summaryrefslogtreecommitdiffstats
path: root/tk8.6/generic/tkTrig.c
diff options
context:
space:
mode:
authorWilliam Joye <wjoye@cfa.harvard.edu>2018-01-02 20:34:49 (GMT)
committerWilliam Joye <wjoye@cfa.harvard.edu>2018-01-02 20:34:49 (GMT)
commit89c1ac99d375fbd73892aa659f06ef5e2c5ea56e (patch)
treee76ce80d68d11f1ea137bc33a42f71a1d1f32028 /tk8.6/generic/tkTrig.c
parent01e4cd2ef2ff59418766b2259fbc99771646aba6 (diff)
downloadblt-89c1ac99d375fbd73892aa659f06ef5e2c5ea56e.zip
blt-89c1ac99d375fbd73892aa659f06ef5e2c5ea56e.tar.gz
blt-89c1ac99d375fbd73892aa659f06ef5e2c5ea56e.tar.bz2
upgrade to tcl/tk 8.6.8
Diffstat (limited to 'tk8.6/generic/tkTrig.c')
-rw-r--r--tk8.6/generic/tkTrig.c1753
1 files changed, 0 insertions, 1753 deletions
diff --git a/tk8.6/generic/tkTrig.c b/tk8.6/generic/tkTrig.c
deleted file mode 100644
index a2bf456..0000000
--- a/tk8.6/generic/tkTrig.c
+++ /dev/null
@@ -1,1753 +0,0 @@
-/*
- * tkTrig.c --
- *
- * This file contains a collection of trigonometry utility routines that
- * are used by Tk and in particular by the canvas code. It also has
- * miscellaneous geometry functions used by canvases.
- *
- * Copyright (c) 1992-1994 The Regents of the University of California.
- * Copyright (c) 1994-1997 Sun Microsystems, Inc.
- *
- * See the file "license.terms" for information on usage and redistribution of
- * this file, and for a DISCLAIMER OF ALL WARRANTIES.
- */
-
-#include "tkInt.h"
-#include "tkCanvas.h"
-
-#undef MIN
-#define MIN(a,b) (((a) < (b)) ? (a) : (b))
-#undef MAX
-#define MAX(a,b) (((a) > (b)) ? (a) : (b))
-
-/*
- *--------------------------------------------------------------
- *
- * TkLineToPoint --
- *
- * Compute the distance from a point to a finite line segment.
- *
- * Results:
- * The return value is the distance from the line segment whose
- * end-points are *end1Ptr and *end2Ptr to the point given by *pointPtr.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-double
-TkLineToPoint(
- double end1Ptr[2], /* Coordinates of first end-point of line. */
- double end2Ptr[2], /* Coordinates of second end-point of line. */
- double pointPtr[2]) /* Points to coords for point. */
-{
- double x, y;
-
- /*
- * Compute the point on the line that is closest to the point. This must
- * be done separately for vertical edges, horizontal edges, and other
- * edges.
- */
-
- if (end1Ptr[0] == end2Ptr[0]) {
-
- /*
- * Vertical edge.
- */
-
- x = end1Ptr[0];
- if (end1Ptr[1] >= end2Ptr[1]) {
- y = MIN(end1Ptr[1], pointPtr[1]);
- y = MAX(y, end2Ptr[1]);
- } else {
- y = MIN(end2Ptr[1], pointPtr[1]);
- y = MAX(y, end1Ptr[1]);
- }
- } else if (end1Ptr[1] == end2Ptr[1]) {
-
- /*
- * Horizontal edge.
- */
-
- y = end1Ptr[1];
- if (end1Ptr[0] >= end2Ptr[0]) {
- x = MIN(end1Ptr[0], pointPtr[0]);
- x = MAX(x, end2Ptr[0]);
- } else {
- x = MIN(end2Ptr[0], pointPtr[0]);
- x = MAX(x, end1Ptr[0]);
- }
- } else {
- double m1, b1, m2, b2;
-
- /*
- * The edge is neither horizontal nor vertical. Convert the edge to a
- * line equation of the form y = m1*x + b1. Then compute a line
- * perpendicular to this edge but passing through the point, also in
- * the form y = m2*x + b2.
- */
-
- m1 = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
- b1 = end1Ptr[1] - m1*end1Ptr[0];
- m2 = -1.0/m1;
- b2 = pointPtr[1] - m2*pointPtr[0];
- x = (b2 - b1)/(m1 - m2);
- y = m1*x + b1;
- if (end1Ptr[0] > end2Ptr[0]) {
- if (x > end1Ptr[0]) {
- x = end1Ptr[0];
- y = end1Ptr[1];
- } else if (x < end2Ptr[0]) {
- x = end2Ptr[0];
- y = end2Ptr[1];
- }
- } else {
- if (x > end2Ptr[0]) {
- x = end2Ptr[0];
- y = end2Ptr[1];
- } else if (x < end1Ptr[0]) {
- x = end1Ptr[0];
- y = end1Ptr[1];
- }
- }
- }
-
- /*
- * Compute the distance to the closest point.
- */
-
- return hypot(pointPtr[0] - x, pointPtr[1] - y);
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkLineToArea --
- *
- * Determine whether a line lies entirely inside, entirely outside, or
- * overlapping a given rectangular area.
- *
- * Results:
- * -1 is returned if the line given by end1Ptr and end2Ptr is entirely
- * outside the rectangle given by rectPtr. 0 is returned if the polygon
- * overlaps the rectangle, and 1 is returned if the polygon is entirely
- * inside the rectangle.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-int
-TkLineToArea(
- double end1Ptr[2], /* X and y coordinates for one endpoint of
- * line. */
- double end2Ptr[2], /* X and y coordinates for other endpoint of
- * line. */
- double rectPtr[4]) /* Points to coords for rectangle, in the
- * order x1, y1, x2, y2. X1 must be no larger
- * than x2, and y1 no larger than y2. */
-{
- int inside1, inside2;
-
- /*
- * First check the two points individually to see whether they are inside
- * the rectangle or not.
- */
-
- inside1 = (end1Ptr[0] >= rectPtr[0]) && (end1Ptr[0] <= rectPtr[2])
- && (end1Ptr[1] >= rectPtr[1]) && (end1Ptr[1] <= rectPtr[3]);
- inside2 = (end2Ptr[0] >= rectPtr[0]) && (end2Ptr[0] <= rectPtr[2])
- && (end2Ptr[1] >= rectPtr[1]) && (end2Ptr[1] <= rectPtr[3]);
- if (inside1 != inside2) {
- return 0;
- }
- if (inside1 & inside2) {
- return 1;
- }
-
- /*
- * Both points are outside the rectangle, but still need to check for
- * intersections between the line and the rectangle. Horizontal and
- * vertical lines are particularly easy, so handle them separately.
