summaryrefslogtreecommitdiffstats
path: root/tcl8.6/generic/tclStrToD.c
diff options
context:
space:
mode:
authorWilliam Joye <wjoye@cfa.harvard.edu>2017-09-22 18:51:12 (GMT)
committerWilliam Joye <wjoye@cfa.harvard.edu>2017-09-22 18:51:12 (GMT)
commit3fa8e6dc88e8041b6cb88d1b1e9c05676d3346b7 (patch)
tree69afbb41089c8358615879f7cd3c4cf7997f4c7e /tcl8.6/generic/tclStrToD.c
parenta0e17db23c0fd7c771c0afce8cce350c98f90b02 (diff)
downloadblt-3fa8e6dc88e8041b6cb88d1b1e9c05676d3346b7.zip
blt-3fa8e6dc88e8041b6cb88d1b1e9c05676d3346b7.tar.gz
blt-3fa8e6dc88e8041b6cb88d1b1e9c05676d3346b7.tar.bz2
update to tcl/tk 8.6.7
Diffstat (limited to 'tcl8.6/generic/tclStrToD.c')
-rw-r--r--tcl8.6/generic/tclStrToD.c5039
1 files changed, 0 insertions, 5039 deletions
diff --git a/tcl8.6/generic/tclStrToD.c b/tcl8.6/generic/tclStrToD.c
deleted file mode 100644
index f69f6b9..0000000
--- a/tcl8.6/generic/tclStrToD.c
+++ /dev/null
@@ -1,5039 +0,0 @@
-/*
- * tclStrToD.c --
- *
- * This file contains a collection of procedures for managing conversions
- * to/from floating-point in Tcl. They include TclParseNumber, which
- * parses numbers from strings; TclDoubleDigits, which formats numbers
- * into strings of digits, and procedures for interconversion among
- * 'double' and 'mp_int' types.
- *
- * Copyright (c) 2005 by Kevin B. Kenny. All rights reserved.
- *
- * See the file "license.terms" for information on usage and redistribution of
- * this file, and for a DISCLAIMER OF ALL WARRANTIES.
- */
-
-#include "tclInt.h"
-#include "tommath.h"
-#include <math.h>
-
-/*
- * Define KILL_OCTAL to suppress interpretation of numbers with leading zero
- * as octal. (Ceterum censeo: numeros octonarios delendos esse.)
- */
-
-#undef KILL_OCTAL
-
-/*
- * This code supports (at least hypothetically), IBM, Cray, VAX and IEEE-754
- * floating point; of these, only IEEE-754 can represent NaN. IEEE-754 can be
- * uniquely determined by radix and by the widths of significand and exponent.
- */
-
-#if (FLT_RADIX == 2) && (DBL_MANT_DIG == 53) && (DBL_MAX_EXP == 1024)
-# define IEEE_FLOATING_POINT
-#endif
-
-/*
- * Rounding controls. (Thanks a lot, Intel!)
- */
-
-#ifdef __i386
-/*
- * gcc on x86 needs access to rounding controls, because of a questionable
- * feature where it retains intermediate results as IEEE 'long double' values
- * somewhat unpredictably. It is tempting to include fpu_control.h, but that
- * file exists only on Linux; it is missing on Cygwin and MinGW. Most gcc-isms
- * and ix86-isms are factored out here.
- */
-
-#if defined(__GNUC__)
-typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__)));
-
-#define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw))
-#define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw))
-# define FPU_IEEE_ROUNDING 0x027f
-# define ADJUST_FPU_CONTROL_WORD
-#define TCL_IEEE_DOUBLE_ROUNDING \
- fpu_control_t roundTo53Bits = FPU_IEEE_ROUNDING; \
- fpu_control_t oldRoundingMode; \
- _FPU_GETCW(oldRoundingMode); \
- _FPU_SETCW(roundTo53Bits)
-#define TCL_DEFAULT_DOUBLE_ROUNDING \
- _FPU_SETCW(oldRoundingMode)
-
-/*
- * Sun ProC needs sunmath for rounding control on x86 like gcc above.
- */
-#elif defined(__sun)
-#include <sunmath.h>
-#define TCL_IEEE_DOUBLE_ROUNDING \
- ieee_flags("set","precision","double",NULL)
-#define TCL_DEFAULT_DOUBLE_ROUNDING \
- ieee_flags("clear","precision",NULL,NULL)
-
-/*
- * Other platforms are assumed to always operate in full IEEE mode, so we make
- * the macros to go in and out of that mode do nothing.
- */
-
-#else /* !__GNUC__ && !__sun */
-#define TCL_IEEE_DOUBLE_ROUNDING ((void) 0)
-#define TCL_DEFAULT_DOUBLE_ROUNDING ((void) 0)
-#endif
-#else /* !__i386 */
-#define TCL_IEEE_DOUBLE_ROUNDING ((void) 0)
-#define TCL_DEFAULT_DOUBLE_ROUNDING ((void) 0)
-#endif
-
-/*
- * MIPS floating-point units need special settings in control registers to use
- * gradual underflow as we expect. This fix is for the MIPSpro compiler.
- */
-
-#if defined(__sgi) && defined(_COMPILER_VERSION)
-#include <sys/fpu.h>
-#endif
-
-/*
- * HP's PA_RISC architecture uses 7ff4000000000000 to represent a quiet NaN.
- * Everyone else uses 7ff8000000000000. (Why, HP, why?)
- */
-
-#ifdef __hppa
-# define NAN_START 0x7ff4
-# define NAN_MASK (((Tcl_WideUInt) 1) << 50)
-#else
-# define NAN_START 0x7ff8
-# define NAN_MASK (((Tcl_WideUInt) 1) << 51)
-#endif
-
-/*
- * Constants used by this file (most of which are only ever calculated at
- * runtime).
- */
-
-/* Magic constants */
-
-#define LOG10_2 0.3010299956639812
-#define TWO_OVER_3LOG10 0.28952965460216784
-#define LOG10_3HALVES_PLUS_FUDGE 0.1760912590558
-
-/*
- * Definitions of the parts of an IEEE754-format floating point number.
- */
-
-#define SIGN_BIT 0x80000000
- /* Mask for the sign bit in the first word of
- * a double. */
-#define EXP_MASK 0x7ff00000
- /* Mask for the exponent field in the first
- * word of a double. */
-#define EXP_SHIFT 20 /* Shift count to make the exponent an
- * integer. */
-#define HIDDEN_BIT (((Tcl_WideUInt) 0x00100000) << 32)
- /* Hidden 1 bit for the significand. */
-#define HI_ORDER_SIG_MASK 0x000fffff
- /* Mask for the high-order part of the
- * significand in the first word of a
- * double. */
-#define SIG_MASK (((Tcl_WideUInt) HI_ORDER_SIG_MASK << 32) \
- | 0xffffffff)
- /* Mask for the 52-bit significand. */
-#define FP_PRECISION 53 /* Number of bits of significand plus the
- * hidden bit. */
-#define EXPONENT_BIAS 0x3ff /* Bias of the exponent 0. */
-
-/*
- * Derived quantities.
- */
-
-#define TEN_PMAX 22 /* floor(FP_PRECISION*log(2)/log(5)) */
-#define QUICK_MAX 14 /* floor((FP_PRECISION-1)*log(2)/log(10))-1 */
-#define BLETCH 0x10 /* Highest power of two that is greater than
- * DBL_MAX_10_EXP, divided by 16. */
-#define DIGIT_GROUP 8 /* floor(DIGIT_BIT*log(2)/log(10)) */
-
-/*
- * Union used to dismantle floating point numbers.
- */
-
-typedef union Double {
- struct {
-#ifdef WORDS_BIGENDIAN
- int word0;
- int word1;
-#else
- int word1;
- int word0;
-#endif
- } w;
- double d;
- Tcl_WideUInt q;
-} Double;
-
-static int maxpow10_wide; /* The powers of ten that can be represented
- * exactly as wide integers. */
-static Tcl_WideUInt *pow10_wide;
-#define MAXPOW 22
-static double pow10vals[MAXPOW+1];
- /* The powers of ten that can be represented
- * exactly as IEEE754 doubles. */
-static int mmaxpow; /* Largest power of ten that can be
- * represented exactly in a 'double'. */
-static int log10_DIGIT_MAX; /* The number of decimal digits that fit in an
- * mp_digit. */
-static int log2FLT_RADIX; /* Logarithm of the floating point radix. */
-static int mantBits; /* Number of bits in a double's significand */
-static mp_int pow5[9]; /* Table of powers of 5**(2**n), up to
- * 5**256 */
-static double tiny = 0.0; /* The smallest representable double. */
-static int maxDigits; /* The maximum number of digits to the left of
- * the decimal point of a double. */
-static int minDigits; /* The maximum number of digits to the right
- * of the decimal point in a double. */
-static const double pow_10_2_n[] = { /* Inexact higher powers of ten. */
- 1.0,
- 100.0,
- 10000.0,
- 1.0e+8,
- 1.0e+16,
- 1.0e+32,
- 1.0e+64,
- 1.0e+128,
- 1.0e+256
-};
-
-static int n770_fp; /* Flag is 1 on Nokia N770 floating point.
- * Nokia's floating point has the words
- * reversed: if big-endian is 7654 3210,
- * and little-endian is 0123 4567,
- * then Nokia's FP is 4567 0123;
- * little-endian within the 32-bit words but
- * big-endian between them. */
-
-/*
- * Table of powers of 5 that are small enough to fit in an mp_digit.
- */
-
-static const mp_digit dpow5[13] = {
- 1, 5, 25, 125,
- 625, 3125, 15625, 78125,
- 390625, 1953125, 9765625, 48828125,
- 244140625
-};
-
-/*
- * Table of powers: pow5_13[n] = 5**(13*2**(n+1))
- */
-
-static mp_int pow5_13[5]; /* Table of powers: 5**13, 5**26, 5**52,
- * 5**104, 5**208 */
-static const double tens[] = {
- 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09,
- 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
- 1e20, 1e21, 1e22
-};
-
-static const int itens [] = {
- 1,
- 10,
- 100,
- 1000,
- 10000,
- 100000,
- 1000000,
- 10000000,
- 100000000
-};
-
-static const double bigtens[] = {
- 1e016, 1e032, 1e064, 1e128, 1e256
-};
-#define N_BIGTENS 5
-
-static const int log2pow5[27] = {
- 01, 3, 5, 7, 10, 12, 14, 17, 19, 21,
- 24, 26, 28, 31, 33, 35, 38, 40, 42, 45,
- 47, 49, 52, 54, 56, 59, 61
-};
-#define N_LOG2POW5 27
-
-static const Tcl_WideUInt wuipow5[27] = {
- (Tcl_WideUInt) 1, /* 5**0 */
- (Tcl_WideUInt) 5,
- (Tcl_WideUInt) 25,
- (Tcl_WideUInt) 125,
- (Tcl_WideUInt) 625,
- (Tcl_WideUInt) 3125, /* 5**5 */
- (Tcl_WideUInt) 3125*5,
- (Tcl_WideUInt) 3125*25,
- (Tcl_WideUInt) 3125*125,
- (Tcl_WideUInt) 3125*625,
- (Tcl_WideUInt) 3125*3125, /* 5**10 */
- (Tcl_WideUInt) 3125*3125*5,
- (Tcl_WideUInt) 3125*3125*25,
- (Tcl_WideUInt) 3125*3125*125,
- (Tcl_WideUInt) 3125*3125*625,
- (Tcl_WideUInt) 3125*3125*3125, /* 5**15 */
- (Tcl_WideUInt) 3125*3125*3125*5,
- (Tcl_WideUInt) 3125*3125*3125*25,
- (Tcl_WideUInt) 3125*3125*3125*125,
- (Tcl_WideUInt) 3125*3125*3125*625,
- (Tcl_WideUInt) 3125*3125*3125*3125, /* 5**20 */
- (Tcl_WideUInt) 3125*3125*3125*3125*5,
- (Tcl_WideUInt) 3125*3125*3125*3125*25,
- (Tcl_WideUInt) 3125*3125*3125*3125*125,
- (Tcl_WideUInt) 3125*3125*3125*3125*625,
- (Tcl_WideUInt) 3125*3125*3125*3125*3125, /* 5**25 */
- (Tcl_WideUInt) 3125*3125*3125*3125*3125*5 /* 5**26 */
-};
-
-/*
- * Static functions defined in this file.
- */
-
-static int AccumulateDecimalDigit(unsigned, int,
- Tcl_WideUInt *, mp_int *, int);
-static double MakeHighPrecisionDouble(int signum,
- mp_int *significand, int nSigDigs, int exponent);
-static double MakeLowPrecisionDouble(int signum,
- Tcl_WideUInt significand, int nSigDigs,
- int exponent);
-#ifdef IEEE_FLOATING_POINT
-static double MakeNaN(int signum, Tcl_WideUInt tag);
-#endif
-static double RefineApproximation(double approx,
- mp_int *exactSignificand, int exponent);
-static void MulPow5(mp_int *, unsigned, mp_int *);
-static int NormalizeRightward(Tcl_WideUInt *);
-static int RequiredPrecision(Tcl_WideUInt);
-static void DoubleToExpAndSig(double, Tcl_WideUInt *, int *,
- int *);
-static void TakeAbsoluteValue(Double *, int *);
-static char * FormatInfAndNaN(Double *, int *, char **);
-static char * FormatZero(int *, char **);
-static int ApproximateLog10(Tcl_WideUInt, int, int);
-static int BetterLog10(double, int, int *);
-static void ComputeScale(int, int, int *, int *, int *, int *);
-static void SetPrecisionLimits(int, int, int *, int *, int *,
- int *);
-static char * BumpUp(char *, char *, int *);
-static int AdjustRange(double *, int);
-static char * ShorteningQuickFormat(double, int, int, double,
- char *, int *);
-static char * StrictQuickFormat(double, int, int, double,
- char *, int *);
-static char * QuickConversion(double, int, int, int, int, int, int,
- int *, char **);
-static void CastOutPowersOf2(int *, int *, int *);
-static char * ShorteningInt64Conversion(Double *, int, Tcl_WideUInt,
- int, int, int, int, int, int, int, int, int,
- int, int, int *, char **);
-static char * StrictInt64Conversion(Double *, int, Tcl_WideUInt,
- int, int, int, int, int, int,
- int, int, int *, char **);
-static int ShouldBankerRoundUpPowD(mp_int *, int, int);
-static int ShouldBankerRoundUpToNextPowD(mp_int *, mp_int *,
- int, int, int, mp_int *);
-static char * ShorteningBignumConversionPowD(Double *dPtr,
- int convType, Tcl_WideUInt bw, int b2, int b5,
- int m2plus, int m2minus, int m5,
- int sd, int k, int len,
- int ilim, int ilim1, int *decpt,
- char **endPtr);
-static char * StrictBignumConversionPowD(Double *dPtr, int convType,
- Tcl_WideUInt bw, int b2, int b5,
- int sd, int k, int len,
- int ilim, int ilim1, int *decpt,
- char **endPtr);
-static int ShouldBankerRoundUp(mp_int *, mp_int *, int);
-static int ShouldBankerRoundUpToNext(mp_int *, mp_int *,
- mp_int *, int, int, mp_int *);
-static char * ShorteningBignumConversion(Double *dPtr, int convType,
- Tcl_WideUInt bw, int b2,
- int m2plus, int m2minus,
- int s2, int s5, int k, int len,
- int ilim, int ilim1, int *decpt,
- char **endPtr);
-static char * StrictBignumConversion(Double *dPtr, int convType,
- Tcl_WideUInt bw, int b2,
- int s2, int s5, int k, int len,
- int ilim, int ilim1, int *decpt,
- char **endPtr);
-static double BignumToBiasedFrExp(const mp_int *big, int *machexp);
-static double Pow10TimesFrExp(int exponent, double fraction,
- int *machexp);
-static double SafeLdExp(double fraction, int exponent);
-#ifdef IEEE_FLOATING_POINT
-static Tcl_WideUInt Nokia770Twiddle(Tcl_WideUInt w);
-#endif
-
-/*
- *----------------------------------------------------------------------
- *
- * TclParseNumber --
- *
- * Scans bytes, interpreted as characters in Tcl's internal encoding, and
- * parses the longest prefix that is the string representation of a
- * number in a format recognized by Tcl.
- *
- * The arguments bytes, numBytes, and objPtr are the inputs which
- * determine the string to be parsed. If bytes is non-NULL, it points to
- * the first byte to be scanned. If bytes is NULL, then objPtr must be
- * non-NULL, and the string representation of objPtr will be scanned
- * (generated first, if necessary). The numBytes argument determines the
- * number of bytes to be scanned. If numBytes is negative, the first NUL
- * byte encountered will terminate the scan. If numBytes is non-negative,
- * then no more than numBytes bytes will be scanned.
- *
- * The argument flags is an input that controls the numeric formats
- * recognized by the parser. The flag bits are:
- *
- * - TCL_PARSE_INTEGER_ONLY: accept only integer values; reject
- * strings that denote floating point values (or accept only the
- * leading portion of them that are integer values).
- * - TCL_PARSE_SCAN_PREFIXES: ignore the prefixes 0b and 0o that are
- * not part of the [scan] command's vocabulary. Use only in
- * combination with TCL_PARSE_INTEGER_ONLY.
- * - TCL_PARSE_OCTAL_ONLY: parse only in the octal format, whether
- * or not a prefix is present that would lead to octal parsing.
- * Use only in combination with TCL_PARSE_INTEGER_ONLY.
- * - TCL_PARSE_HEXADECIMAL_ONLY: parse only in the hexadecimal format,
- * whether or not a prefix is present that would lead to
- * hexadecimal parsing. Use only in combination with
- * TCL_PARSE_INTEGER_ONLY.
- * - TCL_PARSE_DECIMAL_ONLY: parse only in the decimal format, no
- * matter whether a 0 prefix would normally force a different
- * base.
- * - TCL_PARSE_NO_WHITESPACE: reject any leading/trailing whitespace
- *
- * The arguments interp and expected are inputs that control error
- * message generation. If interp is NULL, no error message will be
- * generated. If interp is non-NULL, then expected must also be non-NULL.
- * When TCL_ERROR is returned, an error message will be left in the
- * result of interp, and the expected argument will appear in the error
- * message as the thing TclParseNumber expected, but failed to find in
- * the string.
