summaryrefslogtreecommitdiffstats
path: root/ast/erfa/plan94.c
blob: 719120435cc4ac4def87bd5d2aa5ee08685c301c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
#include "erfa.h"

int eraPlan94(double date1, double date2, int np, double pv[2][3])
/*
**  - - - - - - - - - -
**   e r a P l a n 9 4
**  - - - - - - - - - -
**
**  Approximate heliocentric position and velocity of a nominated major
**  planet:  Mercury, Venus, EMB, Mars, Jupiter, Saturn, Uranus or
**  Neptune (but not the Earth itself).
**
**  Given:
**     date1  double       TDB date part A (Note 1)
**     date2  double       TDB date part B (Note 1)
**     np     int          planet (1=Mercury, 2=Venus, 3=EMB, 4=Mars,
**                             5=Jupiter, 6=Saturn, 7=Uranus, 8=Neptune)
**
**  Returned (argument):
**     pv     double[2][3] planet p,v (heliocentric, J2000.0, AU,AU/d)
**
**  Returned (function value):
**            int          status: -1 = illegal NP (outside 1-8)
**                                  0 = OK
**                                 +1 = warning: year outside 1000-3000
**                                 +2 = warning: failed to converge
**
**  Notes:
**
**  1) The date date1+date2 is in the TDB time scale (in practice TT can
**     be used) and is a Julian Date, apportioned in any convenient way
**     between the two arguments.  For example, JD(TDB)=2450123.7 could
**     be expressed in any of these ways, among others:
**
**            date1          date2
**
**         2450123.7           0.0       (JD method)
**         2451545.0       -1421.3       (J2000 method)
**         2400000.5       50123.2       (MJD method)
**         2450123.5           0.2       (date & time method)
**
**     The JD method is the most natural and convenient to use in cases
**     where the loss of several decimal digits of resolution is
**     acceptable.  The J2000 method is best matched to the way the
**     argument is handled internally and will deliver the optimum
**     resolution.  The MJD method and the date & time methods are both
**     good compromises between resolution and convenience.  The limited
**     accuracy of the present algorithm is such that any of the methods
**     is satisfactory.
**
**  2) If an np value outside the range 1-8 is supplied, an error status
**     (function value -1) is returned and the pv vector set to zeroes.
**
**  3) For np=3 the result is for the Earth-Moon Barycenter.  To obtain
**     the heliocentric position and velocity of the Earth, use instead
**     the ERFA function eraEpv00.
**
**  4) On successful return, the array pv contains the following:
**
**        pv[0][0]   x      }
**        pv[0][1]   y      } heliocentric position, AU
**        pv[0][2]   z      }
**
**        pv[1][0]   xdot   }
**        pv[1][1]   ydot   } heliocentric velocity, AU/d
**        pv[1][2]   zdot   }
**
**     The reference frame is equatorial and is with respect to the
**     mean equator and equinox of epoch J2000.0.
**
**  5) The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront,
**     M. Chapront-Touze, G. Francou and J. Laskar (Bureau des
**     Longitudes, Paris, France).  From comparisons with JPL
**     ephemeris DE102, they quote the following maximum errors
**     over the interval 1800-2050:
**
**                     L (arcsec)    B (arcsec)      R (km)
**
**        Mercury          4             1             300
**        Venus            5             1             800
**        EMB              6             1            1000
**        Mars            17             1            7700
**        Jupiter         71             5           76000
**        Saturn          81            13          267000
**        Uranus          86             7          712000
**        Neptune         11             1          253000
**
**     Over the interval 1000-3000, they report that the accuracy is no
**     worse than 1.5 times that over 1800-2050.  Outside 1000-3000 the
**     accuracy declines.
**
**     Comparisons of the present function with the JPL DE200 ephemeris
**     give the following RMS errors over the interval 1960-2025:
**
**                      position (km)     velocity (m/s)
**
**        Mercury            334               0.437
**        Venus             1060               0.855
**        EMB               2010               0.815
**        Mars              7690               1.98
**        Jupiter          71700               7.70
**        Saturn          199000              19.4
**        Uranus          564000              16.4
**        Neptune         158000              14.4
**
**     Comparisons against DE200 over the interval 1800-2100 gave the
**     following maximum absolute differences.  (The results using
**     DE406 were essentially the same.)
**
**                   L (arcsec)   B (arcsec)     R (km)   Rdot (m/s)
**
**        Mercury        7            1            500       0.7
**        Venus          7            1           1100       0.9
**        EMB            9            1           1300       1.0
**        Mars          26            1           9000       2.5
**        Jupiter       78            6          82000       8.2
**        Saturn        87           14         263000      24.6
**        Uranus        86            7         661000      27.4
**        Neptune       11            2         248000      21.4
**
**  6) The present ERFA re-implementation of the original Simon et al.
**     Fortran code differs from the original in the following respects:
**
**       *  C instead of Fortran.
**
**       *  The date is supplied in two parts.
**
**       *  The result is returned only in equatorial Cartesian form;
**          the ecliptic longitude, latitude and radius vector are not
**          returned.
**
**       *  The result is in the J2000.0 equatorial frame, not ecliptic.
**
**       *  More is done in-line: there are fewer calls to subroutines.
**
**       *  Different error/warning status values are used.
**
**       *  A different Kepler's-equation-solver is used (avoiding
**          use of double precision complex).
**
**       *  Polynomials in t are nested to minimize rounding errors.
**
**       *  Explicit double constants are used to avoid mixed-mode
**          expressions.
**
**     None of the above changes affects the result significantly.
**
**  7) The returned status indicates the most serious condition
**     encountered during execution of the function.  Illegal np is
**     considered the most serious, overriding failure to converge,
**     which in turn takes precedence over the remote date warning.
**
**  Called:
**     eraAnp       normalize angle into range 0 to 2pi
**
**  Reference:  Simon, J.L, Bretagnon, P., Chapront, J.,
**              Chapront-Touze, M., Francou, G., and Laskar, J.,
**              Astron. Astrophys. 282, 663 (1994).
**
**  Copyright (C) 2013-2014, NumFOCUS Foundation.
**  Derived, with permission, from the SOFA library.  See notes at end of file.
*/
{
/* Gaussian constant */
   static const double GK = 0.017202098950;