- */
-
- if (end1Ptr[0] == end2Ptr[0]) {
- /*
- * Vertical line.
- */
-
- if (((end1Ptr[1] >= rectPtr[1]) ^ (end2Ptr[1] >= rectPtr[1]))
- && (end1Ptr[0] >= rectPtr[0])
- && (end1Ptr[0] <= rectPtr[2])) {
- return 0;
- }
- } else if (end1Ptr[1] == end2Ptr[1]) {
- /*
- * Horizontal line.
- */
-
- if (((end1Ptr[0] >= rectPtr[0]) ^ (end2Ptr[0] >= rectPtr[0]))
- && (end1Ptr[1] >= rectPtr[1])
- && (end1Ptr[1] <= rectPtr[3])) {
- return 0;
- }
- } else {
- double m, x, y, low, high;
-
- /*
- * Diagonal line. Compute slope of line and use for intersection
- * checks against each of the sides of the rectangle: left, right,
- * bottom, top.
- */
-
- m = (end2Ptr[1] - end1Ptr[1])/(end2Ptr[0] - end1Ptr[0]);
- if (end1Ptr[0] < end2Ptr[0]) {
- low = end1Ptr[0];
- high = end2Ptr[0];
- } else {
- low = end2Ptr[0];
- high = end1Ptr[0];
- }
-
- /*
- * Left edge.
- */
-
- y = end1Ptr[1] + (rectPtr[0] - end1Ptr[0])*m;
- if ((rectPtr[0] >= low) && (rectPtr[0] <= high)
- && (y >= rectPtr[1]) && (y <= rectPtr[3])) {
- return 0;
- }
-
- /*
- * Right edge.
- */
-
- y += (rectPtr[2] - rectPtr[0])*m;
- if ((y >= rectPtr[1]) && (y <= rectPtr[3])
- && (rectPtr[2] >= low) && (rectPtr[2] <= high)) {
- return 0;
- }
-
- /*
- * Bottom edge.
- */
-
- if (end1Ptr[1] < end2Ptr[1]) {
- low = end1Ptr[1];
- high = end2Ptr[1];
- } else {
- low = end2Ptr[1];
- high = end1Ptr[1];
- }
- x = end1Ptr[0] + (rectPtr[1] - end1Ptr[1])/m;
- if ((x >= rectPtr[0]) && (x <= rectPtr[2])
- && (rectPtr[1] >= low) && (rectPtr[1] <= high)) {
- return 0;
- }
-
- /*
- * Top edge.
- */
-
- x += (rectPtr[3] - rectPtr[1])/m;
- if ((x >= rectPtr[0]) && (x <= rectPtr[2])
- && (rectPtr[3] >= low) && (rectPtr[3] <= high)) {
- return 0;
- }
- }
- return -1;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkThickPolyLineToArea --
- *
- * This function is called to determine whether a connected series of
- * line segments lies entirely inside, entirely outside, or overlapping a
- * given rectangular area.
- *
- * Results:
- * -1 is returned if the lines are entirely outside the area, 0 if they
- * overlap, and 1 if they are entirely inside the given area.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
- /* ARGSUSED */
-int
-TkThickPolyLineToArea(
- double *coordPtr, /* Points to an array of coordinates for the
- * polyline: x0, y0, x1, y1, ... */
- int numPoints, /* Total number of points at *coordPtr. */
- double width, /* Width of each line segment. */
- int capStyle, /* How are end-points of polyline drawn?
- * CapRound, CapButt, or CapProjecting. */
- int joinStyle, /* How are joints in polyline drawn?
- * JoinMiter, JoinRound, or JoinBevel. */
- double *rectPtr) /* Rectangular area to check against. */
-{
- double radius, poly[10];
- int count;
- int changedMiterToBevel; /* Non-zero means that a mitered corner had to
- * be treated as beveled after all because the
- * angle was < 11 degrees. */
- int inside; /* Tentative guess about what to return, based
- * on all points seen so far: one means
- * everything seen so far was inside the area;
- * -1 means everything was outside the area.
- * 0 means overlap has been found. */
-
- radius = width/2.0;
- inside = -1;
-
- if ((coordPtr[0] >= rectPtr[0]) && (coordPtr[0] <= rectPtr[2])
- && (coordPtr[1] >= rectPtr[1]) && (coordPtr[1] <= rectPtr[3])) {
- inside = 1;
- }
-
- /*
- * Iterate through all of the edges of the line, computing a polygon for
- * each edge and testing the area against that polygon. In addition, there
- * are additional tests to deal with rounded joints and caps.
- */
-
- changedMiterToBevel = 0;
- for (count = numPoints; count >= 2; count--, coordPtr += 2) {
- /*
- * If rounding is done around the first point of the edge then test a
- * circular region around the point with the area.
- */
-
- if (((capStyle == CapRound) && (count == numPoints))
- || ((joinStyle == JoinRound) && (count != numPoints))) {
- poly[0] = coordPtr[0] - radius;
- poly[1] = coordPtr[1] - radius;
- poly[2] = coordPtr[0] + radius;
- poly[3] = coordPtr[1] + radius;
- if (TkOvalToArea(poly, rectPtr) != inside) {
- return 0;
- }
- }
-
- /*
- * Compute the polygonal shape corresponding to this edge, consisting
- * of two points for the first point of the edge and two points for
- * the last point of the edge.
- */
-
- if (count == numPoints) {
- TkGetButtPoints(coordPtr+2, coordPtr, width,
- capStyle == CapProjecting, poly, poly+2);
- } else if ((joinStyle == JoinMiter) && !changedMiterToBevel) {
- poly[0] = poly[6];
- poly[1] = poly[7];
- poly[2] = poly[4];
- poly[3] = poly[5];
- } else {
- TkGetButtPoints(coordPtr+2, coordPtr, width, 0, poly, poly+2);
-
- /*
- * If the last joint was beveled, then also check a polygon
- * comprising the last two points of the previous polygon and the
- * first two from this polygon; this checks the wedges that fill
- * the beveled joint.