- *
- * The arguments objPtr and endPtrPtr as well as the return code are the
- * outputs.
- *
- * When the parser cannot find any prefix of the string that matches a
- * format it is looking for, TCL_ERROR is returned and an error message
- * may be generated and returned as described above. The contents of
- * objPtr will not be changed. If endPtrPtr is non-NULL, a pointer to the
- * character in the string that terminated the scan will be written to
- * *endPtrPtr.
- *
- * When the parser determines that the entire string matches a format it
- * is looking for, TCL_OK is returned, and if objPtr is non-NULL, then
- * the internal rep and Tcl_ObjType of objPtr are set to the "canonical"
- * numeric value that matches the scanned string. If endPtrPtr is not
- * NULL, a pointer to the end of the string will be written to *endPtrPtr
- * (that is, either bytes+numBytes or a pointer to a terminating NUL
- * byte).
- *
- * When the parser determines that a partial string matches a format it
- * is looking for, the value of endPtrPtr determines what happens:
- *
- * - If endPtrPtr is NULL, then TCL_ERROR is returned, with error message
- * generation as above.
- *
- * - If endPtrPtr is non-NULL, then TCL_OK is returned and objPtr
- * internals are set as above. Also, a pointer to the first
- * character following the parsed numeric string is written to
- * *endPtrPtr.
- *
- * In some cases where the string being scanned is the string rep of
- * objPtr, this routine can leave objPtr in an inconsistent state where
- * its string rep and its internal rep do not agree. In these cases the
- * internal rep will be in agreement with only some substring of the
- * string rep. This might happen if the caller passes in a non-NULL bytes
- * value that points somewhere into the string rep. It might happen if
- * the caller passes in a numBytes value that limits the scan to only a
- * prefix of the string rep. Or it might happen if a non-NULL value of
- * endPtrPtr permits a TCL_OK return from only a partial string match. It
- * is the responsibility of the caller to detect and correct such
- * inconsistencies when they can and do arise.
- *
- * Results:
- * Returns a standard Tcl result.
- *
- * Side effects:
- * The string representaton of objPtr may be generated.
- *
- * The internal representation and Tcl_ObjType of objPtr may be changed.
- * This may involve allocation and/or freeing of memory.
- *
- *----------------------------------------------------------------------
- */
-
-int
-TclParseNumber(
- Tcl_Interp *interp, /* Used for error reporting. May be NULL. */
- Tcl_Obj *objPtr, /* Object to receive the internal rep. */
- const char *expected, /* Description of the type of number the
- * caller expects to be able to parse
- * ("integer", "boolean value", etc.). */
- const char *bytes, /* Pointer to the start of the string to
- * scan. */
- int numBytes, /* Maximum number of bytes to scan, see
- * above. */
- const char **endPtrPtr, /* Place to store pointer to the character
- * that terminated the scan. */
- int flags) /* Flags governing the parse. */
-{
- enum State {
- INITIAL, SIGNUM, ZERO, ZERO_X,
- ZERO_O, ZERO_B, BINARY,
- HEXADECIMAL, OCTAL, BAD_OCTAL, DECIMAL,
- LEADING_RADIX_POINT, FRACTION,
- EXPONENT_START, EXPONENT_SIGNUM, EXPONENT,
- sI, sIN, sINF, sINFI, sINFIN, sINFINI, sINFINIT, sINFINITY
-#ifdef IEEE_FLOATING_POINT
- , sN, sNA, sNAN, sNANPAREN, sNANHEX, sNANFINISH
-#endif
- } state = INITIAL;
- enum State acceptState = INITIAL;
-
- int signum = 0; /* Sign of the number being parsed. */
- Tcl_WideUInt significandWide = 0;
- /* Significand of the number being parsed (if
- * no overflow). */
- mp_int significandBig; /* Significand of the number being parsed (if
- * it overflows significandWide). */
- int significandOverflow = 0;/* Flag==1 iff significandBig is used. */
- Tcl_WideUInt octalSignificandWide = 0;
- /* Significand of an octal number; needed
- * because we don't know whether a number with
- * a leading zero is octal or decimal until
- * we've scanned forward to a '.' or 'e'. */
- mp_int octalSignificandBig; /* Significand of octal number once
- * octalSignificandWide overflows. */
- int octalSignificandOverflow = 0;
- /* Flag==1 if octalSignificandBig is used. */
- int numSigDigs = 0; /* Number of significant digits in the decimal
- * significand. */
- int numTrailZeros = 0; /* Number of trailing zeroes at the current
- * point in the parse. */
- int numDigitsAfterDp = 0; /* Number of digits scanned after the decimal
- * point. */
- int exponentSignum = 0; /* Signum of the exponent of a floating point
- * number. */
- long exponent = 0; /* Exponent of a floating point number. */
- const char *p; /* Pointer to next character to scan. */
- size_t len; /* Number of characters remaining after p. */
- const char *acceptPoint; /* Pointer to position after last character in
- * an acceptable number. */
- size_t acceptLen; /* Number of characters following that
- * point. */
- int status = TCL_OK; /* Status to return to caller. */
- char d = 0; /* Last hexadecimal digit scanned; initialized
- * to avoid a compiler warning. */
- int shift = 0; /* Amount to shift when accumulating binary */
- int explicitOctal = 0;
-
-#define ALL_BITS (~(Tcl_WideUInt)0)
-#define MOST_BITS (ALL_BITS >> 1)
-
- /*
- * Initialize bytes to start of the object's string rep if the caller
- * didn't pass anything else.
- */
-
- if (bytes == NULL) {
- bytes = TclGetString(objPtr);
- }
-
- p = bytes;
- len = numBytes;
- acceptPoint = p;
- acceptLen = len;
- while (1) {
- char c = len ? *p : '\0';
- switch (state) {
-
- case INITIAL:
- /*
- * Initial state. Acceptable characters are +, -, digits, period,
- * I, N, and whitespace.
- */
-
- if (TclIsSpaceProc(c)) {
- if (flags & TCL_PARSE_NO_WHITESPACE) {
- goto endgame;
- }
- break;
- } else if (c == '+') {
- state = SIGNUM;
- break;
- } else if (c == '-') {
- signum = 1;
- state = SIGNUM;
- break;
- }
- /* FALLTHROUGH */
-
- case SIGNUM:
- /*
- * Scanned a leading + or -. Acceptable characters are digits,
- * period, I, and N.
- */
-
- if (c == '0') {
- if (flags & TCL_PARSE_DECIMAL_ONLY) {
- state = DECIMAL;
- } else {
- state = ZERO;
- }
- break;
- } else if (flags & TCL_PARSE_HEXADECIMAL_ONLY) {
- goto zerox;
- } else if (flags & TCL_PARSE_BINARY_ONLY) {
- goto zerob;
- } else if (flags & TCL_PARSE_OCTAL_ONLY) {
- goto zeroo;
- } else if (isdigit(UCHAR(c))) {
- significandWide = c - '0';
- numSigDigs = 1;
- state = DECIMAL;
- break;
- } else if (flags & TCL_PARSE_INTEGER_ONLY) {
- goto endgame;
- } else if (c == '.') {
- state = LEADING_RADIX_POINT;
- break;
- } else if (c == 'I' || c == 'i') {
- state = sI;
- break;
-#ifdef IEEE_FLOATING_POINT
- } else if (c == 'N' || c == 'n') {
- state = sN;
- break;
-#endif
- }
- goto endgame;
-
- case ZERO:
- /*
- * Scanned a leading zero (perhaps with a + or -). Acceptable
- * inputs are digits, period, X, b, and E. If 8 or 9 is
- * encountered, the number can't be octal. This state and the
- * OCTAL state differ only in whether they recognize 'X' and 'b'.
- */
-
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- if (c == 'x' || c == 'X') {
- state = ZERO_X;
- break;
- }
- if (flags & TCL_PARSE_HEXADECIMAL_ONLY) {
- goto zerox;
- }
- if (flags & TCL_PARSE_SCAN_PREFIXES) {
- goto zeroo;
- }
- if (c == 'b' || c == 'B') {
- state = ZERO_B;
- break;
- }
- if (flags & TCL_PARSE_BINARY_ONLY) {
- goto zerob;
- }
- if (c == 'o' || c == 'O') {
- explicitOctal = 1;
- state = ZERO_O;
- break;
- }
-#ifdef KILL_OCTAL
- goto decimal;
-#endif
- /* FALLTHROUGH */
-
- case OCTAL:
- /*
- * Scanned an optional + or -, followed by a string of octal
- * digits. Acceptable inputs are more digits, period, or E. If 8
- * or 9 is encountered, commit to floating point.
- */
-
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- /* FALLTHROUGH */
- case ZERO_O:
- zeroo:
- if (c == '0') {
- numTrailZeros++;
- state = OCTAL;
- break;
- } else if (c >= '1' && c <= '7') {
- if (objPtr != NULL) {
- shift = 3 * (numTrailZeros + 1);
- significandOverflow = AccumulateDecimalDigit(
- (unsigned)(c-'0'), numTrailZeros,
- &significandWide, &significandBig,
- significandOverflow);
-
- if (!octalSignificandOverflow) {
- /*
- * Shifting by more bits than are in the value being
- * shifted is at least de facto nonportable. Check for
- * too large shifts first.
- */
-
- if ((octalSignificandWide != 0)
- && (((size_t)shift >=
- CHAR_BIT*sizeof(Tcl_WideUInt))
- || (octalSignificandWide >
- (~(Tcl_WideUInt)0 >> shift)))) {
- octalSignificandOverflow = 1;
- TclBNInitBignumFromWideUInt(&octalSignificandBig,
- octalSignificandWide);
- }
- }
- if (!octalSignificandOverflow) {
- octalSignificandWide =
- (octalSignificandWide << shift) + (c - '0');
- } else {
- mp_mul_2d(&octalSignificandBig, shift,
- &octalSignificandBig);
- mp_add_d(&octalSignificandBig, (mp_digit)(c - '0'),
- &octalSignificandBig);
- }
- }
- if (numSigDigs != 0) {
- numSigDigs += numTrailZeros+1;
- } else {
- numSigDigs = 1;
- }
- numTrailZeros = 0;
- state = OCTAL;
- break;
- }
- /* FALLTHROUGH */
-
- case BAD_OCTAL:
- if (explicitOctal) {
- /*
- * No forgiveness for bad digits in explicitly octal numbers.
- */
-
- goto endgame;
- }
- if (flags & TCL_PARSE_INTEGER_ONLY) {
- /*
- * No seeking floating point when parsing only integer.
- */
-
- goto endgame;
- }
-#ifndef KILL_OCTAL
-
- /*
- * Scanned a number with a leading zero that contains an 8, 9,
- * radix point or E. This is an invalid octal number, but might
- * still be floating point.
- */
-
- if (c == '0') {
- numTrailZeros++;
- state = BAD_OCTAL;
- break;
- } else if (isdigit(UCHAR(c))) {
- if (objPtr != NULL) {
- significandOverflow = AccumulateDecimalDigit(
- (unsigned)(c-'0'), numTrailZeros,
- &significandWide, &significandBig,
- significandOverflow);
- }
- if (numSigDigs != 0) {
- numSigDigs += (numTrailZeros + 1);
- } else {
- numSigDigs = 1;
- }
- numTrailZeros = 0;
- state = BAD_OCTAL;
- break;
- } else if (c == '.') {
- state = FRACTION;
- break;
- } else if (c == 'E' || c == 'e') {
- state = EXPONENT_START;
- break;
- }
-#endif
- goto endgame;
-
- /*
- * Scanned 0x. If state is HEXADECIMAL, scanned at least one
- * character following the 0x. The only acceptable inputs are
- * hexadecimal digits.
- */
-
- case HEXADECIMAL:
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- /* FALLTHROUGH */
-
- case ZERO_X:
- zerox:
- if (c == '0') {
- numTrailZeros++;
- state = HEXADECIMAL;
- break;
- } else if (isdigit(UCHAR(c))) {
- d = (c-'0');
- } else if (c >= 'A' && c <= 'F') {
- d = (c-'A'+10);
- } else if (c >= 'a' && c <= 'f') {
- d = (c-'a'+10);
- } else {
- goto endgame;
- }
- if (objPtr != NULL) {
- shift = 4 * (numTrailZeros + 1);
- if (!significandOverflow) {
- /*
- * Shifting by more bits than are in the value being
- * shifted is at least de facto nonportable. Check for too
- * large shifts first.
- */
-
- if (significandWide != 0 &&
- ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
- significandWide > (~(Tcl_WideUInt)0 >> shift))) {
- significandOverflow = 1;
- TclBNInitBignumFromWideUInt(&significandBig,
- significandWide);
- }
- }
- if (!significandOverflow) {
- significandWide = (significandWide << shift) + d;
- } else {
- mp_mul_2d(&significandBig, shift, &significandBig);
- mp_add_d(&significandBig, (mp_digit) d, &significandBig);
- }
- }
- numTrailZeros = 0;
- state = HEXADECIMAL;
- break;
-
- case BINARY:
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- case ZERO_B:
- zerob:
- if (c == '0') {
- numTrailZeros++;
- state = BINARY;
- break;
- } else if (c != '1') {
- goto endgame;
- }
- if (objPtr != NULL) {
- shift = numTrailZeros + 1;
- if (!significandOverflow) {
- /*
- * Shifting by more bits than are in the value being
- * shifted is at least de facto nonportable. Check for too
- * large shifts first.
- */
-
- if (significandWide != 0 &&
- ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
- significandWide > (~(Tcl_WideUInt)0 >> shift))) {
- significandOverflow = 1;
- TclBNInitBignumFromWideUInt(&significandBig,
- significandWide);
- }
- }
- if (!significandOverflow) {
- significandWide = (significandWide << shift) + 1;
- } else {
- mp_mul_2d(&significandBig, shift, &significandBig);
- mp_add_d(&significandBig, (mp_digit) 1, &significandBig);
- }
- }
- numTrailZeros = 0;
- state = BINARY;
- break;
-
- case DECIMAL:
- /*
- * Scanned an optional + or - followed by a string of decimal
- * digits.
- */
-
-#ifdef KILL_OCTAL
- decimal:
-#endif
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- if (c == '0') {
- numTrailZeros++;
- state = DECIMAL;
- break;
- } else if (isdigit(UCHAR(c))) {
- if (objPtr != NULL) {
- significandOverflow = AccumulateDecimalDigit(
- (unsigned)(c - '0'), numTrailZeros,
- &significandWide, &significandBig,
- significandOverflow);
- }
- numSigDigs += numTrailZeros+1;
- numTrailZeros = 0;
- state = DECIMAL;
- break;
- } else if (flags & TCL_PARSE_INTEGER_ONLY) {
- goto endgame;
- } else if (c == '.') {
- state = FRACTION;
- break;
- } else if (c == 'E' || c == 'e') {
- state = EXPONENT_START;
- break;
- }
- goto endgame;
-
- /*
- * Found a decimal point. If no digits have yet been scanned, E is
- * not allowed; otherwise, it introduces the exponent. If at least
- * one digit has been found, we have a possible complete number.
- */
-
- case FRACTION:
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- if (c == 'E' || c=='e') {
- state = EXPONENT_START;
- break;
- }
- /* FALLTHROUGH */
-
- case LEADING_RADIX_POINT:
- if (c == '0') {
- numDigitsAfterDp++;
- numTrailZeros++;
- state = FRACTION;
- break;
- } else if (isdigit(UCHAR(c))) {
- numDigitsAfterDp++;
- if (objPtr != NULL) {
- significandOverflow = AccumulateDecimalDigit(
- (unsigned)(c-'0'), numTrailZeros,
- &significandWide, &significandBig,
- significandOverflow);
- }
- if (numSigDigs != 0) {
- numSigDigs += numTrailZeros+1;
- } else {
- numSigDigs = 1;
- }
- numTrailZeros = 0;
- state = FRACTION;
- break;
- }
- goto endgame;
-
- case EXPONENT_START:
- /*
- * Scanned the E at the start of an exponent. Make sure a legal
- * character follows before using the C library strtol routine,
- * which allows whitespace.
- */
-
- if (c == '+') {
- state = EXPONENT_SIGNUM;
- break;
- } else if (c == '-') {
- exponentSignum = 1;
- state = EXPONENT_SIGNUM;
- break;
- }
- /* FALLTHROUGH */
-
- case EXPONENT_SIGNUM:
- /*
- * Found the E at the start of the exponent, followed by a sign
- * character.
- */
-
- if (isdigit(UCHAR(c))) {
- exponent = c - '0';
- state = EXPONENT;
- break;
- }
- goto endgame;
-
- case EXPONENT:
- /*
- * Found an exponent with at least one digit. Accumulate it,
- * making sure to hard-pin it to LONG_MAX on overflow.
- */
-
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- if (isdigit(UCHAR(c))) {
- if (exponent < (LONG_MAX - 9) / 10) {
- exponent = 10 * exponent + (c - '0');
- } else {
- exponent = LONG_MAX;
- }
- state = EXPONENT;
- break;
- }
- goto endgame;
-
- /*
- * Parse out INFINITY by simply spelling it out. INF is accepted
- * as an abbreviation; other prefices are not.
- */
-
- case sI:
- if (c == 'n' || c == 'N') {
- state = sIN;
- break;
- }
- goto endgame;
- case sIN:
- if (c == 'f' || c == 'F') {
- state = sINF;
- break;
- }
- goto endgame;
- case sINF:
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- if (c == 'i' || c == 'I') {
- state = sINFI;
- break;
- }
- goto endgame;
- case sINFI:
- if (c == 'n' || c == 'N') {
- state = sINFIN;
- break;
- }
- goto endgame;
- case sINFIN:
- if (c == 'i' || c == 'I') {
- state = sINFINI;
- break;
- }
- goto endgame;
- case sINFINI:
- if (c == 't' || c == 'T') {
- state = sINFINIT;
- break;
- }
- goto endgame;
- case sINFINIT:
- if (c == 'y' || c == 'Y') {
- state = sINFINITY;
- break;
- }
- goto endgame;
-
- /*
- * Parse NaN's.
