summaryrefslogtreecommitdiffstats
path: root/tksao/wcssubs/slasubs.c
diff options
context:
space:
mode:
authorWilliam Joye <wjoye@cfa.harvard.edu>2016-10-27 18:59:29 (GMT)
committerWilliam Joye <wjoye@cfa.harvard.edu>2016-10-27 18:59:29 (GMT)
commitd4d595fa7fb12903db9227d33d48b2b00120dbd1 (patch)
tree7d18365de0d6d1b29399b6a17c7eb01c2eb3ed49 /tksao/wcssubs/slasubs.c
parent949f96e29bfe0bd8710d775ce220e597064e2589 (diff)
downloadblt-d4d595fa7fb12903db9227d33d48b2b00120dbd1.zip
blt-d4d595fa7fb12903db9227d33d48b2b00120dbd1.tar.gz
blt-d4d595fa7fb12903db9227d33d48b2b00120dbd1.tar.bz2
Initial commit
Diffstat (limited to 'tksao/wcssubs/slasubs.c')
-rw-r--r--tksao/wcssubs/slasubs.c364
1 files changed, 364 insertions, 0 deletions
diff --git a/tksao/wcssubs/slasubs.c b/tksao/wcssubs/slasubs.c
new file mode 100644
index 0000000..74ddb88
--- /dev/null
+++ b/tksao/wcssubs/slasubs.c
@@ -0,0 +1,364 @@
+/* File slasubs.c
+ *** Starlink subroutines by Patrick Wallace used by wcscon.c subroutines
+ *** April 13, 1998
+ */
+
+#include <math.h>
+#include <string.h>
+
+/* slaDcs2c (a, b, v): Spherical coordinates to direction cosines.
+ * slaDcc2s (v, a, b): Direction cosines to spherical coordinates.
+ * slaDmxv (dm, va, vb): vector vb = matrix dm * vector va
+ * slaImxv (rm, va, vb): vector vb = (inverse of matrix rm) * vector va
+ * slaDranrm (angle): Normalize angle into range 0-2 pi.
+ * slaDrange (angle): Normalize angle into range +/- pi.
+ * slaDeuler (order, phi, theta, psi, rmat)
+ * Form a rotation matrix from the Euler angles - three successive
+ * rotations about specified Cartesian axes.
+ */
+
+void
+slaDcs2c (a, b, v)
+
+double a; /* Right ascension in radians */
+double b; /* Declination in radians */
+double *v; /* x,y,z unit vector (returned) */
+
+/*
+** slaDcs2c: Spherical coordinates to direction cosines.
+**
+** The spherical coordinates are longitude (+ve anticlockwise
+** looking from the +ve latitude pole) and latitude. The
+** Cartesian coordinates are right handed, with the x axis
+** at zero longitude and latitude, and the z axis at the
+** +ve latitude pole.
+**
+** P.T.Wallace Starlink 31 October 1993
+*/
+{
+ double cosb;
+
+ cosb = cos ( b );
+ v[0] = cos ( a ) * cosb;
+ v[1] = sin ( a ) * cosb;
+ v[2] = sin ( b );
+}
+
+
+void
+slaDcc2s (v, a, b)
+
+double *v; /* x,y,z vector */
+double *a; /* Right ascension in radians */
+double *b; /* Declination in radians */
+
+/*
+** slaDcc2s:
+** Direction cosines to spherical coordinates.
+**
+** Returned:
+** *a,*b double spherical coordinates in radians
+**
+** The spherical coordinates are longitude (+ve anticlockwise
+** looking from the +ve latitude pole) and latitude. The
+** Cartesian coordinates are right handed, with the x axis
+** at zero longitude and latitude, and the z axis at the
+** +ve latitude pole.
+**
+** If v is null, zero a and b are returned.
+** At either pole, zero a is returned.