- */
-
- if ((joinStyle == JoinBevel) || changedMiterToBevel) {
- poly[8] = poly[0];
- poly[9] = poly[1];
- if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
- return 0;
- }
- changedMiterToBevel = 0;
- }
- }
- if (count == 2) {
- TkGetButtPoints(coordPtr, coordPtr+2, width,
- capStyle == CapProjecting, poly+4, poly+6);
- } else if (joinStyle == JoinMiter) {
- if (TkGetMiterPoints(coordPtr, coordPtr+2, coordPtr+4,
- (double) width, poly+4, poly+6) == 0) {
- changedMiterToBevel = 1;
- TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4,
- poly+6);
- }
- } else {
- TkGetButtPoints(coordPtr, coordPtr+2, width, 0, poly+4, poly+6);
- }
- poly[8] = poly[0];
- poly[9] = poly[1];
- if (TkPolygonToArea(poly, 5, rectPtr) != inside) {
- return 0;
- }
- }
-
- /*
- * If caps are rounded, check the cap around the final point of the line.
- */
-
- if (capStyle == CapRound) {
- poly[0] = coordPtr[0] - radius;
- poly[1] = coordPtr[1] - radius;
- poly[2] = coordPtr[0] + radius;
- poly[3] = coordPtr[1] + radius;
- if (TkOvalToArea(poly, rectPtr) != inside) {
- return 0;
- }
- }
-
- return inside;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkPolygonToPoint --
- *
- * Compute the distance from a point to a polygon.
- *
- * Results:
- * The return value is 0.0 if the point referred to by pointPtr is within
- * the polygon referred to by polyPtr and numPoints. Otherwise the return
- * value is the distance of the point from the polygon.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-double
-TkPolygonToPoint(
- double *polyPtr, /* Points to an array coordinates for closed
- * polygon: x0, y0, x1, y1, ... The polygon
- * may be self-intersecting. */
- int numPoints, /* Total number of points at *polyPtr. */
- double *pointPtr) /* Points to coords for point. */
-{
- double bestDist; /* Closest distance between point and any edge
- * in polygon. */
- int intersections; /* Number of edges in the polygon that
- * intersect a ray extending vertically
- * upwards from the point to infinity. */
- int count;
- register double *pPtr;
-
- /*
- * Iterate through all of the edges in the polygon, updating bestDist and
- * intersections.
- *
- * TRICKY POINT: when computing intersections, include left x-coordinate
- * of line within its range, but not y-coordinate. Otherwise if the point
- * lies exactly below a vertex we'll count it as two intersections.
- */
-
- bestDist = 1.0e36;
- intersections = 0;
-
- for (count = numPoints, pPtr = polyPtr; count > 1; count--, pPtr += 2) {
- double x, y, dist;
-
- /*
- * Compute the point on the current edge closest to the point and
- * update the intersection count. This must be done separately for
- * vertical edges, horizontal edges, and other edges.
- */
-
- if (pPtr[2] == pPtr[0]) {
-
- /*
- * Vertical edge.
- */
-
- x = pPtr[0];
- if (pPtr[1] >= pPtr[3]) {
- y = MIN(pPtr[1], pointPtr[1]);
- y = MAX(y, pPtr[3]);
- } else {
- y = MIN(pPtr[3], pointPtr[1]);
- y = MAX(y, pPtr[1]);
- }
- } else if (pPtr[3] == pPtr[1]) {
-
- /*
- * Horizontal edge.
- */
-
- y = pPtr[1];
- if (pPtr[0] >= pPtr[2]) {
- x = MIN(pPtr[0], pointPtr[0]);
- x = MAX(x, pPtr[2]);
- if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0])
- && (pointPtr[0] >= pPtr[2])) {
- intersections++;
- }
- } else {
- x = MIN(pPtr[2], pointPtr[0]);
- x = MAX(x, pPtr[0]);
- if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2])
- && (pointPtr[0] >= pPtr[0])) {
- intersections++;
- }
- }
- } else {
- double m1, b1, m2, b2;
- int lower; /* Non-zero means point below line. */
-
- /*
- * The edge is neither horizontal nor vertical. Convert the edge
- * to a line equation of the form y = m1*x + b1. Then compute a
- * line perpendicular to this edge but passing through the point,
- * also in the form y = m2*x + b2.
- */
-
- m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]);
- b1 = pPtr[1] - m1*pPtr[0];
- m2 = -1.0/m1;
- b2 = pointPtr[1] - m2*pointPtr[0];
- x = (b2 - b1)/(m1 - m2);
- y = m1*x + b1;
- if (pPtr[0] > pPtr[2]) {
- if (x > pPtr[0]) {
- x = pPtr[0];
- y = pPtr[1];
- } else if (x < pPtr[2]) {
- x = pPtr[2];
- y = pPtr[3];
- }
- } else {
- if (x > pPtr[2]) {
- x = pPtr[2];
- y = pPtr[3];
- } else if (x < pPtr[0]) {
- x = pPtr[0];
- y = pPtr[1];
- }
- }
- lower = (m1*pointPtr[0] + b1) > pointPtr[1];
- if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2]))
- && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) {
- intersections++;
- }
- }
-
- /*
- * Compute the distance to the closest point, and see if that is the
- * best distance seen so far.
- */
-
- dist = hypot(pointPtr[0] - x, pointPtr[1] - y);
- if (dist < bestDist) {
- bestDist = dist;
- }
- }
-
- /*
- * We've processed all of the points. If the number of intersections is
- * odd, the point is inside the polygon.
- */
-
- if (intersections & 0x1) {
- return 0.0;
- }
- return bestDist;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkPolygonToArea --
- *
- * Determine whether a polygon lies entirely inside, entirely outside, or
- * overlapping a given rectangular area.
- *
- * Results:
- * -1 is returned if the polygon given by polyPtr and numPoints is
- * entirely outside the rectangle given by rectPtr. 0 is returned if the
- * polygon overlaps the rectangle, and 1 is returned if the polygon is
- * entirely inside the rectangle.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-int
-TkPolygonToArea(
- double *polyPtr, /* Points to an array coordinates for closed
- * polygon: x0, y0, x1, y1, ... The polygon
- * may be self-intersecting. */
- int numPoints, /* Total number of points at *polyPtr. */
- register double *rectPtr) /* Points to coords for rectangle, in the
- * order x1, y1, x2, y2. X1 and y1 must be
- * lower-left corner. */
-{
- int state; /* State of all edges seen so far (-1 means
- * outside, 1 means inside, won't ever be
- * 0). */
- int count;
- register double *pPtr;
-
- /*
- * Iterate over all of the edges of the polygon and test them against the
- * rectangle. Can quit as soon as the state becomes "intersecting".