- */
-#ifdef IEEE_FLOATING_POINT
- case sN:
- if (c == 'a' || c == 'A') {
- state = sNA;
- break;
- }
- goto endgame;
- case sNA:
- if (c == 'n' || c == 'N') {
- state = sNAN;
- break;
- }
- goto endgame;
- case sNAN:
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- if (c == '(') {
- state = sNANPAREN;
- break;
- }
- goto endgame;
-
- /*
- * Parse NaN(hexdigits)
- */
- case sNANHEX:
- if (c == ')') {
- state = sNANFINISH;
- break;
- }
- /* FALLTHROUGH */
- case sNANPAREN:
- if (TclIsSpaceProc(c)) {
- break;
- }
- if (numSigDigs < 13) {
- if (c >= '0' && c <= '9') {
- d = c - '0';
- } else if (c >= 'a' && c <= 'f') {
- d = 10 + c - 'a';
- } else if (c >= 'A' && c <= 'F') {
- d = 10 + c - 'A';
- } else {
- goto endgame;
- }
- numSigDigs++;
- significandWide = (significandWide << 4) + d;
- state = sNANHEX;
- break;
- }
- goto endgame;
- case sNANFINISH:
-#endif
-
- case sINFINITY:
- acceptState = state;
- acceptPoint = p;
- acceptLen = len;
- goto endgame;
- }
- p++;
- len--;
- }
-
- endgame:
- if (acceptState == INITIAL) {
- /*
- * No numeric string at all found.
- */
-
- status = TCL_ERROR;
- if (endPtrPtr != NULL) {
- *endPtrPtr = p;
- }
- } else {
- /*
- * Back up to the last accepting state in the lexer.
- */
-
- p = acceptPoint;
- len = acceptLen;
- if (!(flags & TCL_PARSE_NO_WHITESPACE)) {
- /*
- * Accept trailing whitespace.
- */
-
- while (len != 0 && TclIsSpaceProc(*p)) {
- p++;
- len--;
- }
- }
- if (endPtrPtr == NULL) {
- if ((len != 0) && ((numBytes > 0) || (*p != '\0'))) {
- status = TCL_ERROR;
- }
- } else {
- *endPtrPtr = p;
- }
- }
-
- /*
- * Generate and store the appropriate internal rep.
- */
-
- if (status == TCL_OK && objPtr != NULL) {
- TclFreeIntRep(objPtr);
- switch (acceptState) {
- case SIGNUM:
- case BAD_OCTAL:
- case ZERO_X:
- case ZERO_O:
- case ZERO_B:
- case LEADING_RADIX_POINT:
- case EXPONENT_START:
- case EXPONENT_SIGNUM:
- case sI:
- case sIN:
- case sINFI:
- case sINFIN:
- case sINFINI:
- case sINFINIT:
-#ifdef IEEE_FLOATING_POINT
- case sN:
- case sNA:
- case sNANPAREN:
- case sNANHEX:
- Tcl_Panic("TclParseNumber: bad acceptState %d parsing '%s'",
- acceptState, bytes);
-#endif
- case BINARY:
- shift = numTrailZeros;
- if (!significandOverflow && significandWide != 0 &&
- ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
- significandWide > (MOST_BITS + signum) >> shift)) {
- significandOverflow = 1;
- TclBNInitBignumFromWideUInt(&significandBig, significandWide);
- }
- if (shift) {
- if (!significandOverflow) {
- significandWide <<= shift;
- } else {
- mp_mul_2d(&significandBig, shift, &significandBig);
- }
- }
- goto returnInteger;
-
- case HEXADECIMAL:
- /*
- * Returning a hex integer. Final scaling step.
- */
-
- shift = 4 * numTrailZeros;
- if (!significandOverflow && significandWide !=0 &&
- ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
- significandWide > (MOST_BITS + signum) >> shift)) {
- significandOverflow = 1;
- TclBNInitBignumFromWideUInt(&significandBig, significandWide);
- }
- if (shift) {
- if (!significandOverflow) {
- significandWide <<= shift;
- } else {
- mp_mul_2d(&significandBig, shift, &significandBig);
- }
- }
- goto returnInteger;
-
- case OCTAL:
- /*
- * Returning an octal integer. Final scaling step.
- */
-
- shift = 3 * numTrailZeros;
- if (!octalSignificandOverflow && octalSignificandWide != 0 &&
- ((size_t)shift >= CHAR_BIT*sizeof(Tcl_WideUInt) ||
- octalSignificandWide > (MOST_BITS + signum) >> shift)) {
- octalSignificandOverflow = 1;
- TclBNInitBignumFromWideUInt(&octalSignificandBig,
- octalSignificandWide);
- }
- if (shift) {
- if (!octalSignificandOverflow) {
- octalSignificandWide <<= shift;
- } else {
- mp_mul_2d(&octalSignificandBig, shift,
- &octalSignificandBig);
- }
- }
- if (!octalSignificandOverflow) {
- if (octalSignificandWide >
- (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) {
-#ifndef TCL_WIDE_INT_IS_LONG
- if (octalSignificandWide <= (MOST_BITS + signum)) {
- objPtr->typePtr = &tclWideIntType;
- if (signum) {
- objPtr->internalRep.wideValue =
- - (Tcl_WideInt) octalSignificandWide;
- } else {
- objPtr->internalRep.wideValue =
- (Tcl_WideInt) octalSignificandWide;
- }
- break;
- }
-#endif
- TclBNInitBignumFromWideUInt(&octalSignificandBig,
- octalSignificandWide);
- octalSignificandOverflow = 1;
- } else {
- objPtr->typePtr = &tclIntType;
- if (signum) {
- objPtr->internalRep.longValue =
- - (long) octalSignificandWide;
- } else {
- objPtr->internalRep.longValue =
- (long) octalSignificandWide;
- }
- }
- }
- if (octalSignificandOverflow) {
- if (signum) {
- mp_neg(&octalSignificandBig, &octalSignificandBig);
- }
- TclSetBignumIntRep(objPtr, &octalSignificandBig);
- }
- break;
-
- case ZERO:
- case DECIMAL:
- significandOverflow = AccumulateDecimalDigit(0, numTrailZeros-1,
- &significandWide, &significandBig, significandOverflow);
- if (!significandOverflow && (significandWide > MOST_BITS+signum)){
- significandOverflow = 1;
- TclBNInitBignumFromWideUInt(&significandBig, significandWide);
- }
- returnInteger:
- if (!significandOverflow) {
- if (significandWide >
- (Tcl_WideUInt)(((~(unsigned long)0) >> 1) + signum)) {
-#ifndef TCL_WIDE_INT_IS_LONG
- if (significandWide <= MOST_BITS+signum) {
- objPtr->typePtr = &tclWideIntType;
- if (signum) {
- objPtr->internalRep.wideValue =
- - (Tcl_WideInt) significandWide;
- } else {
- objPtr->internalRep.wideValue =
- (Tcl_WideInt) significandWide;
- }
- break;
- }
-#endif
- TclBNInitBignumFromWideUInt(&significandBig,
- significandWide);
- significandOverflow = 1;
- } else {
- objPtr->typePtr = &tclIntType;
- if (signum) {
- objPtr->internalRep.longValue =
- - (long) significandWide;
- } else {
- objPtr->internalRep.longValue =
- (long) significandWide;
- }
- }
- }
- if (significandOverflow) {
- if (signum) {
- mp_neg(&significandBig, &significandBig);
- }
- TclSetBignumIntRep(objPtr, &significandBig);
- }
- break;
-
- case FRACTION:
- case EXPONENT:
-
- /*
- * Here, we're parsing a floating-point number. 'significandWide'
- * or 'significandBig' contains the exact significand, according
- * to whether 'significandOverflow' is set. The desired floating
- * point value is significand * 10**k, where
- * k = numTrailZeros+exponent-numDigitsAfterDp.
- */
-
- objPtr->typePtr = &tclDoubleType;
- if (exponentSignum) {
- exponent = -exponent;
- }
- if (!significandOverflow) {
- objPtr->internalRep.doubleValue = MakeLowPrecisionDouble(
- signum, significandWide, numSigDigs,
- numTrailZeros + exponent - numDigitsAfterDp);
- } else {
- objPtr->internalRep.doubleValue = MakeHighPrecisionDouble(
- signum, &significandBig, numSigDigs,
- numTrailZeros + exponent - numDigitsAfterDp);
- }
- break;
-
- case sINF:
- case sINFINITY:
- if (signum) {
- objPtr->internalRep.doubleValue = -HUGE_VAL;
- } else {
- objPtr->internalRep.doubleValue = HUGE_VAL;
- }
- objPtr->typePtr = &tclDoubleType;
- break;
-
-#ifdef IEEE_FLOATING_POINT
- case sNAN:
- case sNANFINISH:
- objPtr->internalRep.doubleValue = MakeNaN(signum,significandWide);
- objPtr->typePtr = &tclDoubleType;
- break;
-#endif
- case INITIAL:
- /* This case only to silence compiler warning. */
- Tcl_Panic("TclParseNumber: state INITIAL can't happen here");
- }
- }
-
- /*
- * Format an error message when an invalid number is encountered.
- */
-
- if (status != TCL_OK) {
- if (interp != NULL) {
- Tcl_Obj *msg = Tcl_ObjPrintf("expected %s but got \"",
- expected);
-
- Tcl_AppendLimitedToObj(msg, bytes, numBytes, 50, "");
- Tcl_AppendToObj(msg, "\"", -1);
- if (state == BAD_OCTAL) {
- Tcl_AppendToObj(msg, " (looks like invalid octal number)", -1);
- }
- Tcl_SetObjResult(interp, msg);
- Tcl_SetErrorCode(interp, "TCL", "VALUE", "NUMBER", NULL);
- }
- }
-
- /*
- * Free memory.
- */
-
- if (octalSignificandOverflow) {
- mp_clear(&octalSignificandBig);
- }
- if (significandOverflow) {
- mp_clear(&significandBig);
- }
- return status;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * AccumulateDecimalDigit --
- *
- * Consume a decimal digit in a number being scanned.
- *
- * Results:
- * Returns 1 if the number has overflowed to a bignum, 0 if it still fits
- * in a wide integer.
- *
- * Side effects:
- * Updates either the wide or bignum representation.
- *
- *----------------------------------------------------------------------
- */
-
-static int
-AccumulateDecimalDigit(
- unsigned digit, /* Digit being scanned. */
- int numZeros, /* Count of zero digits preceding the digit
- * being scanned. */
- Tcl_WideUInt *wideRepPtr, /* Representation of the partial number as a
- * wide integer. */
- mp_int *bignumRepPtr, /* Representation of the partial number as a
- * bignum. */
- int bignumFlag) /* Flag == 1 if the number overflowed previous
- * to this digit. */
-{
- int i, n;
- Tcl_WideUInt w;
-
- /*
- * Try wide multiplication first.
- */
-
- if (!bignumFlag) {
- w = *wideRepPtr;
- if (w == 0) {
- /*
- * There's no need to multiply if the multiplicand is zero.
- */
-
- *wideRepPtr = digit;
- return 0;
- } else if (numZeros >= maxpow10_wide
- || w > ((~(Tcl_WideUInt)0)-digit)/pow10_wide[numZeros+1]) {
- /*
- * Wide multiplication will overflow. Expand the number to a
- * bignum and fall through into the bignum case.
- */
-
- TclBNInitBignumFromWideUInt(bignumRepPtr, w);
- } else {
- /*
- * Wide multiplication.
- */
-
- *wideRepPtr = w * pow10_wide[numZeros+1] + digit;
- return 0;
- }
- }
-
- /*
- * Bignum multiplication.
- */
-
- if (numZeros < log10_DIGIT_MAX) {
- /*
- * Up to about 8 zeros - single digit multiplication.
- */
-
- mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[numZeros+1],
- bignumRepPtr);
- mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr);
- } else {
- /*
- * More than single digit multiplication. Multiply by the appropriate
- * small powers of 5, and then shift. Large strings of zeroes are
- * eaten 256 at a time; this is less efficient than it could be, but
- * seems implausible. We presume that DIGIT_BIT is at least 27. The
- * first multiplication, by up to 10**7, is done with a one-DIGIT
- * multiply (this presumes that DIGIT_BIT >= 24).
- */
-
- n = numZeros + 1;
- mp_mul_d(bignumRepPtr, (mp_digit) pow10_wide[n&0x7], bignumRepPtr);
- for (i=3; i<=7; ++i) {
- if (n & (1 << i)) {
- mp_mul(bignumRepPtr, pow5+i, bignumRepPtr);
- }
- }
- while (n >= 256) {
- mp_mul(bignumRepPtr, pow5+8, bignumRepPtr);
- n -= 256;
- }
- mp_mul_2d(bignumRepPtr, (int)(numZeros+1)&~0x7, bignumRepPtr);
- mp_add_d(bignumRepPtr, (mp_digit) digit, bignumRepPtr);
- }
-
- return 1;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * MakeLowPrecisionDouble --
- *
- * Makes the double precision number, signum*significand*10**exponent.
- *
- * Results:
- * Returns the constructed number.
- *
- * Common cases, where there are few enough digits that the number can be
- * represented with at most roundoff, are handled specially here. If the
- * number requires more than one rounded operation to compute, the code
- * promotes the significand to a bignum and calls MakeHighPrecisionDouble
- * to do it instead.
- *
- *----------------------------------------------------------------------
- */
-
-static double
-MakeLowPrecisionDouble(
- int signum, /* 1 if the number is negative, 0 otherwise */
- Tcl_WideUInt significand, /* Significand of the number. */
- int numSigDigs, /* Number of digits in the significand. */
- int exponent) /* Power of ten. */
-{
- double retval; /* Value of the number. */
- mp_int significandBig; /* Significand expressed as a bignum. */
-
- /*
- * With gcc on x86, the floating point rounding mode is double-extended.
- * This causes the result of double-precision calculations to be rounded
- * twice: once to the precision of double-extended and then again to the
- * precision of double. Double-rounding introduces gratuitous errors of 1
- * ulp, so we need to change rounding mode to 53-bits.
- */
-
- TCL_IEEE_DOUBLE_ROUNDING;
-
- /*
- * Test for the easy cases.
- */
-
- if (numSigDigs <= QUICK_MAX) {
- if (exponent >= 0) {
- if (exponent <= mmaxpow) {
- /*
- * The significand is an exact integer, and so is
- * 10**exponent. The product will be correct to within 1/2 ulp
- * without special handling.
- */
-
- retval = (double)
- ((Tcl_WideInt)significand * pow10vals[exponent]);
- goto returnValue;
- } else {
- int diff = QUICK_MAX - numSigDigs;
-
- if (exponent-diff <= mmaxpow) {
- /*
- * 10**exponent is not an exact integer, but
- * 10**(exponent-diff) is exact, and so is
- * significand*10**diff, so we can still compute the value
- * with only one roundoff.
- */
-
- volatile double factor = (double)
- ((Tcl_WideInt)significand * pow10vals[diff]);
- retval = factor * pow10vals[exponent-diff];
- goto returnValue;
- }
- }
- } else {
- if (exponent >= -mmaxpow) {
- /*
- * 10**-exponent is an exact integer, and so is the
- * significand. Compute the result by one division, again with
- * only one rounding.
- */
-
- retval = (double)
- ((Tcl_WideInt)significand / pow10vals[-exponent]);
- goto returnValue;
- }
- }
- }
-
- /*
- * All the easy cases have failed. Promote ths significand to bignum and
- * call MakeHighPrecisionDouble to do it the hard way.
- */
-
- TclBNInitBignumFromWideUInt(&significandBig, significand);
- retval = MakeHighPrecisionDouble(0, &significandBig, numSigDigs,
- exponent);
- mp_clear(&significandBig);
-
- /*
- * Come here to return the computed value.
- */
-
- returnValue:
- if (signum) {
- retval = -retval;
- }
-
- /*
- * On gcc on x86, restore the floating point mode word.
- */
-
- TCL_DEFAULT_DOUBLE_ROUNDING;
-
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * MakeHighPrecisionDouble --
- *
- * Makes the double precision number, signum*significand*10**exponent.
- *
- * Results:
- * Returns the constructed number.
- *
- * MakeHighPrecisionDouble is used when arbitrary-precision arithmetic is
- * needed to ensure correct rounding. It begins by calculating a
- * low-precision approximation to the desired number, and then refines
- * the answer in high precision.
- *
- *----------------------------------------------------------------------
- */
-
-static double
-MakeHighPrecisionDouble(
- int signum, /* 1=negative, 0=nonnegative. */
- mp_int *significand, /* Exact significand of the number. */
- int numSigDigs, /* Number of significant digits. */
- int exponent) /* Power of 10 by which to multiply. */
-{
- double retval;
- int machexp; /* Machine exponent of a power of 10. */
-
- /*
- * With gcc on x86, the floating point rounding mode is double-extended.
- * This causes the result of double-precision calculations to be rounded
- * twice: once to the precision of double-extended and then again to the
- * precision of double. Double-rounding introduces gratuitous errors of 1
- * ulp, so we need to change rounding mode to 53-bits.
- */
-
- TCL_IEEE_DOUBLE_ROUNDING;
-
- /*
- * Quick checks for over/underflow.
- */
-
- if (numSigDigs+exponent-1 > maxDigits) {
- retval = HUGE_VAL;
- goto returnValue;
- }
- if (numSigDigs+exponent-1 < minDigits) {
- retval = 0;
- goto returnValue;
- }
-
- /*
- * Develop a first approximation to the significand. It is tempting simply
- * to force bignum to double, but that will overflow on input numbers like
- * 1.[string repeat 0 1000]1; while this is a not terribly likely
- * scenario, we still have to deal with it. Use fraction and exponent
- * instead. Once we have the significand, multiply by 10**exponent. Test
- * for overflow. Convert back to a double, and test for underflow.
- */
-
- retval = BignumToBiasedFrExp(significand, &machexp);
- retval = Pow10TimesFrExp(exponent, retval, &machexp);
- if (machexp > DBL_MAX_EXP*log2FLT_RADIX) {
- retval = HUGE_VAL;
- goto returnValue;
- }
- retval = SafeLdExp(retval, machexp);
- if (tiny == 0.0) {
- tiny = SafeLdExp(1.0, DBL_MIN_EXP * log2FLT_RADIX - mantBits);
- }
- if (retval < tiny) {
- retval = tiny;
- }
-
- /*
- * Refine the result twice. (The second refinement should be necessary
- * only if the best approximation is a power of 2 minus 1/2 ulp).
