summaryrefslogtreecommitdiffstats
path: root/ast/erfa/plan94.c
diff options
context:
space:
mode:
Diffstat (limited to 'ast/erfa/plan94.c')
-rw-r--r--ast/erfa/plan94.c523
1 files changed, 523 insertions, 0 deletions
diff --git a/ast/erfa/plan94.c b/ast/erfa/plan94.c
new file mode 100644
index 0000000..7191204
--- /dev/null
+++ b/ast/erfa/plan94.c
@@ -0,0 +1,523 @@
+#include "erfa.h"
+
+int eraPlan94(double date1, double date2, int np, double pv[2][3])
+/*
+** - - - - - - - - - -
+** e r a P l a n 9 4
+** - - - - - - - - - -
+**
+** Approximate heliocentric position and velocity of a nominated major
+** planet: Mercury, Venus, EMB, Mars, Jupiter, Saturn, Uranus or
+** Neptune (but not the Earth itself).
+**
+** Given:
+** date1 double TDB date part A (Note 1)
+** date2 double TDB date part B (Note 1)
+** np int planet (1=Mercury, 2=Venus, 3=EMB, 4=Mars,
+** 5=Jupiter, 6=Saturn, 7=Uranus, 8=Neptune)
+**
+** Returned (argument):
+** pv double[2][3] planet p,v (heliocentric, J2000.0, AU,AU/d)
+**
+** Returned (function value):
+** int status: -1 = illegal NP (outside 1-8)
+** 0 = OK
+** +1 = warning: year outside 1000-3000
+** +2 = warning: failed to converge
+**
+** Notes:
+**
+** 1) The date date1+date2 is in the TDB time scale (in practice TT can
+** be used) and is a Julian Date, apportioned in any convenient way
+** between the two arguments. For example, JD(TDB)=2450123.7 could
+** be expressed in any of these ways, among others:
+**
+** date1 date2
+**
+** 2450123.7 0.0 (JD method)
+** 2451545.0 -1421.3 (J2000 method)
+** 2400000.5 50123.2 (MJD method)
+** 2450123.5 0.2 (date & time method)
+**
+** The JD method is the most natural and convenient to use in cases
+** where the loss of several decimal digits of resolution is
+** acceptable. The J2000 method is best matched to the way the
+** argument is handled internally and will deliver the optimum
+** resolution. The MJD method and the date & time methods are both
+** good compromises between resolution and convenience. The limited
+** accuracy of the present algorithm is such that any of the methods
+** is satisfactory.
+**
+** 2) If an np value outside the range 1-8 is supplied, an error status
+** (function value -1) is returned and the pv vector set to zeroes.
+**
+** 3) For np=3 the result is for the Earth-Moon Barycenter. To obtain
+** the heliocentric position and velocity of the Earth, use instead
+** the ERFA function eraEpv00.
+**
+** 4) On successful return, the array pv contains the following:
+**
+** pv[0][0] x }
+** pv[0][1] y } heliocentric position, AU
+** pv[0][2] z }
+**
+** pv[1][0] xdot }
+** pv[1][1] ydot } heliocentric velocity, AU/d
+** pv[1][2] zdot }
+**
+** The reference frame is equatorial and is with respect to the
+** mean equator and equinox of epoch J2000.0.
+**
+** 5) The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront,
+** M. Chapront-Touze, G. Francou and J. Laskar (Bureau des
+** Longitudes, Paris, France). From comparisons with JPL
+** ephemeris DE102, they quote the following maximum errors
+** over the interval 1800-2050:
+**
+** L (arcsec) B (arcsec) R (km)
+**
+** Mercury 4 1 300
+** Venus 5 1 800
+** EMB 6 1 1000
+** Mars 17 1 7700
+** Jupiter 71 5 76000
+** Saturn 81 13 267000
+** Uranus 86 7 712000
+** Neptune 11 1 253000
+**
+** Over the interval 1000-3000, they report that the accuracy is no
+** worse than 1.5 times that over 1800-2050. Outside 1000-3000 the
+** accuracy declines.
