap.h" +* void STPConv( double mjd, int ignore_origins, int n, int in_sys, +* double in_obs[3], double *in[3], int out_sys, +* double out_obs[3], double *out[3], int *status ){ + +* Class Membership: +* Frame method. + +* Description: +* This function converts a set of 3D solar-system positions from +* the specified input coordinate system to the specified output +* coordinate system. See astSTPConv for a list of the available +* coordinate systems. + +* Parameters: +* mjd +* The Modified Julian Date to which the coordinate systems refer. +* ignore_origins +* If non-zero, then the coordinate system definitions are modified so +* that all cartesian systems have the origin at the centre of the +* Sun. If zero, the correct origins are used for each individual +* system. +* n +* The number of positions to transform. +* in_sys +* The coordinate system in which the input positions are supplied +* in_obs +* The position of the observer in AST__HAEC coordinates. This is only +* needed if the input system is an observer-centric system. If this +* is not the case, a NULL pointer can be supplied. A NULL pointer +* can also be supplied to indicate that he observer is at the centre of +* the earth at the specified date. +* in +* A 3-element array holding the input positions. Each of the 3 +* elements should point to an array of "n" axis values. For spherical +* input systems, in[3] can be supplied as NULL, in which case a +* constant value of 1 AU will be used. +* out_sys +* The coordinate system in which the input positions are supplied +* (see "Supported Coordinate Systems" below). +* out_obs +* The position of the observer in AST__HAEC coordinates. This is only +* needed if the output system is an observer-centric system. If this +* is not the case, a NULL pointer can be supplied. A NULL pointer +* can also be supplied to indicate that he observer is at the centre of +* the earth at the specified date. +* out +* A 3-element array holding the input positions. Each of the 3 +* elements should point to an array of "n" axis values. For spherical +* output coordinates, out[2] may be NULL, in which case the output +* radius values are thrown away. +* status +* Pointer to the inherited status variable. + +* Notes: +* - Output longitude values are always in the range 0 - 2.PI. +* - The "in" and "out" arrays may safely point to the same memory. +* - The contents of the output array is left unchanged if an error +* has already occurred. +*/ + +/* Local Variables: */ + double *out2; /* Pointer to output third axis values */ + double *px; /* Pointer to next X axis value */ + double *py; /* Pointer to next Y axis value */ + double *pz; /* Pointer to next Z axis value */ + double lat; /* Latitude value */ + double lng; /* Longitude value */ + double mat1[3][3]; /* Input->HAEC rotation matrix */ + double mat2[3][3]; /* Output->HAEC rotation matrix */ + double mat3[3][3]; /* HAEC->output rotation matrix */ + double mat4[3][3]; /* Input->output rotation matrix */ + double off1[3]; /* Origin of input system in HAEC coords */ + double off2[3]; /* Origin of output system in HAEC coords */ + double off3[3]; /* HAEC vector from output origin to input origin */ + double off4[3]; /* Position of input origin within output system */ + double p[3]; /* Current position */ + double q[3]; /* New position */ + double radius; /* Radius value */ + int cur_sys; /* Current system for output values */ + int i; /* Loop count */ + int j; /* Loop count */ + int inCsys; /* Input cartesian system */ + int outCsys; /* Output cartesian system */ + size_t nbyte; /* Amount of memory to copy */ + +/* Check the global error status. */ + if ( !astOK ) return; + +/* If out[2] was supplied as null, allocate memory to hold third axis + values. Otherwise, use the supplied array. */ + nbyte = n*sizeof( double ); + if( !out[2] ) { + out2 = (double *) astMalloc( nbyte ); + } else { + out2 = out[2]; + } + +/* Copy the input data to the output data and note that the output values + are currently in the same system as the input values. */ + memcpy ( out[ 0 ], in[ 0 ], nbyte ); + memcpy ( out[ 1 ], in[ 1 ], nbyte ); + if( in[2] ) { + memcpy ( out2, in[ 2 ], nbyte ); + } else { + for( i = 0; i < n; i++ ) out2[ i ] = AST__AU; + } + cur_sys = in_sys; + +/* Skip the next bit if the output values are now in the required system. */ + if( cur_sys != out_sys ) { + +/* If the current system is spherical note the corresponding cartesian + system. If the current system is cartesian, use it. */ + if( cur_sys == AST__HG ){ + inCsys = AST__HGC; + } else if( cur_sys == AST__HAQ ){ + inCsys = AST__HAQC; + } else if( cur_sys == AST__HAE ){ + inCsys = AST__HAEC; + } else if( cur_sys == AST__GSE ){ + inCsys = AST__GSEC; + } else if( cur_sys == AST__HPC ){ + inCsys = AST__HPCC; + } else if( cur_sys == AST__HPR ){ + inCsys = AST__HPRC; + } else { + inCsys = cur_sys; + } + +/* Convert input spherical positions into the corresponding cartesian system, + putting the results in the "out" arrays. Modify the input system + accordingly. */ + if( cur_sys != inCsys ) { + px = out[ 0 ]; + py = out[ 1 ]; + pz = out2; + for( i = 0; i < n; i++ ) { + p[ 0 ] = *px; + p[ 1 ] = *py; + p[ 2 ] = *pz; + if( p[ 0 ] != AST__BAD && + p[ 1 ] != AST__BAD && + p[ 2 ] != AST__BAD ) { + palDcs2c( p[ 0 ], p[ 1 ], q ); + *(px++) = q[ 0 ]*p[ 2 ]; + *(py++) = q[ 1 ]*p[ 2 ]; + *(pz++) = q[ 2 ]*p[ 2 ]; + } else { + *(px++) = AST__BAD; + *(py++) = AST__BAD; + *(pz++) = AST__BAD; + } + } + + cur_sys = inCsys; + + } + } + +/* Skip the next bit if the output values are now in the required system. */ + if( cur_sys != out_sys ) { + +/* If the required output system is spherical, note the corresponding + cartesian system. If the required output system is cartesian, use it.*/ + if( out_sys == AST__HG ){ + outCsys = AST__HGC; + } else if( out_sys == AST__HAQ ){ + outCsys = AST__HAQC; + } else if( out_sys == AST__HAE ){ + outCsys = AST__HAEC; + } else if( out_sys == AST__GSE ){ + outCsys = AST__GSEC; + } else if( out_sys == AST__HPC ){ + outCsys = AST__HPCC; + } else if( out_sys == AST__HPR ){ + outCsys = AST__HPRC; + } else { + outCsys = out_sys; + } + +/* Skip the next bit if the output values are already in the required + output cartesian system. */ + if( cur_sys != outCsys ) { + +/* Obtain an offset vector and a rotation matrix which moves positions from + the current (Cartesian) system to the AST__HAEC system. The offset vector + returned by these functions is the AST__HAEC coordinates of the origin of + the current system. The matrix rotates direction vectors from the current + system to the AST__HAEC system. */ + if( cur_sys == AST__HGC ) { + Hgc( mjd, mat1, off1, status ); + + } else if( cur_sys == AST__HAEC ) { + Haec( mjd, mat1, off1, status ); + + } else if( cur_sys == AST__HAQC ) { + Haqc( mjd, mat1, off1, status ); + + } else if( cur_sys == AST__GSEC ) { + Gsec( mjd, mat1, off1, status ); + + } else if( cur_sys == AST__HPCC ) { + Hpcc( mjd, in_obs, mat1, off1, status ); + + } else if( cur_sys == AST__HPRC ) { + Hprc( mjd, in_obs, mat1, off1, status ); + + } else { + astError( AST__INTER, "astSTPConv(SlaMap): Unsupported input " + "cartesian coordinate system type %d (internal AST " + "programming error).", status, cur_sys ); + } + +/* Obtain an offset vector and a rotation matrix which moves positions from + the required output Cartesian system to the AST__HAEC system. */ + if( outCsys == AST__HGC ) { + Hgc( mjd, mat2, off2, status ); + + } else if( outCsys == AST__HAEC ) { + Haec( mjd, mat2, off2, status ); + + } else if( outCsys == AST__HAQC ) { + Haqc( mjd, mat2, off2, status ); + + } else if( outCsys == AST__GSEC ) { + Gsec( mjd, mat2, off2, status ); + + } else if( outCsys == AST__HPCC ) { + Hpcc( mjd, out_obs, mat2, off2, status ); + + } else if( outCsys == AST__HPRC ) { + Hprc( mjd, out_obs, mat2, off2, status ); + + } else { + astError( AST__INTER, "astSTPConv(SlaMap): Unsupported output " + "cartesian coordinate system type %d (internal AST " + "programming error).", status, outCsys ); + } + +/* Invert the second matrix to get the matrix which rotates AST__HAEC coords + to the output cartesian system. This an be done simply by transposing it + since all the matrices are 3D rotations. */ + for( i = 0; i < 3; i++ ) { + for( j = 0; j < 3; j++ ) mat3[ i ][ j ] = mat2[ j ][ i ]; + +/* Find the offset in AST__HAEC coords from the origin of the output + cartesian system to the origin of the current system. */ + off3[ i ] = off1[ i ] - off2[ i ]; + } + +/* Unless the origins are being ignored, use the above matrix to rotate the + above AST__HAEC offset into the output cartesian system. If origins are + being ignored, use an offset of zero. */ + if( ignore_origins ) { + off4[ 0 ] = 0.0; + off4[ 1 ] = 0.0; + off4[ 2 ] = 0.0; + } else { + palDmxv( mat3, off3, off4 ); + } + +/* Concatentate the two matrices to get the matrix which rotates from the + current system to the output cartesian system. */ + palDmxm( mat3, mat1, mat4 ); + +/* Use the matrix and offset to convert current positions to output + cartesian positions. */ + px = out[ 0 ]; + py = out[ 1 ]; + pz = out2; + + for( i = 0; i < n; i++ ) { + p[ 0 ] = *px; + p[ 1 ] = *py; + p[ 2 ] = *pz; + + if( p[ 0 ] != AST__BAD && + p[ 1 ] != AST__BAD && + p[ 2 ] != AST__BAD ) { + palDmxv( mat4, p, q ); + *(px++) = q[ 0 ] + off4[ 0 ]; + *(py++) = q[ 1 ] + off4[ 1 ]; + *(pz++) = q[ 2 ] + off4[ 2 ]; + } else { + *(px++) = AST__BAD; + *(py++) = AST__BAD; + *(pz++) = AST__BAD; + } + } + +/* Indicate that the output values are now in the required output + cartesian system. */ + cur_sys = outCsys; + + } + } + +/* Skip the next bit if the output values are now in the required system. */ + if( cur_sys != out_sys ) { + +/* The only reason why the output values may not be in the required output + system is because the output system is spherical. Convert output Cartesian + positions to output spherical positions. */ + px = out[ 0 ]; + py = out[ 1 ]; + pz = out2; + for( i = 0; i < n; i++ ) { + p[ 0 ] = *px; + p[ 1 ] = *py; + p[ 2 ] = *pz; + if( p[ 0 ] != AST__BAD && + p[ 1 ] != AST__BAD && + p[ 2 ] != AST__BAD ) { + palDvn( p, q, &radius ); + palDcc2s( q, &lng, &lat ); + *(px++) = palDranrm( lng ); + *(py++) = lat; + *(pz++) = radius; + } else { + *(px++) = AST__BAD; + *(py++) = AST__BAD; + *(pz++) = AST__BAD; + } + } + } + +/* If out[2] was supplied as null, free the memory used to hold third axis + values. */ + if( !out[2] ) out2 = (double *) astFree( (void *) out2 ); +} + +void astInitSlaMapVtab_( AstSlaMapVtab *vtab, const char *name, int *status ) { +/* +*+ +* Name: +* astInitSlaMapVtab + +* Purpose: +* Initialise a virtual function table for a SlaMap. + +* Type: +* Protected function. + +* Synopsis: +* #include "slamap.h" +* void astInitSlaMapVtab( AstSlaMapVtab *vtab, const char *name ) + +* Class Membership: +* SlaMap vtab initialiser. + +* Description: +* This function initialises the component of a virtual function +* table which is used by the SlaMap class. + +* Parameters: +* vtab +* Pointer to the virtual function table. The components used by +* all ancestral classes will be initialised if they have not already +* been initialised. +* name +* Pointer to a constant null-terminated character string which contains +* the name of the class to which the virtual function table belongs (it +* is this pointer value that will subsequently be returned by the Object +* astClass function). +*- +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstObjectVtab *object; /* Pointer to Object component of Vtab */ + AstMappingVtab *mapping; /* Pointer to Mapping component of Vtab */ + +/* Check the local error status. */ + if ( !astOK ) return; + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(NULL); + +/* Initialize the component of the virtual function table used by the + parent class. */ + astInitMappingVtab( (AstMappingVtab *) vtab, name ); + +/* Store a unique "magic" value in the virtual function table. This + will be used (by astIsASlaMap) to determine if an object belongs to + this class. We can conveniently use the address of the (static) + class_check variable to generate this unique value. */ + vtab->id.check = &class_check; + vtab->id.parent = &(((AstMappingVtab *) vtab)->id); + +/* Initialise member function pointers. */ +/* ------------------------------------ */ +/* Store pointers to the member functions (implemented here) that + provide virtual methods for this class. */ + vtab->SlaAdd = SlaAdd; + vtab->SlaIsEmpty = SlaIsEmpty; + +/* Save the inherited pointers to methods that will be extended, and + replace them with pointers to the new member functions. */ + object = (AstObjectVtab *) vtab; + mapping = (AstMappingVtab *) vtab; + parent_getobjsize = object->GetObjSize; + object->GetObjSize = GetObjSize; + + parent_transform = mapping->Transform; + mapping->Transform = Transform; + +/* Store replacement pointers for methods which will be over-ridden by + new member functions implemented here. */ + object->Equal = Equal; + mapping->MapMerge = MapMerge; + +/* Declare the copy constructor, destructor and class dump + function. */ + astSetCopy( vtab, Copy ); + astSetDelete( vtab, Delete ); + astSetDump( vtab, Dump, "SlaMap", + "Conversion between sky coordinate systems" ); + +/* If we have just initialised the vtab for the current class, indicate + that the vtab is now initialised, and store a pointer to the class + identifier in the base "object" level of the vtab. */ + if( vtab == &class_vtab ) { + class_init = 1; + astSetVtabClassIdentifier( vtab, &(vtab->id) ); + } +} + +static int MapMerge( AstMapping *this, int where, int series, int *nmap, + AstMapping ***map_list, int **invert_list, int *status ) { +/* +* Name: +* MapMerge + +* Purpose: +* Simplify a sequence of Mappings containing an SlaMap. + +* Type: +* Private function. + +* Synopsis: +* #include "mapping.h" +* int MapMerge( AstMapping *this, int where, int series, int *nmap, +* AstMapping ***map_list, int **invert_list, int *status ) + +* Class Membership: +* SlaMap method (over-rides the protected astMapMerge method +* inherited from the Mapping class). + +* Description: +* This function attempts to simplify a sequence of Mappings by +* merging a nominated SlaMap in the sequence with its neighbours, +* so as to shorten the sequence if possible. +* +* In many cases, simplification will not be possible and the +* function will return -1 to indicate this, without further +* action. +* +* In most cases of interest, however, this function will either +* attempt to replace the nominated SlaMap with one which it +* considers simpler, or to merge it with the Mappings which +* immediately precede it or follow it in the sequence (both will +* normally be considered). This is sufficient to ensure the +* eventual simplification of most Mapping sequences by repeated +* application of this function. +* +* In some cases, the function may attempt more elaborate +* simplification, involving any number of other Mappings in the +* sequence. It is not restricted in the type or scope of +* simplification it may perform, but will normally only attempt +* elaborate simplification in cases where a more straightforward +* approach is not adequate. + +* Parameters: +* this +* Pointer to the nominated SlaMap which is to be merged with +* its neighbours. This should be a cloned copy of the SlaMap +* pointer contained in the array element "(*map_list)[where]" +* (see below). This pointer will not be annulled, and the +* SlaMap it identifies will not be modified by this function. +* where +* Index in the "*map_list" array (below) at which the pointer +* to the nominated SlaMap resides. +* series +* A non-zero value indicates that the sequence of Mappings to +* be simplified will be applied in series (i.e. one after the +* other), whereas a zero value indicates that they will be +* applied in parallel (i.e. on successive sub-sets of the +* input/output coordinates). +* nmap +* Address of an int which counts the number of Mappings in the +* sequence. On entry this should be set to the initial number +* of Mappings. On exit it will be updated to record the number +* of Mappings remaining after simplification. +* map_list +* Address of a pointer to a dynamically allocated array of +* Mapping pointers (produced, for example, by the astMapList +* method) which identifies the sequence of Mappings. On entry, +* the initial sequence of Mappings to be simplified should be +* supplied. +* +* On exit, the contents of this array will be modified to +* reflect any simplification carried out. Any form of +* simplification may be performed. This may involve any of: (a) +* removing Mappings by annulling any of the pointers supplied, +* (b) replacing them with pointers to new Mappings, (c) +* inserting additional Mappings and (d) changing their order. +* +* The intention is to reduce the number of Mappings in the +* sequence, if possible, and any reduction will be reflected in +* the value of "*nmap" returned. However, simplifications which +* do not reduce the length of the sequence (but improve its +* execution time, for example) may also be performed, and the +* sequence might conceivably increase in length (but normally +* only in order to split up a Mapping into pieces that can be +* more easily merged with their neighbours on subsequent +* invocations of this function). +* +* If Mappings are removed from the sequence, any gaps that +* remain will be closed up, by moving subsequent Mapping +* pointers along in the array, so that vacated elements occur +* at the end. If the sequence increases in length, the array +* will be extended (and its pointer updated) if necessary to +* accommodate any new elements. +* +* Note that any (or all) of the Mapping pointers supplied in +* this array may be annulled by this function, but the Mappings +* to which they refer are not modified in any way (although +* they may, of course, be deleted if the annulled pointer is +* the final one). +* invert_list +* Address of a pointer to a dynamically allocated array which, +* on entry, should contain values to be assigned to the Invert +* attributes of the Mappings identified in the "*map_list" +* array before they are applied (this array might have been +* produced, for example, by the astMapList method). These +* values will be used by this function instead of the actual +* Invert attributes of the Mappings supplied, which are +* ignored. +* +* On exit, the contents of this array will be updated to +* correspond with the possibly modified contents of the +* "*map_list" array. If the Mapping sequence increases in +* length, the "*invert_list" array will be extended (and its +* pointer updated) if necessary to accommodate any new +* elements. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* If simplification was possible, the function returns the index +* in the "map_list" array of the first element which was +* modified. Otherwise, it returns -1 (and makes no changes to the +* arrays supplied). + +* Notes: +* - A value of -1 will be returned if this function is invoked +* with the global error status set, or if it should fail for any +* reason. +*/ + +/* Local Variables: */ + AstMapping *new; /* Pointer to replacement Mapping */ + AstSlaMap *slamap; /* Pointer to SlaMap */ + const char *argdesc[ MAX_SLA_ARGS ]; /* Argument descriptions (junk) */ + const char *class; /* Pointer to Mapping class string */ + const char *comment; /* Pointer to comment string (junk) */ + double (*cvtargs)[ MAX_SLA_ARGS ]; /* Pointer to argument arrays */ + int *cvttype; /* Pointer to transformation type codes */ + int *narg; /* Pointer to argument count */ + int done; /* Finished (no further simplification)? */ + int iarg; /* Loop counter for arguments */ + int icvt1; /* Loop initial value */ + int icvt2; /* Loop final value */ + int icvt; /* Loop counter for transformation steps */ + int ikeep; /* Index to store step being kept */ + int imap1; /* Index of first SlaMap to merge */ + int imap2; /* Index of last SlaMap to merge */ + int imap; /* Loop counter for Mappings */ + int inc; /* Increment for transformation step loop */ + int invert; /* SlaMap applied in inverse direction? */ + int istep; /* Loop counter for transformation steps */ + int keep; /* Keep transformation step? */ + int ngone; /* Number of Mappings eliminated */ + int nstep0; /* Original number of transformation steps */ + int nstep; /* Total number of transformation steps */ + int result; /* Result value to return */ + int simpler; /* Simplification possible? */ + int unit; /* Replacement Mapping is a UnitMap? */ + +/* Initialise. */ + result = -1; + +/* Check the global error status. */ + if ( !astOK ) return result; + +/* SlaMaps can only be merged if they are in series (or if there is + only one Mapping present, in which case it makes no difference), so + do nothing if they are not. */ + if ( series || ( *nmap == 1 ) ) { + +/* Initialise the number of transformation steps to be merged to equal + the number in the nominated SlaMap. */ + nstep = ( (AstSlaMap *) ( *map_list )[ where ] )->ncvt; + +/* Search adjacent lower-numbered Mappings until one is found which is + not an SlaMap. Accumulate the number of transformation steps + involved in any SlaMaps found. */ + imap1 = where; + while ( ( imap1 - 1 >= 0 ) && astOK ) { + class = astGetClass( ( *map_list )[ imap1 - 1 ] ); + if ( !astOK || strcmp( class, "SlaMap" ) ) break; + nstep += ( (AstSlaMap *) ( *map_list )[ imap1 - 1 ] )->ncvt; + imap1--; + } + +/* Similarly search adjacent higher-numbered Mappings. */ + imap2 = where; + while ( ( imap2 + 1 < *nmap ) && astOK ) { + class = astGetClass( ( *map_list )[ imap2 + 1 ] ); + if ( !astOK || strcmp( class, "SlaMap" ) ) break; + nstep += ( (AstSlaMap *) ( *map_list )[ imap2 + 1 ] )->ncvt; + imap2++; + } + +/* Remember the initial number of transformation steps. */ + nstep0 = nstep; + +/* Allocate memory for accumulating a list of all the transformation + steps involved in all the SlaMaps found. */ + cvttype = astMalloc( sizeof( int ) * (size_t) nstep ); + cvtargs = astMalloc( sizeof( double[ MAX_SLA_ARGS ] ) * (size_t) nstep ); + narg = astMalloc( sizeof( int ) * (size_t) nstep ); + +/* Loop to obtain the transformation data for each SlaMap being merged. */ + nstep = 0; + for ( imap = imap1; astOK && ( imap <= imap2 ); imap++ ) { + +/* Obtain a pointer to the SlaMap and note if it is being applied in + its inverse direction. */ + slamap = (AstSlaMap *) ( *map_list )[ imap ]; + invert = ( *invert_list )[ imap ]; + +/* Set up loop limits and an increment to scan the transformation + steps in each SlaMap in either the forward or reverse direction, as + dictated by the associated "invert" value. */ + icvt1 = invert ? slamap->ncvt - 1 : 0; + icvt2 = invert ? -1 : slamap->ncvt; + inc = invert ? -1 : 1; + +/* Loop through each transformation step in the SlaMap. */ + for ( icvt = icvt1; icvt != icvt2; icvt += inc ) { + +/* For simplicity, free any extra information stored with the conversion + step (it will be recreated as and when necessary). */ + slamap->cvtextra[ icvt ] = astFree( slamap->cvtextra[ icvt ] ); + +/* Store the transformation type code and use "CvtString" to determine + the associated number of arguments. Then store these arguments. */ + cvttype[ nstep ] = slamap->cvttype[ icvt ]; + (void) CvtString( cvttype[ nstep ], &comment, narg + nstep, + argdesc, status ); + if ( !astOK ) break; + for ( iarg = 0; iarg < narg[ nstep ]; iarg++ ) { + cvtargs[ nstep ][ iarg ] = slamap->cvtargs[ icvt ][ iarg ]; + } + +/* If the SlaMap is inverted, we must not only accumulate its + transformation steps in reverse, but also apply them in + reverse. For some steps this means swapping arguments, for some it + means changing the transformation type code to a complementary + value, and for others it means both. Define macros to perform each + of these changes. */ + +/* Macro to swap the values of two nominated arguments if the + transformation type code matches "code". */ +#define SWAP_ARGS( code, arg1, arg2 ) \ + if ( cvttype[ nstep ] == code ) { \ + double tmp = cvtargs[ nstep ][ arg1 ]; \ + cvtargs[ nstep ][ arg1 ] = cvtargs[ nstep ][ arg2 ]; \ + cvtargs[ nstep ][ arg2 ] = tmp; \ + } + +/* Macro to exchange a transformation type code for its inverse (and + vice versa). */ +#define SWAP_CODES( code1, code2 ) \ + if ( cvttype[ nstep ] == code1 ) { \ + cvttype[ nstep ] = code2; \ + } else if ( cvttype[ nstep ] == code2 ) { \ + cvttype[ nstep ] = code1; \ + } + +/* Use these macros to apply the changes where needed. */ + if ( invert ) { + +/* E-terms of aberration. */ +/* ---------------------- */ +/* Exchange addition and subtraction of E-terms. */ + SWAP_CODES( AST__SLA_ADDET, AST__SLA_SUBET ) + +/* Bessel-Newcomb pre-IAU 1976 (FK4) precession model. */ +/* --------------------------------------------------- */ +/* Exchange the starting and ending Besselian epochs. */ + SWAP_ARGS( AST__SLA_PREBN, 0, 1 ) + +/* IAU 1975 (FK5) precession model. */ +/* -------------------------------- */ +/* Exchange the starting and ending epochs. */ + SWAP_ARGS( AST__SLA_PREC, 0, 1 ) + +/* FK4 to FK5 (no proper motion or parallax). */ +/* ------------------------------------------ */ +/* Exchange FK5 to FK4 conversion for its inverse, and vice versa. */ + SWAP_CODES( AST__SLA_FK54Z, AST__SLA_FK45Z ) + +/* Geocentric apparent to mean place. */ +/* ---------------------------------- */ +/* Exchange the transformation code for its inverse and also exchange + the order of the date and equinox arguments. */ + SWAP_CODES( AST__SLA_AMP, AST__SLA_MAP ) + SWAP_ARGS( AST__SLA_AMP, 0, 1 ) + SWAP_ARGS( AST__SLA_MAP, 0, 1 ) + +/* Ecliptic coordinates to FK5 J2000.0 equatorial. */ +/* ------------------------------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__SLA_ECLEQ, AST__SLA_EQECL ) + +/* Horizon to equatorial. */ +/* ---------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__SLA_DH2E, AST__SLA_DE2H ) + +/* Galactic coordinates to FK5 J2000.0 equatorial. */ +/* ------------------------------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__SLA_GALEQ, AST__SLA_EQGAL ) + +/* ICRS coordinates to FK5 J2000.0 equatorial. */ +/* ------------------------------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__SLA_HFK5Z, AST__SLA_FK5HZ ) + +/* Galactic to supergalactic coordinates. */ +/* -------------------------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__SLA_GALSUP, AST__SLA_SUPGAL ) + +/* FK5 J2000 equatorial coordinates to Helioprojective-Cartesian. */ +/* -------------------------------------------------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__EQHPC, AST__HPCEQ ) + +/* FK5 J2000 equatorial coordinates to Helioprojective-Radial. */ +/* ----------------------------------------------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__EQHPR, AST__HPREQ ) + +/* FK5 J2000 equatorial coordinates to Helio-ecliptic. */ +/* --------------------------------------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__EQHE, AST__HEEQ ) + +/* Dynamical J2000.0 to ICRS. */ +/* -------------------------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__J2000H, AST__HJ2000 ) + +/* HA to RA */ +/* -------- */ +/* Exchange the transformation code for its inverse. */ + SWAP_CODES( AST__H2R, AST__R2H ) + + } + +/* Undefine the local macros. */ +#undef SWAP_ARGS +#undef SWAP_CODES + +/* Count the transformation steps. */ + nstep++; + } + } + +/* Loop to simplify the sequence of transformation steps until no + further improvement is possible. */ + done = 0; + while ( astOK && !done ) { + +/* Examine each remaining transformation step in turn. */ + ikeep = -1; + for ( istep = 0; istep < nstep; istep++ ) { + +/* Initially assume we will retain the current step. */ + keep = 1; + +/* Eliminate redundant precession corrections. */ +/* ------------------------------------------- */ +/* First check if this is a redundant precession transformation + (i.e. the starting and ending epochs are the same). If so, then + note that it should not be kept. */ + if ( ( ( cvttype[ istep ] == AST__SLA_PREBN ) || + ( cvttype[ istep ] == AST__SLA_PREC ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], cvtargs[ istep ][ 1 ] ) ) { + keep = 0; + +/* The remaining simplifications act to combine adjacent + transformation steps, so only apply them while there are at least 2 + steps left. */ + } else if ( istep < ( nstep - 1 ) ) { + +/* Define a macro to test if two adjacent transformation type codes + have specified values. */ +#define PAIR_CVT( code1, code2 ) \ + ( ( cvttype[ istep ] == code1 ) && \ + ( cvttype[ istep + 1 ] == code2 ) ) + +/* Combine adjacent precession corrections. */ +/* ---------------------------------------- */ +/* If two precession corrections are adjacent, and have an equinox + value in common, then they may be combined into a single correction + by eliminating the common equinox. */ + if ( ( PAIR_CVT( AST__SLA_PREBN, AST__SLA_PREBN ) || + PAIR_CVT( AST__SLA_PREC, AST__SLA_PREC ) ) && + astEQUAL( cvtargs[ istep ][ 1 ], cvtargs[ istep + 1 ][ 0 ] ) ) { + +/* Retain the second correction, changing its first argument, and + eliminate the first correction. */ + cvtargs[ istep + 1 ][ 0 ] = cvtargs[ istep ][ 0 ]; + istep++; + +/* Eliminate redundant E-term handling. */ +/* ------------------------------------ */ +/* Check if adjacent steps implement a matching pair of corrections + for the E-terms of aberration with the same argument value. If so, + they will cancel, so eliminate them both. */ + } else if ( ( PAIR_CVT( AST__SLA_SUBET, AST__SLA_ADDET ) || + PAIR_CVT( AST__SLA_ADDET, AST__SLA_SUBET ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant FK4/FK5 conversions. */ +/* ---------------------------------------- */ +/* Similarly, check for a matching pair of FK4/FK5 conversions with + the same argument value and eliminate them both if possible. */ + } else if ( ( PAIR_CVT( AST__SLA_FK45Z, AST__SLA_FK54Z ) || + PAIR_CVT( AST__SLA_FK54Z, AST__SLA_FK45Z ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant ICRS/FK5 conversions. */ +/* ----------------------------------------- */ +/* Similarly, check for a matching pair of ICRS/FK5 conversions with + the same argument value and eliminate them both if possible. */ + } else if ( ( PAIR_CVT( AST__SLA_HFK5Z, AST__SLA_FK5HZ ) || + PAIR_CVT( AST__SLA_FK5HZ, AST__SLA_HFK5Z ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant geocentric apparent conversions. */ +/* ---------------------------------------------------- */ +/* As above, check for a matching pair of conversions with matching + argument values (note the argument order reverses for the two + directions) and eliminate them if possible. */ + } else if ( ( PAIR_CVT( AST__SLA_AMP, AST__SLA_MAP ) || + PAIR_CVT( AST__SLA_MAP, AST__SLA_AMP ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 1 ] ) && + astEQUAL( cvtargs[ istep ][ 1 ], + cvtargs[ istep + 1 ][ 0 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant ecliptic coordinate conversions. */ +/* ---------------------------------------------------- */ +/* This is handled in the same way as the FK4/FK5 case. */ + } else if ( ( PAIR_CVT( AST__SLA_ECLEQ, AST__SLA_EQECL ) || + PAIR_CVT( AST__SLA_EQECL, AST__SLA_ECLEQ ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant AzEl coordinate conversions. */ +/* ------------------------------------------------ */ + } else if ( ( PAIR_CVT( AST__SLA_DH2E, AST__SLA_DE2H ) || + PAIR_CVT( AST__SLA_DE2H, AST__SLA_DH2E ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) && + astEQUAL( cvtargs[ istep ][ 1 ], + cvtargs[ istep + 1 ][ 1 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant galactic coordinate conversions. */ +/* ---------------------------------------------------- */ +/* This is handled as above, except that there are no arguments to + check. */ + } else if ( PAIR_CVT( AST__SLA_GALEQ, AST__SLA_EQGAL ) || + PAIR_CVT( AST__SLA_EQGAL, AST__SLA_GALEQ ) ) { + istep++; + keep = 0; + +/* Eliminate redundant supergalactic coordinate conversions. */ +/* --------------------------------------------------------- */ +/* This is handled as above. */ + } else if ( PAIR_CVT( AST__SLA_GALSUP, AST__SLA_SUPGAL ) || + PAIR_CVT( AST__SLA_SUPGAL, AST__SLA_GALSUP ) ) { + istep++; + keep = 0; + +/* Eliminate redundant helioprojective-Cartesian coordinate conversions. */ +/* --------------------------------------------------------------------- */ + } else if ( ( PAIR_CVT( AST__HPCEQ, AST__EQHPC ) || + PAIR_CVT( AST__EQHPC, AST__HPCEQ ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) && + astEQUAL( cvtargs[ istep ][ 1 ], + cvtargs[ istep + 1 ][ 1 ] ) && + astEQUAL( cvtargs[ istep ][ 2 ], + cvtargs[ istep + 1 ][ 2 ] ) && + astEQUAL( cvtargs[ istep ][ 3 ], + cvtargs[ istep + 1 ][ 3 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant helioprojective-Radial coordinate conversions. */ +/* --------------------------------------------------------------------- */ + } else if ( ( PAIR_CVT( AST__HPREQ, AST__EQHPR ) || + PAIR_CVT( AST__EQHPR, AST__HPREQ ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) && + astEQUAL( cvtargs[ istep ][ 1 ], + cvtargs[ istep + 1 ][ 1 ] ) && + astEQUAL( cvtargs[ istep ][ 2 ], + cvtargs[ istep + 1 ][ 2 ] ) && + astEQUAL( cvtargs[ istep ][ 3 ], + cvtargs[ istep + 1 ][ 3 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant helio-ecliptic coordinate conversions. */ +/* ---------------------------------------------------------- */ + } else if ( ( PAIR_CVT( AST__EQHE, AST__HEEQ ) || + PAIR_CVT( AST__HEEQ, AST__EQHE ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) ) { + istep++; + keep = 0; + +/* Eliminate redundant dynamical J2000 coordinate conversions. */ +/* ----------------------------------------------------------- */ + } else if ( PAIR_CVT( AST__J2000H, AST__HJ2000 ) || + PAIR_CVT( AST__HJ2000, AST__J2000H ) ) { + istep++; + keep = 0; + +/* Eliminate redundant Hour Angle conversions. */ +/* ------------------------------------------- */ + } else if ( ( PAIR_CVT( AST__R2H, AST__H2R ) || + PAIR_CVT( AST__H2R, AST__R2H ) ) && + astEQUAL( cvtargs[ istep ][ 0 ], + cvtargs[ istep + 1 ][ 0 ] ) ) { + istep++; + keep = 0; + + } + +/* Undefine the local macro. */ +#undef PAIR_CVT + } + +/* If the current transformation (possibly modified above) is being + kept, then increment the index that identifies its new location in + the list of transformation steps. */ + if ( keep ) { + ikeep++; + +/* If the new location is different to its current location, copy the + transformation data into the new location. */ + if ( ikeep != istep ) { + cvttype[ ikeep ] = cvttype[ istep ]; + for ( iarg = 0; iarg < narg[ istep ]; iarg++ ) { + cvtargs[ ikeep ][ iarg ] = cvtargs[ istep ][ iarg ]; + } + narg[ ikeep ] = narg[ istep ]; + } + } + } + +/* Note if no simplification was achieved on this iteration (i.e. the + number of transformation steps was not reduced). This is the signal + to quit. */ + done = ( ( ikeep + 1 ) >= nstep ); + +/* Note how many transformation steps now remain. */ + nstep = ikeep + 1; + } + +/* Determine how many Mappings can be eliminated by condensing all + those considered above into a single Mapping. */ + if ( astOK ) { + ngone = imap2 - imap1; + +/* Determine if the replacement Mapping can be a UnitMap (a null + Mapping). This will only be the case if all the transformation + steps were eliminated above. */ + unit = ( nstep == 0 ); + +/* Determine if simplification is possible. This will be the case if + (a) Mappings were eliminated ("ngone" is non-zero), or (b) the + number of transformation steps was reduced, or (c) the SlaMap(s) + can be replaced by a UnitMap, or (d) if there was initially only + one SlaMap present, its invert flag was set (this flag will always + be cleared in the replacement Mapping). */ + simpler = ngone || ( nstep < nstep0 ) || unit || + ( *invert_list )[ where ]; + +/* Do nothing more unless simplification is possible. */ + if ( simpler ) { + +/* If the replacement Mapping is a UnitMap, then create it. */ + if ( unit ) { + new = (AstMapping *) + astUnitMap( astGetNin( ( *map_list )[ where ] ), "", status ); + +/* Otherwise, create a replacement SlaMap and add each of the + remaining transformation steps to it. */ + } else { + new = (AstMapping *) astSlaMap( 0, "", status ); + for ( istep = 0; istep < nstep; istep++ ) { + AddSlaCvt( (AstSlaMap *) new, cvttype[ istep ], + narg[ istep ], cvtargs[ istep ], status ); + } + } + +/* Annul the pointers to the Mappings being eliminated. */ + if ( astOK ) { + for ( imap = imap1; imap <= imap2; imap++ ) { + ( *map_list )[ imap ] = astAnnul( ( *map_list )[ imap ] ); + } + +/* Insert the pointer and invert value for the