- */
-
- retval = RefineApproximation(retval, significand, exponent);
- retval = RefineApproximation(retval, significand, exponent);
-
- /*
- * Come here to return the computed value.
- */
-
- returnValue:
- if (signum) {
- retval = -retval;
- }
-
- /*
- * On gcc on x86, restore the floating point mode word.
- */
-
- TCL_DEFAULT_DOUBLE_ROUNDING;
-
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * MakeNaN --
- *
- * Makes a "Not a Number" given a set of bits to put in the tag bits
- *
- * Note that a signalling NaN is never returned.
- *
- *----------------------------------------------------------------------
- */
-
-#ifdef IEEE_FLOATING_POINT
-static double
-MakeNaN(
- int signum, /* Sign bit (1=negative, 0=nonnegative. */
- Tcl_WideUInt tags) /* Tag bits to put in the NaN. */
-{
- union {
- Tcl_WideUInt iv;
- double dv;
- } theNaN;
-
- theNaN.iv = tags;
- theNaN.iv &= (((Tcl_WideUInt) 1) << 51) - 1;
- if (signum) {
- theNaN.iv |= ((Tcl_WideUInt) (0x8000 | NAN_START)) << 48;
- } else {
- theNaN.iv |= ((Tcl_WideUInt) NAN_START) << 48;
- }
- if (n770_fp) {
- theNaN.iv = Nokia770Twiddle(theNaN.iv);
- }
- return theNaN.dv;
-}
-#endif
-
-/*
- *----------------------------------------------------------------------
- *
- * RefineApproximation --
- *
- * Given a poor approximation to a floating point number, returns a
- * better one. (The better approximation is correct to within 1 ulp, and
- * is entirely correct if the poor approximation is correct to 1 ulp.)
- *
- * Results:
- * Returns the improved result.
- *
- *----------------------------------------------------------------------
- */
-
-static double
-RefineApproximation(
- double approxResult, /* Approximate result of conversion. */
- mp_int *exactSignificand, /* Integer significand. */
- int exponent) /* Power of 10 to multiply by significand. */
-{
- int M2, M5; /* Powers of 2 and of 5 needed to put the
- * decimal and binary numbers over a common
- * denominator. */
- double significand; /* Sigificand of the binary number. */
- int binExponent; /* Exponent of the binary number. */
- int msb; /* Most significant bit position of an
- * intermediate result. */
- int nDigits; /* Number of mp_digit's in an intermediate
- * result. */
- mp_int twoMv; /* Approx binary value expressed as an exact
- * integer scaled by the multiplier 2M. */
- mp_int twoMd; /* Exact decimal value expressed as an exact
- * integer scaled by the multiplier 2M. */
- int scale; /* Scale factor for M. */
- int multiplier; /* Power of two to scale M. */
- double num, den; /* Numerator and denominator of the correction
- * term. */
- double quot; /* Correction term. */
- double minincr; /* Lower bound on the absolute value of the
- * correction term. */
- int roundToEven = 0; /* Flag == TRUE if we need to invoke
- * "round to even" functionality */
- double rteSignificand; /* Significand of the round-to-even result */
- int rteExponent; /* Exponent of the round-to-even result */
- Tcl_WideInt rteSigWide; /* Wide integer version of the significand
- * for testing evenness */
- int i;
-
- /*
- * The first approximation is always low. If we find that it's HUGE_VAL,
- * we're done.
- */
-
- if (approxResult == HUGE_VAL) {
- return approxResult;
- }
-
- /*
- * Find a common denominator for the decimal and binary fractions. The
- * common denominator will be 2**M2 + 5**M5.
- */
-
- significand = frexp(approxResult, &binExponent);
- i = mantBits - binExponent;
- if (i < 0) {
- M2 = 0;
- } else {
- M2 = i;
- }
- if (exponent > 0) {
- M5 = 0;
- } else {
- M5 = -exponent;
- if (M5 - 1 > M2) {
- M2 = M5 - 1;
- }
- }
-
- /*
- * The floating point number is significand*2**binExponent. Compute the
- * large integer significand*2**(binExponent+M2+1). The 2**-1 bit of the
- * significand (the most significant) corresponds to the
- * 2**(binExponent+M2 + 1) bit of 2*M2*v. Allocate enough digits to hold
- * that quantity, then convert the significand to a large integer, scaled
- * appropriately. Then multiply by the appropriate power of 5.
- */
-
- msb = binExponent + M2; /* 1008 */
- nDigits = msb / DIGIT_BIT + 1;
- mp_init_size(&twoMv, nDigits);
- i = (msb % DIGIT_BIT + 1);
- twoMv.used = nDigits;
- significand *= SafeLdExp(1.0, i);
- while (--nDigits >= 0) {
- twoMv.dp[nDigits] = (mp_digit) significand;
- significand -= (mp_digit) significand;
- significand = SafeLdExp(significand, DIGIT_BIT);
- }
- for (i = 0; i <= 8; ++i) {
- if (M5 & (1 << i)) {
- mp_mul(&twoMv, pow5+i, &twoMv);
- }
- }
-
- /*
- * Collect the decimal significand as a high precision integer. The least
- * significant bit corresponds to bit M2+exponent+1 so it will need to be
- * shifted left by that many bits after being multiplied by
- * 5**(M5+exponent).
- */
-
- mp_init_copy(&twoMd, exactSignificand);
- for (i=0; i<=8; ++i) {
- if ((M5 + exponent) & (1 << i)) {
- mp_mul(&twoMd, pow5+i, &twoMd);
- }
- }
- mp_mul_2d(&twoMd, M2+exponent+1, &twoMd);
- mp_sub(&twoMd, &twoMv, &twoMd);
-
- /*
- * The result, 2Mv-2Md, needs to be divided by 2M to yield a correction
- * term. Because 2M may well overflow a double, we need to scale the
- * denominator by a factor of 2**binExponent-mantBits.
- */
-
- scale = binExponent - mantBits - 1;
-
- mp_set(&twoMv, 1);
- for (i=0; i<=8; ++i) {
- if (M5 & (1 << i)) {
- mp_mul(&twoMv, pow5+i, &twoMv);
- }
- }
- multiplier = M2 + scale + 1;
- if (multiplier > 0) {
- mp_mul_2d(&twoMv, multiplier, &twoMv);
- } else if (multiplier < 0) {
- mp_div_2d(&twoMv, -multiplier, &twoMv, NULL);
- }
-
- switch (mp_cmp_mag(&twoMd, &twoMv)) {
- case MP_LT:
- /*
- * If the result is less than unity, the error is less than 1/2 unit in
- * the last place, so there's no correction to make.
- */
- mp_clear(&twoMd);
- mp_clear(&twoMv);
- return approxResult;
- case MP_EQ:
- /*
- * If the result is exactly unity, we need to round to even.
- */
- roundToEven = 1;
- break;
- case MP_GT:
- break;
- }
-
- if (roundToEven) {
- rteSignificand = frexp(approxResult, &rteExponent);
- rteSigWide = (Tcl_WideInt) ldexp(rteSignificand, FP_PRECISION);
- if ((rteSigWide & 1) == 0) {
- mp_clear(&twoMd);
- mp_clear(&twoMv);
- return approxResult;
- }
- }
-
- /*
- * Convert the numerator and denominator of the corrector term accurately
- * to floating point numbers.
- */
-
- num = TclBignumToDouble(&twoMd);
- den = TclBignumToDouble(&twoMv);
-
- quot = SafeLdExp(num/den, scale);
- minincr = SafeLdExp(1.0, binExponent-mantBits);
-
- if (quot<0. && quot>-minincr) {
- quot = -minincr;
- } else if (quot>0. && quot<minincr) {
- quot = minincr;
- }
-
- mp_clear(&twoMd);
- mp_clear(&twoMv);
-
- return approxResult + quot;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * MultPow5 --
- *
- * Multiply a bignum by a power of 5.
- *
- * Side effects:
- * Stores base*5**n in result.
- *
- *----------------------------------------------------------------------
- */
-
-inline static void
-MulPow5(
- mp_int *base, /* Number to multiply. */
- unsigned n, /* Power of 5 to multiply by. */
- mp_int *result) /* Place to store the result. */
-{
- mp_int *p = base;
- int n13 = n / 13;
- int r = n % 13;
-
- if (r != 0) {
- mp_mul_d(p, dpow5[r], result);
- p = result;
- }
- r = 0;
- while (n13 != 0) {
- if (n13 & 1) {
- mp_mul(p, pow5_13+r, result);
- p = result;
- }
- n13 >>= 1;
- ++r;
- }
- if (p != result) {
- mp_copy(p, result);
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * NormalizeRightward --
- *
- * Shifts a number rightward until it is odd (that is, until the least
- * significant bit is nonzero.
- *
- * Results:
- * Returns the number of bit positions by which the number was shifted.
- *
- * Side effects:
- * Shifts the number in place; *wPtr is replaced by the shifted number.
- *
- *----------------------------------------------------------------------
- */
-
-inline static int
-NormalizeRightward(
- Tcl_WideUInt *wPtr) /* INOUT: Number to shift. */
-{
- int rv = 0;
- Tcl_WideUInt w = *wPtr;
-
- if (!(w & (Tcl_WideUInt) 0xffffffff)) {
- w >>= 32; rv += 32;
- }
- if (!(w & (Tcl_WideUInt) 0xffff)) {
- w >>= 16; rv += 16;
- }
- if (!(w & (Tcl_WideUInt) 0xff)) {
- w >>= 8; rv += 8;
- }
- if (!(w & (Tcl_WideUInt) 0xf)) {
- w >>= 4; rv += 4;
- }
- if (!(w & 0x3)) {
- w >>= 2; rv += 2;
- }
- if (!(w & 0x1)) {
- w >>= 1; ++rv;
- }
- *wPtr = w;
- return rv;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * RequiredPrecision --
- *
- * Determines the number of bits needed to hold an intger.
- *
- * Results:
- * Returns the position of the most significant bit (0 - 63). Returns 0
- * if the number is zero.
- *
- *----------------------------------------------------------------------
- */
-
-static int
-RequiredPrecision(
- Tcl_WideUInt w) /* Number to interrogate. */
-{
- int rv;
- unsigned long wi;
-
- if (w & ((Tcl_WideUInt) 0xffffffff << 32)) {
- wi = (unsigned long) (w >> 32); rv = 32;
- } else {
- wi = (unsigned long) w; rv = 0;
- }
- if (wi & 0xffff0000) {
- wi >>= 16; rv += 16;
- }
- if (wi & 0xff00) {
- wi >>= 8; rv += 8;
- }
- if (wi & 0xf0) {
- wi >>= 4; rv += 4;
- }
- if (wi & 0xc) {
- wi >>= 2; rv += 2;
- }
- if (wi & 0x2) {
- wi >>= 1; ++rv;
- }
- if (wi & 0x1) {
- ++rv;
- }
- return rv;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * DoubleToExpAndSig --
- *
- * Separates a 'double' into exponent and significand.
- *
- * Side effects:
- * Stores the significand in '*significand' and the exponent in '*expon'
- * so that dv == significand * 2.0**expon, and significand is odd. Also
- * stores the position of the leftmost 1-bit in 'significand' in 'bits'.
- *
- *----------------------------------------------------------------------
- */
-
-inline static void
-DoubleToExpAndSig(
- double dv, /* Number to convert. */
- Tcl_WideUInt *significand, /* OUTPUT: Significand of the number. */
- int *expon, /* OUTPUT: Exponent to multiply the number
- * by. */
- int *bits) /* OUTPUT: Number of significant bits. */
-{
- Double d; /* Number being converted. */
- Tcl_WideUInt z; /* Significand under construction. */
- int de; /* Exponent of the number. */
- int k; /* Bit count. */
-
- d.d = dv;
-
- /*
- * Extract exponent and significand.
- */
-
- de = (d.w.word0 & EXP_MASK) >> EXP_SHIFT;
- z = d.q & SIG_MASK;
- if (de != 0) {
- z |= HIDDEN_BIT;
- k = NormalizeRightward(&z);
- *bits = FP_PRECISION - k;
- *expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1);
- } else {
- k = NormalizeRightward(&z);
- *expon = k + (de - EXPONENT_BIAS) - (FP_PRECISION-1) + 1;
- *bits = RequiredPrecision(z);
- }
- *significand = z;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * TakeAbsoluteValue --
- *
- * Takes the absolute value of a 'double' including 0, Inf and NaN
- *
- * Side effects:
- * The 'double' in *d is replaced with its absolute value. The signum is
- * stored in 'sign': 1 for negative, 0 for nonnegative.
- *
- *----------------------------------------------------------------------
- */
-
-inline static void
-TakeAbsoluteValue(
- Double *d, /* Number to replace with absolute value. */
- int *sign) /* Place to put the signum. */
-{
- if (d->w.word0 & SIGN_BIT) {
- *sign = 1;
- d->w.word0 &= ~SIGN_BIT;
- } else {
- *sign = 0;
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * FormatInfAndNaN --
- *
- * Bailout for formatting infinities and Not-A-Number.
- *
- * Results:
- * Returns one of the strings 'Infinity' and 'NaN'. The string returned
- * must be freed by the caller using 'ckfree'.
- *
- * Side effects:
- * Stores 9999 in *decpt, and sets '*endPtr' to designate the terminating
- * NUL byte of the string if 'endPtr' is not NULL.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-FormatInfAndNaN(
- Double *d, /* Exceptional number to format. */
- int *decpt, /* Decimal point to set to a bogus value. */
- char **endPtr) /* Pointer to the end of the formatted data */
-{
- char *retval;
-
- *decpt = 9999;
- if (!(d->w.word1) && !(d->w.word0 & HI_ORDER_SIG_MASK)) {
- retval = ckalloc(9);
- strcpy(retval, "Infinity");
- if (endPtr) {
- *endPtr = retval + 8;
- }
- } else {
- retval = ckalloc(4);
- strcpy(retval, "NaN");
- if (endPtr) {
- *endPtr = retval + 3;
- }
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * FormatZero --
- *
- * Bailout to format a zero floating-point number.
- *
- * Results:
- * Returns the constant string "0"
- *
- * Side effects:
- * Stores 1 in '*decpt' and puts a pointer to the NUL byte terminating
- * the string in '*endPtr' if 'endPtr' is not NULL.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-FormatZero(
- int *decpt, /* Location of the decimal point. */
- char **endPtr) /* Pointer to the end of the formatted data */
-{
- char *retval = ckalloc(2);
-
- strcpy(retval, "0");
- if (endPtr) {
- *endPtr = retval+1;
- }
- *decpt = 0;
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ApproximateLog10 --
- *
- * Computes a two-term Taylor series approximation to the common log of a
- * number, and computes the number's binary log.
- *
- * Results:
- * Return an approximation to floor(log10(bw*2**be)) that is either exact
- * or 1 too high.
- *
- *----------------------------------------------------------------------
- */
-
-inline static int
-ApproximateLog10(
- Tcl_WideUInt bw, /* Integer significand of the number. */
- int be, /* Power of two to scale bw. */
- int bbits) /* Number of bits of precision in bw. */
-{
- int i; /* Log base 2 of the number. */
- int k; /* Floor(Log base 10 of the number) */
- double ds; /* Mantissa of the number. */
- Double d2;
-
- /*
- * Compute i and d2 such that d = d2*2**i, and 1 < d2 < 2.
- * Compute an approximation to log10(d),
- * log10(d) ~ log10(2) * i + log10(1.5)
- * + (significand-1.5)/(1.5 * log(10))
- */
-
- d2.q = bw << (FP_PRECISION - bbits) & SIG_MASK;
- d2.w.word0 |= (EXPONENT_BIAS) << EXP_SHIFT;
- i = be + bbits - 1;
- ds = (d2.d - 1.5) * TWO_OVER_3LOG10
- + LOG10_3HALVES_PLUS_FUDGE + LOG10_2 * i;
- k = (int) ds;
- if (k > ds) {
- --k;
- }
- return k;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * BetterLog10 --
- *
- * Improves the result of ApproximateLog10 for numbers in the range
- * 1 .. 10**(TEN_PMAX)-1
- *
- * Side effects:
- * Sets k_check to 0 if the new result is known to be exact, and to 1 if
- * it may still be one too high.
- *
- * Results:
- * Returns the improved approximation to log10(d).
- *
- *----------------------------------------------------------------------
- */
-
-inline static int
-BetterLog10(
- double d, /* Original number to format. */
- int k, /* Characteristic(Log base 10) of the
- * number. */
- int *k_check) /* Flag == 1 if k is inexact. */
-{
- /*
- * Performance hack. If k is in the range 0..TEN_PMAX, then we can use a
- * powers-of-ten table to check it.
- */
-
- if (k >= 0 && k <= TEN_PMAX) {
- if (d < tens[k]) {
- k--;
- }
- *k_check = 0;
- } else {
- *k_check = 1;
- }
- return k;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ComputeScale --
- *
- * Prepares to format a floating-point number as decimal.
- *
- * Parameters:
- * floor(log10*x) is k (or possibly k-1). floor(log2(x) is i. The
- * significand of x requires bbits bits to represent.
- *
- * Results:
- * Determines integers b2, b5, s2, s5 so that sig*2**b2*5**b5/2**s2*2**s5
- * exactly represents the value of the x/10**k. This value will lie in
- * the range [1 .. 10), and allows for computing successive digits by
- * multiplying sig%10 by 10.
- *
- *----------------------------------------------------------------------
- */
-
-inline static void
-ComputeScale(
- int be, /* Exponent part of number: d = bw * 2**be. */
- int k, /* Characteristic of log10(number). */
- int *b2, /* OUTPUT: Power of 2 in the numerator. */
- int *b5, /* OUTPUT: Power of 5 in the numerator. */
- int *s2, /* OUTPUT: Power of 2 in the denominator. */
- int *s5) /* OUTPUT: Power of 5 in the denominator. */
-{
- /*
- * Scale numerator and denominator powers of 2 so that the input binary
- * number is the ratio of integers.
- */
-
- if (be <= 0) {
- *b2 = 0;
- *s2 = -be;
- } else {
- *b2 = be;
- *s2 = 0;
- }
-
- /*
- * Scale numerator and denominator so that the output decimal number is
- * the ratio of integers.