+**
+** Comparisons of the present function with the JPL DE200 ephemeris
+** give the following RMS errors over the interval 1960-2025:
+**
+** position (km) velocity (m/s)
+**
+** Mercury 334 0.437
+** Venus 1060 0.855
+** EMB 2010 0.815
+** Mars 7690 1.98
+** Jupiter 71700 7.70
+** Saturn 199000 19.4
+** Uranus 564000 16.4
+** Neptune 158000 14.4
+**
+** Comparisons against DE200 over the interval 1800-2100 gave the
+** following maximum absolute differences. (The results using
+** DE406 were essentially the same.)
+**
+** L (arcsec) B (arcsec) R (km) Rdot (m/s)
+**
+** Mercury 7 1 500 0.7
+** Venus 7 1 1100 0.9
+** EMB 9 1 1300 1.0
+** Mars 26 1 9000 2.5
+** Jupiter 78 6 82000 8.2
+** Saturn 87 14 263000 24.6
+** Uranus 86 7 661000 27.4
+** Neptune 11 2 248000 21.4
+**
+** 6) The present ERFA re-implementation of the original Simon et al.
+** Fortran code differs from the original in the following respects:
+**
+** * C instead of Fortran.
+**
+** * The date is supplied in two parts.
+**
+** * The result is returned only in equatorial Cartesian form;
+** the ecliptic longitude, latitude and radius vector are not
+** returned.
+**
+** * The result is in the J2000.0 equatorial frame, not ecliptic.
+**
+** * More is done in-line: there are fewer calls to subroutines.
+**
+** * Different error/warning status values are used.
+**
+** * A different Kepler's-equation-solver is used (avoiding
+** use of double precision complex).
+**
+** * Polynomials in t are nested to minimize rounding errors.
+**
+** * Explicit double constants are used to avoid mixed-mode
+** expressions.
+**
+** None of the above changes affects the result significantly.
+**
+** 7) The returned status indicates the most serious condition
+** encountered during execution of the function. Illegal np is
+** considered the most serious, overriding failure to converge,
+** which in turn takes precedence over the remote date warning.
+**
+** Called:
+** eraAnp normalize angle into range 0 to 2pi
+**
+** Reference: Simon, J.L, Bretagnon, P., Chapront, J.,
+** Chapront-Touze, M., Francou, G., and Laskar, J.,
+** Astron. Astrophys. 282, 663 (1994).
+**
+** Copyright (C) 2013-2014, NumFOCUS Foundation.
+** Derived, with permission, from the SOFA library. See notes at end of file.
+*/
+{
+/* Gaussian constant */
+ static const double GK = 0.017202098950;
+
+/* Sin and cos of J2000.0 mean obliquity (IAU 1976) */
+ static const double SINEPS = 0.3977771559319137;
+ static const double COSEPS = 0.9174820620691818;
+
+/* Maximum number of iterations allowed to solve Kepler's equation */
+ static const int KMAX = 10;
+
+ int jstat, i, k;
+ double t, da, dl, de, dp, di, dom, dmu, arga, argl, am,
+ ae, dae, ae2, at, r, v, si2, xq, xp, tl, xsw,
+ xcw, xm2, xf, ci2, xms, xmc, xpxq2, x, y, z;
+
+/* Planetary inverse masses */
+ static const double amas[] = { 6023600.0, /* Mercury */
+ 408523.5, /* Venus */
+ 328900.5, /* EMB */