new Mapping. */ + ( *map_list )[ imap1 ] = new; + ( *invert_list )[ imap1 ] = 0; + +/* Move any subsequent Mapping information down to close the gap. */ + for ( imap = imap2 + 1; imap < *nmap; imap++ ) { + ( *map_list )[ imap - ngone ] = ( *map_list )[ imap ]; + ( *invert_list )[ imap - ngone ] = ( *invert_list )[ imap ]; + } + +/* Blank out any information remaining at the end of the arrays. */ + for ( imap = ( *nmap - ngone ); imap < *nmap; imap++ ) { + ( *map_list )[ imap ] = NULL; + ( *invert_list )[ imap ] = 0; + } + +/* Decrement the Mapping count and return the index of the first + Mapping which was eliminated. */ + ( *nmap ) -= ngone; + result = imap1; + +/* If an error occurred, annul the new Mapping pointer. */ + } else { + new = astAnnul( new ); + } + } + } + +/* Free the memory used for the transformation steps. */ + cvttype = astFree( cvttype ); + cvtargs = astFree( cvtargs ); + narg = astFree( narg ); + } + +/* If an error occurred, clear the returned value. */ + if ( !astOK ) result = -1; + +/* Return the result. */ + return result; +} + +static void SlaAdd( AstSlaMap *this, const char *cvt, int narg, + const double args[], int *status ) { +/* +*++ +* Name: +c astSlaAdd +f AST_SLAADD + +* Purpose: +* Add a celestial coordinate conversion to an SlaMap. + +* Type: +* Public virtual function. + +* Synopsis: +c #include "slamap.h" +c void astSlaAdd( AstSlaMap *this, const char *cvt, int narg, +c const double args[] ) +f CALL AST_SLAADD( THIS, CVT, NARG, ARGS, STATUS ) + +* Class Membership: +* SlaMap method. + +* Description: +c This function adds one of the standard celestial coordinate +f This routine adds one of the standard celestial coordinate +* system conversions provided by the SLALIB Positional Astronomy +* Library (Starlink User Note SUN/67) to an existing SlaMap. +* +c When an SlaMap is first created (using astSlaMap), it simply +f When an SlaMap is first created (using AST_SLAMAP), it simply +c performs a unit (null) Mapping. By using astSlaAdd (repeatedly +f performs a unit (null) Mapping. By using AST_SLAADD (repeatedly +* if necessary), one or more coordinate conversion steps may then +* be added, which the SlaMap will perform in sequence. This allows +* multi-step conversions between a variety of celestial coordinate +* systems to be assembled out of the building blocks provided by +* SLALIB. +* +* Normally, if an SlaMap's Invert attribute is zero (the default), +* then its forward transformation is performed by carrying out +* each of the individual coordinate conversions specified by +c astSlaAdd in the order given (i.e. with the most recently added +f AST_SLAADD in the order given (i.e. with the most recently added +* conversion applied last). +* +* This order is reversed if the SlaMap's Invert attribute is +* non-zero (or if the inverse transformation is requested by any +* other means) and each individual coordinate conversion is also +* replaced by its own inverse. This process inverts the overall +* effect of the SlaMap. In this case, the first conversion to be +* applied would be the inverse of the one most recently added. + +* Parameters: +c this +f THIS = INTEGER (Given) +* Pointer to the SlaMap. +c cvt +f CVT = CHARACTER * ( * ) (Given) +c Pointer to a null-terminated string which identifies the +f A character string which identifies the +* celestial coordinate conversion to be added to the +* SlaMap. See the "SLALIB Conversions" section for details of +* those available. +c narg +f NARG = INTEGER (Given) +* The number of argument values supplied in the +c "args" array. +f ARGS array. +c args +f ARGS( * ) = DOUBLE PRECISION (Given) +* An array containing argument values for the celestial +* coordinate conversion. The number of arguments required, and +* hence the number of array elements used, depends on the +* conversion specified (see the "SLALIB Conversions" +* section). This array is ignored +c and a NULL pointer may be supplied +* if no arguments are needed. +f STATUS = INTEGER (Given and Returned) +f The global status. + +* Notes: +* - All coordinate values processed by an SlaMap are in +* radians. The first coordinate is the celestial longitude and the +* second coordinate is the celestial latitude. +* - When assembling a multi-stage conversion, it can sometimes be +* difficult to determine the most economical conversion path. For +* example, converting to the standard FK5 coordinate system as an +* intermediate stage is often sensible in formulating the problem, +* but may introduce unnecessary extra conversion steps. A solution +* to this is to include all the steps which are (logically) +c necessary, but then to use astSimplify to simplify the resulting +f necessary, but then to use AST_SIMPLIFY to simplify the resulting +* SlaMap. The simplification process will eliminate any steps +* which turn out not to be needed. +c - This function does not check to ensure that the sequence of +f - This routine does not check to ensure that the sequence of +* coordinate conversions added to an SlaMap is physically +* meaningful. + +* SLALIB Conversions: +* The following strings (which are case-insensitive) may be supplied +c via the "cvt" parameter to indicate which celestial coordinate +f via the CVT argument to indicate which celestial coordinate +* conversion is to be added to the SlaMap. Each string is derived +* from the name of the SLALIB routine that performs the +* conversion and the relevant documentation (SUN/67) should be +* consulted for details. Where arguments are needed by +* the conversion, they are listed in parentheses. Values for +c these arguments should be given, via the "args" array, in the +f these arguments should be given, via the ARGS array, in the +* order indicated. The argument names match the corresponding +* SLALIB routine arguments and their values should be given using +* exactly the same units, time scale, calendar, etc. as described +* in SUN/67: +* +* - "ADDET" (EQ): Add E-terms of aberration. +* - "SUBET" (EQ): Subtract E-terms of aberration. +* - "PREBN" (BEP0,BEP1): Apply Bessel-Newcomb pre-IAU 1976 (FK4) +* precession model. +* - "PREC" (EP0,EP1): Apply IAU 1975 (FK5) precession model. +* - "FK45Z" (BEPOCH): Convert FK4 to FK5 (no proper motion or parallax). +* - "FK54Z" (BEPOCH): Convert FK5 to FK4 (no proper motion or parallax). +* - "AMP" (DATE,EQ): Convert geocentric apparent to mean place. +* - "MAP" (EQ,DATE): Convert mean place to geocentric apparent. +* - "ECLEQ" (DATE): Convert ecliptic coordinates to FK5 J2000.0 equatorial. +* - "EQECL" (DATE): Convert equatorial FK5 J2000.0 to ecliptic coordinates. +* - "GALEQ": Convert galactic coordinates to FK5 J2000.0 equatorial. +* - "EQGAL": Convert FK5 J2000.0 equatorial to galactic coordinates. +* - "HFK5Z" (JEPOCH): Convert ICRS coordinates to FK5 J2000.0 equatorial. +* - "FK5HZ" (JEPOCH): Convert FK5 J2000.0 equatorial coordinates to ICRS. +* - "GALSUP": Convert galactic to supergalactic coordinates. +* - "SUPGAL": Convert supergalactic coordinates to galactic. +* - "J2000H": Convert dynamical J2000.0 to ICRS. +* - "HJ2000": Convert ICRS to dynamical J2000.0. +* - "R2H" (LAST): Convert RA to Hour Angle. +* - "H2R" (LAST): Convert Hour Angle to RA. +* +* For example, to use the "ADDET" conversion, which takes a single +* argument EQ, you should consult the documentation for the SLALIB +* routine SLA_ADDET. This describes the conversion in detail and +* shows that EQ is the Besselian epoch of the mean equator and +* equinox. +c This value should then be supplied to astSlaAdd in args[0]. +f This value should then be supplied to AST_SLAADD in ARGS(1). +* +* In addition the following strings may be supplied for more complex +* conversions which do not correspond to any one single SLALIB routine +* (DIURAB is the magnitude of the diurnal aberration vector in units +* of "day/(2.PI)", DATE is the Modified Julian Date of the observation, +* and (OBSX,OBSY,OBZ) are the Heliocentric-Aries-Ecliptic cartesian +* coordinates, in metres, of the observer): +* +* - "HPCEQ" (DATE,OBSX,OBSY,OBSZ): Convert Helioprojective-Cartesian coordinates to J2000.0 equatorial. +* - "EQHPC" (DATE,OBSX,OBSY,OBSZ): Convert J2000.0 equatorial coordinates to Helioprojective-Cartesian. +* - "HPREQ" (DATE,OBSX,OBSY,OBSZ): Convert Helioprojective-Radial coordinates to J2000.0 equatorial. +* - "EQHPR" (DATE,OBSX,OBSY,OBSZ): Convert J2000.0 equatorial coordinates to Helioprojective-Radial. +* - "HEEQ" (DATE): Convert helio-ecliptic coordinates to J2000.0 equatorial. +* - "EQHE" (DATE): Convert J2000.0 equatorial coordinates to helio-ecliptic. +* - "H2E" (LAT,DIRUAB): Convert horizon coordinates to equatorial. +* - "E2H" (LAT,DIURAB): Convert equatorial coordinates to horizon. +* +* Note, the "H2E" and "E2H" conversions convert between topocentric +* horizon coordinates (azimuth,elevation), and apparent local equatorial +* coordinates (hour angle,declination). Thus, the effects of diurnal +* aberration are taken into account in the conversions but the effects +* of atmospheric refraction are not. + +*-- +*/ + +/* Local Variables: */ + int cvttype; /* Conversion type code */ + +/* Check the inherited status. */ + if ( !astOK ) return; + +/* Validate the type string supplied and obtain the equivalent + conversion type code. */ + cvttype = CvtCode( cvt, status ); + +/* If the string was not recognised, then report an error. */ + if ( astOK && ( cvttype == AST__SLA_NULL ) ) { + astError( AST__SLAIN, + "astSlaAdd(%s): Invalid SLALIB sky coordinate conversion " + "type \"%s\".", status, astGetClass( this ), cvt ); + } + +/* Add the new conversion to the SlaMap. */ + AddSlaCvt( this, cvttype, narg, args, status ); +} + +static int SlaIsEmpty( AstSlaMap *this, int *status ){ +/* +*+ +* Name: +* astSlaIsEmpty + +* Purpose: +* Indicates if a SlaMap is empty (i.e. has no conversions). + +* Type: +* Protected function. + +* Synopsis: +* #include "slamap.h" +* result = astSlaIsEmpty( AstSlaMap *this ) + +* Class Membership: +* SlaMap method. + +* Description: +* This function returns a flag indicating if the SlaMap is empty +* (i.e. has not yet had any conversions added to it using astSlaAdd). + +* Parameters: +* this +* The SlaMap. +*- +*/ + if( !astOK ) return 1; + return ( this->ncvt == 0 ); +} + + +static void SolarPole( double mjd, double pole[3], int *status ) { +/* +* Name: +* SolarPole + +* Purpose: +* Returns a unit vector along the solar north pole at the given date. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* void SolarPole( double mjd, double pole[3], int *status ) + +* Class Membership: +* SlaMap member function. + +* Description: +* This function returns a unit vector along the solar north pole at +* the given date, in the AST__HAEC coordinate system. + +* Parameters: +* mjd +* The date at which the solar north pole vector is required. +* pole +* An array holding the (X,Y,Z) components of the vector, in the +* AST__HAEC system. +* status +* Pointer to the inherited status variable. + +* Notes: +* - AST__BAD will be returned for all components of the vector if this +* function is invoked with the global error status set, or if it should +* fail for any reason. +*/ + +/* Local Variables: */ + double omega; + double sproj; + double inc; + double t1; + +/* Initialize. */ + pole[0] = AST__BAD; + pole[1] = AST__BAD; + pole[2] = AST__BAD; + +/* Check the global error status. */ + if ( !astOK ) return; + +/* First, we find the ecliptic longitude of the ascending node of the solar + equator on the ecliptic at the required date. This is based on the + equation in the "Explanatory Supplement to the Astronomical Alamanac", + section "Physical Ephemeris of the Sun": + + Omega = 75.76 + 0.01397*T degrees + + Note, the text at the start of the chapter says that "T" is measured in + centuries since J2000, but the equivalent expression in Table 15.4 is + only consistent with the above equation if "T" is measured in days since + J2000. We assume T is in days. The text does not explicitly say so, + but we assume that this longitude value (Omega) is with respect to the + mean equinox of J2000.0. */ + omega = 75.76 + 0.01397*( palEpj(mjd) - 2000.0 ); + +/* Convert this to the ecliptic longitude of the projection of the sun's + north pole onto the ecliptic, in radians. */ + sproj = ( omega - 90.0 )*D2R; + +/* Obtain a unit vector parallel to the sun's north pole, in terms of + the required ecliptic (X,Y,Z) axes, in which X points towards ecliptic + longitude/latitude ( 0, 0 ), Y axis points towards ecliptic + longitude/latitude ( 90, 0 ) degrees, and Z axis points towards the + ecliptic north pole. The inclination of the solar axis to the ecliptic + axis (7.25 degrees) is taken from the "Explanatory Supplement" section + "The Physical Ephemeris of the Sun". */ + inc = 7.25*D2R; + t1 = sin( inc ); + pole[ 0 ]= t1*cos( sproj ); + pole[ 1 ] = t1*sin( sproj ); + pole[ 2 ] = cos( inc ); + +} + +static AstPointSet *Transform( AstMapping *this, AstPointSet *in, + int forward, AstPointSet *out, int *status ) { +/* +* Name: +* Transform + +* Purpose: +* Apply an SlaMap to transform a set of points. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* AstPointSet *Transform( AstMapping *this, AstPointSet *in, +* int forward, AstPointSet *out, int *status ) + +* Class Membership: +* SlaMap member function (over-rides the astTransform method inherited +* from the Mapping class). + +* Description: +* This function takes an SlaMap and a set of points encapsulated +* in a PointSet and transforms the points so as to perform the +* sequence of SLALIB sky coordinate conversions specified by +* previous invocations of astSlaAdd. + +* Parameters: +* this +* Pointer to the SlaMap. +* in +* Pointer to the PointSet holding the input coordinate data. +* forward +* A non-zero value indicates that the forward coordinate transformation +* should be applied, while a zero value requests the inverse +* transformation. +* out +* Pointer to a PointSet which will hold the transformed (output) +* coordinate values. A NULL value may also be given, in which case a +* new PointSet will be created by this function. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* Pointer to the output (possibly new) PointSet. + +* Notes: +* - A null pointer will be returned if this function is invoked with the +* global error status set, or if it should fail for any reason. +* - The number of coordinate values per point in the input PointSet must +* match the number of coordinates for the SlaMap being applied. +* - If an output PointSet is supplied, it must have space for sufficient +* number of points and coordinate values per point to accommodate the +* result. Any excess space will be ignored. +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstPointSet *result; /* Pointer to output PointSet */ + AstSlaMap *map; /* Pointer to SlaMap to be applied */ + double **ptr_in; /* Pointer to input coordinate data */ + double **ptr_out; /* Pointer to output coordinate data */ + double *alpha; /* Pointer to longitude array */ + double *args; /* Pointer to argument list for conversion */ + double *extra; /* Pointer to intermediate values */ + double *delta; /* Pointer to latitude array */ + double *p[3]; /* Pointers to arrays to be transformed */ + double *obs; /* Pointer to array holding observers position */ + int cvt; /* Loop counter for conversions */ + int ct; /* Conversion type */ + int end; /* Termination index for conversion loop */ + int inc; /* Increment for conversion loop */ + int npoint; /* Number of points */ + int point; /* Loop counter for points */ + int start; /* Starting index for conversion loop */ + int sys; /* STP coordinate system code */ + +/* Check the global error status. */ + if ( !astOK ) return NULL; + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(this); + +/* Obtain a pointer to the SlaMap. */ + map = (AstSlaMap *) this; + +/* Apply the parent mapping using the stored pointer to the Transform member + function inherited from the parent Mapping class. This function validates + all arguments and generates an output PointSet if necessary, but does not + actually transform any coordinate values. */ + result = (*parent_transform)( this, in, forward, out, status ); + +/* We will now extend the parent astTransform method by performing the + coordinate conversions needed to generate the output coordinate values. */ + +/* Determine the numbers of points and coordinates per point from the input + PointSet and obtain pointers for accessing the input and output coordinate + values. */ + npoint = astGetNpoint( in ); + ptr_in = astGetPoints( in ); + ptr_out = astGetPoints( result ); + +/* Determine whether to apply the forward or inverse transformation, according + to the direction specified and whether the mapping has been inverted. */ + if ( astGetInvert( this ) ) forward = !forward; + +/* Transform the coordinate values. */ +/* -------------------------------- */ +/* Use "alpha" and "delta" as synonyms for the arrays of longitude and latitude + coordinate values stored in the output PointSet. */ + if ( astOK ) { + alpha = ptr_out[ 0 ]; + delta = ptr_out[ 1 ]; + +/* Initialise the output coordinate values by copying the input ones. */ + (void) memcpy( alpha, ptr_in[ 0 ], sizeof( double ) * (size_t) npoint ); + (void) memcpy( delta, ptr_in[ 1 ], sizeof( double ) * (size_t) npoint ); + +/* We will loop to apply each SLALIB sky coordinate conversion in turn to the + (alpha,delta) arrays. However, if the inverse transformation was requested, + we must loop through these transformations in reverse order, so set up + appropriate limits and an increment to control this loop. */ + start = forward ? 0 : map->ncvt - 1; + end = forward ? map->ncvt : -1; + inc = forward ? 1 : -1; + +/* Loop through the coordinate conversions in the required order and obtain a + pointer to the argument list for the current conversion. */ + for ( cvt = start; cvt != end; cvt += inc ) { + args = map->cvtargs[ cvt ]; + extra = map->cvtextra[ cvt ]; + +/* Define a local macro as a shorthand to apply the code given as "function" + (the macro argument) to each element of the (alpha,delta) arrays in turn. + Before applying this conversion function, each element is first checked for + "bad" coordinates (indicated by the value AST__BAD) and appropriate "bad" + result values are assigned if necessary. */ +#define TRAN_ARRAY(function) \ + for ( point = 0; point < npoint; point++ ) { \ + if ( ( alpha[ point ] == AST__BAD ) || \ + ( delta[ point ] == AST__BAD ) ) { \ + alpha[ point ] = AST__BAD; \ + delta[ point ] = AST__BAD; \ + } else { \ + function \ + } \ + } + +/* Classify the SLALIB sky coordinate conversion to be applied. */ + ct = map->cvttype[ cvt ]; + switch ( ct ) { + +/* Add E-terms of aberration. */ +/* -------------------------- */ +/* Add or subtract (for the inverse) the E-terms from each coordinate pair + in turn, returning the results to the same arrays. */ + case AST__SLA_ADDET: + if ( forward ) { + TRAN_ARRAY(palAddet( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point );) + } else { + TRAN_ARRAY(palSubet( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point );) + } + break; + +/* Subtract E-terms of aberration. */ +/* ------------------------------- */ +/* This is the same as above, but with the forward and inverse cases + transposed. */ + case AST__SLA_SUBET: + if ( forward ) { + TRAN_ARRAY(palSubet( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point );) + } else { + TRAN_ARRAY(palAddet( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point );) + } + break; + +/* Apply Bessel-Newcomb pre-IAU 1976 (FK4) precession model. */ +/* --------------------------------------------------------- */ +/* Since we are transforming a sequence of points, first set up the required + precession matrix, swapping the argument order to get the inverse matrix + if required. */ + case AST__SLA_PREBN: + { + double epoch1 = forward ? args[ 0 ] : args[ 1 ]; + double epoch2 = forward ? args[ 1 ] : args[ 0 ]; + double precess_matrix[ 3 ][ 3 ]; + double vec1[ 3 ]; + double vec2[ 3 ]; + palPrebn( epoch1, epoch2, precess_matrix ); + +/* For each point in the (alpha,delta) arrays, convert to Cartesian + coordinates, apply the precession matrix, convert back to polar coordinates + and then constrain the longitude result to lie in the range 0 to 2*pi + (palDcc2s doesn't do this itself). */ + TRAN_ARRAY(palDcs2c( alpha[ point ], delta[ point ], vec1 ); + palDmxv( precess_matrix, vec1, vec2 ); + palDcc2s( vec2, alpha + point, delta + point ); + alpha[ point ] = palDranrm( alpha[ point ] );) + } + break; + +/* Apply IAU 1975 (FK5) precession model. */ +/* -------------------------------------- */ +/* This is handled in the same way as above, but using the appropriate FK5 + precession matrix. */ + case AST__SLA_PREC: + { + double epoch1 = forward ? args[ 0 ] : args[ 1 ]; + double epoch2 = forward ? args[ 1 ] : args[ 0 ]; + double precess_matrix[ 3 ][ 3 ]; + double vec1[ 3 ]; + double vec2[ 3 ]; + palPrec( epoch1, epoch2, precess_matrix ); + TRAN_ARRAY(palDcs2c( alpha[ point ], delta[ point ], vec1 ); + palDmxv( precess_matrix, vec1, vec2 ); + palDcc2s( vec2, alpha + point, delta + point ); + alpha[ point ] = palDranrm( alpha[ point ] );) + } + break; + +/* Convert FK4 to FK5 (no proper motion or parallax). */ +/* -------------------------------------------------- */ +/* Apply the conversion to each point. */ + case AST__SLA_FK45Z: + if ( forward ) { + TRAN_ARRAY(palFk45z( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point );) + +/* The inverse transformation is also straightforward, except that we need a + couple of dummy variables as function arguments. */ + } else { + double dr1950; + double dd1950; + TRAN_ARRAY(palFk54z( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point, + &dr1950, &dd1950 );) + } + break; + +/* Convert FK5 to FK4 (no proper motion or parallax). */ +/* -------------------------------------------------- */ +/* This is the same as above, but with the forward and inverse cases + transposed. */ + case AST__SLA_FK54Z: + if ( forward ) { + double dr1950; + double dd1950; + TRAN_ARRAY(palFk54z( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point, + &dr1950, &dd1950 );) + } else { + TRAN_ARRAY(palFk45z( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point );) + } + break; + +/* Convert geocentric apparent to mean place. */ +/* ------------------------------------------ */ +/* Since we are transforming a sequence of points, first set up the required + parameter array. Than apply this to each point in turn. */ + case AST__SLA_AMP: + { + + if( !extra ) { + + if( args[ 1 ] != eq_cache || + args[ 0 ] != ep_cache ) { + eq_cache = args[ 1 ]; + ep_cache = args[ 0 ]; + palMappa( eq_cache, ep_cache, amprms_cache ); + } + + extra = astStore( NULL, amprms_cache, + sizeof( double )*21 ); + map->cvtextra[ cvt ] = extra; + } + + if ( forward ) { + TRAN_ARRAY(palAmpqk( alpha[ point ], delta[ point ], + extra, + alpha + point, delta + point );) + +/* The inverse uses the same parameter array but converts from mean place + to geocentric apparent. */ + } else { + TRAN_ARRAY(palMapqkz( alpha[ point ], delta[ point ], + extra, + alpha + point, delta + point );) + } + } + break; + +/* Convert mean place to geocentric apparent. */ +/* ------------------------------------------ */ +/* This is the same as above, but with the forward and inverse cases + transposed. */ + case AST__SLA_MAP: + { + if( !extra ) { + + if( args[ 0 ] != eq_cache || + args[ 1 ] != ep_cache ) { + eq_cache = args[ 0 ]; + ep_cache = args[ 1 ]; + palMappa( eq_cache, ep_cache, amprms_cache ); + } + + extra = astStore( NULL, amprms_cache, + sizeof( double )*21 ); + map->cvtextra[ cvt ] = extra; + } + + if ( forward ) { + TRAN_ARRAY(palMapqkz( alpha[ point ], delta[ point ], + extra, + alpha + point, delta + point );) + } else { + TRAN_ARRAY(palAmpqk( alpha[ point ], delta[ point ], + extra, + alpha + point, delta + point );) + } + } + break; + +/* Convert ecliptic coordinates to J2000.0 equatorial. */ +/* --------------------------------------------------- */ +/* Since we are transforming a sequence of points, first set up the required + conversion matrix (the conversion is a rotation). */ + case AST__SLA_ECLEQ: + { + double convert_matrix[ 3 ][ 3 ]; + double precess_matrix[ 3 ][ 3 ]; + double rotate_matrix[ 3 ][ 3 ]; + double vec1[ 3 ]; + double vec2[ 3 ]; + +/* Obtain the matrix that