- */
-
- state = TkLineToArea(polyPtr, polyPtr+2, rectPtr);
- if (state == 0) {
- return 0;
- }
- for (pPtr = polyPtr+2, count = numPoints-1; count >= 2;
- pPtr += 2, count--) {
- if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) {
- return 0;
- }
- }
-
- /*
- * If all of the edges were inside the rectangle we're done. If all of the
- * edges were outside, then the rectangle could still intersect the
- * polygon (if it's entirely enclosed). Call TkPolygonToPoint to figure
- * this out.
- */
-
- if (state == 1) {
- return 1;
- }
- if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) {
- return 0;
- }
- return -1;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkOvalToPoint --
- *
- * Computes the distance from a given point to a given oval, in canvas
- * units.
- *
- * Results:
- * The return value is 0 if the point given by *pointPtr is inside the
- * oval. If the point isn't inside the oval then the return value is
- * approximately the distance from the point to the oval. If the oval is
- * filled, then anywhere in the interior is considered "inside"; if the
- * oval isn't filled, then "inside" means only the area occupied by the
- * outline.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
- /* ARGSUSED */
-double
-TkOvalToPoint(
- double ovalPtr[4], /* Pointer to array of four coordinates (x1,
- * y1, x2, y2) defining oval's bounding
- * box. */
- double width, /* Width of outline for oval. */
- int filled, /* Non-zero means oval should be treated as
- * filled; zero means only consider
- * outline. */
- double pointPtr[2]) /* Coordinates of point. */
-{
- double xDelta, yDelta, scaledDistance, distToOutline, distToCenter;
- double xDiam, yDiam;
-
- /*
- * Compute the distance between the center of the oval and the point in
- * question, using a coordinate system where the oval has been transformed
- * to a circle with unit radius.
- */
-
- xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0);
- yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0);
- distToCenter = hypot(xDelta, yDelta);
- scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0),
- yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0));
-
- /*
- * If the scaled distance is greater than 1 then it means no hit. Compute
- * the distance from the point to the edge of the circle, then scale this
- * distance back to the original coordinate system.
- *
- * Note: this distance isn't completely accurate. It's only an
- * approximation, and it can overestimate the correct distance when the
- * oval is eccentric.
- */
-
- if (scaledDistance > 1.0) {
- return (distToCenter/scaledDistance) * (scaledDistance - 1.0);
- }
-
- /*
- * Scaled distance less than 1 means the point is inside the outer edge of
- * the oval. If this is a filled oval, then we have a hit. Otherwise, do
- * the same computation as above (scale back to original coordinate
- * system), but also check to see if the point is within the width of the
- * outline.
- */
-
- if (filled) {
- return 0.0;
- }
- if (scaledDistance > 1E-10) {
- distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance)
- - width;
- } else {
- /*
- * Avoid dividing by a very small number (it could cause an arithmetic
- * overflow). This problem occurs if the point is very close to the
- * center of the oval.
- */
-
- xDiam = ovalPtr[2] - ovalPtr[0];
- yDiam = ovalPtr[3] - ovalPtr[1];
- if (xDiam < yDiam) {
- distToOutline = (xDiam - width)/2;
- } else {
- distToOutline = (yDiam - width)/2;
- }
- }
-
- if (distToOutline < 0.0) {
- return 0.0;
- }
- return distToOutline;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkOvalToArea --
- *
- * Determine whether an oval lies entirely inside, entirely outside, or
- * overlapping a given rectangular area.
- *
- * Results:
- * -1 is returned if the oval described by ovalPtr is entirely outside
- * the rectangle given by rectPtr. 0 is returned if the oval overlaps the
- * rectangle, and 1 is returned if the oval is entirely inside the
- * rectangle.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-int
-TkOvalToArea(
- register double *ovalPtr, /* Points to coordinates defining the
- * bounding rectangle for the oval: x1, y1,
- * x2, y2. X1 must be less than x2 and y1 less
- * than y2. */
- register double *rectPtr) /* Points to coords for rectangle, in the
- * order x1, y1, x2, y2. X1 and y1 must be
- * lower-left corner. */
-{
- double centerX, centerY, radX, radY, deltaX, deltaY;
-
- /*
- * First, see if oval is entirely inside rectangle or entirely outside
- * rectangle.
- */
-
- if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2])
- && (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) {
- return 1;
- }
- if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2])
- || (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) {
- return -1;
- }
-
- /*
- * Next, go through the rectangle side by side. For each side of the
- * rectangle, find the point on the side that is closest to the oval's
- * center, and see if that point is inside the oval. If at least one such
- * point is inside the oval, then the rectangle intersects the oval.
- */
-
- centerX = (ovalPtr[0] + ovalPtr[2])/2;
- centerY = (ovalPtr[1] + ovalPtr[3])/2;
- radX = (ovalPtr[2] - ovalPtr[0])/2;
- radY = (ovalPtr[3] - ovalPtr[1])/2;
-
- deltaY = rectPtr[1] - centerY;
- if (deltaY < 0.0) {
- deltaY = centerY - rectPtr[3];
- if (deltaY < 0.0) {
- deltaY = 0;
- }
- }
- deltaY /= radY;
- deltaY *= deltaY;
-
- /*
- * Left side:
- */
-
- deltaX = (rectPtr[0] - centerX)/radX;
- deltaX *= deltaX;
- if ((deltaX + deltaY) <= 1.0) {
- return 0;
- }
-
- /*
- * Right side:
- */
-
- deltaX = (rectPtr[2] - centerX)/radX;
- deltaX *= deltaX;
- if ((deltaX + deltaY) <= 1.0) {
- return 0;
- }
-
- deltaX = rectPtr[0] - centerX;
- if (deltaX < 0.0) {
- deltaX = centerX - rectPtr[2];
- if (deltaX < 0.0) {
- deltaX = 0;
- }
- }
- deltaX /= radX;
- deltaX *= deltaX;
-
- /*
- * Bottom side:
- */
-
- deltaY = (rectPtr[1] - centerY)/radY;
- deltaY *= deltaY;
- if ((deltaX + deltaY) < 1.0) {
- return 0;
- }
-
- /*
- * Top side:
- */
-
- deltaY = (rectPtr[3] - centerY)/radY;
- deltaY *= deltaY;
- if ((deltaX + deltaY) < 1.0) {
- return 0;
- }
-
- return -1;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkIncludePoint --
- *
- * Given a point and a generic canvas item header, expand the item's
- * bounding box if needed to include the point.
- *
- * Results:
- * None.
- *
- * Side effects:
- * The boudn.