+ 3098710.0, /* Mars */
+ 1047.355, /* Jupiter */
+ 3498.5, /* Saturn */
+ 22869.0, /* Uranus */
+ 19314.0 }; /* Neptune */
+
+/*
+** Tables giving the mean Keplerian elements, limited to t^2 terms:
+**
+** a semi-major axis (AU)
+** dlm mean longitude (degree and arcsecond)
+** e eccentricity
+** pi longitude of the perihelion (degree and arcsecond)
+** dinc inclination (degree and arcsecond)
+** omega longitude of the ascending node (degree and arcsecond)
+*/
+
+ static const double a[][3] = {
+ { 0.3870983098, 0.0, 0.0 }, /* Mercury */
+ { 0.7233298200, 0.0, 0.0 }, /* Venus */
+ { 1.0000010178, 0.0, 0.0 }, /* EMB */
+ { 1.5236793419, 3e-10, 0.0 }, /* Mars */
+ { 5.2026032092, 19132e-10, -39e-10 }, /* Jupiter */
+ { 9.5549091915, -0.0000213896, 444e-10 }, /* Saturn */
+ { 19.2184460618, -3716e-10, 979e-10 }, /* Uranus */
+ { 30.1103868694, -16635e-10, 686e-10 } /* Neptune */
+ };
+
+ static const double dlm[][3] = {
+ { 252.25090552, 5381016286.88982, -1.92789 },
+ { 181.97980085, 2106641364.33548, 0.59381 },
+ { 100.46645683, 1295977422.83429, -2.04411 },
+ { 355.43299958, 689050774.93988, 0.94264 },
+ { 34.35151874, 109256603.77991, -30.60378 },
+ { 50.07744430, 43996098.55732, 75.61614 },
+ { 314.05500511, 15424811.93933, -1.75083 },
+ { 304.34866548, 7865503.20744, 0.21103 }
+ };
+
+ static const double e[][3] = {
+ { 0.2056317526, 0.0002040653, -28349e-10 },
+ { 0.0067719164, -0.0004776521, 98127e-10 },
+ { 0.0167086342, -0.0004203654, -0.0000126734 },
+ { 0.0934006477, 0.0009048438, -80641e-10 },
+ { 0.0484979255, 0.0016322542, -0.0000471366 },
+ { 0.0555481426, -0.0034664062, -0.0000643639 },
+ { 0.0463812221, -0.0002729293, 0.0000078913 },
+ { 0.0094557470, 0.0000603263, 0.0 }
+ };
+
+ static const double pi[][3] = {
+ { 77.45611904, 5719.11590, -4.83016 },
+ { 131.56370300, 175.48640, -498.48184 },
+ { 102.93734808, 11612.35290, 53.27577 },
+ { 336.06023395, 15980.45908, -62.32800 },
+ { 14.33120687, 7758.75163, 259.95938 },
+ { 93.05723748, 20395.49439, 190.25952 },
+ { 173.00529106, 3215.56238, -34.09288 },
+ { 48.12027554, 1050.71912, 27.39717 }
+ };
+
+ static const double dinc[][3] = {
+ { 7.00498625, -214.25629, 0.28977 },
+ { 3.39466189, -30.84437, -11.67836 },
+ { 0.0, 469.97289, -3.35053 },
+ { 1.84972648, -293.31722, -8.11830 },
+ { 1.30326698, -71.55890, 11.95297 },
+ { 2.48887878, 91.85195, -17.66225 },
+ { 0.77319689, -60.72723, 1.25759 },
+ { 1.76995259, 8.12333, 0.08135 }
+ };
+
+ static const double omega[][3] = {
+ { 48.33089304, -4515.21727, -31.79892 },
+ { 76.67992019, -10008.48154, -51.32614 },
+ { 174.87317577, -8679.27034, 15.34191 },
+ { 49.55809321, -10620.90088, -230.57416 },
+ { 100.46440702, 6362.03561, 326.52178 },
+ { 113.66550252, -9240.19942, -66.23743 },
+ { 74.00595701, 2669.15033, 145.93964 },
+ { 131.78405702, -221.94322, -0.78728 }
+ };
+
+/* Tables for trigonometric terms to be added to the mean elements of */
+/* the semi-major axes */
+