+**
+** P.T.Wallace Starlink 31 October 1993
+*/
+{
+ double x, y, z, r;
+
+ x = v[0];
+ y = v[1];
+ z = v[2];
+ r = sqrt ( x * x + y * y );
+
+ *a = ( r != 0.0 ) ? atan2 ( y, x ) : 0.0;
+ *b = ( z != 0.0 ) ? atan2 ( z, r ) : 0.0;
+}
+
+
+void
+slaDmxv (dm, va, vb)
+
+double (*dm)[3]; /* 3x3 Matrix */
+double *va; /* Vector */
+double *vb; /* Result vector (returned) */
+
+/*
+** slaDmxv:
+** Performs the 3-d forward unitary transformation:
+** vector vb = matrix dm * vector va
+**
+** P.T.Wallace Starlink 31 October 1993
+*/
+{
+ int i, j;
+ double w, vw[3];
+
+ /* Matrix dm * vector va -> vector vw */
+ for ( j = 0; j < 3; j++ ) {
+ w = 0.0;
+ for ( i = 0; i < 3; i++ ) {
+ w += dm[j][i] * va[i];
+ }
+ vw[j] = w;
+ }
+
+ /* Vector vw -> vector vb */
+ for ( j = 0; j < 3; j++ ) {
+ vb[j] = vw[j];
+ }
+}
+
+
+void slaDimxv (dm, va, vb)
+ double (*dm)[3];
+ double *va;
+ double *vb;
+/*
+** - - - - - - - - -
+** s l a D i m x v
+** - - - - - - - - -
+**
+** Performs the 3-d backward unitary transformation:
+**
+** vector vb = (inverse of matrix dm) * vector va
+**
+** (double precision)
+**
+** (n.b. The matrix must be unitary, as this routine assumes that
+** the inverse and transpose are identical)
+**
+**
+** Given:
+** dm double[3][3] matrix
+** va double[3] vector
+**
+** Returned:
+** vb double[3] result vector
+**
+** P.T.Wallace Starlink 31 October 1993
+*/
+{
+ long i, j;
+ double w, vw[3];
+
+/* Inverse of matrix dm * vector va -> vector vw */
+ for ( j = 0; j < 3; j++ ) {
+ w = 0.0;
+ for ( i = 0; i < 3; i++ ) {
+ w += dm[i][j] * va[i];
+ }
+ vw[j] = w;
+ }
+
+/* Vector vw -> vector vb */
+ for ( j = 0; j < 3; j++ ) {
+ vb[j] = vw[j];
+ }
+}
+
+
+/* 2pi */
+#define D2PI 6.2831853071795864769252867665590057683943387987502
+
+/* pi */
+#define DPI 3.1415926535897932384626433832795028841971693993751
+
+double slaDranrm (angle)
+
+double angle; /* angle in radians */
+
+/*
+** slaDranrm:
+** Normalize angle into range 0-2 pi.
+** The result is angle expressed in the range 0-2 pi (double).
+** Defined in slamac.h: D2PI
+**
+** P.T.Wallace Starlink 30 October 1993
+*/
+{
+ double w;
+
+ w = fmod ( angle, D2PI );
+ return ( w >= 0.0 ) ? w : w + D2PI;
+}
+
+#ifndef dsign
+#define dsign(A,B) ((B)<0.0?-(A):(A))
+#endif
+
+double
+slaDrange (angle)
+ double angle;
+/*
+** - - - - - - - - - -
+** s l a D r a n g e
+** - - - - - - - - - -
+**
+** Normalize angle into range +/- pi.
+**
+** (double precision)
+**
+** Given:
+** angle double the angle in radians
+**
+** The result is angle expressed in the +/- pi (double precision).
+**
+** Defined in slamac.h: DPI, D2PI
+**
+** P.T.Wallace Starlink 31 October 1993
+*/
+{
+ double w;
+
+ w = fmod ( angle, D2PI );
+ return ( fabs ( w ) < DPI ) ? w : w - dsign ( D2PI, angle );
+}
+
+
+void
+slaDeuler (order, phi, theta, psi, rmat)
+
+char *order; /* specifies about which axes the rotations occur */
+double phi; /* 1st rotation (radians) */
+double theta; /* 2nd rotation (radians) */
+double psi; /* 3rd rotation (radians) */
+double (*rmat)[3]; /* 3x3 Rotation matrix (returned) */
+
+/*
+** slaDeuler:
+** Form a rotation matrix from the Euler angles - three successive
+** rotations about specified Cartesian axes.
+**
+** A rotation is positive when the reference frame rotates
+** anticlockwise as seen looking towards the origin from the
+** positive region of the specified axis.