- *
- *--------------------------------------------------------------
- */
-
- /* ARGSUSED */
-void
-TkIncludePoint(
- register Tk_Item *itemPtr, /* Item whose bounding box is being
- * calculated. */
- double *pointPtr) /* Address of two doubles giving x and y
- * coordinates of point. */
-{
- int tmp;
-
- tmp = (int) (pointPtr[0] + 0.5);
- if (tmp < itemPtr->x1) {
- itemPtr->x1 = tmp;
- }
- if (tmp > itemPtr->x2) {
- itemPtr->x2 = tmp;
- }
- tmp = (int) (pointPtr[1] + 0.5);
- if (tmp < itemPtr->y1) {
- itemPtr->y1 = tmp;
- }
- if (tmp > itemPtr->y2) {
- itemPtr->y2 = tmp;
- }
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkBezierScreenPoints --
- *
- * Given four control points, create a larger set of XPoints for a Bezier
- * curve based on the points.
- *
- * Results:
- * The array at *xPointPtr gets filled in with numSteps XPoints
- * corresponding to the Bezier spline defined by the four control points.
- * Note: no output point is generated for the first input point, but an
- * output point *is* generated for the last input point.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-void
-TkBezierScreenPoints(
- Tk_Canvas canvas, /* Canvas in which curve is to be drawn. */
- double control[], /* Array of coordinates for four control
- * points: x0, y0, x1, y1, ... x3 y3. */
- int numSteps, /* Number of curve points to generate. */
- register XPoint *xPointPtr) /* Where to put new points. */
-{
- int i;
- double u, u2, u3, t, t2, t3;
-
- for (i = 1; i <= numSteps; i++, xPointPtr++) {
- t = ((double) i)/((double) numSteps);
- t2 = t*t;
- t3 = t2*t;
- u = 1.0 - t;
- u2 = u*u;
- u3 = u2*u;
- Tk_CanvasDrawableCoords(canvas,
- (control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u)
- + control[6]*t3),
- (control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u)
- + control[7]*t3),
- &xPointPtr->x, &xPointPtr->y);
- }
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkBezierPoints --
- *
- * Given four control points, create a larger set of points for a Bezier
- * curve based on the points.
- *
- * Results:
- * The array at *coordPtr gets filled in with 2*numSteps coordinates,
- * which correspond to the Bezier spline defined by the four control
- * points. Note: no output point is generated for the first input point,
- * but an output point *is* generated for the last input point.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-void
-TkBezierPoints(
- double control[], /* Array of coordinates for four control
- * points: x0, y0, x1, y1, ... x3 y3. */
- int numSteps, /* Number of curve points to generate. */
- register double *coordPtr) /* Where to put new points. */
-{
- int i;
- double u, u2, u3, t, t2, t3;
-
- for (i = 1; i <= numSteps; i++, coordPtr += 2) {
- t = ((double) i)/((double) numSteps);
- t2 = t*t;
- t3 = t2*t;
- u = 1.0 - t;
- u2 = u*u;
- u3 = u2*u;
- coordPtr[0] = control[0]*u3
- + 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3;
- coordPtr[1] = control[1]*u3
- + 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3;
- }
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkMakeBezierCurve --
- *
- * Given a set of points, create a new set of points that fit parabolic
- * splines to the line segments connecting the original points. Produces
- * output points in either of two forms.
- *
- * Note: the name of this function should *not* be taken to mean that it
- * interprets the input points as directly defining Bezier curves.
- * Rather, it internally computes a Bezier curve representation of each
- * parabolic spline segment. (These Bezier curves are then flattened to
- * produce the points filled into the output arrays.)
- *
- * Results:
- * Either or both of the xPoints or dblPoints arrays are filled in. The
- * return value is the number of points placed in the arrays. Note: if
- * the first and last points are the same, then a closed curve is
- * generated.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-int
-TkMakeBezierCurve(
- Tk_Canvas canvas, /* Canvas in which curve is to be drawn. */
- double *pointPtr, /* Array of input coordinates: x0, y0, x1, y1,
- * etc.. */
- int numPoints, /* Number of points at pointPtr. */
- int numSteps, /* Number of steps to use for each spline
- * segments (determines smoothness of
- * curve). */
- XPoint xPoints[], /* Array of XPoints to fill in (e.g. for
- * display). NULL means don't fill in any
- * XPoints. */
- double dblPoints[]) /* Array of points to fill in as doubles, in
- * the form x0, y0, x1, y1, .... NULL means
- * don't fill in anything in this form. Caller
- * must make sure that this array has enough
- * space. */
-{
- int closed, outputPoints, i;
- int numCoords = numPoints*2;
- double control[8];
-
- /*
- * If the curve is a closed one then generate a special spline that spans
- * the last points and the first ones. Otherwise just put the first point
- * into the output.
- */
-
- if (!pointPtr) {
- /*
- * Of pointPtr == NULL, this function returns an upper limit of the
- * array size to store the coordinates. This can be used to allocate
- * storage, before the actual coordinates are calculated.
- */
-
- return 1 + numPoints * numSteps;
- }
-
- outputPoints = 0;
- if ((pointPtr[0] == pointPtr[numCoords-2])
- && (pointPtr[1] == pointPtr[numCoords-1])) {
- closed = 1;
- control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
- control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
- control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
- control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
- control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
- control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
- control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
- control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, control[0], control[1],
- &xPoints->x, &xPoints->y);
- TkBezierScreenPoints(canvas, control, numSteps, xPoints+1);
- xPoints += numSteps+1;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = control[0];
- dblPoints[1] = control[1];
- TkBezierPoints(control, numSteps, dblPoints+2);
- dblPoints += 2*(numSteps+1);
- }
- outputPoints += numSteps+1;
- } else {
- closed = 0;
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1],
- &xPoints->x, &xPoints->y);
- xPoints += 1;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = pointPtr[0];
- dblPoints[1] = pointPtr[1];
- dblPoints += 2;
- }
- outputPoints += 1;
- }
-
- for (i = 2; i < numPoints; i++, pointPtr += 2) {
- /*
- * Set up the first two control points. This is done differently for
- * the first spline of an open curve than for other cases.
- */
-
- if ((i == 2) && !closed) {
- control[0] = pointPtr[0];
- control[1] = pointPtr[1];
- control[2] = 0.333*pointPtr[0] + 0.667*pointPtr[2];
- control[3] = 0.333*pointPtr[1] + 0.667*pointPtr[3];
- } else {
- control[0] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
- control[1] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
- control[2] = 0.167*pointPtr[0] + 0.833*pointPtr[2];
- control[3] = 0.167*pointPtr[1] + 0.833*pointPtr[3];
- }
-
- /*
- * Set up the last two control points. This is done differently for
- * the last spline of an open curve than for other cases.