+ static const double kp[][9] = {
+ { 69613, 75645, 88306, 59899, 15746, 71087, 142173, 3086, 0 },
+ { 21863, 32794, 26934, 10931, 26250, 43725, 53867, 28939, 0 },
+ { 16002, 21863, 32004, 10931, 14529, 16368, 15318, 32794, 0 },
+ { 6345, 7818, 15636, 7077, 8184, 14163, 1107, 4872, 0 },
+ { 1760, 1454, 1167, 880, 287, 2640, 19, 2047, 1454 },
+ { 574, 0, 880, 287, 19, 1760, 1167, 306, 574 },
+ { 204, 0, 177, 1265, 4, 385, 200, 208, 204 },
+ { 0, 102, 106, 4, 98, 1367, 487, 204, 0 }
+ };
+
+ static const double ca[][9] = {
+ { 4, -13, 11, -9, -9, -3, -1, 4, 0 },
+ { -156, 59, -42, 6, 19, -20, -10, -12, 0 },
+ { 64, -152, 62, -8, 32, -41, 19, -11, 0 },
+ { 124, 621, -145, 208, 54, -57, 30, 15, 0 },
+ { -23437, -2634, 6601, 6259, -1507,-1821, 2620, -2115, -1489 },
+ { 62911,-119919, 79336,17814,-24241,12068, 8306, -4893, 8902 },
+ { 389061,-262125,-44088, 8387,-22976,-2093, -615, -9720, 6633 },
+ { -412235,-157046,-31430,37817, -9740, -13, -7449, 9644, 0 }
+ };
+
+ static const double sa[][9] = {
+ { -29, -1, 9, 6, -6, 5, 4, 0, 0 },
+ { -48, -125, -26, -37, 18, -13, -20, -2, 0 },
+ { -150, -46, 68, 54, 14, 24, -28, 22, 0 },
+ { -621, 532, -694, -20, 192, -94, 71, -73, 0 },
+ { -14614,-19828, -5869, 1881, -4372, -2255, 782, 930, 913 },
+ { 139737, 0, 24667, 51123, -5102, 7429, -4095, -1976, -9566 },
+ { -138081, 0, 37205,-49039,-41901,-33872,-27037,-12474, 18797 },
+ { 0, 28492,133236, 69654, 52322,-49577,-26430, -3593, 0 }
+ };
+
+/* Tables giving the trigonometric terms to be added to the mean */
+/* elements of the mean longitudes */
+
+ static const double kq[][10] = {
+ { 3086,15746,69613,59899,75645,88306, 12661, 2658, 0, 0 },
+ { 21863,32794,10931, 73, 4387,26934, 1473, 2157, 0, 0 },
+ { 10,16002,21863,10931, 1473,32004, 4387, 73, 0, 0 },
+ { 10, 6345, 7818, 1107,15636, 7077, 8184, 532, 10, 0 },
+ { 19, 1760, 1454, 287, 1167, 880, 574, 2640, 19, 1454 },
+ { 19, 574, 287, 306, 1760, 12, 31, 38, 19, 574 },
+ { 4, 204, 177, 8, 31, 200, 1265, 102, 4, 204 },
+ { 4, 102, 106, 8, 98, 1367, 487, 204, 4, 102 }
+ };
+
+ static const double cl[][10] = {
+ { 21, -95, -157, 41, -5, 42, 23, 30, 0, 0 },
+ { -160, -313, -235, 60, -74, -76, -27, 34, 0, 0 },
+ { -325, -322, -79, 232, -52, 97, 55, -41, 0, 0 },
+ { 2268, -979, 802, 602, -668, -33, 345, 201, -55, 0 },
+ { 7610, -4997,-7689,-5841,-2617, 1115,-748,-607, 6074, 354 },
+ { -18549, 30125,20012, -730, 824, 23,1289,-352, -14767, -2062 },
+ { -135245,-14594, 4197,-4030,-5630,-2898,2540,-306, 2939, 1986 },
+ { 89948, 2103, 8963, 2695, 3682, 1648, 866,-154, -1963, -283 }
+ };
+
+ static const double sl[][10] = {
+ { -342, 136, -23, 62, 66, -52, -33, 17, 0, 0 },
+ { 524, -149, -35, 117, 151, 122, -71, -62, 0, 0 },
+ { -105, -137, 258, 35, -116, -88,-112, -80, 0, 0 },
+ { 854, -205, -936, -240, 140, -341, -97, -232, 536, 0 },
+ { -56980, 8016, 1012, 1448,-3024,-3710, 318, 503, 3767, 577 },
+ { 138606,-13478,-4964, 1441,-1319,-1482, 427, 1236, -9167, -1918 },