- */
-
- if (k >= 0) {
- *b5 = 0;
- *s5 = k;
- *s2 += k;
- } else {
- *b2 -= k;
- *b5 = -k;
- *s5 = 0;
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * SetPrecisionLimits --
- *
- * Determines how many digits of significance should be computed (and,
- * hence, how much memory need be allocated) for formatting a floating
- * point number.
- *
- * Given that 'k' is floor(log10(x)):
- * if 'shortest' format is used, there will be at most 18 digits in the
- * result.
- * if 'F' format is used, there will be at most 'ndigits' + k + 1 digits
- * if 'E' format is used, there will be exactly 'ndigits' digits.
- *
- * Side effects:
- * Adjusts '*ndigitsPtr' to have a valid value. Stores the maximum memory
- * allocation needed in *iPtr. Sets '*iLimPtr' to the limiting number of
- * digits to convert if k has been guessed correctly, and '*iLim1Ptr' to
- * the limiting number of digits to convert if k has been guessed to be
- * one too high.
- *
- *----------------------------------------------------------------------
- */
-
-inline static void
-SetPrecisionLimits(
- int convType, /* Type of conversion: TCL_DD_SHORTEST,
- * TCL_DD_STEELE0, TCL_DD_E_FMT,
- * TCL_DD_F_FMT. */
- int k, /* Floor(log10(number to convert)) */
- int *ndigitsPtr, /* IN/OUT: Number of digits requested (will be
- * adjusted if needed). */
- int *iPtr, /* OUT: Maximum number of digits to return. */
- int *iLimPtr, /* OUT: Number of digits of significance if
- * the bignum method is used.*/
- int *iLim1Ptr) /* OUT: Number of digits of significance if
- * the quick method is used. */
-{
- switch (convType) {
- case TCL_DD_SHORTEST0:
- case TCL_DD_STEELE0:
- *iLimPtr = *iLim1Ptr = -1;
- *iPtr = 18;
- *ndigitsPtr = 0;
- break;
- case TCL_DD_E_FORMAT:
- if (*ndigitsPtr <= 0) {
- *ndigitsPtr = 1;
- }
- *iLimPtr = *iLim1Ptr = *iPtr = *ndigitsPtr;
- break;
- case TCL_DD_F_FORMAT:
- *iPtr = *ndigitsPtr + k + 1;
- *iLimPtr = *iPtr;
- *iLim1Ptr = *iPtr - 1;
- if (*iPtr <= 0) {
- *iPtr = 1;
- }
- break;
- default:
- *iPtr = -1;
- *iLimPtr = -1;
- *iLim1Ptr = -1;
- Tcl_Panic("impossible conversion type in TclDoubleDigits");
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * BumpUp --
- *
- * Increases a string of digits ending in a series of nines to designate
- * the next higher number. xxxxb9999... -> xxxx(b+1)0000...
- *
- * Results:
- * Returns a pointer to the end of the adjusted string.
- *
- * Side effects:
- * In the case that the string consists solely of '999999', sets it to
- * "1" and moves the decimal point (*kPtr) one place to the right.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-BumpUp(
- char *s, /* Cursor pointing one past the end of the
- * string. */
- char *retval, /* Start of the string of digits. */
- int *kPtr) /* Position of the decimal point. */
-{
- while (*--s == '9') {
- if (s == retval) {
- ++(*kPtr);
- *s = '1';
- return s+1;
- }
- }
- ++*s;
- ++s;
- return s;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * AdjustRange --
- *
- * Rescales a 'double' in preparation for formatting it using the 'quick'
- * double-to-string method.
- *
- * Results:
- * Returns the precision that has been lost in the prescaling as a count
- * of units in the least significant place.
- *
- *----------------------------------------------------------------------
- */
-
-inline static int
-AdjustRange(
- double *dPtr, /* INOUT: Number to adjust. */
- int k) /* IN: floor(log10(d)) */
-{
- int ieps; /* Number of roundoff errors that have
- * accumulated. */
- double d = *dPtr; /* Number to adjust. */
- double ds;
- int i, j, j1;
-
- ieps = 2;
-
- if (k > 0) {
- /*
- * The number must be reduced to bring it into range.
- */
-
- ds = tens[k & 0xf];
- j = k >> 4;
- if (j & BLETCH) {
- j &= (BLETCH-1);
- d /= bigtens[N_BIGTENS - 1];
- ieps++;
- }
- i = 0;
- for (; j != 0; j>>=1) {
- if (j & 1) {
- ds *= bigtens[i];
- ++ieps;
- }
- ++i;
- }
- d /= ds;
- } else if ((j1 = -k) != 0) {
- /*
- * The number must be increased to bring it into range.
- */
-
- d *= tens[j1 & 0xf];
- i = 0;
- for (j = j1>>4; j; j>>=1) {
- if (j & 1) {
- ieps++;
- d *= bigtens[i];
- }
- ++i;
- }
- }
-
- *dPtr = d;
- return ieps;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ShorteningQuickFormat --
- *
- * Returns a 'quick' format of a double precision number to a string of
- * digits, preferring a shorter string of digits if the shorter string is
- * still within 1/2 ulp of the number.
- *
- * Results:
- * Returns the string of digits. Returns NULL if the 'quick' method fails
- * and the bignum method must be used.
- *
- * Side effects:
- * Stores the position of the decimal point at '*kPtr'.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-ShorteningQuickFormat(
- double d, /* Number to convert. */
- int k, /* floor(log10(d)) */
- int ilim, /* Number of significant digits to return. */
- double eps, /* Estimated roundoff error. */
- char *retval, /* Buffer to receive the digit string. */
- int *kPtr) /* Pointer to stash the position of the
- * decimal point. */
-{
- char *s = retval; /* Cursor in the return value. */
- int digit; /* Current digit. */
- int i;
-
- eps = 0.5 / tens[ilim-1] - eps;
- i = 0;
- for (;;) {
- /*
- * Convert a digit.
- */
-
- digit = (int) d;
- d -= digit;
- *s++ = '0' + digit;
-
- /*
- * Truncate the conversion if the string of digits is within 1/2 ulp
- * of the actual value.
- */
-
- if (d < eps) {
- *kPtr = k;
- return s;
- }
- if ((1. - d) < eps) {
- *kPtr = k;
- return BumpUp(s, retval, kPtr);
- }
-
- /*
- * Bail out if the conversion fails to converge to a sufficiently
- * precise value.
- */
-
- if (++i >= ilim) {
- return NULL;
- }
-
- /*
- * Bring the next digit to the integer part.
- */
-
- eps *= 10;
- d *= 10.0;
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * StrictQuickFormat --
- *
- * Convert a double precision number of a string of a precise number of
- * digits, using the 'quick' double precision method.
- *
- * Results:
- * Returns the digit string, or NULL if the bignum method must be used to
- * do the formatting.
- *
- * Side effects:
- * Stores the position of the decimal point in '*kPtr'.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-StrictQuickFormat(
- double d, /* Number to convert. */
- int k, /* floor(log10(d)) */
- int ilim, /* Number of significant digits to return. */
- double eps, /* Estimated roundoff error. */
- char *retval, /* Start of the digit string. */
- int *kPtr) /* Pointer to stash the position of the
- * decimal point. */
-{
- char *s = retval; /* Cursor in the return value. */
- int digit; /* Current digit of the answer. */
- int i;
-
- eps *= tens[ilim-1];
- i = 1;
- for (;;) {
- /*
- * Extract a digit.
- */
-
- digit = (int) d;
- d -= digit;
- if (d == 0.0) {
- ilim = i;
- }
- *s++ = '0' + digit;
-
- /*
- * When the given digit count is reached, handle trailing strings of 0
- * and 9.
- */
-
- if (i == ilim) {
- if (d > 0.5 + eps) {
- *kPtr = k;
- return BumpUp(s, retval, kPtr);
- } else if (d < 0.5 - eps) {
- while (*--s == '0') {
- /* do nothing */
- }
- s++;
- *kPtr = k;
- return s;
- } else {
- return NULL;
- }
- }
-
- /*
- * Advance to the next digit.
- */
-
- ++i;
- d *= 10.0;
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * QuickConversion --
- *
- * Converts a floating point number the 'quick' way, when only a limited
- * number of digits is required and floating point arithmetic can
- * therefore be used for the intermediate results.
- *
- * Results:
- * Returns the converted string, or NULL if the bignum method must be
- * used.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-QuickConversion(
- double e, /* Number to format. */
- int k, /* floor(log10(d)), approximately. */
- int k_check, /* 0 if k is exact, 1 if it may be too high */
- int flags, /* Flags passed to dtoa:
- * TCL_DD_SHORTEN_FLAG */
- int len, /* Length of the return value. */
- int ilim, /* Number of digits to store. */
- int ilim1, /* Number of digits to store if we misguessed
- * k. */
- int *decpt, /* OUTPUT: Location of the decimal point. */
- char **endPtr) /* OUTPUT: Pointer to the terminal null
- * byte. */
-{
- int ieps; /* Number of 1-ulp roundoff errors that have
- * accumulated in the calculation. */
- Double eps; /* Estimated roundoff error. */
- char *retval; /* Returned string. */
- char *end; /* Pointer to the terminal null byte in the
- * returned string. */
- volatile double d; /* Workaround for a bug in mingw gcc 3.4.5 */
-
- /*
- * Bring d into the range [1 .. 10).
- */
-
- ieps = AdjustRange(&e, k);
- d = e;
-
- /*
- * If the guessed value of k didn't get d into range, adjust it by one. If
- * that leaves us outside the range in which quick format is accurate,
- * bail out.
- */
-
- if (k_check && d < 1. && ilim > 0) {
- if (ilim1 < 0) {
- return NULL;
- }
- ilim = ilim1;
- --k;
- d *= 10.0;
- ++ieps;
- }
-
- /*
- * Compute estimated roundoff error.
- */
-
- eps.d = ieps * d + 7.;
- eps.w.word0 -= (FP_PRECISION-1) << EXP_SHIFT;
-
- /*
- * Handle the peculiar case where the result has no significant digits.
- */
-
- retval = ckalloc(len + 1);
- if (ilim == 0) {
- d -= 5.;
- if (d > eps.d) {
- *retval = '1';
- *decpt = k;
- return retval;
- } else if (d < -eps.d) {
- *decpt = k;
- return retval;
- } else {
- ckfree(retval);
- return NULL;
- }
- }
-
- /*
- * Format the digit string.
- */
-
- if (flags & TCL_DD_SHORTEN_FLAG) {
- end = ShorteningQuickFormat(d, k, ilim, eps.d, retval, decpt);
- } else {
- end = StrictQuickFormat(d, k, ilim, eps.d, retval, decpt);
- }
- if (end == NULL) {
- ckfree(retval);
- return NULL;
- }
- *end = '\0';
- if (endPtr != NULL) {
- *endPtr = end;
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * CastOutPowersOf2 --
- *
- * Adjust the factors 'b2', 'm2', and 's2' to cast out common powers of 2
- * from numerator and denominator in preparation for the 'bignum' method
- * of floating point conversion.
- *
- *----------------------------------------------------------------------
- */
-
-inline static void
-CastOutPowersOf2(
- int *b2, /* Power of 2 to multiply the significand. */
- int *m2, /* Power of 2 to multiply 1/2 ulp. */
- int *s2) /* Power of 2 to multiply the common
- * denominator. */
-{
- int i;
-
- if (*m2 > 0 && *s2 > 0) { /* Find the smallest power of 2 in the
- * numerator. */
- if (*m2 < *s2) { /* Find the lowest common denominator. */
- i = *m2;
- } else {
- i = *s2;
- }
- *b2 -= i; /* Reduce to lowest terms. */
- *m2 -= i;
- *s2 -= i;
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ShorteningInt64Conversion --
- *
- * Converts a double-precision number to the shortest string of digits
- * that reconverts exactly to the given number, or to 'ilim' digits if
- * that will yield a shorter result. The numerator and denominator in
- * David Gay's conversion algorithm are known to fit in Tcl_WideUInt,
- * giving considerably faster arithmetic than mp_int's.
- *
- * Results:
- * Returns the string of significant decimal digits, in newly allocated
- * memory
- *
- * Side effects:
- * Stores the location of the decimal point in '*decpt' and the location
- * of the terminal null byte in '*endPtr'.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-ShorteningInt64Conversion(
- Double *dPtr, /* Original number to convert. */
- int convType, /* Type of conversion (shortest, Steele,
- * E format, F format). */
- Tcl_WideUInt bw, /* Integer significand. */
- int b2, int b5, /* Scale factor for the significand in the
- * numerator. */
- int m2plus, int m2minus, int m5,
- /* Scale factors for 1/2 ulp in the numerator
- * (will be different if bw == 1. */
- int s2, int s5, /* Scale factors for the denominator. */
- int k, /* Number of output digits before the decimal
- * point. */
- int len, /* Number of digits to allocate. */
- int ilim, /* Number of digits to convert if b >= s */
- int ilim1, /* Number of digits to convert if b < s */
- int *decpt, /* OUTPUT: Position of the decimal point. */
- char **endPtr) /* OUTPUT: Position of the terminal '\0' at
- * the end of the returned string. */
-{
- char *retval = ckalloc(len + 1);
- /* Output buffer. */
- Tcl_WideUInt b = (bw * wuipow5[b5]) << b2;
- /* Numerator of the fraction being
- * converted. */
- Tcl_WideUInt S = wuipow5[s5] << s2;
- /* Denominator of the fraction being
- * converted. */
- Tcl_WideUInt mplus, mminus; /* Ranges for testing whether the result is
- * within roundoff of being exact. */
- int digit; /* Current output digit. */
- char *s = retval; /* Cursor in the output buffer. */
- int i; /* Current position in the output buffer. */
-
- /*
- * Adjust if the logarithm was guessed wrong.
- */
-
- if (b < S) {
- b = 10 * b;
- ++m2plus; ++m2minus; ++m5;
- ilim = ilim1;
- --k;
- }
-
- /*
- * Compute roundoff ranges.
- */
-
- mplus = wuipow5[m5] << m2plus;
- mminus = wuipow5[m5] << m2minus;
-
- /*
- * Loop through the digits.
- */
-
- i = 1;
- for (;;) {
- digit = (int)(b / S);
- if (digit > 10) {
- Tcl_Panic("wrong digit!");
- }
- b = b % S;
-
- /*
- * Does the current digit put us on the low side of the exact value
- * but within within roundoff of being exact?
- */
-
- if (b < mplus || (b == mplus
- && convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {
- /*
- * Make sure we shouldn't be rounding *up* instead, in case the
- * next number above is closer.
- */
-
- if (2 * b > S || (2 * b == S && (digit & 1) != 0)) {
- ++digit;
- if (digit == 10) {
- *s++ = '9';
- s = BumpUp(s, retval, &k);
- break;
- }
- }
-
- /*
- * Stash the current digit.
- */
-
- *s++ = '0' + digit;
- break;
- }
-
- /*
- * Does one plus the current digit put us within roundoff of the
- * number?
- */
-
- if (b > S - mminus || (b == S - mminus
- && convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {
- if (digit == 9) {
- *s++ = '9';
- s = BumpUp(s, retval, &k);
- break;
- }
- ++digit;
- *s++ = '0' + digit;
- break;
- }
-
- /*
- * Have we converted all the requested digits?
- */
-
- *s++ = '0' + digit;
- if (i == ilim) {
- if (2*b > S || (2*b == S && (digit & 1) != 0)) {
- s = BumpUp(s, retval, &k);
- }
- break;
- }
-
- /*
- * Advance to the next digit.
- */
-
- b = 10 * b;
- mplus = 10 * mplus;
- mminus = 10 * mminus;
- ++i;
- }
-
- /*
- * Endgame - store the location of the decimal point and the end of the
- * string.
- */
-
- *s = '\0';
- *decpt = k;
- if (endPtr) {
- *endPtr = s;
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * StrictInt64Conversion --
- *
- * Converts a double-precision number to a fixed-length string of 'ilim'
- * digits that reconverts exactly to the given number. ('ilim' should be
- * replaced with 'ilim1' in the case where log10(d) has been
- * overestimated). The numerator and denominator in David Gay's
- * conversion algorithm are known to fit in Tcl_WideUInt, giving
- * considerably faster arithmetic than mp_int's.
- *
- * Results:
- * Returns the string of significant decimal digits, in newly allocated
- * memory
- *
- * Side effects:
- * Stores the location of the decimal point in '*decpt' and the location
- * of the terminal null byte in '*endPtr'.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-StrictInt64Conversion(
- Double *dPtr, /* Original number to convert. */
- int convType, /* Type of conversion (shortest, Steele,
- * E format, F format). */
- Tcl_WideUInt bw, /* Integer significand. */
- int b2, int b5, /* Scale factor for the significand in the
- * numerator. */
- int s2, int s5, /* Scale factors for the denominator. */
- int k, /* Number of output digits before the decimal
- * point. */
- int len, /* Number of digits to allocate. */
- int ilim, /* Number of digits to convert if b >= s */
- int ilim1, /* Number of digits to convert if b < s */
- int *decpt, /* OUTPUT: Position of the decimal point. */
- char **endPtr) /* OUTPUT: Position of the terminal '\0' at
- * the end of the returned string. */
-{
- char *retval = ckalloc(len + 1);
- /* Output buffer. */
- Tcl_WideUInt b = (bw * wuipow5[b5]) << b2;
- /* Numerator of the fraction being
- * converted. */
- Tcl_WideUInt S = wuipow5[s5] << s2;
- /* Denominator of the fraction being
- * converted. */
- int digit; /* Current output digit. */
- char *s = retval; /* Cursor in the output buffer. */
- int i; /* Current position in the output buffer. */
-
- /*
- * Adjust if the logarithm was guessed wrong.
- */
-
- if (b < S) {
- b = 10 * b;
- ilim = ilim1;
- --k;
- }
-
- /*
- * Loop through the digits.
- */
-
- i = 1;
- for (;;) {
- digit = (int)(b / S);
- if (digit > 10) {
- Tcl_Panic("wrong digit!");
- }
- b = b % S;
-
- /*
- * Have we converted all the requested digits?
- */
-
- *s++ = '0' + digit;
- if (i == ilim) {
- if (2*b > S || (2*b == S && (digit & 1) != 0)) {
- s = BumpUp(s, retval, &k);
- } else {
- while (*--s == '0') {
- /* do nothing */
- }
- ++s;
- }
- break;
- }
-
- /*
- * Advance to the next digit.