- */
-
- if ((i == (numPoints-1)) && !closed) {
- control[4] = .667*pointPtr[2] + .333*pointPtr[4];
- control[5] = .667*pointPtr[3] + .333*pointPtr[5];
- control[6] = pointPtr[4];
- control[7] = pointPtr[5];
- } else {
- control[4] = .833*pointPtr[2] + .167*pointPtr[4];
- control[5] = .833*pointPtr[3] + .167*pointPtr[5];
- control[6] = 0.5*pointPtr[2] + 0.5*pointPtr[4];
- control[7] = 0.5*pointPtr[3] + 0.5*pointPtr[5];
- }
-
- /*
- * If the first two points coincide, or if the last two points
- * coincide, then generate a single straight-line segment by
- * outputting the last control point.
- */
-
- if (((pointPtr[0] == pointPtr[2]) && (pointPtr[1] == pointPtr[3]))
- || ((pointPtr[2] == pointPtr[4])
- && (pointPtr[3] == pointPtr[5]))) {
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, control[6], control[7],
- &xPoints[0].x, &xPoints[0].y);
- xPoints++;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = control[6];
- dblPoints[1] = control[7];
- dblPoints += 2;
- }
- outputPoints += 1;
- continue;
- }
-
- /*
- * Generate a Bezier spline using the control points.
- */
-
-
- if (xPoints != NULL) {
- TkBezierScreenPoints(canvas, control, numSteps, xPoints);
- xPoints += numSteps;
- }
- if (dblPoints != NULL) {
- TkBezierPoints(control, numSteps, dblPoints);
- dblPoints += 2*numSteps;
- }
- outputPoints += numSteps;
- }
- return outputPoints;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkMakeRawCurve --
- *
- * Interpret the given set of points as the raw knots and control points
- * defining a sequence of cubic Bezier curves. Create a new set of points
- * that fit these Bezier curves. Output points are produced in either of
- * two forms.
- *
- * Results:
- * Either or both of the xPoints or dblPoints arrays are filled in. The
- * return value is the number of points placed in the arrays.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-int
-TkMakeRawCurve(
- Tk_Canvas canvas, /* Canvas in which curve is to be drawn. */
- double *pointPtr, /* Array of input coordinates: x0, y0, x1, y1,
- * etc.. */
- int numPoints, /* Number of points at pointPtr. */
- int numSteps, /* Number of steps to use for each curve
- * segment (determines smoothness of
- * curve). */
- XPoint xPoints[], /* Array of XPoints to fill in (e.g. for
- * display). NULL means don't fill in any
- * XPoints. */
- double dblPoints[]) /* Array of points to fill in as doubles, in
- * the form x0, y0, x1, y1, .... NULL means
- * don't fill in anything in this form.
- * Caller must make sure that this array has
- * enough space. */
-{
- int outputPoints, i;
- int numSegments = (numPoints+1)/3;
- double *segPtr;
-
- /*
- * The input describes a curve with s Bezier curve segments if there are
- * 3s+1, 3s, or 3s-1 input points. In the last two cases, 1 or 2 initial
- * points from the first curve segment are reused as defining points also
- * for the last curve segment. In the case of 3s input points, this will
- * automatically close the curve.
- */
-
- if (!pointPtr) {
- /*
- * If pointPtr == NULL, this function returns an upper limit of the
- * array size to store the coordinates. This can be used to allocate
- * storage, before the actual coordinates are calculated.
- */
-
- return 1 + numSegments * numSteps;
- }
-
- outputPoints = 0;
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, pointPtr[0], pointPtr[1],
- &xPoints->x, &xPoints->y);
- xPoints += 1;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = pointPtr[0];
- dblPoints[1] = pointPtr[1];
- dblPoints += 2;
- }
- outputPoints += 1;
-
- /*
- * The next loop handles all curve segments except one that overlaps the
- * end of the list of coordinates.
- */
-
- for (i=numPoints,segPtr=pointPtr ; i>=4 ; i-=3,segPtr+=6) {
- if (segPtr[0]==segPtr[2] && segPtr[1]==segPtr[3] &&
- segPtr[4]==segPtr[6] && segPtr[5]==segPtr[7]) {
- /*
- * The control points on this segment are equal to their
- * neighbouring knots, so this segment is just a straight line. A
- * single point is sufficient.
- */
-
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, segPtr[6], segPtr[7],
- &xPoints->x, &xPoints->y);
- xPoints += 1;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = segPtr[6];
- dblPoints[1] = segPtr[7];
- dblPoints += 2;
- }
- outputPoints += 1;
- } else {
- /*
- * This is a generic Bezier curve segment.
- */
-
- if (xPoints != NULL) {
- TkBezierScreenPoints(canvas, segPtr, numSteps, xPoints);
- xPoints += numSteps;
- }
- if (dblPoints != NULL) {
- TkBezierPoints(segPtr, numSteps, dblPoints);
- dblPoints += 2*numSteps;
- }
- outputPoints += numSteps;
- }
- }
-
- /*
- * If at this point i>1, then there is some point which has not yet been
- * used. Make another curve segment.
- */
-
- if (i > 1) {
- int j;
- double control[8];
-
- /*
- * Copy the relevant coordinates to control[], so that it can be
- * passed as a unit to e.g. TkBezierPoints.
- */
-
- for (j=0; j<2*i; j++) {
- control[j] = segPtr[j];
- }
- for (; j<8; j++) {
- control[j] = pointPtr[j-2*i];
- }
-
- /*
- * Then we just do the same things as above.
- */
-
- if (control[0]==control[2] && control[1]==control[3] &&
- control[4]==control[6] && control[5]==control[7]) {
- /*
- * The control points on this segment are equal to their
- * neighbouring knots, so this segment is just a straight line. A
- * single point is sufficient.
- */
-
- if (xPoints != NULL) {
- Tk_CanvasDrawableCoords(canvas, control[6], control[7],
- &xPoints->x, &xPoints->y);
- xPoints += 1;
- }
- if (dblPoints != NULL) {
- dblPoints[0] = control[6];
- dblPoints[1] = control[7];
- dblPoints += 2;
- }
- outputPoints += 1;
- } else {
- /*
- * This is a generic Bezier curve segment.
- */
-
- if (xPoints != NULL) {
- TkBezierScreenPoints(canvas, control, numSteps, xPoints);
- xPoints += numSteps;
- }
- if (dblPoints != NULL) {
- TkBezierPoints(control, numSteps, dblPoints);
- dblPoints += 2*numSteps;
- }
- outputPoints += numSteps;
- }
- }
-
- return outputPoints;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkMakeBezierPostscript --
- *
- * This function generates Postscript commands that create a path
- * corresponding to a given Bezier curve.