/* Sin and cos of J2000.0 mean obliquity (IAU 1976) */
   static const double SINEPS = 0.3977771559319137;
   static const double COSEPS = 0.9174820620691818;

/* Maximum number of iterations allowed to solve Kepler's equation */
   static const int KMAX = 10;

   int jstat, i, k;
   double t, da, dl, de, dp, di, dom, dmu, arga, argl, am,
          ae, dae, ae2, at, r, v, si2, xq, xp, tl, xsw,
          xcw, xm2, xf, ci2, xms, xmc, xpxq2, x, y, z;

/* Planetary inverse masses */
   static const double amas[] = { 6023600.0,       /* Mercury */
                                   408523.5,       /* Venus   */
                                   328900.5,       /* EMB     */
                                  3098710.0,       /* Mars    */
                                     1047.355,     /* Jupiter */
                                     3498.5,       /* Saturn  */
                                    22869.0,       /* Uranus  */
                                    19314.0 };     /* Neptune */

/*
** Tables giving the mean Keplerian elements, limited to t^2 terms:
**
**   a       semi-major axis (AU)
**   dlm     mean longitude (degree and arcsecond)
**   e       eccentricity
**   pi      longitude of the perihelion (degree and arcsecond)
**   dinc    inclination (degree and arcsecond)
**   omega   longitude of the ascending node (degree and arcsecond)
*/

   static const double a[][3] = {
       {  0.3870983098,           0.0,     0.0 },  /* Mercury */
       {  0.7233298200,           0.0,     0.0 },  /* Venus   */
       {  1.0000010178,           0.0,     0.0 },  /* EMB     */
       {  1.5236793419,         3e-10,     0.0 },  /* Mars    */
       {  5.2026032092,     19132e-10, -39e-10 },  /* Jupiter */
       {  9.5549091915, -0.0000213896, 444e-10 },  /* Saturn  */
       { 19.2184460618,     -3716e-10, 979e-10 },  /* Uranus  */
       { 30.1103868694,    -16635e-10, 686e-10 }   /* Neptune */
   };

   static const double dlm[][3] = {
       { 252.25090552, 5381016286.88982,  -1.92789 },
       { 181.97980085, 2106641364.33548,   0.59381 },
       { 100.46645683, 1295977422.83429,  -2.04411 },
       { 355.43299958,  689050774.93988,   0.94264 },
       {  34.35151874,  109256603.77991, -30.60378 },
       {  50.07744430,   43996098.55732,  75.61614 },
       { 314.05500511,   15424811.93933,  -1.75083 },
       { 304.34866548,    7865503.20744,   0.21103 }
   };