- */
-
- b = 10 * b;
- ++i;
- }
-
- /*
- * Endgame - store the location of the decimal point and the end of the
- * string.
- */
-
- *s = '\0';
- *decpt = k;
- if (endPtr) {
- *endPtr = s;
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ShouldBankerRoundUpPowD --
- *
- * Test whether bankers' rounding should round a digit up. Assumption is
- * made that the denominator of the fraction being tested is a power of
- * 2**DIGIT_BIT.
- *
- * Results:
- * Returns 1 iff the fraction is more than 1/2, or if the fraction is
- * exactly 1/2 and the digit is odd.
- *
- *----------------------------------------------------------------------
- */
-
-inline static int
-ShouldBankerRoundUpPowD(
- mp_int *b, /* Numerator of the fraction. */
- int sd, /* Denominator is 2**(sd*DIGIT_BIT). */
- int isodd) /* 1 if the digit is odd, 0 if even. */
-{
- int i;
- static const mp_digit topbit = 1 << (DIGIT_BIT - 1);
-
- if (b->used < sd || (b->dp[sd-1] & topbit) == 0) {
- return 0;
- }
- if (b->dp[sd-1] != topbit) {
- return 1;
- }
- for (i = sd-2; i >= 0; --i) {
- if (b->dp[i] != 0) {
- return 1;
- }
- }
- return isodd;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ShouldBankerRoundUpToNextPowD --
- *
- * Tests whether bankers' rounding will round down in the "denominator is
- * a power of 2**MP_DIGIT" case.
- *
- * Results:
- * Returns 1 if the rounding will be performed - which increases the
- * digit by one - and 0 otherwise.
- *
- *----------------------------------------------------------------------
- */
-
-inline static int
-ShouldBankerRoundUpToNextPowD(
- mp_int *b, /* Numerator of the fraction. */
- mp_int *m, /* Numerator of the rounding tolerance. */
- int sd, /* Common denominator is 2**(sd*DIGIT_BIT). */
- int convType, /* Conversion type: STEELE defeats
- * round-to-even (not sure why one wants to do
- * this; I copied it from Gay). FIXME */
- int isodd, /* 1 if the integer significand is odd. */
- mp_int *temp) /* Work area for the calculation. */
-{
- int i;
-
- /*
- * Compare B and S-m - which is the same as comparing B+m and S - which we
- * do by computing b+m and doing a bitwhack compare against
- * 2**(DIGIT_BIT*sd)
- */
-
- mp_add(b, m, temp);
- if (temp->used <= sd) { /* Too few digits to be > s */
- return 0;
- }
- if (temp->used > sd+1 || temp->dp[sd] > 1) {
- /* >= 2s */
- return 1;
- }
- for (i = sd-1; i >= 0; --i) {
- /* Check for ==s */
- if (temp->dp[i] != 0) { /* > s */
- return 1;
- }
- }
- if (convType == TCL_DD_STEELE0) {
- /* Biased rounding. */
- return 0;
- }
- return isodd;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ShorteningBignumConversionPowD --
- *
- * Converts a double-precision number to the shortest string of digits
- * that reconverts exactly to the given number, or to 'ilim' digits if
- * that will yield a shorter result. The denominator in David Gay's
- * conversion algorithm is known to be a power of 2**DIGIT_BIT, and hence
- * the division in the main loop may be replaced by a digit shift and
- * mask.
- *
- * Results:
- * Returns the string of significant decimal digits, in newly allocated
- * memory
- *
- * Side effects:
- * Stores the location of the decimal point in '*decpt' and the location
- * of the terminal null byte in '*endPtr'.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-ShorteningBignumConversionPowD(
- Double *dPtr, /* Original number to convert. */
- int convType, /* Type of conversion (shortest, Steele,
- * E format, F format). */
- Tcl_WideUInt bw, /* Integer significand. */
- int b2, int b5, /* Scale factor for the significand in the
- * numerator. */
- int m2plus, int m2minus, int m5,
- /* Scale factors for 1/2 ulp in the numerator
- * (will be different if bw == 1). */
- int sd, /* Scale factor for the denominator. */
- int k, /* Number of output digits before the decimal
- * point. */
- int len, /* Number of digits to allocate. */
- int ilim, /* Number of digits to convert if b >= s */
- int ilim1, /* Number of digits to convert if b < s */
- int *decpt, /* OUTPUT: Position of the decimal point. */
- char **endPtr) /* OUTPUT: Position of the terminal '\0' at
- * the end of the returned string. */
-{
- char *retval = ckalloc(len + 1);
- /* Output buffer. */
- mp_int b; /* Numerator of the fraction being
- * converted. */
- mp_int mplus, mminus; /* Bounds for roundoff. */
- mp_digit digit; /* Current output digit. */
- char *s = retval; /* Cursor in the output buffer. */
- int i; /* Index in the output buffer. */
- mp_int temp;
- int r1;
-
- /*
- * b = bw * 2**b2 * 5**b5
- * mminus = 5**m5
- */
-
- TclBNInitBignumFromWideUInt(&b, bw);
- mp_init_set_int(&mminus, 1);
- MulPow5(&b, b5, &b);
- mp_mul_2d(&b, b2, &b);
-
- /*
- * Adjust if the logarithm was guessed wrong.
- */
-
- if (b.used <= sd) {
- mp_mul_d(&b, 10, &b);
- ++m2plus; ++m2minus; ++m5;
- ilim = ilim1;
- --k;
- }
-
- /*
- * mminus = 5**m5 * 2**m2minus
- * mplus = 5**m5 * 2**m2plus
- */
-
- mp_mul_2d(&mminus, m2minus, &mminus);
- MulPow5(&mminus, m5, &mminus);
- if (m2plus > m2minus) {
- mp_init_copy(&mplus, &mminus);
- mp_mul_2d(&mplus, m2plus-m2minus, &mplus);
- }
- mp_init(&temp);
-
- /*
- * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT)
- * by mp_digit extraction.
- */
-
- i = 0;
- for (;;) {
- if (b.used <= sd) {
- digit = 0;
- } else {
- digit = b.dp[sd];
- if (b.used > sd+1 || digit >= 10) {
- Tcl_Panic("wrong digit!");
- }
- --b.used; mp_clamp(&b);
- }
-
- /*
- * Does the current digit put us on the low side of the exact value
- * but within within roundoff of being exact?
- */
-
- r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus);
- if (r1 == MP_LT || (r1 == MP_EQ
- && convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {
- /*
- * Make sure we shouldn't be rounding *up* instead, in case the
- * next number above is closer.
- */
-
- if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
- ++digit;
- if (digit == 10) {
- *s++ = '9';
- s = BumpUp(s, retval, &k);
- break;
- }
- }
-
- /*
- * Stash the last digit.
- */
-
- *s++ = '0' + digit;
- break;
- }
-
- /*
- * Does one plus the current digit put us within roundoff of the
- * number?
- */
-
- if (ShouldBankerRoundUpToNextPowD(&b, &mminus, sd, convType,
- dPtr->w.word1 & 1, &temp)) {
- if (digit == 9) {
- *s++ = '9';
- s = BumpUp(s, retval, &k);
- break;
- }
- ++digit;
- *s++ = '0' + digit;
- break;
- }
-
- /*
- * Have we converted all the requested digits?
- */
-
- *s++ = '0' + digit;
- if (i == ilim) {
- if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
- s = BumpUp(s, retval, &k);
- }
- break;
- }
-
- /*
- * Advance to the next digit.
- */
-
- mp_mul_d(&b, 10, &b);
- mp_mul_d(&mminus, 10, &mminus);
- if (m2plus > m2minus) {
- mp_mul_2d(&mminus, m2plus-m2minus, &mplus);
- }
- ++i;
- }
-
- /*
- * Endgame - store the location of the decimal point and the end of the
- * string.
- */
-
- if (m2plus > m2minus) {
- mp_clear(&mplus);
- }
- mp_clear_multi(&b, &mminus, &temp, NULL);
- *s = '\0';
- *decpt = k;
- if (endPtr) {
- *endPtr = s;
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * StrictBignumConversionPowD --
- *
- * Converts a double-precision number to a fixed-lengt string of 'ilim'
- * digits (or 'ilim1' if log10(d) has been overestimated). The
- * denominator in David Gay's conversion algorithm is known to be a power
- * of 2**DIGIT_BIT, and hence the division in the main loop may be
- * replaced by a digit shift and mask.
- *
- * Results:
- * Returns the string of significant decimal digits, in newly allocated
- * memory.
- *
- * Side effects:
- * Stores the location of the decimal point in '*decpt' and the location
- * of the terminal null byte in '*endPtr'.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-StrictBignumConversionPowD(
- Double *dPtr, /* Original number to convert. */
- int convType, /* Type of conversion (shortest, Steele,
- * E format, F format). */
- Tcl_WideUInt bw, /* Integer significand. */
- int b2, int b5, /* Scale factor for the significand in the
- * numerator. */
- int sd, /* Scale factor for the denominator. */
- int k, /* Number of output digits before the decimal
- * point. */
- int len, /* Number of digits to allocate. */
- int ilim, /* Number of digits to convert if b >= s */
- int ilim1, /* Number of digits to convert if b < s */
- int *decpt, /* OUTPUT: Position of the decimal point. */
- char **endPtr) /* OUTPUT: Position of the terminal '\0' at
- * the end of the returned string. */
-{
- char *retval = ckalloc(len + 1);
- /* Output buffer. */
- mp_int b; /* Numerator of the fraction being
- * converted. */
- mp_digit digit; /* Current output digit. */
- char *s = retval; /* Cursor in the output buffer. */
- int i; /* Index in the output buffer. */
- mp_int temp;
-
- /*
- * b = bw * 2**b2 * 5**b5
- */
-
- TclBNInitBignumFromWideUInt(&b, bw);
- MulPow5(&b, b5, &b);
- mp_mul_2d(&b, b2, &b);
-
- /*
- * Adjust if the logarithm was guessed wrong.
- */
-
- if (b.used <= sd) {
- mp_mul_d(&b, 10, &b);
- ilim = ilim1;
- --k;
- }
- mp_init(&temp);
-
- /*
- * Loop through the digits. Do division and mod by s == 2**(sd*DIGIT_BIT)
- * by mp_digit extraction.
- */
-
- i = 1;
- for (;;) {
- if (b.used <= sd) {
- digit = 0;
- } else {
- digit = b.dp[sd];
- if (b.used > sd+1 || digit >= 10) {
- Tcl_Panic("wrong digit!");
- }
- --b.used;
- mp_clamp(&b);
- }
-
- /*
- * Have we converted all the requested digits?
- */
-
- *s++ = '0' + digit;
- if (i == ilim) {
- if (ShouldBankerRoundUpPowD(&b, sd, digit&1)) {
- s = BumpUp(s, retval, &k);
- }
- while (*--s == '0') {
- /* do nothing */
- }
- ++s;
- break;
- }
-
- /*
- * Advance to the next digit.
- */
-
- mp_mul_d(&b, 10, &b);
- ++i;
- }
-
- /*
- * Endgame - store the location of the decimal point and the end of the
- * string.
- */
-
- mp_clear_multi(&b, &temp, NULL);
- *s = '\0';
- *decpt = k;
- if (endPtr) {
- *endPtr = s;
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ShouldBankerRoundUp --
- *
- * Tests whether a digit should be rounded up or down when finishing
- * bignum-based floating point conversion.
- *
- * Results:
- * Returns 1 if the number needs to be rounded up, 0 otherwise.
- *
- *----------------------------------------------------------------------
- */
-
-inline static int
-ShouldBankerRoundUp(
- mp_int *twor, /* 2x the remainder from thd division that
- * produced the last digit. */
- mp_int *S, /* Denominator. */
- int isodd) /* Flag == 1 if the last digit is odd. */
-{
- int r = mp_cmp_mag(twor, S);
-
- switch (r) {
- case MP_LT:
- return 0;
- case MP_EQ:
- return isodd;
- case MP_GT:
- return 1;
- }
- Tcl_Panic("in ShouldBankerRoundUp, trichotomy fails!");
- return 0;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ShouldBankerRoundUpToNext --
- *
- * Tests whether the remainder is great enough to force rounding to the
- * next higher digit.
- *
- * Results:
- * Returns 1 if the number should be rounded up, 0 otherwise.
- *
- *----------------------------------------------------------------------
- */
-
-inline static int
-ShouldBankerRoundUpToNext(
- mp_int *b, /* Remainder from the division that produced
- * the last digit. */
- mp_int *m, /* Numerator of the rounding tolerance. */
- mp_int *S, /* Denominator. */
- int convType, /* Conversion type: STEELE0 defeats
- * round-to-even. (Not sure why one would want
- * this; I coped it from Gay). FIXME */
- int isodd, /* 1 if the integer significand is odd. */
- mp_int *temp) /* Work area needed for the calculation. */
-{
- int r;
-
- /*
- * Compare b and S-m: this is the same as comparing B+m and S.
- */
-
- mp_add(b, m, temp);
- r = mp_cmp_mag(temp, S);
- switch(r) {
- case MP_LT:
- return 0;
- case MP_EQ:
- if (convType == TCL_DD_STEELE0) {
- return 0;
- } else {
- return isodd;
- }
- case MP_GT:
- return 1;
- }
- Tcl_Panic("in ShouldBankerRoundUpToNext, trichotomy fails!");
- return 0;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * ShorteningBignumConversion --
- *
- * Convert a floating point number to a variable-length digit string
- * using the multiprecision method.
- *
- * Results:
- * Returns the string of digits.
- *
- * Side effects:
- * Stores the position of the decimal point in *decpt. Stores a pointer
- * to the end of the number in *endPtr.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-ShorteningBignumConversion(
- Double *dPtr, /* Original number being converted. */
- int convType, /* Conversion type. */
- Tcl_WideUInt bw, /* Integer significand and exponent. */
- int b2, /* Scale factor for the significand. */
- int m2plus, int m2minus, /* Scale factors for 1/2 ulp in numerator. */
- int s2, int s5, /* Scale factors for denominator. */
- int k, /* Guessed position of the decimal point. */
- int len, /* Size of the digit buffer to allocate. */
- int ilim, /* Number of digits to convert if b >= s */
- int ilim1, /* Number of digits to convert if b < s */
- int *decpt, /* OUTPUT: Position of the decimal point. */
- char **endPtr) /* OUTPUT: Pointer to the end of the number */
-{
- char *retval = ckalloc(len+1);
- /* Buffer of digits to return. */
- char *s = retval; /* Cursor in the return value. */
- mp_int b; /* Numerator of the result. */
- mp_int mminus; /* 1/2 ulp below the result. */
- mp_int mplus; /* 1/2 ulp above the result. */
- mp_int S; /* Denominator of the result. */
- mp_int dig; /* Current digit of the result. */
- int digit; /* Current digit of the result. */
- mp_int temp; /* Work area. */
- int minit = 1; /* Fudge factor for when we misguess k. */
- int i;
- int r1;
-
- /*
- * b = bw * 2**b2 * 5**b5
- * S = 2**s2 * 5*s5
- */
-
- TclBNInitBignumFromWideUInt(&b, bw);
- mp_mul_2d(&b, b2, &b);
- mp_init_set_int(&S, 1);
- MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);
-
- /*
- * Handle the case where we guess the position of the decimal point wrong.
- */
-
- if (mp_cmp_mag(&b, &S) == MP_LT) {
- mp_mul_d(&b, 10, &b);
- minit = 10;
- ilim =ilim1;
- --k;
- }
-
- /*
- * mminus = 2**m2minus * 5**m5
- */
-
- mp_init_set_int(&mminus, minit);
- mp_mul_2d(&mminus, m2minus, &mminus);
- if (m2plus > m2minus) {
- mp_init_copy(&mplus, &mminus);
- mp_mul_2d(&mplus, m2plus-m2minus, &mplus);
- }
- mp_init(&temp);
-
- /*
- * Loop through the digits.
- */
-
- mp_init(&dig);
- i = 1;
- for (;;) {
- mp_div(&b, &S, &dig, &b);
- if (dig.used > 1 || dig.dp[0] >= 10) {
- Tcl_Panic("wrong digit!");
- }
- digit = dig.dp[0];
-
- /*
- * Does the current digit leave us with a remainder small enough to
- * round to it?
- */
-
- r1 = mp_cmp_mag(&b, (m2plus > m2minus)? &mplus : &mminus);
- if (r1 == MP_LT || (r1 == MP_EQ
- && convType != TCL_DD_STEELE0 && (dPtr->w.word1 & 1) == 0)) {
- mp_mul_2d(&b, 1, &b);
- if (ShouldBankerRoundUp(&b, &S, digit&1)) {
- ++digit;
- if (digit == 10) {
- *s++ = '9';
- s = BumpUp(s, retval, &k);
- break;
- }
- }
- *s++ = '0' + digit;
- break;
- }
-
- /*
- * Does the current digit leave us with a remainder large enough to
- * commit to rounding up to the next higher digit?
- */
-
- if (ShouldBankerRoundUpToNext(&b, &mminus, &S, convType,
- dPtr->w.word1 & 1, &temp)) {
- ++digit;
- if (digit == 10) {
- *s++ = '9';
- s = BumpUp(s, retval, &k);
- break;
- }
- *s++ = '0' + digit;
- break;
- }
-
- /*
- * Have we converted all the requested digits?
- */
-
- *s++ = '0' + digit;
- if (i == ilim) {
- mp_mul_2d(&b, 1, &b);
- if (ShouldBankerRoundUp(&b, &S, digit&1)) {
- s = BumpUp(s, retval, &k);
- }
- break;
- }
-
- /*
- * Advance to the next digit.
- */
-
- if (s5 > 0) {
- /*
- * Can possibly shorten the denominator.
- */
-
- mp_mul_2d(&b, 1, &b);
- mp_mul_2d(&mminus, 1, &mminus);
- if (m2plus > m2minus) {
- mp_mul_2d(&mplus, 1, &mplus);
- }
- mp_div_d(&S, 5, &S, NULL);
- --s5;
-
- /*
- * IDEA: It might possibly be a win to fall back to int64
- * arithmetic here if S < 2**64/10. But it's a win only for
- * a fairly narrow range of magnitudes so perhaps not worth
- * bothering. We already know that we shorten the
- * denominator by at least 1 mp_digit, perhaps 2, as we do
- * the conversion for 17 digits of significance.