precesses equatorial coordinates from J2000.0 to the + required date. Also obtain the rotation matrix that converts from + equatorial to ecliptic coordinates. */ + palPrec( 2000.0, palEpj( args[ 0 ] ), precess_matrix ); + palEcmat( args[ 0 ], rotate_matrix ); + +/* Multiply these matrices to give the overall matrix that converts from + equatorial J2000.0 coordinates to ecliptic coordinates for the required + date. */ + palDmxm( rotate_matrix, precess_matrix, convert_matrix ); + +/* Apply the conversion by transforming from polar to Cartesian coordinates, + multiplying by the inverse conversion matrix and converting back to polar + coordinates. Then constrain the longitude result to lie in the range + 0 to 2*pi (palDcc2s doesn't do this itself). */ + if ( forward ) { + TRAN_ARRAY(palDcs2c( alpha[ point ], delta[ point ], + vec1 ); + palDimxv( convert_matrix, vec1, vec2 ); + palDcc2s( vec2, alpha + point, delta + point ); + alpha[ point ] = palDranrm ( alpha[ point ] );) + +/* The inverse conversion is the same except that we multiply by the forward + conversion matrix (palDmxv instead of palDimxv). */ + } else { + TRAN_ARRAY(palDcs2c( alpha[ point ], delta[ point ], + vec1 ); + palDmxv( convert_matrix, vec1, vec2 ); + palDcc2s( vec2, alpha + point, delta + point ); + alpha[ point ] = palDranrm ( alpha[ point ] );) + } + } + break; + +/* Convert equatorial J2000.0 to ecliptic coordinates. */ +/* --------------------------------------------------- */ +/* This is the same as above, but with the forward and inverse cases + transposed. */ + case AST__SLA_EQECL: + { + double convert_matrix[ 3 ][ 3 ]; + double precess_matrix[ 3 ][ 3 ]; + double rotate_matrix[ 3 ][ 3 ]; + double vec1[ 3 ]; + double vec2[ 3 ]; + +/* Create the conversion matrix. */ + palPrec( 2000.0, palEpj( args[ 0 ] ), precess_matrix ); + palEcmat( args[ 0 ], rotate_matrix ); + palDmxm( rotate_matrix, precess_matrix, convert_matrix ); + +/* Apply it. */ + if ( forward ) { + TRAN_ARRAY(palDcs2c( alpha[ point ], delta[ point ], + vec1 ); + palDmxv( convert_matrix, vec1, vec2 ); + palDcc2s( vec2, alpha + point, delta + point ); + alpha[ point ] = palDranrm ( alpha[ point ] );) + } else { + TRAN_ARRAY(palDcs2c( alpha[ point ], delta[ point ], + vec1 ); + palDimxv( convert_matrix, vec1, vec2 ); + palDcc2s( vec2, alpha + point, delta + point ); + alpha[ point ] = palDranrm ( alpha[ point ] );) + } + } + break; + +/* Convert ICRS to J2000.0 equatorial. */ +/* ----------------------------------- */ +/* Apply the conversion to each point. */ + case AST__SLA_HFK5Z: + if ( forward ) { + double dr5; + double dd5; + TRAN_ARRAY(palHfk5z( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point, + &dr5, &dd5 );) + +/* The inverse simply uses the inverse SLALIB function. */ + } else { + TRAN_ARRAY(palFk5hz( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point );) + } + break; + +/* Convert J2000.0 to ICRS equatorial. */ +/* ----------------------------------- */ +/* This is the same as above, but with the forward and inverse cases + transposed. */ + case AST__SLA_FK5HZ: + if ( forward ) { + TRAN_ARRAY(palFk5hz( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point );) + +/* The inverse simply uses the inverse SLALIB function. */ + } else { + double dr5; + double dd5; + TRAN_ARRAY(palHfk5z( alpha[ point ], delta[ point ], + args[ 0 ], + alpha + point, delta + point, + &dr5, &dd5 );) + } + break; + +/* Convert horizon to equatorial. */ +/* ------------------------------ */ +/* Apply the conversion to each point. */ + case AST__SLA_DH2E: + if ( forward ) { + TRAN_ARRAY(Dh2e( alpha[ point ], delta[ point ], + args[ 0 ], args[ 1 ], + alpha + point, delta + point, status );) + +/* The inverse simply uses the inverse SLALIB function. */ + } else { + TRAN_ARRAY(De2h( alpha[ point ], delta[ point ], + args[ 0 ], args[ 1 ], + alpha + point, delta + point, status );) + } + break; + +/* Convert equatorial to horizon. */ +/* ------------------------------ */ +/* This is the same as above, but with the forward and inverse cases + transposed. */ + case AST__SLA_DE2H: + if ( forward ) { + TRAN_ARRAY(De2h( alpha[ point ], delta[ point ], + args[ 0 ], args[ 1 ], + alpha + point, delta + point, status );) + +/* The inverse simply uses the inverse SLALIB function. */ + } else { + TRAN_ARRAY(Dh2e( alpha[ point ], delta[ point ], + args[ 0 ], args[ 1 ], + alpha + point, delta + point, status );) + } + break; + +/* Convert galactic coordinates to J2000.0 equatorial. */ +/* --------------------------------------------------- */ +/* Apply the conversion to each point. */ + case AST__SLA_GALEQ: + if ( forward ) { + TRAN_ARRAY(palGaleq( alpha[ point ], delta[ point ], + alpha + point, delta + point );) + +/* The inverse simply uses the inverse SLALIB function. */ + } else { + TRAN_ARRAY(palEqgal( alpha[ point ], delta[ point ], + alpha + point, delta + point );) + } + break; + +/* Convert J2000.0 equatorial to galactic coordinates. */ +/* --------------------------------------------------- */ +/* This is the same as above, but with the forward and inverse cases + transposed. */ + case AST__SLA_EQGAL: + if ( forward ) { + TRAN_ARRAY(palEqgal( alpha[ point ], delta[ point ], + alpha + point, delta + point );) + } else { + TRAN_ARRAY(palGaleq( alpha[ point ], delta[ point ], + alpha + point, delta + point );) + } + break; + +/* Convert galactic to supergalactic coordinates. */ +/* ---------------------------------------------- */ +/* Apply the conversion to each point. */ + case AST__SLA_GALSUP: + if ( forward ) { + TRAN_ARRAY(palGalsup( alpha[ point ], delta[ point ], + alpha + point, delta + point );) + +/* The inverse simply uses the inverse SLALIB function. */ + } else { + TRAN_ARRAY(palSupgal( alpha[ point ], delta[ point ], + alpha + point, delta + point );) + } + break; + +/* Convert supergalactic coordinates to galactic. */ +/* ---------------------------------------------- */ +/* This is the same as above, but with the forward and inverse cases + transposed. */ + case AST__SLA_SUPGAL: + if ( forward ) { + TRAN_ARRAY(palSupgal( alpha[ point ], delta[ point ], + alpha + point, delta + point );) + } else { + TRAN_ARRAY(palGalsup( alpha[ point ], delta[ point ], + alpha + point, delta + point );) + } + break; + +/* If the conversion type was not recognised, then report an error + (this should not happen unless validation in astSlaAdd has failed + to detect a bad value previously). */ + default: + astError( AST__SLAIN, "astTransform(%s): Corrupt %s contains " + "invalid SLALIB sky coordinate conversion code (%d).", status, + astGetClass( this ), astGetClass( this ), + (int) ct ); + break; + +/* Convert any STP coordinates to J2000 equatorial. */ +/* ------------------------------------------------ */ + case AST__HPCEQ: + case AST__HPREQ: + case AST__HEEQ: + { + +/* Get the code for the appropriate 3D STP coordinate system to use. + Also, get a point to the observer position, if needed. */ + if( ct == AST__HPCEQ ) { + sys = AST__HPC; + obs = args + 1; + + } else if( ct == AST__HPREQ ) { + sys = AST__HPR; + obs = args + 1; + + } else { + sys = AST__GSE; + obs = NULL; + + } + +/* Store the 3D positions to be transformed. The supplied arrays are used + for the longitude and latitude values. No radius values are supplied. + (a value of 1AU will be used in the transformation). */ + p[0] = alpha; + p[1] = delta; + p[2] = NULL; + +/* Convert the supplied positions to (or from) AST__HEQ, ignoring the + distinction between the origin of the input and output systems (which + is appropriate since we are considering points at an infinite distance + from the observer). */ + if( forward ) { + STPConv( args[ 0 ], 1, npoint, sys, obs, p, + AST__HAQ, NULL, p, status ); + } else { + STPConv( args[ 0 ], 1, npoint, AST__HAQ, NULL, p, + sys, obs, p, status ); + } + } + break; + + +/* Convert J2000 equatorial to any STP coordinates. */ +/* ------------------------------------------------ */ +/* Same as above, but with forward and inverse cases transposed. */ + case AST__EQHPC: + case AST__EQHPR: + case AST__EQHE: + { + +/* Get the code for the appropriate 3D STP coordinate system to use. + Also, get a point to the observer position, if needed. */ + if( ct == AST__EQHPC ) { + sys = AST__HPC; + obs = args + 1; + + } else if( ct == AST__EQHPR ) { + sys = AST__HPR; + obs = args + 1; + + } else { + sys = AST__GSE; + obs = NULL; + + } + +/* Store the 3D positions to be transformed. The supplied arrays are used + for the longitude and latitude values. No radius values are supplied. + (a value of 1AU will be used in the transformation). */ + p[0] = alpha; + p[1] = delta; + p[2] = NULL; + +/* Convert the supplied positions from (or to) AST__HEQ, ignoring the + distinction between the origin of the input and output systems (which + is appropriate since we are considering points at an infinite distance + from the observer). */ + if( forward ) { + STPConv( args[ 0 ], 1, npoint, AST__HAQ, NULL, p, + sys, obs, p, status ); + } else { + STPConv( args[ 0 ], 1, npoint, sys, obs, p, + AST__HAQ, NULL, p, status ); + } + } + break; + +/* Convert dynamical J2000.0 to ICRS. */ +/* ---------------------------------- */ +/* Apply the conversion to each point. */ + case AST__J2000H: + J2000H( forward, npoint, alpha, delta, status ); + break; + +/* Convert ICRS to dynamical J2000.0 */ +/* ---------------------------------- */ + case AST__HJ2000: + J2000H( !(forward), npoint, alpha, delta, status ); + break; + +/* Convert HA to RA, or RA to HA */ +/* ----------------------------- */ +/* The forward and inverse transformations are the same. */ + case AST__H2R: + case AST__R2H: + TRAN_ARRAY( alpha[ point ] = args[ 0 ] - alpha[ point ]; ) + break; + + } + } + } + +/* If an error has occurred and a new PointSet may have been created, then + clean up by annulling it. In any case, ensure that a NULL result is + returned.*/ + if ( !astOK ) { + if ( !out ) result = astAnnul( result ); + result = NULL; + } + +/* Return a pointer to the output PointSet. */ + return result; + +/* Undefine macros local to this function. */ +#undef TRAN_ARRAY +} + +/* Copy constructor. */ +/* ----------------- */ +static void Copy( const AstObject *objin, AstObject *objout, int *status ) { +/* +* Name: +* Copy + +* Purpose: +* Copy constructor for SlaMap objects. + +* Type: +* Private function. + +* Synopsis: +* void Copy( const AstObject *objin, AstObject *objout, int *status ) + +* Description: +* This function implements the copy constructor for SlaMap objects. + +* Parameters: +* objin +* Pointer to the object to be copied. +* objout +* Pointer to the object being constructed. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* void + +* Notes: +* - This constructor makes a deep copy. +*/ + +/* Local Variables: */ + AstSlaMap *in; /* Pointer to input SlaMap */ + AstSlaMap *out; /* Pointer to output SlaMap */ + int cvt; /* Loop counter for coordinate conversions */ + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Obtain pointers to the input and output SlaMap structures. */ + in = (AstSlaMap *) objin; + out = (AstSlaMap *) objout; + +/* For safety, first clear any references to the input memory from the output + SlaMap. */ + out->cvtargs = NULL; + out->cvtextra = NULL; + out->cvttype = NULL; + +/* Allocate memory for the output array of argument list pointers. */ + out->cvtargs = astMalloc( sizeof( double * ) * (size_t) in->ncvt ); + +/* Allocate memory for the output array of extra (intermediate) values. */ + out->cvtextra = astMalloc( sizeof( double * ) * (size_t) in->ncvt ); + +/* If necessary, allocate memory and make a copy of the input array of sky + coordinate conversion codes. */ + if ( in->cvttype ) out->cvttype = astStore( NULL, in->cvttype, + sizeof( int ) + * (size_t) in->ncvt ); + +/* If OK, loop through each conversion in the input SlaMap and make a copy of + its argument list, storing the new pointer in the output argument list + array. */ + if ( astOK ) { + for ( cvt = 0; cvt < in->ncvt; cvt++ ) { + out->cvtargs[ cvt ] = astStore( NULL, in->cvtargs[ cvt ], + astSizeOf( in->cvtargs[ cvt ] ) ); + out->cvtextra[ cvt ] = astStore( NULL, in->cvtextra[ cvt ], + astSizeOf( in->cvtextra[ cvt ] ) ); + } + +/* If an error occurred while copying the argument lists, loop through the + conversions again and clean up by ensuring that the new memory allocated for + each argument list is freed. */ + if ( !astOK ) { + for ( cvt = 0; cvt < in->ncvt; cvt++ ) { + out->cvtargs[ cvt ] = astFree( out->cvtargs[ cvt ] ); + } + } + } + +/* If an error occurred, free all other memory allocated above. */ + if ( !astOK ) { + out->cvtargs = astFree( out->cvtargs ); + out->cvtextra = astFree( out->cvtextra ); + out->cvttype = astFree( out->cvttype ); + } +} + +/* Destructor. */ +/* ----------- */ +static void Delete( AstObject *obj, int *status ) { +/* +* Name: +* Delete + +* Purpose: +* Destructor for SlaMap objects. + +* Type: +* Private function. + +* Synopsis: +* void Delete( AstObject *obj, int *status ) + +* Description: +* This function implements the destructor for SlaMap objects. + +* Parameters: +* obj +* Pointer to the object to be deleted. +* status +* Pointer to the inherited status variable. + +* Returned Value: +* void + +* Notes: +* This function attempts to execute even if the global error status is +* set. +*/ + +/* Local Variables: */ + AstSlaMap *this; /* Pointer to SlaMap */ + int cvt; /* Loop counter for coordinate conversions */ + +/* Obtain a pointer to the SlaMap structure. */ + this = (AstSlaMap *) obj; + +/* Loop to free the memory containing the argument list for each sky coordinate + conversion. */ + for ( cvt = 0; cvt < this->ncvt; cvt++ ) { + this->cvtargs[ cvt ] = astFree( this->cvtargs[ cvt ] ); + this->cvtextra[ cvt ] = astFree( this->cvtextra[ cvt ] ); + } + +/* Free the memory holding the array of conversion types and the array of + argument list pointers. */ + this->cvtargs = astFree( this->cvtargs ); + this->cvtextra = astFree( this->cvtextra ); + this->cvttype = astFree( this->cvttype ); +} + +/* Dump function. */ +/* -------------- */ +static void Dump( AstObject *this_object, AstChannel *channel, int *status ) { +/* +* Name: +* Dump + +* Purpose: +* Dump function for SlaMap objects. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* void Dump( AstObject *this, AstChannel *channel, int *status ) + +* Description: +* This function implements the Dump function which writes out data +* for the SlaMap class to an output Channel. + +* Parameters: +* this +* Pointer to the SlaMap whose data are being written. +* channel +* Pointer to the Channel to which the data are being written. +* status +* Pointer to the inherited status variable. +*/ + +/* Local Constants: */ +#define KEY_LEN 50 /* Maximum length of a keyword */ + +/* Local Variables: */ + AstSlaMap *this; /* Pointer to the SlaMap structure */ + char key[ KEY_LEN + 1 ]; /* Buffer for keyword string */ + const char *argdesc[ MAX_SLA_ARGS ]; /* Pointers to argument descriptions */ + const char *comment; /* Pointer to comment string */ + const char *sval; /* Pointer to string value */ + int iarg; /* Loop counter for arguments */ + int icvt; /* Loop counter for conversion steps */ + int ival; /* Integer value */ + int nargs; /* Number of conversion arguments */ + int set; /* Attribute value set? */ + +/* Check the global error status. */ + if ( !astOK ) return; + +/* Obtain a pointer to the SlaMap structure. */ + this = (AstSlaMap *) this_object; + +/* Write out values representing the instance variables for the SlaMap + class. Accompany these with appropriate comment strings, possibly + depending on the values being written.*/ + +/* In the case of attributes, we first use the appropriate (private) + Test... member function to see if they are set. If so, we then use + the (private) Get... function to obtain the value to be written + out. + + For attributes which are not set, we use the astGet... method to + obtain the value instead. This will supply a default value + (possibly provided by a derived class which over-rides this method) + which is more useful to a human reader as it corresponds to the + actual default attribute value. Since "set" will be zero, these + values are for information only and will not be read back. */ + +/* Number of conversion steps. */ +/* --------------------------- */ +/* Regard this as "set" if it is non-zero. */ + ival = this->ncvt; + set = ( ival != 0 ); + astWriteInt( channel, "Nsla", set, 0, ival, "Number of conversion steps" ); + +/* Write out data for each conversion step... */ + for ( icvt = 0; icvt < this->ncvt; icvt++ ) { + +/* Conversion type. */ +/* ---------------- */ +/* Change each conversion type code into an equivalent string and + obtain associated descriptive information. If the conversion code + was not recognised, report an error and give up. */ + if ( astOK ) { + sval = CvtString( this->cvttype[ icvt ], &comment, &nargs, argdesc, status ); + if ( astOK && !sval ) { + astError( AST__SLAIN, + "astWrite(%s): Corrupt %s contains invalid SLALIB " + "sky coordinate conversion code (%d).", status, + astGetClass( channel ), astGetClass( this ), + (int) this->cvttype[ icvt ] ); + break; + } + +/* Create an appropriate keyword and write out the conversion code + information. */ + (void) sprintf( key, "Sla%d", icvt + 1 ); + astWriteString( channel, key, 1, 1, sval, comment ); + +/* Write out data for each conversion argument... */ + for ( iarg = 0; iarg < nargs; iarg++ ) { + +/* Arguments. */ +/* ---------- */ +/* Create an appropriate keyword and write out the argument value, + accompanied by the descriptive comment obtained above. */ + (void) sprintf( key, "Sla%d%c", icvt + 1, ALPHABET[ iarg ] ); + astWriteDouble( channel, key, 1, 1, this->cvtargs[ icvt ][ iarg ], + argdesc[ iarg ] ); + } + +/* Quit looping if an error occurs. */ + if ( !astOK ) break; + } + } + +/* Undefine macros local to this function. */ +#undef KEY_LEN +} + +/* Standard class functions. */ +/* ========================= */ +/* Implement the astIsASlaMap and astCheckSlaMap functions using the macros + defined for this purpose in the "object.h" header file. */ +astMAKE_ISA(SlaMap,Mapping) +astMAKE_CHECK(SlaMap) + +AstSlaMap *astSlaMap_( int flags, const char *options, int *status, ...) { +/* +*++ +* Name: +c astSlaMap +f AST_SLAMAP + +* Purpose: +* Create an SlaMap. + +* Type: +* Public function. + +* Synopsis: +c #include "slamap.h" +c AstSlaMap *astSlaMap( int flags, const char *options, ... ) +f RESULT = AST_SLAMAP( FLAGS, OPTIONS, STATUS ) + +* Class Membership: +* SlaMap constructor. + +* Description: +* This function creates a new SlaMap and optionally initialises +* its attributes. +* +* An SlaMap is a specialised form of Mapping which can be used to +* represent a sequence of conversions between standard celestial +* (longitude, latitude) coordinate systems. +* +* When an SlaMap is first created, it simply performs a unit +c (null) Mapping on a pair of coordinates. Using the astSlaAdd +f (null) Mapping on a pair of coordinates. Using the AST_SLAADD +c function, a series of coordinate conversion steps may then be +f routine, a series of coordinate conversion steps may then be +* added, selected from those provided by the SLALIB Positional +* Astronomy Library (Starlink User Note SUN/67). This allows +* multi-step conversions between a variety of celestial coordinate +* systems to be assembled out of the building blocks provided by +* SLALIB. +* +* For details of the individual coordinate conversions available, +c see the description of the astSlaAdd function. +f see the description of the AST_SLAADD routine. + +* Parameters: +c flags +f FLAGS = INTEGER (Given) +c This parameter is reserved for future use and should currently +f This argument is reserved for future use and should currently +* always be set to zero. +c options +f OPTIONS = CHARACTER * ( * ) (Given) +c Pointer to a null-terminated string containing an optional +c comma-separated list of attribute assignments to be used for +c initialising the new SlaMap. The syntax used is identical to +c that for the astSet function and may include "printf" format +c specifiers identified by "%" symbols in the normal way. +c If no initialisation is required, a zero-length string may be +c supplied. +f A character string containing an optional comma-separated +f list of attribute assignments to be used for initialising the +f new SlaMap. The syntax used is identical to that for the +f AST_SET routine. If no initialisation is required, a blank +f value may be supplied. +c ... +c If the "options" string contains "%" format specifiers, then +c an optional list of additional arguments may follow it in +c order to supply values to be substituted for these +c specifiers. The rules for supplying these are identical to +c those for the astSet function (and for the C "printf" +c function). +f STATUS = INTEGER (Given and Returned) +f The global status. + +* Returned Value: +c astSlaMap() +f AST_SLAMAP = INTEGER +* A pointer to the new SlaMap. + +* Notes: +* - The Nin and Nout attributes (number of input and output +* coordinates) for an SlaMap are both equal to 2. The first +* coordinate is the celestial longitude and the second coordinate +* is the celestial latitude. All coordinate values are in radians. +* - A null Object pointer (AST__NULL) will be returned if this +c function is invoked with the AST error status set, or if it +f function is invoked with STATUS set to an error value, or if it +* should fail for any reason. +*-- +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstSlaMap *new; /* Pointer to the new SlaMap */ + va_list args; /* Variable argument list */ + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(NULL); + +/* Check the global status. */ + if ( !astOK ) return NULL; + +/* Initialise the SlaMap, allocating memory and initialising the virtual + function table as well if necessary. */ + new = astInitSlaMap( NULL, sizeof( AstSlaMap ), !class_init, &class_vtab, + "SlaMap", flags ); + +/* If successful, note that the virtual function table has been initialised. */ + if ( astOK ) { + class_init = 1; + +/* Obtain the variable argument list and pass it along with the options string + to the astVSet method to initialise the new SlaMap's attributes. */ + va_start( args, status ); + astVSet( new, options, NULL, args ); + va_end( args ); + +/* If an error occurred, clean up by deleting the new object. */ + if ( !astOK ) new = astDelete( new ); + } + +/* Return a pointer to the new SlaMap. */ + return new; +} + +AstSlaMap *astSlaMapId_( int flags, const char *options, ... ) { +/* +* Name: +* astSlaMapId_ + +* Purpose: +* Create an SlaMap. + +* Type: +* Private function. + +* Synopsis: +* #include "slamap.h" +* AstSlaMap *astSlaMapId_( int flags, const char *options, ... ) + +* Class Membership: +* SlaMap constructor. + +* Description: +* This function implements the external (public) interface to the +* astSlaMap constructor function. It returns an ID value (instead +* of a true C pointer) to external users, and must be provided +* because astSlaMap_ has a variable argument list which cannot be +* encapsulated in a macro (where this conversion would otherwise +* occur). +* +* The variable argument list also prevents this function from +* invoking astSlaMap_ directly, so it must be a re-implementation +* of it in all respects, except for the final conversion of the +* result to an ID value. + +* Parameters: +* As for astSlaMap_. + +* Returned Value: +* The ID value associated with the new SlaMap. +*/ + +/* Local Variables: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ + AstSlaMap *new; /* Pointer to the new SlaMap */ + va_list args; /* Variable argument list */ + + int *status; /* Pointer to inherited status value */ + +/* Get a pointer to the inherited status value. */ + status = astGetStatusPtr; + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(NULL); + +/* Check the global status. */ + if ( !astOK ) return NULL; + +/* Initialise the SlaMap, allocating memory and initialising the virtual + function table as well if necessary. */ + new = astInitSlaMap( NULL, sizeof( AstSlaMap ), !class_init, &class_vtab, + "SlaMap", flags ); + +/* If successful, note that the virtual function table has been initialised. */ + if ( astOK ) { + class_init = 1; + +/* Obtain the variable argument list and pass it along with the options string + to the astVSet method to initialise the new SlaMap's