   static const double e[][3] = {
       { 0.2056317526,  0.0002040653,    -28349e-10 },
       { 0.0067719164, -0.0004776521,     98127e-10 },
       { 0.0167086342, -0.0004203654, -0.0000126734 },
       { 0.0934006477,  0.0009048438,    -80641e-10 },
       { 0.0484979255,  0.0016322542, -0.0000471366 },
       { 0.0555481426, -0.0034664062, -0.0000643639 },
       { 0.0463812221, -0.0002729293,  0.0000078913 },
       { 0.0094557470,  0.0000603263,           0.0 }
   };

   static const double pi[][3] = {
       {  77.45611904,  5719.11590,   -4.83016 },
       { 131.56370300,   175.48640, -498.48184 },
       { 102.93734808, 11612.35290,   53.27577 },
       { 336.06023395, 15980.45908,  -62.32800 },
       {  14.33120687,  7758.75163,  259.95938 },
       {  93.05723748, 20395.49439,  190.25952 },
       { 173.00529106,  3215.56238,  -34.09288 },
       {  48.12027554,  1050.71912,   27.39717 }
   };

   static const double dinc[][3] = {
       { 7.00498625, -214.25629,   0.28977 },
       { 3.39466189,  -30.84437, -11.67836 },
       {        0.0,  469.97289,  -3.35053 },
       { 1.84972648, -293.31722,  -8.11830 },
       { 1.30326698,  -71.55890,  11.95297 },
       { 2.48887878,   91.85195, -17.66225 },
       { 0.77319689,  -60.72723,   1.25759 },
       { 1.76995259,    8.12333,   0.08135 }
   };

   static const double omega[][3] = {
       {  48.33089304,  -4515.21727,  -31.79892 },
       {  76.67992019, -10008.48154,  -51.32614 },
       { 174.87317577,  -8679.27034,   15.34191 },
       {  49.55809321, -10620.90088, -230.57416 },
       { 100.46440702,   6362.03561,  326.52178 },
       { 113.66550252,  -9240.19942,  -66.23743 },
       {  74.00595701,   2669.15033,  145.93964 },
       { 131.78405702,   -221.94322,   -0.78728 }
   };

/* Tables for trigonometric terms to be added to the mean elements of */
/* the semi-major axes */

   static const double kp[][9] = {
    {   69613, 75645, 88306, 59899, 15746, 71087, 142173,  3086,    0 },
    {   21863, 32794, 26934, 10931, 26250, 43725,  53867, 28939,    0 },
    {   16002, 21863, 32004, 10931, 14529, 16368,  15318, 32794,    0 },
    {    6345,  7818, 15636,  7077,  8184, 14163,   1107,  4872,    0 },
    {    1760,  1454,  1167,   880,   287,  2640,     19,  2047, 1454 },
    {     574,     0,   880,   287,    19,  1760,   1167,   306,  574 },
    {     204,     0,   177,  1265,     4,   385,    200,   208,  204 },
    {       0,   102,   106,     4,    98,  1367,    487,   204,    0 }
   };

   static const double ca[][9] = {
    {       4,    -13,    11,   -9,    -9,   -3,     -1,     4,     0 },
    {    -156,     59,   -42,    6,    19,  -20,    -10,   -12,     0 },
    {      64,   -152,    62,   -8,    32,  -41,     19,   -11,     0 },
    {     124,    621,  -145,  208,    54,  -57,     30,    15,     0 },
    {  -23437,  -2634,  6601, 6259, -1507,-1821,   2620, -2115, -1489 },
    {   62911,-119919, 79336,17814,-24241,12068,   8306, -4893,  8902 },
    {  389061,-262125,-44088, 8387,-22976,-2093,   -615, -9720,  6633 },
    { -412235,-157046,-31430,37817, -9740,  -13,  -7449,  9644,     0 }
   };

   static const double sa[][9] = {
    {     -29,    -1,     9,     6,    -6,     5,     4,     0,     0 },
    {     -48,  -125,   -26,   -37,    18,   -13,   -20,    -2,     0 },
    {    -150,   -46,    68,    54,    14,    24,   -28,    22,     0 },
    {    -621,   532,  -694,   -20,   192,   -94,    71,   -73,     0 },
    {  -14614,-19828, -5869,  1881, -4372, -2255,   782,   930,   913 },
    {  139737,     0, 24667, 51123, -5102,  7429, -4095, -1976, -9566 },
    { -138081,     0, 37205,-49039,-41901,-33872,-27037,-12474, 18797 },
    {       0, 28492,133236, 69654, 52322,-49577,-26430, -3593,     0 }
   };