- * Possible savings:
- * 10**26 1 trip through loop before fallback possible
- * 10**27 1 trip
- * 10**28 2 trips
- * 10**29 3 trips
- * 10**30 4 trips
- * 10**31 5 trips
- * 10**32 6 trips
- * 10**33 7 trips
- * 10**34 8 trips
- * 10**35 9 trips
- * 10**36 10 trips
- * 10**37 11 trips
- * 10**38 12 trips
- * 10**39 13 trips
- * 10**40 14 trips
- * 10**41 15 trips
- * 10**42 16 trips
- * thereafter no gain.
- */
- } else {
- mp_mul_d(&b, 10, &b);
- mp_mul_d(&mminus, 10, &mminus);
- if (m2plus > m2minus) {
- mp_mul_2d(&mplus, 10, &mplus);
- }
- }
-
- ++i;
- }
-
- /*
- * Endgame - store the location of the decimal point and the end of the
- * string.
- */
-
- if (m2plus > m2minus) {
- mp_clear(&mplus);
- }
- mp_clear_multi(&b, &mminus, &temp, &dig, &S, NULL);
- *s = '\0';
- *decpt = k;
- if (endPtr) {
- *endPtr = s;
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * StrictBignumConversion --
- *
- * Convert a floating point number to a fixed-length digit string using
- * the multiprecision method.
- *
- * Results:
- * Returns the string of digits.
- *
- * Side effects:
- * Stores the position of the decimal point in *decpt. Stores a pointer
- * to the end of the number in *endPtr.
- *
- *----------------------------------------------------------------------
- */
-
-inline static char *
-StrictBignumConversion(
- Double *dPtr, /* Original number being converted. */
- int convType, /* Conversion type. */
- Tcl_WideUInt bw, /* Integer significand and exponent. */
- int b2, /* Scale factor for the significand. */
- int s2, int s5, /* Scale factors for denominator. */
- int k, /* Guessed position of the decimal point. */
- int len, /* Size of the digit buffer to allocate. */
- int ilim, /* Number of digits to convert if b >= s */
- int ilim1, /* Number of digits to convert if b < s */
- int *decpt, /* OUTPUT: Position of the decimal point. */
- char **endPtr) /* OUTPUT: Pointer to the end of the number */
-{
- char *retval = ckalloc(len+1);
- /* Buffer of digits to return. */
- char *s = retval; /* Cursor in the return value. */
- mp_int b; /* Numerator of the result. */
- mp_int S; /* Denominator of the result. */
- mp_int dig; /* Current digit of the result. */
- int digit; /* Current digit of the result. */
- mp_int temp; /* Work area. */
- int g; /* Size of the current digit ground. */
- int i, j;
-
- /*
- * b = bw * 2**b2 * 5**b5
- * S = 2**s2 * 5*s5
- */
-
- mp_init_multi(&temp, &dig, NULL);
- TclBNInitBignumFromWideUInt(&b, bw);
- mp_mul_2d(&b, b2, &b);
- mp_init_set_int(&S, 1);
- MulPow5(&S, s5, &S); mp_mul_2d(&S, s2, &S);
-
- /*
- * Handle the case where we guess the position of the decimal point wrong.
- */
-
- if (mp_cmp_mag(&b, &S) == MP_LT) {
- mp_mul_d(&b, 10, &b);
- ilim =ilim1;
- --k;
- }
-
- /*
- * Convert the leading digit.
- */
-
- i = 0;
- mp_div(&b, &S, &dig, &b);
- if (dig.used > 1 || dig.dp[0] >= 10) {
- Tcl_Panic("wrong digit!");
- }
- digit = dig.dp[0];
-
- /*
- * Is a single digit all that was requested?
- */
-
- *s++ = '0' + digit;
- if (++i >= ilim) {
- mp_mul_2d(&b, 1, &b);
- if (ShouldBankerRoundUp(&b, &S, digit&1)) {
- s = BumpUp(s, retval, &k);
- }
- } else {
- for (;;) {
- /*
- * Shift by a group of digits.
- */
-
- g = ilim - i;
- if (g > DIGIT_GROUP) {
- g = DIGIT_GROUP;
- }
- if (s5 >= g) {
- mp_div_d(&S, dpow5[g], &S, NULL);
- s5 -= g;
- } else if (s5 > 0) {
- mp_div_d(&S, dpow5[s5], &S, NULL);
- mp_mul_d(&b, dpow5[g - s5], &b);
- s5 = 0;
- } else {
- mp_mul_d(&b, dpow5[g], &b);
- }
- mp_mul_2d(&b, g, &b);
-
- /*
- * As with the shortening bignum conversion, it's possible at this
- * point that we will have reduced the denominator to less than
- * 2**64/10, at which point it would be possible to fall back to
- * to int64 arithmetic. But the potential payoff is tremendously
- * less - unless we're working in F format - because we know that
- * three groups of digits will always suffice for %#.17e, the
- * longest format that doesn't introduce empty precision.
- *
- * Extract the next group of digits.
- */
-
- mp_div(&b, &S, &dig, &b);
- if (dig.used > 1) {
- Tcl_Panic("wrong digit!");
- }
- digit = dig.dp[0];
- for (j = g-1; j >= 0; --j) {
- int t = itens[j];
-
- *s++ = digit / t + '0';
- digit %= t;
- }
- i += g;
-
- /*
- * Have we converted all the requested digits?
- */
-
- if (i == ilim) {
- mp_mul_2d(&b, 1, &b);
- if (ShouldBankerRoundUp(&b, &S, digit&1)) {
- s = BumpUp(s, retval, &k);
- }
- break;
- }
- }
- }
- while (*--s == '0') {
- /* do nothing */
- }
- ++s;
-
- /*
- * Endgame - store the location of the decimal point and the end of the
- * string.
- */
-
- mp_clear_multi(&b, &S, &temp, &dig, NULL);
- *s = '\0';
- *decpt = k;
- if (endPtr) {
- *endPtr = s;
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * TclDoubleDigits --
- *
- * Core of Tcl's conversion of double-precision floating point numbers to
- * decimal.
- *
- * Results:
- * Returns a newly-allocated string of digits.
- *
- * Side effects:
- * Sets *decpt to the index of the character in the string before the
- * place that the decimal point should go. If 'endPtr' is not NULL, sets
- * endPtr to point to the terminating '\0' byte of the string. Sets *sign
- * to 1 if a minus sign should be printed with the number, or 0 if a plus
- * sign (or no sign) should appear.
- *
- * This function is a service routine that produces the string of digits for
- * floating-point-to-decimal conversion. It can do a number of things
- * according to the 'flags' argument. Valid values for 'flags' include:
- * TCL_DD_SHORTEST - This is the default for floating point conversion if
- * ::tcl_precision is 0. It constructs the shortest string of
- * digits that will reconvert to the given number when scanned.
- * For floating point numbers that are exactly between two
- * decimal numbers, it resolves using the 'round to even' rule.
- * With this value, the 'ndigits' parameter is ignored.
- * TCL_DD_STEELE - This value is not recommended and may be removed in
- * the future. It follows the conversion algorithm outlined in
- * "How to Print Floating-Point Numbers Accurately" by Guy
- * L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90,
- * pp. 112-126]. This rule has the effect of rendering 1e23 as
- * 9.9999999999999999e22 - which is a 'better' approximation in
- * the sense that it will reconvert correctly even if a
- * subsequent input conversion is 'round up' or 'round down'
- * rather than 'round to nearest', but is surprising otherwise.
- * TCL_DD_E_FORMAT - This value is used to prepare numbers for %e format
- * conversion (or for default floating->string if tcl_precision
- * is not 0). It constructs a string of at most 'ndigits' digits,
- * choosing the one that is closest to the given number (and
- * resolving ties with 'round to even'). It is allowed to return
- * fewer than 'ndigits' if the number converts exactly; if the
- * TCL_DD_E_FORMAT|TCL_DD_SHORTEN_FLAG is supplied instead, it
- * also returns fewer digits if the shorter string will still
- * reconvert without loss to the given input number. In any case,
- * strings of trailing zeroes are suppressed.
- * TCL_DD_F_FORMAT - This value is used to prepare numbers for %f format
- * conversion. It requests that conversion proceed until
- * 'ndigits' digits after the decimal point have been converted.
- * It is possible for this format to result in a zero-length
- * string if the number is sufficiently small. Again, it is
- * permissible for TCL_DD_F_FORMAT to return fewer digits for a
- * number that converts exactly, and changing the argument to
- * TCL_DD_F_FORMAT|TCL_DD_SHORTEN_FLAG will allow the routine
- * also to return fewer digits if the shorter string will still
- * reconvert without loss to the given input number. Strings of
- * trailing zeroes are suppressed.
- *
- * To any of these flags may be OR'ed TCL_DD_NO_QUICK; this flag requires
- * all calculations to be done in exact arithmetic. Normally, E and F
- * format with fewer than about 14 digits will be done with a quick
- * floating point approximation and fall back on the exact arithmetic
- * only if the input number is close enough to the midpoint between two
- * decimal strings that more precision is needed to resolve which string
- * is correct.
- *
- * The value stored in the 'decpt' argument on return may be negative
- * (indicating that the decimal point falls to the left of the string) or
- * greater than the length of the string. In addition, the value -9999 is used
- * as a sentinel to indicate that the string is one of the special values
- * "Infinity" and "NaN", and that no decimal point should be inserted.
- *
- *----------------------------------------------------------------------
- */
-
-char *
-TclDoubleDigits(
- double dv, /* Number to convert. */
- int ndigits, /* Number of digits requested. */
- int flags, /* Conversion flags. */
- int *decpt, /* OUTPUT: Position of the decimal point. */
- int *sign, /* OUTPUT: 1 if the result is negative. */
- char **endPtr) /* OUTPUT: If not NULL, receives a pointer to
- * one character beyond the end of the
- * returned string. */
-{
- int convType = (flags & TCL_DD_CONVERSION_TYPE_MASK);
- /* Type of conversion being performed:
- * TCL_DD_SHORTEST0, TCL_DD_STEELE0,
- * TCL_DD_E_FORMAT, or TCL_DD_F_FORMAT. */
- Double d; /* Union for deconstructing doubles. */
- Tcl_WideUInt bw; /* Integer significand. */
- int be; /* Power of 2 by which b must be multiplied */
- int bbits; /* Number of bits needed to represent b. */
- int denorm; /* Flag == 1 iff the input number was
- * denormalized. */
- int k; /* Estimate of floor(log10(d)). */
- int k_check; /* Flag == 1 if d is near enough to a power of
- * ten that k must be checked. */
- int b2, b5, s2, s5; /* Powers of 2 and 5 in the numerator and
- * denominator of intermediate results. */
- int ilim = -1, ilim1 = -1; /* Number of digits to convert, and number to
- * convert if log10(d) has been
- * overestimated. */
- char *retval; /* Return value from this function. */
- int i = -1;
-
- /*
- * Put the input number into a union for bit-whacking.
- */
-
- d.d = dv;
-
- /*
- * Handle the cases of negative numbers (by taking the absolute value:
- * this includes -Inf and -NaN!), infinity, Not a Number, and zero.
- */
-
- TakeAbsoluteValue(&d, sign);
- if ((d.w.word0 & EXP_MASK) == EXP_MASK) {
- return FormatInfAndNaN(&d, decpt, endPtr);
- }
- if (d.d == 0.0) {
- return FormatZero(decpt, endPtr);
- }
-
- /*
- * Unpack the floating point into a wide integer and an exponent.
- * Determine the number of bits that the big integer requires, and compute
- * a quick approximation (which may be one too high) of ceil(log10(d.d)).
- */
-
- denorm = ((d.w.word0 & EXP_MASK) == 0);
- DoubleToExpAndSig(d.d, &bw, &be, &bbits);
- k = ApproximateLog10(bw, be, bbits);
- k = BetterLog10(d.d, k, &k_check);
-
- /* At this point, we have:
- * d is the number to convert.
- * bw are significand and exponent: d == bw*2**be,
- * bbits is the length of bw: 2**bbits-1 <= bw < 2**bbits
- * k is either ceil(log10(d)) or ceil(log10(d))+1. k_check is 0 if we
- * know that k is exactly ceil(log10(d)) and 1 if we need to check.
- * We want a rational number
- * r = b * 10**(1-k) = bw * 2**b2 * 5**b5 / (2**s2 / 5**s5),
- * with b2, b5, s2, s5 >= 0. Note that the most significant decimal
- * digit is floor(r) and that successive digits can be obtained by
- * setting r <- 10*floor(r) (or b <= 10 * (b % S)). Find appropriate
- * b2, b5, s2, s5.
- */
-
- ComputeScale(be, k, &b2, &b5, &s2, &s5);
-
- /*
- * Correct an incorrect caller-supplied 'ndigits'. Also determine:
- * i = The maximum number of decimal digits that will be returned in the
- * formatted string. This is k + 1 + ndigits for F format, 18 for
- * shortest and Steele, and ndigits for E format.
- * ilim = The number of significant digits to convert if k has been
- * guessed correctly. This is -1 for shortest and Steele (which
- * stop when all significance has been lost), 'ndigits' for E
- * format, and 'k + 1 + ndigits' for F format.
- * ilim1 = The minimum number of significant digits to convert if k has
- * been guessed 1 too high. This, too, is -1 for shortest and
- * Steele, and 'ndigits' for E format, but it's 'ndigits-1' for F
- * format.
- */
-
- SetPrecisionLimits(convType, k, &ndigits, &i, &ilim, &ilim1);
-
- /*
- * Try to do low-precision conversion in floating point rather than
- * resorting to expensive multiprecision arithmetic.
- */
-
- if (ilim >= 0 && ilim <= QUICK_MAX && !(flags & TCL_DD_NO_QUICK)) {
- retval = QuickConversion(d.d, k, k_check, flags, i, ilim, ilim1,
- decpt, endPtr);
- if (retval != NULL) {
- return retval;
- }
- }
-
- /*
- * For shortening conversions, determine the upper and lower bounds for
- * the remainder at which we can stop.
- * m+ = (2**m2plus * 5**m5) / (2**s2 * 5**s5) is the limit on the high
- * side, and
- * m- = (2**m2minus * 5**m5) / (2**s2 * 5**s5) is the limit on the low
- * side.
- * We may need to increase s2 to put m2plus, m2minus, b2 over a common
- * denominator.
- */
-
- if (flags & TCL_DD_SHORTEN_FLAG) {
- int m2minus = b2;
- int m2plus;
- int m5 = b5;
- int len = i;
-
- /*
- * Find the quantity i so that (2**i*5**b5)/(2**s2*5**s5) is 1/2 unit
- * in the least significant place of the floating point number.
- */
-
- if (denorm) {
- i = be + EXPONENT_BIAS + (FP_PRECISION-1);
- } else {
- i = 1 + FP_PRECISION - bbits;
- }
- b2 += i;
- s2 += i;
-
- /*
- * Reduce the fractions to lowest terms, since the above calculation
- * may have left excess powers of 2 in numerator and denominator.
- */
-
- CastOutPowersOf2(&b2, &m2minus, &s2);
-
- /*
- * In the special case where bw==1, the nearest floating point number
- * to it on the low side is 1/4 ulp below it. Adjust accordingly.
- */
-
- m2plus = m2minus;
- if (!denorm && bw == 1) {
- ++b2;
- ++s2;
- ++m2plus;
- }
-
- if (s5+1 < N_LOG2POW5 && s2+1 + log2pow5[s5+1] <= 64) {
- /*
- * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit word,
- * then all our intermediate calculations can be done using exact
- * 64-bit arithmetic with no need for expensive multiprecision
- * operations. (This will be true for all numbers in the range
- * [1.0e-3 .. 1.0e+24]).
- */
-
- return ShorteningInt64Conversion(&d, convType, bw, b2, b5, m2plus,
- m2minus, m5, s2, s5, k, len, ilim, ilim1, decpt, endPtr);
- } else if (s5 == 0) {
- /*
- * The denominator is a power of 2, so we can replace division by
- * digit shifts. First we round up s2 to a multiple of DIGIT_BIT,
- * and adjust m2 and b2 accordingly. Then we launch into a version
- * of the comparison that's specialized for the 'power of mp_digit
- * in the denominator' case.
- */
-
- if (s2 % DIGIT_BIT != 0) {
- int delta = DIGIT_BIT - (s2 % DIGIT_BIT);
-
- b2 += delta;
- m2plus += delta;
- m2minus += delta;
- s2 += delta;
- }
- return ShorteningBignumConversionPowD(&d, convType, bw, b2, b5,
- m2plus, m2minus, m5, s2/DIGIT_BIT, k, len, ilim, ilim1,
- decpt, endPtr);
- } else {
- /*
- * Alas, there's no helpful special case; use full-up bignum
- * arithmetic for the conversion.
- */
-
- return ShorteningBignumConversion(&d, convType, bw, b2, m2plus,
- m2minus, s2, s5, k, len, ilim, ilim1, decpt, endPtr);
- }
- } else {
- /*
- * Non-shortening conversion.
- */
-
- int len = i;
-
- /*
- * Reduce numerator and denominator to lowest terms.
- */
-
- if (b2 >= s2 && s2 > 0) {
- b2 -= s2; s2 = 0;
- } else if (s2 >= b2 && b2 > 0) {
- s2 -= b2; b2 = 0;
- }
-
- if (s5+1 < N_LOG2POW5 && s2+1 + log2pow5[s5+1] <= 64) {
- /*
- * If 10*2**s2*5**s5 == 2**(s2+1)+5**(s5+1) fits in a 64-bit word,
- * then all our intermediate calculations can be done using exact
- * 64-bit arithmetic with no need for expensive multiprecision
- * operations.
- */
-
- return StrictInt64Conversion(&d, convType, bw, b2, b5, s2, s5, k,
- len, ilim, ilim1, decpt, endPtr);
- } else if (s5 == 0) {
- /*
- * The denominator is a power of 2, so we can replace division by
- * digit shifts. First we round up s2 to a multiple of DIGIT_BIT,
- * and adjust m2 and b2 accordingly. Then we launch into a version
- * of the comparison that's specialized for the 'power of mp_digit
- * in the denominator' case.