- *
- * Results:
- * None. Postscript commands to generate the path are appended to the
- * interp's result.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-void
-TkMakeBezierPostscript(
- Tcl_Interp *interp, /* Interpreter in whose result the Postscript
- * is to be stored. */
- Tk_Canvas canvas, /* Canvas widget for which the Postscript is
- * being generated. */
- double *pointPtr, /* Array of input coordinates: x0, y0, x1, y1,
- * etc.. */
- int numPoints) /* Number of points at pointPtr. */
-{
- int closed, i;
- int numCoords = numPoints*2;
- double control[8];
- Tcl_Obj *psObj;
-
- /*
- * If the curve is a closed one then generate a special spline that spans
- * the last points and the first ones. Otherwise just put the first point
- * into the path.
- */
-
- if ((pointPtr[0] == pointPtr[numCoords-2])
- && (pointPtr[1] == pointPtr[numCoords-1])) {
- closed = 1;
- control[0] = 0.5*pointPtr[numCoords-4] + 0.5*pointPtr[0];
- control[1] = 0.5*pointPtr[numCoords-3] + 0.5*pointPtr[1];
- control[2] = 0.167*pointPtr[numCoords-4] + 0.833*pointPtr[0];
- control[3] = 0.167*pointPtr[numCoords-3] + 0.833*pointPtr[1];
- control[4] = 0.833*pointPtr[0] + 0.167*pointPtr[2];
- control[5] = 0.833*pointPtr[1] + 0.167*pointPtr[3];
- control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
- control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
- psObj = Tcl_ObjPrintf(
- "%.15g %.15g moveto\n"
- "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
- control[0], Tk_CanvasPsY(canvas, control[1]),
- control[2], Tk_CanvasPsY(canvas, control[3]),
- control[4], Tk_CanvasPsY(canvas, control[5]),
- control[6], Tk_CanvasPsY(canvas, control[7]));
- } else {
- closed = 0;
- control[6] = pointPtr[0];
- control[7] = pointPtr[1];
- psObj = Tcl_ObjPrintf("%.15g %.15g moveto\n",
- control[6], Tk_CanvasPsY(canvas, control[7]));
- }
-
- /*
- * Cycle through all the remaining points in the curve, generating a curve
- * section for each vertex in the linear path.
- */
-
- for (i = numPoints-2, pointPtr += 2; i > 0; i--, pointPtr += 2) {
- control[2] = 0.333*control[6] + 0.667*pointPtr[0];
- control[3] = 0.333*control[7] + 0.667*pointPtr[1];
-
- /*
- * Set up the last two control points. This is done differently for
- * the last spline of an open curve than for other cases.
- */
-
- if ((i == 1) && !closed) {
- control[6] = pointPtr[2];
- control[7] = pointPtr[3];
- } else {
- control[6] = 0.5*pointPtr[0] + 0.5*pointPtr[2];
- control[7] = 0.5*pointPtr[1] + 0.5*pointPtr[3];
- }
- control[4] = 0.333*control[6] + 0.667*pointPtr[0];
- control[5] = 0.333*control[7] + 0.667*pointPtr[1];
-
- Tcl_AppendPrintfToObj(psObj,
- "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
- control[2], Tk_CanvasPsY(canvas, control[3]),
- control[4], Tk_CanvasPsY(canvas, control[5]),
- control[6], Tk_CanvasPsY(canvas, control[7]));
- }
-
- Tcl_AppendObjToObj(Tcl_GetObjResult(interp), psObj);
- Tcl_DecrRefCount(psObj);
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkMakeRawCurvePostscript --
- *
- * This function interprets the input points as the raw knot and control
- * points for a curve composed of Bezier curve segments, just like
- * TkMakeRawCurve. It generates Postscript commands that create a path
- * corresponding to this given curve.
- *
- * Results:
- * None. Postscript commands to generate the path are appended to the
- * interp's result.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-void
-TkMakeRawCurvePostscript(
- Tcl_Interp *interp, /* Interpreter in whose result the Postscript
- * is to be stored. */
- Tk_Canvas canvas, /* Canvas widget for which the Postscript is
- * being generated. */
- double *pointPtr, /* Array of input coordinates: x0, y0, x1, y1,
- * etc.. */
- int numPoints) /* Number of points at pointPtr. */
-{
- int i;
- double *segPtr;
- Tcl_Obj *psObj;
-
- /*
- * Put the first point into the path.
- */
-
- psObj = Tcl_ObjPrintf("%.15g %.15g moveto\n",
- pointPtr[0], Tk_CanvasPsY(canvas, pointPtr[1]));
-
- /*
- * Loop through all the remaining points in the curve, generating a
- * straight line or curve section for every three of them.
- */
-
- for (i=numPoints-1,segPtr=pointPtr ; i>=3 ; i-=3,segPtr+=6) {
- if (segPtr[0]==segPtr[2] && segPtr[1]==segPtr[3] &&
- segPtr[4]==segPtr[6] && segPtr[5]==segPtr[7]) {
- /*
- * The control points on this segment are equal to their
- * neighbouring knots, so this segment is just a straight line.
- */
-
- Tcl_AppendPrintfToObj(psObj, "%.15g %.15g lineto\n",
- segPtr[6], Tk_CanvasPsY(canvas, segPtr[7]));
- } else {
- /*
- * This is a generic Bezier curve segment.
- */
-
- Tcl_AppendPrintfToObj(psObj,
- "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
- segPtr[2], Tk_CanvasPsY(canvas, segPtr[3]),
- segPtr[4], Tk_CanvasPsY(canvas, segPtr[5]),
- segPtr[6], Tk_CanvasPsY(canvas, segPtr[7]));
- }
- }
-
- /*
- * If there are any points left that haven't been used, then build the
- * last segment and generate Postscript in the same way for that.
- */
-
- if (i > 0) {
- int j;
- double control[8];
-
- for (j=0; j<2*i+2; j++) {
- control[j] = segPtr[j];
- }
- for (; j<8; j++) {
- control[j] = pointPtr[j-2*i-2];
- }
-
- if (control[0]==control[2] && control[1]==control[3] &&
- control[4]==control[6] && control[5]==control[7]) {
- /*
- * Straight line.
- */
-
- Tcl_AppendPrintfToObj(psObj, "%.15g %.15g lineto\n",
- control[6], Tk_CanvasPsY(canvas, control[7]));
- } else {
- /*
- * Bezier curve segment.