+**
+** The characters of order define which axes the three successive
+** rotations are about. A typical value is 'zxz', indicating that
+** rmat is to become the direction cosine matrix corresponding to
+** rotations of the reference frame through phi radians about the
+** old z-axis, followed by theta radians about the resulting x-axis,
+** then psi radians about the resulting z-axis.
+**
+** The axis names can be any of the following, in any order or
+** combination: x, y, z, uppercase or lowercase, 1, 2, 3. Normal
+** axis labelling/numbering conventions apply; the xyz (=123)
+** triad is right-handed. Thus, the 'zxz' example given above
+** could be written 'zxz' or '313' (or even 'zxz' or '3xz'). Order
+** is terminated by length or by the first unrecognised character.
+**
+** Fewer than three rotations are acceptable, in which case the later
+** angle arguments are ignored. Zero rotations produces a unit rmat.
+**
+** P.T.Wallace Starlink 17 November 1993
+*/
+{
+ int j, i, l, n, k;
+ double result[3][3], rotn[3][3], angle, s, c , w, wm[3][3];
+ char axis;
+
+/* Initialize result matrix */
+ for ( j = 0; j < 3; j++ ) {
+ for ( i = 0; i < 3; i++ ) {
+ result[i][j] = ( i == j ) ? 1.0 : 0.0;
+ }
+ }
+
+/* Establish length of axis string */
+ l = strlen ( order );
+
+/* Look at each character of axis string until finished */
+ for ( n = 0; n < 3; n++ ) {
+ if ( n <= l ) {
+
+ /* Initialize rotation matrix for the current rotation */
+ for ( j = 0; j < 3; j++ ) {
+ for ( i = 0; i < 3; i++ ) {
+ rotn[i][j] = ( i == j ) ? 1.0 : 0.0;
+ }
+ }
+
+ /* Pick up the appropriate Euler angle and take sine & cosine */
+ switch ( n ) {
+ case 0 :
+ angle = phi;
+ break;
+ case 1 :
+ angle = theta;
+ break;
+ case 2 :
+ angle = psi;
+ break;
+ }
+ s = sin ( angle );
+ c = cos ( angle );
+
+ /* Identify the axis */
+ axis = order[n];
+ if ( ( axis == 'X' ) || ( axis == 'x' ) || ( axis == '1' ) ) {
+
+ /* Matrix for x-rotation */
+ rotn[1][1] = c;
+ rotn[1][2] = s;
+ rotn[2][1] = -s;
+ rotn[2][2] = c;
+ }
+ else if ( ( axis == 'Y' ) || ( axis == 'y' ) || ( axis == '2' ) ) {
+
+ /* Matrix for y-rotation */
+ rotn[0][0] = c;
+ rotn[0][2] = -s;
+ rotn[2][0] = s;
+ rotn[2][2] = c;
+ }
+ else if ( ( axis == 'Z' ) || ( axis == 'z' ) || ( axis == '3' ) ) {
+
+ /* Matrix for z-rotation */
+ rotn[0][0] = c;
+ rotn[0][1] = s;
+ rotn[1][0] = -s;
+ rotn[1][1] = c;
+ } else {
+
+ /* Unrecognized character - fake end of string */
+ l = 0;
+ }
+
+ /* Apply the current rotation (matrix rotn x matrix result) */
+ for ( i = 0; i < 3; i++ ) {
+ for ( j = 0; j < 3; j++ ) {
+ w = 0.0;
+ for ( k = 0; k < 3; k++ ) {
+ w += rotn[i][k] * result[k][j];
+ }
+ wm[i][j] = w;
+ }
+ }
+ for ( j = 0; j < 3; j++ ) {
+ for ( i= 0; i < 3; i++ ) {
+ result[i][j] = wm[i][j];
+ }
+ }
+ }
+ }
+
+/* Copy the result */
+ for ( j = 0; j < 3; j++ ) {
+ for ( i = 0; i < 3; i++ ) {
+ rmat[i][j] = result[i][j];
+ }
+ }
+}
+/*
+ * Nov 4 1996 New file
+ *
+ * Apr 13 1998 Add list of subroutines to start of file
+ */