- */
-
- if (s2 % DIGIT_BIT != 0) {
- int delta = DIGIT_BIT - (s2 % DIGIT_BIT);
-
- b2 += delta;
- s2 += delta;
- }
- return StrictBignumConversionPowD(&d, convType, bw, b2, b5,
- s2/DIGIT_BIT, k, len, ilim, ilim1, decpt, endPtr);
- } else {
- /*
- * There are no helpful special cases, but at least we know in
- * advance how many digits we will convert. We can run the
- * conversion in steps of DIGIT_GROUP digits, so as to have many
- * fewer mp_int divisions.
- */
-
- return StrictBignumConversion(&d, convType, bw, b2, s2, s5, k,
- len, ilim, ilim1, decpt, endPtr);
- }
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * TclInitDoubleConversion --
- *
- * Initializes constants that are needed for conversions to and from
- * 'double'
- *
- * Results:
- * None.
- *
- * Side effects:
- * The log base 2 of the floating point radix, the number of bits in a
- * double mantissa, and a table of the powers of five and ten are
- * computed and stored.
- *
- *----------------------------------------------------------------------
- */
-
-void
-TclInitDoubleConversion(void)
-{
- int i;
- int x;
- Tcl_WideUInt u;
- double d;
-#ifdef IEEE_FLOATING_POINT
- union {
- double dv;
- Tcl_WideUInt iv;
- } bitwhack;
-#endif
-#if defined(__sgi) && defined(_COMPILER_VERSION)
- union fpc_csr mipsCR;
-
- mipsCR.fc_word = get_fpc_csr();
- mipsCR.fc_struct.flush = 0;
- set_fpc_csr(mipsCR.fc_word);
-#endif
-
- /*
- * Initialize table of powers of 10 expressed as wide integers.
- */
-
- maxpow10_wide = (int)
- floor(sizeof(Tcl_WideUInt) * CHAR_BIT * log(2.) / log(10.));
- pow10_wide = ckalloc((maxpow10_wide + 1) * sizeof(Tcl_WideUInt));
- u = 1;
- for (i = 0; i < maxpow10_wide; ++i) {
- pow10_wide[i] = u;
- u *= 10;
- }
- pow10_wide[i] = u;
-
- /*
- * Determine how many bits of precision a double has, and how many decimal
- * digits that represents.
- */
-
- if (frexp((double) FLT_RADIX, &log2FLT_RADIX) != 0.5) {
- Tcl_Panic("This code doesn't work on a decimal machine!");
- }
- log2FLT_RADIX--;
- mantBits = DBL_MANT_DIG * log2FLT_RADIX;
- d = 1.0;
-
- /*
- * Initialize a table of powers of ten that can be exactly represented in
- * a double.
- */
-
- x = (int) (DBL_MANT_DIG * log((double) FLT_RADIX) / log(5.0));
- if (x < MAXPOW) {
- mmaxpow = x;
- } else {
- mmaxpow = MAXPOW;
- }
- for (i=0 ; i<=mmaxpow ; ++i) {
- pow10vals[i] = d;
- d *= 10.0;
- }
-
- /*
- * Initialize a table of large powers of five.
- */
-
- for (i=0; i<9; ++i) {
- mp_init(pow5 + i);
- }
- mp_set(pow5, 5);
- for (i=0; i<8; ++i) {
- mp_sqr(pow5+i, pow5+i+1);
- }
- mp_init_set_int(pow5_13, 1220703125);
- for (i = 1; i < 5; ++i) {
- mp_init(pow5_13 + i);
- mp_sqr(pow5_13 + i - 1, pow5_13 + i);
- }
-
- /*
- * Determine the number of decimal digits to the left and right of the
- * decimal point in the largest and smallest double, the smallest double
- * that differs from zero, and the number of mp_digits needed to represent
- * the significand of a double.
- */
-
- maxDigits = (int) ((DBL_MAX_EXP * log((double) FLT_RADIX)
- + 0.5 * log(10.)) / log(10.));
- minDigits = (int) floor((DBL_MIN_EXP - DBL_MANT_DIG)
- * log((double) FLT_RADIX) / log(10.));
- log10_DIGIT_MAX = (int) floor(DIGIT_BIT * log(2.) / log(10.));
-
- /*
- * Nokia 770's software-emulated floating point is "middle endian": the
- * bytes within a 32-bit word are little-endian (like the native
- * integers), but the two words of a 'double' are presented most
- * significant word first.
- */
-
-#ifdef IEEE_FLOATING_POINT
- bitwhack.dv = 1.000000238418579;
- /* 3ff0 0000 4000 0000 */
- if ((bitwhack.iv >> 32) == 0x3ff00000) {
- n770_fp = 0;
- } else if ((bitwhack.iv & 0xffffffff) == 0x3ff00000) {
- n770_fp = 1;
- } else {
- Tcl_Panic("unknown floating point word order on this machine");
- }
-#endif
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * TclFinalizeDoubleConversion --
- *
- * Cleans up this file on exit.
- *
- * Results:
- * None
- *
- * Side effects:
- * Memory allocated by TclInitDoubleConversion is freed.
- *
- *----------------------------------------------------------------------
- */
-
-void
-TclFinalizeDoubleConversion(void)
-{
- int i;
-
- ckfree(pow10_wide);
- for (i=0; i<9; ++i) {
- mp_clear(pow5 + i);
- }
- for (i=0; i < 5; ++i) {
- mp_clear(pow5_13 + i);
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * Tcl_InitBignumFromDouble --
- *
- * Extracts the integer part of a double and converts it to an arbitrary
- * precision integer.
- *
- * Results:
- * None.
- *
- * Side effects:
- * Initializes the bignum supplied, and stores the converted number in
- * it.
- *
- *----------------------------------------------------------------------
- */
-
-int
-Tcl_InitBignumFromDouble(
- Tcl_Interp *interp, /* For error message. */
- double d, /* Number to convert. */
- mp_int *b) /* Place to store the result. */
-{
- double fract;
- int expt;
-
- /*
- * Infinite values can't convert to bignum.
- */
-
- if (TclIsInfinite(d)) {
- if (interp != NULL) {
- const char *s = "integer value too large to represent";
-
- Tcl_SetObjResult(interp, Tcl_NewStringObj(s, -1));
- Tcl_SetErrorCode(interp, "ARITH", "IOVERFLOW", s, NULL);
- }
- return TCL_ERROR;
- }
-
- fract = frexp(d,&expt);
- if (expt <= 0) {
- mp_init(b);
- mp_zero(b);
- } else {
- Tcl_WideInt w = (Tcl_WideInt) ldexp(fract, mantBits);
- int shift = expt - mantBits;
-
- TclBNInitBignumFromWideInt(b, w);
- if (shift < 0) {
- mp_div_2d(b, -shift, b, NULL);
- } else if (shift > 0) {
- mp_mul_2d(b, shift, b);
- }
- }
- return TCL_OK;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * TclBignumToDouble --
- *
- * Convert an arbitrary-precision integer to a native floating point
- * number.
- *
- * Results:
- * Returns the converted number. Sets errno to ERANGE if the number is
- * too large to convert.
- *
- *----------------------------------------------------------------------
- */
-
-double
-TclBignumToDouble(
- const mp_int *a) /* Integer to convert. */
-{
- mp_int b;
- int bits, shift, i, lsb;
- double r;
-
-
- /*
- * We need a 'mantBits'-bit significand. Determine what shift will
- * give us that.
- */
-
- bits = mp_count_bits(a);
- if (bits > DBL_MAX_EXP*log2FLT_RADIX) {
- errno = ERANGE;
- if (a->sign == MP_ZPOS) {
- return HUGE_VAL;
- } else {
- return -HUGE_VAL;
- }
- }
- shift = mantBits - bits;
-
- /*
- * If shift > 0, shift the significand left by the requisite number of
- * bits. If shift == 0, the significand is already exactly 'mantBits'
- * in length. If shift < 0, we will need to shift the significand right
- * by the requisite number of bits, and round it. If the '1-shift'
- * least significant bits are 0, but the 'shift'th bit is nonzero,
- * then the significand lies exactly between two values and must be
- * 'rounded to even'.
- */
-
- mp_init(&b);
- if (shift == 0) {
- mp_copy(a, &b);
- } else if (shift > 0) {
- mp_mul_2d(a, shift, &b);
- } else if (shift < 0) {
- lsb = mp_cnt_lsb(a);
- if (lsb == -1-shift) {
-
- /*
- * Round to even
- */
-
- mp_div_2d(a, -shift, &b, NULL);
- if (mp_isodd(&b)) {
- if (b.sign == MP_ZPOS) {
- mp_add_d(&b, 1, &b);
- } else {
- mp_sub_d(&b, 1, &b);
- }
- }
- } else {
-
- /*
- * Ordinary rounding
- */
-
- mp_div_2d(a, -1-shift, &b, NULL);
- if (b.sign == MP_ZPOS) {
- mp_add_d(&b, 1, &b);
- } else {
- mp_sub_d(&b, 1, &b);
- }
- mp_div_2d(&b, 1, &b, NULL);
- }
- }
-
- /*
- * Accumulate the result, one mp_digit at a time.
- */
-
- r = 0.0;
- for (i=b.used-1 ; i>=0 ; --i) {
- r = ldexp(r, DIGIT_BIT) + b.dp[i];
- }
- mp_clear(&b);
-
- /*
- * Scale the result to the correct number of bits.
- */
-
- r = ldexp(r, bits - mantBits);
-
- /*
- * Return the result with the appropriate sign.
- */
-
- if (a->sign == MP_ZPOS) {
- return r;
- } else {
- return -r;
- }
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * TclCeil --
- *
- * Computes the smallest floating point number that is at least the
- * mp_int argument.
- *
- * Results:
- * Returns the floating point number.
- *
- *----------------------------------------------------------------------
- */
-
-double
-TclCeil(
- const mp_int *a) /* Integer to convert. */
-{
- double r = 0.0;
- mp_int b;
-
- mp_init(&b);
- if (mp_cmp_d(a, 0) == MP_LT) {
- mp_neg(a, &b);
- r = -TclFloor(&b);
- } else {
- int bits = mp_count_bits(a);
-
- if (bits > DBL_MAX_EXP*log2FLT_RADIX) {
- r = HUGE_VAL;
- } else {
- int i, exact = 1, shift = mantBits - bits;
-
- if (shift > 0) {
- mp_mul_2d(a, shift, &b);
- } else if (shift < 0) {
- mp_int d;
- mp_init(&d);
- mp_div_2d(a, -shift, &b, &d);
- exact = mp_iszero(&d);
- mp_clear(&d);
- } else {
- mp_copy(a, &b);
- }
- if (!exact) {
- mp_add_d(&b, 1, &b);
- }
- for (i=b.used-1 ; i>=0 ; --i) {
- r = ldexp(r, DIGIT_BIT) + b.dp[i];
- }
- r = ldexp(r, bits - mantBits);
- }
- }
- mp_clear(&b);
- return r;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * TclFloor --
- *
- * Computes the largest floating point number less than or equal to the
- * mp_int argument.
- *
- * Results:
- * Returns the floating point value.
- *
- *----------------------------------------------------------------------
- */
-
-double
-TclFloor(
- const mp_int *a) /* Integer to convert. */
-{
- double r = 0.0;
- mp_int b;
-
- mp_init(&b);
- if (mp_cmp_d(a, 0) == MP_LT) {
- mp_neg(a, &b);
- r = -TclCeil(&b);
- } else {
- int bits = mp_count_bits(a);
-
- if (bits > DBL_MAX_EXP*log2FLT_RADIX) {
- r = DBL_MAX;
- } else {
- int i, shift = mantBits - bits;
-
- if (shift > 0) {
- mp_mul_2d(a, shift, &b);
- } else if (shift < 0) {
- mp_div_2d(a, -shift, &b, NULL);
- } else {
- mp_copy(a, &b);
- }
- for (i=b.used-1 ; i>=0 ; --i) {
- r = ldexp(r, DIGIT_BIT) + b.dp[i];
- }
- r = ldexp(r, bits - mantBits);
- }
- }
- mp_clear(&b);
- return r;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * BignumToBiasedFrExp --
- *
- * Convert an arbitrary-precision integer to a native floating point
- * number in the range [0.5,1) times a power of two. NOTE: Intentionally
- * converts to a number that's a few ulp too small, so that
- * RefineApproximation will not overflow near the high end of the
- * machine's arithmetic range.
- *
- * Results:
- * Returns the converted number.
- *
- * Side effects:
- * Stores the exponent of two in 'machexp'.
- *
- *----------------------------------------------------------------------
- */
-
-static double
-BignumToBiasedFrExp(
- const mp_int *a, /* Integer to convert. */
- int *machexp) /* Power of two. */
-{
- mp_int b;
- int bits;
- int shift;
- int i;
- double r;
-
- /*
- * Determine how many bits we need, and extract that many from the input.
- * Round to nearest unit in the last place.
- */
-
- bits = mp_count_bits(a);
- shift = mantBits - 2 - bits;
- mp_init(&b);
- if (shift > 0) {
- mp_mul_2d(a, shift, &b);
- } else if (shift < 0) {
- mp_div_2d(a, -shift, &b, NULL);
- } else {
- mp_copy(a, &b);
- }
-
- /*
- * Accumulate the result, one mp_digit at a time.
- */
-
- r = 0.0;
- for (i=b.used-1; i>=0; --i) {
- r = ldexp(r, DIGIT_BIT) + b.dp[i];
- }
- mp_clear(&b);
-
- /*
- * Return the result with the appropriate sign.
- */
-
- *machexp = bits - mantBits + 2;
- return ((a->sign == MP_ZPOS) ? r : -r);
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * Pow10TimesFrExp --
- *
- * Multiply a power of ten by a number expressed as fraction and
- * exponent.
- *
- * Results:
- * Returns the significand of the result.
- *
- * Side effects:
- * Overwrites the 'machexp' parameter with the exponent of the result.
- *
- * Assumes that 'exponent' is such that 10**exponent would be a double, even
- * though 'fraction*10**(machexp+exponent)' might overflow.
- *
- *----------------------------------------------------------------------
- */
-
-static double
-Pow10TimesFrExp(
- int exponent, /* Power of 10 to multiply by. */
- double fraction, /* Significand of multiplicand. */
- int *machexp) /* On input, exponent of multiplicand. On
- * output, exponent of result. */
-{
- int i, j;
- int expt = *machexp;
- double retval = fraction;
-
- if (exponent > 0) {
- /*
- * Multiply by 10**exponent.
- */
-
- retval = frexp(retval * pow10vals[exponent&0xf], &j);
- expt += j;
- for (i=4; i<9; ++i) {
- if (exponent & (1<<i)) {
- retval = frexp(retval * pow_10_2_n[i], &j);
- expt += j;
- }
- }
- } else if (exponent < 0) {
- /*
- * Divide by 10**-exponent.
- */
-
- retval = frexp(retval / pow10vals[(-exponent) & 0xf], &j);
- expt += j;
- for (i=4; i<9; ++i) {
- if ((-exponent) & (1<<i)) {
- retval = frexp(retval / pow_10_2_n[i], &j);
- expt += j;
- }
- }
- }
-
- *machexp = expt;
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * SafeLdExp --
- *
- * Do an 'ldexp' operation, but handle denormals gracefully.
- *
- * Results:
- * Returns the appropriately scaled value.
- *
- * On some platforms, 'ldexp' fails when presented with a number too
- * small to represent as a normalized double. This routine does 'ldexp'
- * in two steps for those numbers, to return correctly denormalized
- * values.
- *
- *----------------------------------------------------------------------
- */
-
-static double
-SafeLdExp(
- double fract,
- int expt)
-{
- int minexpt = DBL_MIN_EXP * log2FLT_RADIX;
- volatile double a, b, retval;
-
- if (expt < minexpt) {
- a = ldexp(fract, expt - mantBits - minexpt);
- b = ldexp(1.0, mantBits + minexpt);
- retval = a * b;
- } else {
- retval = ldexp(fract, expt);
- }
- return retval;
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * TclFormatNaN --
- *
- * Makes the string representation of a "Not a Number"
- *
- * Results:
- * None.
- *
- * Side effects:
- * Stores the string representation in the supplied buffer, which must be
- * at least TCL_DOUBLE_SPACE characters.
- *
- *----------------------------------------------------------------------
- */
-
-void
-TclFormatNaN(
- double value, /* The Not-a-Number to format. */
- char *buffer) /* String representation. */
-{
-#ifndef IEEE_FLOATING_POINT
- strcpy(buffer, "NaN");
- return;
-#else
- union {
- double dv;
- Tcl_WideUInt iv;
- } bitwhack;
-
- bitwhack.dv = value;
- if (n770_fp) {
- bitwhack.iv = Nokia770Twiddle(bitwhack.iv);
- }
- if (bitwhack.iv & ((Tcl_WideUInt) 1 << 63)) {
- bitwhack.iv &= ~ ((Tcl_WideUInt) 1 << 63);
- *buffer++ = '-';
- }
- *buffer++ = 'N';
- *buffer++ = 'a';
- *buffer++ = 'N';
- bitwhack.iv &= (((Tcl_WideUInt) 1) << 51) - 1;
- if (bitwhack.iv != 0) {
- sprintf(buffer, "(%" TCL_LL_MODIFIER "x)", bitwhack.iv);
- } else {
- *buffer = '\0';
- }
-#endif /* IEEE_FLOATING_POINT */
-}
-
-/*
- *----------------------------------------------------------------------
- *
- * Nokia770Twiddle --
- *
- * Transpose the two words of a number for Nokia 770 floating point
- * handling.
- *
- *----------------------------------------------------------------------
- */
-#ifdef IEEE_FLOATING_POINT
-static Tcl_WideUInt
-Nokia770Twiddle(
- Tcl_WideUInt w) /* Number to transpose. */
-{
- return (((w >> 32) & 0xffffffff) | (w << 32));
-}
-#endif
-
-/*
- *----------------------------------------------------------------------
- *
- * TclNokia770Doubles --
- *
- * Transpose the two words of a number for Nokia 770 floating point
- * handling.
- *
- *----------------------------------------------------------------------
- */
-
-int
-TclNokia770Doubles(void)
-{
- return n770_fp;
-}
-
-/*
- * Local Variables:
- * mode: c
- * c-basic-offset: 4
- * fill-column: 78
- * End:
- */