/* Tables giving the trigonometric terms to be added to the mean */
/* elements of the mean longitudes */

   static const double kq[][10] = {
    {   3086,15746,69613,59899,75645,88306, 12661,  2658,    0,     0 },
    {  21863,32794,10931,   73, 4387,26934,  1473,  2157,    0,     0 },
    {     10,16002,21863,10931, 1473,32004,  4387,    73,    0,     0 },
    {     10, 6345, 7818, 1107,15636, 7077,  8184,   532,   10,     0 },
    {     19, 1760, 1454,  287, 1167,  880,   574,  2640,   19,  1454 },
    {     19,  574,  287,  306, 1760,   12,    31,    38,   19,   574 },
    {      4,  204,  177,    8,   31,  200,  1265,   102,    4,   204 },
    {      4,  102,  106,    8,   98, 1367,   487,   204,    4,   102 }
   };

   static const double cl[][10] = {
    {      21,   -95, -157,   41,   -5,   42,  23,  30,      0,     0 },
    {    -160,  -313, -235,   60,  -74,  -76, -27,  34,      0,     0 },
    {    -325,  -322,  -79,  232,  -52,   97,  55, -41,      0,     0 },
    {    2268,  -979,  802,  602, -668,  -33, 345, 201,    -55,     0 },
    {    7610, -4997,-7689,-5841,-2617, 1115,-748,-607,   6074,   354 },
    {  -18549, 30125,20012, -730,  824,   23,1289,-352, -14767, -2062 },
    { -135245,-14594, 4197,-4030,-5630,-2898,2540,-306,   2939,  1986 },
    {   89948,  2103, 8963, 2695, 3682, 1648, 866,-154,  -1963,  -283 }
   };

   static const double sl[][10] = {
    {   -342,   136,  -23,   62,   66,  -52, -33,    17,     0,     0 },
    {    524,  -149,  -35,  117,  151,  122, -71,   -62,     0,     0 },
    {   -105,  -137,  258,   35, -116,  -88,-112,   -80,     0,     0 },
    {    854,  -205, -936, -240,  140, -341, -97,  -232,   536,     0 },
    { -56980,  8016, 1012, 1448,-3024,-3710, 318,   503,  3767,   577 },
    { 138606,-13478,-4964, 1441,-1319,-1482, 427,  1236, -9167, -1918 },
    {  71234,-41116, 5334,-4935,-1848,   66, 434, -1748,  3780,  -701 },
    { -47645, 11647, 2166, 3194,  679,    0,-244,  -419, -2531,    48 }
   };

/*--------------------------------------------------------------------*/

/* Validate the planet number. */
   if ((np < 1) || (np > 8)) {
      jstat = -1;

   /* Reset the result in case of failure. */
      for (k = 0; k < 2; k++) {
         for (i = 0; i < 3; i++) {
            pv[k][i] = 0.0;
         }
      }

   } else {

   /* Decrement the planet number to start at zero. */
      np--;

   /* Time: Julian millennia since J2000.0. */
      t = ((date1 - ERFA_DJ00) + date2) / ERFA_DJM;

   /* OK status unless remote date. */
      jstat = fabs(t) <= 1.0 ? 0 : 1;

   /* Compute the mean elements. */
      da = a[np][0] +
          (a[np][1] +
           a[np][2] * t) * t;
      dl = (3600.0 * dlm[np][0] +
                    (dlm[np][1] +
                     dlm[np][2] * t) * t) * ERFA_DAS2R;
      de = e[np][0] +
         ( e[np][1] +
           e[np][2] * t) * t;
      dp = eraAnpm((3600.0 * pi[np][0] +
                            (pi[np][1] +
                             pi[np][2] * t) * t) * ERFA_DAS2R);
      di = (3600.0 * dinc[np][0] +
                    (dinc[np][1] +
                     dinc[np][2] * t) * t) * ERFA_DAS2R;
      dom = eraAnpm((3600.0 * omega[np][0] +
                             (omega[np][1] +
                              omega[np][2] * t) * t) * ERFA_DAS2R);