+ { 71234,-41116, 5334,-4935,-1848, 66, 434, -1748, 3780, -701 },
+ { -47645, 11647, 2166, 3194, 679, 0,-244, -419, -2531, 48 }
+ };
+
+/*--------------------------------------------------------------------*/
+
+/* Validate the planet number. */
+ if ((np < 1) || (np > 8)) {
+ jstat = -1;
+
+ /* Reset the result in case of failure. */
+ for (k = 0; k < 2; k++) {
+ for (i = 0; i < 3; i++) {
+ pv[k][i] = 0.0;
+ }
+ }
+
+ } else {
+
+ /* Decrement the planet number to start at zero. */
+ np--;
+
+ /* Time: Julian millennia since J2000.0. */
+ t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJM;
+
+ /* OK status unless remote date. */
+ jstat = fabs(t) <= 1.0 ? 0 : 1;
+
+ /* Compute the mean elements. */
+ da = a[np][0] +
+ (a[np][1] +
+ a[np][2] * t) * t;
+ dl = (3600.0 * dlm[np][0] +
+ (dlm[np][1] +
+ dlm[np][2] * t) * t) * ERFA_DAS2R;
+ de = e[np][0] +
+ ( e[np][1] +
+ e[np][2] * t) * t;
+ dp = eraAnpm((3600.0 * pi[np][0] +
+ (pi[np][1] +
+ pi[np][2] * t) * t) * ERFA_DAS2R);
+ di = (3600.0 * dinc[np][0] +
+ (dinc[np][1] +
+ dinc[np][2] * t) * t) * ERFA_DAS2R;
+ dom = eraAnpm((3600.0 * omega[np][0] +
+ (omega[np][1] +
+ omega[np][2] * t) * t) * ERFA_DAS2R);
+
+ /* Apply the trigonometric terms. */
+ dmu = 0.35953620 * t;
+ for (k = 0; k < 8; k++) {
+ arga = kp[np][k] * dmu;
+ argl = kq[np][k] * dmu;
+ da += (ca[np][k] * cos(arga) +
+ sa[np][k] * sin(arga)) * 1e-7;
+ dl += (cl[np][k] * cos(argl) +
+ sl[np][k] * sin(argl)) * 1e-7;
+ }
+ arga = kp[np][8] * dmu;
+ da += t * (ca[np][8] * cos(arga) +
+ sa[np][8] * sin(arga)) * 1e-7;
+ for (k = 8; k < 10; k++) {
+ argl = kq[np][k] * dmu;
+ dl += t * (cl[np][k] * cos(argl) +
+ sl[np][k] * sin(argl)) * 1e-7;
+ }
+ dl = fmod(dl, ERFA_D2PI);
+
+ /* Iterative soln. of Kepler's equation to get eccentric anomaly. */
+ am = dl - dp;
+ ae = am + de * sin(am);
+ k = 0;
+ dae = 1.0;
+ while (k < KMAX && fabs(dae) > 1e-12) {
+ dae = (am - ae + de * sin(ae)) / (1.0 - de * cos(ae));
+ ae += dae;
+ k++;
+ if (k == KMAX-1) jstat = 2;
+ }
+
+ /* True anomaly. */
+ ae2 = ae / 2.0;
+ at = 2.0 * atan2(sqrt((1.0 + de) / (1.0 - de)) * sin(ae2),
+ cos(ae2));
+
+ /* Distance (AU) and speed (radians per day). */
+ r = da * (1.0 - de * cos(ae));
+ v = GK * sqrt((1.0 + 1.0 / amas[np]) / (da * da * da));
+
+ si2 = sin(di / 2.0);
+ xq = si2 * cos(dom);
+ xp = si2 * sin(dom);
+ tl = at + dp;
+ xsw = sin(tl);
+ xcw = cos(tl);
+ xm2 = 2.0 * (xp * xcw - xq * xsw);
+ xf = da / sqrt(1 - de * de);
+ ci2 = cos(di / 2.0);
+ xms = (de * sin(dp) + xsw) * xf;
+ xmc = (de * cos(dp) + xcw) * xf;
+ xpxq2 = 2 * xp * xq;
+
+ /* Position (J2000.0 ecliptic x,y,z in AU). */
+ x = r * (xcw - xm2 * xp);
+ y = r * (xsw + xm2 * xq);
+ z = r * (-xm2 * ci2);
+
+ /* Rotate to equatorial. */
+ pv[0][0] = x;
+ pv[0][1] = y * COSEPS - z * SINEPS;
+ pv[0][2] = y * SINEPS + z * COSEPS;
+
+ /* Velocity (J2000.0 ecliptic xdot,ydot,zdot in AU/d). */
+ x = v * (( -1.0 + 2.0 * xp * xp) * xms + xpxq2 * xmc);