- */
-
- Tcl_AppendPrintfToObj(psObj,
- "%.15g %.15g %.15g %.15g %.15g %.15g curveto\n",
- control[2], Tk_CanvasPsY(canvas, control[3]),
- control[4], Tk_CanvasPsY(canvas, control[5]),
- control[6], Tk_CanvasPsY(canvas, control[7]));
- }
- }
-
- Tcl_AppendObjToObj(Tcl_GetObjResult(interp), psObj);
- Tcl_DecrRefCount(psObj);
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkGetMiterPoints --
- *
- * Given three points forming an angle, compute the coordinates of the
- * inside and outside points of the mitered corner formed by a line of a
- * given width at that angle.
- *
- * Results:
- * If the angle formed by the three points is less than 11 degrees then 0
- * is returned and m1 and m2 aren't modified. Otherwise 1 is returned and
- * the points at m1 and m2 are filled in with the positions of the points
- * of the mitered corner.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-int
-TkGetMiterPoints(
- double p1[], /* Points to x- and y-coordinates of point
- * before vertex. */
- double p2[], /* Points to x- and y-coordinates of vertex
- * for mitered joint. */
- double p3[], /* Points to x- and y-coordinates of point
- * after vertex. */
- double width, /* Width of line. */
- double m1[], /* Points to place to put "left" vertex point
- * (see as you face from p1 to p2). */
- double m2[]) /* Points to place to put "right" vertex
- * point. */
-{
- double theta1; /* Angle of segment p2-p1. */
- double theta2; /* Angle of segment p2-p3. */
- double theta; /* Angle between line segments (angle of
- * joint). */
- double theta3; /* Angle that bisects theta1 and theta2 and
- * points to m1. */
- double dist; /* Distance of miter points from p2. */
- double deltaX, deltaY; /* X and y offsets cooresponding to dist
- * (fudge factors for bounding box). */
- double p1x, p1y, p2x, p2y, p3x, p3y;
-#ifndef _MSC_VER
- static const double elevenDegrees = (11.0*2.0*PI)/360.0;
-#else /* msvc8 with -fp:strict requires it this way */
- static const double elevenDegrees = 0.19198621771937624;
-#endif
-
- /*
- * Round the coordinates to integers to mimic what happens when the line
- * segments are displayed; without this code, the bounding box of a
- * mitered line can be miscomputed greatly.
- */
-
- p1x = floor(p1[0]+0.5);
- p1y = floor(p1[1]+0.5);
- p2x = floor(p2[0]+0.5);
- p2y = floor(p2[1]+0.5);
- p3x = floor(p3[0]+0.5);
- p3y = floor(p3[1]+0.5);
-
- if (p2y == p1y) {
- theta1 = (p2x < p1x) ? 0 : PI;
- } else if (p2x == p1x) {
- theta1 = (p2y < p1y) ? PI/2.0 : -PI/2.0;
- } else {
- theta1 = atan2(p1y - p2y, p1x - p2x);
- }
-
- if (p3y == p2y) {
- theta2 = (p3x > p2x) ? 0 : PI;
- } else if (p3x == p2x) {
- theta2 = (p3y > p2y) ? PI/2.0 : -PI/2.0;
- } else {
- theta2 = atan2(p3y - p2y, p3x - p2x);
- }
-
- theta = theta1 - theta2;
- if (theta > PI) {
- theta -= 2*PI;
- } else if (theta < -PI) {
- theta += 2*PI;
- }
-
- if ((theta < elevenDegrees) && (theta > -elevenDegrees)) {
- return 0;
- }
-
- dist = 0.5*width/sin(0.5*theta);
- if (dist < 0.0) {
- dist = -dist;
- }
-
- /*
- * Compute theta3 (make sure that it points to the left when looking from
- * p1 to p2).
- */
-
- theta3 = (theta1 + theta2)/2.0;
- if (sin(theta3 - (theta1 + PI)) < 0.0) {
- theta3 += PI;
- }
- deltaX = dist*cos(theta3);
- m1[0] = p2x + deltaX;
- m2[0] = p2x - deltaX;
- deltaY = dist*sin(theta3);
- m1[1] = p2y + deltaY;
- m2[1] = p2y - deltaY;
-
- return 1;
-}
-
-/*
- *--------------------------------------------------------------
- *
- * TkGetButtPoints --
- *
- * Given two points forming a line segment, compute the coordinates of
- * two endpoints of a rectangle formed by bloating the line segment until
- * it is width units wide.
- *
- * Results:
- * There is no return value. M1 and m2 are filled in to correspond to m1
- * and m2 in the diagram below:
- *
- * ----------------* m1
- * |
- * p1 *---------------* p2
- * |
- * ----------------* m2
- *
- * M1 and m2 will be W units apart, with p2 centered between them and
- * m1-m2 perpendicular to p1-p2. However, if "project" is true then m1
- * and m2 will be as follows:
- *
- * -------------------* m1
- * p2 |
- * p1 *---------------* |
- * |
- * -------------------* m2
- *
- * In this case p2 will be width/2 units from the segment m1-m2.
- *
- * Side effects:
- * None.
- *
- *--------------------------------------------------------------
- */
-
-void
-TkGetButtPoints(
- double p1[], /* Points to x- and y-coordinates of point
- * before vertex. */
- double p2[], /* Points to x- and y-coordinates of vertex
- * for mitered joint. */
- double width, /* Width of line. */
- int project, /* Non-zero means project p2 by an additional
- * width/2 before computing m1 and m2. */
- double m1[], /* Points to place to put "left" result point,
- * as you face from p1 to p2. */
- double m2[]) /* Points to place to put "right" result
- * point. */
-{
- double length; /* Length of p1-p2 segment. */
- double deltaX, deltaY; /* Increments in coords. */
-
- width *= 0.5;
- length = hypot(p2[0] - p1[0], p2[1] - p1[1]);
- if (length == 0.0) {
- m1[0] = m2[0] = p2[0];
- m1[1] = m2[1] = p2[1];
- } else {
- deltaX = -width * (p2[1] - p1[1]) / length;
- deltaY = width * (p2[0] - p1[0]) / length;
- m1[0] = p2[0] + deltaX;
- m2[0] = p2[0] - deltaX;
- m1[1] = p2[1] + deltaY;
- m2[1] = p2[1] - deltaY;
- if (project) {
- m1[0] += deltaY;
- m2[0] += deltaY;
- m1[1] -= deltaX;
- m2[1] -= deltaX;
- }
- }
-}
-
-/*
- * Local Variables:
- * mode: c
- * c-basic-offset: 4
- * fill-column: 78
- * End:
- */