attributes. */ + va_start( args, options ); + astVSet( new, options, NULL, args ); + va_end( args ); + +/* If an error occurred, clean up by deleting the new object. */ + if ( !astOK ) new = astDelete( new ); + } + +/* Return an ID value for the new SlaMap. */ + return astMakeId( new ); +} + +AstSlaMap *astInitSlaMap_( void *mem, size_t size, int init, + AstSlaMapVtab *vtab, const char *name, + int flags, int *status ) { +/* +*+ +* Name: +* astInitSlaMap + +* Purpose: +* Initialise an SlaMap. + +* Type: +* Protected function. + +* Synopsis: +* #include "slamap.h" +* AstSlaMap *astInitSlaMap( void *mem, size_t size, int init, +* AstSlaMapVtab *vtab, const char *name, +* int flags ) + +* Class Membership: +* SlaMap initialiser. + +* Description: +* This function is provided for use by class implementations to initialise +* a new SlaMap object. It allocates memory (if necessary) to accommodate +* the SlaMap plus any additional data associated with the derived class. +* It then initialises an SlaMap structure at the start of this memory. If +* the "init" flag is set, it also initialises the contents of a virtual +* function table for an SlaMap at the start of the memory passed via the +* "vtab" parameter. + +* Parameters: +* mem +* A pointer to the memory in which the SlaMap is to be initialised. +* This must be of sufficient size to accommodate the SlaMap data +* (sizeof(SlaMap)) plus any data used by the derived class. If a value +* of NULL is given, this function will allocate the memory itself using +* the "size" parameter to determine its size. +* size +* The amount of memory used by the SlaMap (plus derived class data). +* This will be used to allocate memory if a value of NULL is given for +* the "mem" parameter. This value is also stored in the SlaMap +* structure, so a valid value must be supplied even if not required for +* allocating memory. +* init +* A logical flag indicating if the SlaMap's virtual function table is +* to be initialised. If this value is non-zero, the virtual function +* table will be initialised by this function. +* vtab +* Pointer to the start of the virtual function table to be associated +* with the new SlaMap. +* name +* Pointer to a constant null-terminated character string which contains +* the name of the class to which the new object belongs (it is this +* pointer value that will subsequently be returned by the astClass +* method). +* flags +* This parameter is reserved for future use. It is currently ignored. + +* Returned Value: +* A pointer to the new SlaMap. + +* Notes: +* - A null pointer will be returned if this function is invoked with the +* global error status set, or if it should fail for any reason. +*- +*/ + +/* Local Variables: */ + AstSlaMap *new; /* Pointer to the new SlaMap */ + +/* Check the global status. */ + if ( !astOK ) return NULL; + +/* If necessary, initialise the virtual function table. */ + if ( init ) astInitSlaMapVtab( vtab, name ); + +/* Initialise a Mapping structure (the parent class) as the first component + within the SlaMap structure, allocating memory if necessary. Specify that + the Mapping should be defined in both the forward and inverse directions. */ + new = (AstSlaMap *) astInitMapping( mem, size, 0, + (AstMappingVtab *) vtab, name, + 2, 2, 1, 1 ); + + if ( astOK ) { + +/* Initialise the SlaMap data. */ +/* --------------------------- */ +/* The initial state is with no SLALIB conversions set, in which condition the + SlaMap simply implements a unit mapping. */ + new->ncvt = 0; + new->cvtargs = NULL; + new->cvtextra = NULL; + new->cvttype = NULL; + +/* If an error occurred, clean up by deleting the new object. */ + if ( !astOK ) new = astDelete( new ); + } + +/* Return a pointer to the new object. */ + return new; +} + +AstSlaMap *astLoadSlaMap_( void *mem, size_t size, + AstSlaMapVtab *vtab, const char *name, + AstChannel *channel, int *status ) { +/* +*+ +* Name: +* astLoadSlaMap + +* Purpose: +* Load a SlaMap. + +* Type: +* Protected function. + +* Synopsis: +* #include "slamap.h" +* AstSlaMap *astLoadSlaMap( void *mem, size_t size, +* AstSlaMapVtab *vtab, const char *name, +* AstChannel *channel ) + +* Class Membership: +* SlaMap loader. + +* Description: +* This function is provided to load a new SlaMap using data read +* from a Channel. It first loads the data used by the parent class +* (which allocates memory if necessary) and then initialises a +* SlaMap structure in this memory, using data read from the input +* Channel. +* +* If the "init" flag is set, it also initialises the contents of a +* virtual function table for a SlaMap at the start of the memory +* passed via the "vtab" parameter. + + +* Parameters: +* mem +* A pointer to the memory into which the SlaMap is to be +* loaded. This must be of sufficient size to accommodate the +* SlaMap data (sizeof(SlaMap)) plus any data used by derived +* classes. If a value of NULL is given, this function will +* allocate the memory itself using the "size" parameter to +* determine its size. +* size +* The amount of memory used by the SlaMap (plus derived class +* data). This will be used to allocate memory if a value of +* NULL is given for the "mem" parameter. This value is also +* stored in the SlaMap structure, so a valid value must be +* supplied even if not required for allocating memory. +* +* If the "vtab" parameter is NULL, the "size" value is ignored +* and sizeof(AstSlaMap) is used instead. +* vtab +* Pointer to the start of the virtual function table to be +* associated with the new SlaMap. If this is NULL, a pointer to +* the (static) virtual function table for the SlaMap class is +* used instead. +* name +* Pointer to a constant null-terminated character string which +* contains the name of the class to which the new object +* belongs (it is this pointer value that will subsequently be +* returned by the astGetClass method). +* +* If the "vtab" parameter is NULL, the "name" value is ignored +* and a pointer to the string "SlaMap" is used instead. + +* Returned Value: +* A pointer to the new SlaMap. + +* Notes: +* - A null pointer will be returned if this function is invoked +* with the global error status set, or if it should fail for any +* reason. +*- +*/ + +/* Local Constants: */ + astDECLARE_GLOBALS /* Pointer to thread-specific global data */ +#define KEY_LEN 50 /* Maximum length of a keyword */ + +/* Local Variables: */ + AstSlaMap *new; /* Pointer to the new SlaMap */ + char *sval; /* Pointer to string value */ + char key[ KEY_LEN + 1 ]; /* Buffer for keyword string */ + const char *argdesc[ MAX_SLA_ARGS ]; /* Pointers to argument descriptions */ + const char *comment; /* Pointer to comment string */ + int iarg; /* Loop counter for arguments */ + int icvt; /* Loop counter for conversion steps */ + int nargs; /* Number of conversion arguments */ + +/* Get a pointer to the thread specific global data structure. */ + astGET_GLOBALS(channel); + +/* Initialise. */ + new = NULL; + +/* Check the global error status. */ + if ( !astOK ) return new; + +/* If a NULL virtual function table has been supplied, then this is + the first loader to be invoked for this SlaMap. In this case the + SlaMap belongs to this class, so supply appropriate values to be + passed to the parent class loader (and its parent, etc.). */ + if ( !vtab ) { + size = sizeof( AstSlaMap ); + vtab = &class_vtab; + name = "SlaMap"; + +/* If required, initialise the virtual function table for this class. */ + if ( !class_init ) { + astInitSlaMapVtab( vtab, name ); + class_init = 1; + } + } + +/* Invoke the parent class loader to load data for all the ancestral + classes of the current one, returning a pointer to the resulting + partly-built SlaMap. */ + new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name, + channel ); + + if ( astOK ) { + +/* Read input data. */ +/* ================ */ +/* Request the input Channel to read all the input data appropriate to + this class into the internal "values list". */ + astReadClassData( channel, "SlaMap" ); + +/* Now read each individual data item from this list and use it to + initialise the appropriate instance variable(s) for this class. */ + +/* In the case of attributes, we first read the "raw" input value, + supplying the "unset" value as the default. If a "set" value is + obtained, we then use the appropriate (private) Set... member + function to validate and set the value properly. */ + +/* Number of conversion steps. */ +/* --------------------------- */ +/* Read the number of conversion steps and allocate memory to hold + data for each step. */ + new->ncvt = astReadInt( channel, "nsla", 0 ); + if ( new->ncvt < 0 ) new->ncvt = 0; + new->cvttype = astMalloc( sizeof( int ) * (size_t) new->ncvt ); + new->cvtargs = astMalloc( sizeof( double * ) * (size_t) new->ncvt ); + new->cvtextra = astMalloc( sizeof( double * ) * (size_t) new->ncvt ); + +/* If an error occurred, ensure that all allocated memory is freed. */ + if ( !astOK ) { + new->cvttype = astFree( new->cvttype ); + new->cvtargs = astFree( new->cvtargs ); + new->cvtextra = astFree( new->cvtextra ); + +/* Otherwise, initialise the argument pointer array. */ + } else { + for ( icvt = 0; icvt < new->ncvt; icvt++ ) { + new->cvtargs[ icvt ] = NULL; + new->cvtextra[ icvt ] = NULL; + } + +/* Read in data for each conversion step... */ + for ( icvt = 0; icvt < new->ncvt; icvt++ ) { + +/* Conversion type. */ +/* ---------------- */ +/* Create an appropriate keyword and read the string representation of + the conversion type. */ + (void) sprintf( key, "sla%d", icvt + 1 ); + sval = astReadString( channel, key, NULL ); + +/* If no value was read, report an error. */ + if ( astOK ) { + if ( !sval ) { + astError( AST__BADIN, + "astRead(%s): An SLALIB sky coordinate conversion " + "type is missing from the input SlaMap data.", status, + astGetClass( channel ) ); + +/* Otherwise, convert the string representation into the required + conversion type code. */ + } else { + new->cvttype[ icvt ] = CvtCode( sval, status ); + +/* If the string was not recognised, report an error. */ + if ( new->cvttype[ icvt ] == AST__SLA_NULL ) { + astError( AST__BADIN, + "astRead(%s): Invalid SLALIB sky conversion " + "type \"%s\" in SlaMap data.", status, + astGetClass( channel ), sval ); + } + } + +/* Free the memory holding the string value. */ + sval = astFree( sval ); + } + +/* Obtain the number of arguments associated with the conversion and + allocate memory to hold them. */ + (void) CvtString( new->cvttype[ icvt ], &comment, &nargs, + argdesc, status ); + new->cvtargs[ icvt ] = astMalloc( sizeof( double ) * + (size_t) nargs ); + +/* Read in data for each argument... */ + if ( astOK ) { + for ( iarg = 0; iarg < nargs; iarg++ ) { + +/* Arguments. */ +/* ---------- */ +/* Create an appropriate keyword and read each argument value. */ + (void) sprintf( key, "sla%d%c", icvt + 1, ALPHABET[ iarg ] ); + new->cvtargs[ icvt ][ iarg ] = astReadDouble( channel, key, + AST__BAD ); + } + } + +/* Quit looping if an error occurs. */ + if ( !astOK ) break; + } + } + +/* If an error occurred, clean up by deleting the new SlaMap. */ + if ( !astOK ) new = astDelete( new ); + } + +/* Return the new SlaMap pointer. */ + return new; + +/* Undefine macros local to this function. */ +#undef KEY_LEN +} + +/* Virtual function interfaces. */ +/* ============================ */ +/* These provide the external interface to the virtual functions defined by + this class. Each simply checks the global error status and then locates and + executes the appropriate member function, using the function pointer stored + in the object's virtual function table (this pointer is located using the + astMEMBER macro defined in "object.h"). + + Note that the member function may not be the one defined here, as it may + have been over-ridden by a derived class. However, it should still have the + same interface. */ +void astSlaAdd_( AstSlaMap *this, const char *cvt, int narg, const double args[], int *status ) { + if ( !astOK ) return; + (**astMEMBER(this,SlaMap,SlaAdd))( this, cvt, narg, args, status ); +} + +int astSlaIsEmpty_( AstSlaMap *this, int *status ) { + if ( !astOK ) return 1; + return (**astMEMBER(this,SlaMap,SlaIsEmpty))( this, status ); +} + |