+ y = v * (( 1.0 - 2.0 * xq * xq) * xmc - xpxq2 * xms);
+ z = v * (2.0 * ci2 * (xp * xms + xq * xmc));
+
+ /* Rotate to equatorial. */
+ pv[1][0] = x;
+ pv[1][1] = y * COSEPS - z * SINEPS;
+ pv[1][2] = y * SINEPS + z * COSEPS;
+
+ }
+
+/* Return the status. */
+ return jstat;
+
+}
+/*----------------------------------------------------------------------
+**
+**
+** Copyright (C) 2013-2014, NumFOCUS Foundation.
+** All rights reserved.
+**
+** This library is derived, with permission, from the International
+** Astronomical Union's "Standards of Fundamental Astronomy" library,
+** available from http://www.iausofa.org.
+**
+** The ERFA version is intended to retain identical functionality to
+** the SOFA library, but made distinct through different function and
+** file names, as set out in the SOFA license conditions. The SOFA
+** original has a role as a reference standard for the IAU and IERS,
+** and consequently redistribution is permitted only in its unaltered
+** state. The ERFA version is not subject to this restriction and
+** therefore can be included in distributions which do not support the
+** concept of "read only" software.
+**
+** Although the intent is to replicate the SOFA API (other than
+** replacement of prefix names) and results (with the exception of
+** bugs; any that are discovered will be fixed), SOFA is not
+** responsible for any errors found in this version of the library.
+**
+** If you wish to acknowledge the SOFA heritage, please acknowledge
+** that you are using a library derived from SOFA, rather than SOFA
+** itself.
+**
+**
+** TERMS AND CONDITIONS
+**
+** Redistribution and use in source and binary forms, with or without
+** modification, are permitted provided that the following conditions
+** are met:
+**
+** 1 Redistributions of source code must retain the above copyright
+** notice, this list of conditions and the following disclaimer.
+**
+** 2 Redistributions in binary form must reproduce the above copyright
+** notice, this list of conditions and the following disclaimer in
+** the documentation and/or other materials provided with the
+** distribution.
+**
+** 3 Neither the name of the Standards Of Fundamental Astronomy Board,
+** the International Astronomical Union nor the names of its
+** contributors may be used to endorse or promote products derived
+** from this software without specific prior written permission.
+**
+** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+** FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+** COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+** BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+** LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+** CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+** LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+** ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+** POSSIBILITY OF SUCH DAMAGE.
+**
+*/