   /* Apply the trigonometric terms. */
      dmu = 0.35953620 * t;
      for (k = 0; k < 8; k++) {
         arga = kp[np][k] * dmu;
         argl = kq[np][k] * dmu;
         da += (ca[np][k] * cos(arga) +
                sa[np][k] * sin(arga)) * 1e-7;
         dl += (cl[np][k] * cos(argl) +
                sl[np][k] * sin(argl)) * 1e-7;
      }
      arga = kp[np][8] * dmu;
      da += t * (ca[np][8] * cos(arga) +
                 sa[np][8] * sin(arga)) * 1e-7;
      for (k = 8; k < 10; k++) {
         argl = kq[np][k] * dmu;
         dl += t * (cl[np][k] * cos(argl) +
                    sl[np][k] * sin(argl)) * 1e-7;
      }
      dl = fmod(dl, ERFA_D2PI);

   /* Iterative soln. of Kepler's equation to get eccentric anomaly. */
      am = dl - dp;
      ae = am + de * sin(am);
      k = 0;
      dae = 1.0;
      while (k < KMAX && fabs(dae) > 1e-12) {
         dae = (am - ae + de * sin(ae)) / (1.0 - de * cos(ae));
         ae += dae;
         k++;
         if (k == KMAX-1) jstat = 2;
      }

   /* True anomaly. */
      ae2 = ae / 2.0;
      at = 2.0 * atan2(sqrt((1.0 + de) / (1.0 - de)) * sin(ae2),
                                                       cos(ae2));

   /* Distance (AU) and speed (radians per day). */
      r = da * (1.0 - de * cos(ae));
      v = GK * sqrt((1.0 + 1.0 / amas[np]) / (da * da * da));

      si2 = sin(di / 2.0);
      xq = si2 * cos(dom);
      xp = si2 * sin(dom);
      tl = at + dp;
      xsw = sin(tl);
      xcw = cos(tl);
      xm2 = 2.0 * (xp * xcw - xq * xsw);
      xf = da / sqrt(1  -  de * de);
      ci2 = cos(di / 2.0);
      xms = (de * sin(dp) + xsw) * xf;
      xmc = (de * cos(dp) + xcw) * xf;
      xpxq2 = 2 * xp * xq;

   /* Position (J2000.0 ecliptic x,y,z in AU). */
      x = r * (xcw - xm2 * xp);
      y = r * (xsw + xm2 * xq);
      z = r * (-xm2 * ci2);

   /* Rotate to equatorial. */
      pv[0][0] = x;
      pv[0][1] = y * COSEPS - z * SINEPS;
      pv[0][2] = y * SINEPS + z * COSEPS;

   /* Velocity (J2000.0 ecliptic xdot,ydot,zdot in AU/d). */
      x = v * (( -1.0 + 2.0 * xp * xp) * xms + xpxq2 * xmc);
      y = v * ((  1.0 - 2.0 * xq * xq) * xmc - xpxq2 * xms);
      z = v * (2.0 * ci2 * (xp * xms + xq * xmc));

   /* Rotate to equatorial. */
      pv[1][0] = x;
      pv[1][1] = y * COSEPS - z * SINEPS;
      pv[1][2] = y * SINEPS + z * COSEPS;

   }

/* Return the status. */
   return jstat;

}
/*----------------------------------------------------------------------
**  
**  
**  Copyright (C) 2013-2014, NumFOCUS Foundation.
**  All rights reserved.
**  
**  This library is derived, with permission, from the International
**  Astronomical Union's "Standards of Fundamental Astronomy" library,
**  available from http://www.iausofa.org.
**  
**  The ERFA version is intended to retain identical functionality to
**  the SOFA library, but made distinct through different function and
**  file names, as set out in the SOFA license conditions.  The SOFA
**  original has a role as a reference standard for the IAU and IERS,
**  and consequently redistribution is permitted only in its unaltered
**  state.  The ERFA version is not subject to this restriction and
**  therefore can be included in distributions which do not support the
**  concept of "read only" software.
**  
**  Although the intent is to replicate the SOFA API (other than
**  replacement of prefix names) and results (with the exception of
**  bugs;  any that are discovered will be fixed), SOFA is not
**  responsible for any errors found in this version of the library.
**  
**  If you wish to acknowledge the SOFA heritage, please acknowledge
**  that you are using a library derived from SOFA, rather than SOFA
**  itself.
**  
**  
**  TERMS AND CONDITIONS
**  
**  Redistribution and use in source and binary forms, with or without
**  modification, are permitted provided that the following conditions
**  are met:
**  
**  1 Redistributions of source code must retain the above copyright
**    notice, this list of conditions and the following disclaimer.
**  
**  2 Redistributions in binary form must reproduce the above copyright
**    notice, this list of conditions and the following disclaimer in
**    the documentation and/or other materials provided with the
**    distribution.
**  
**  3 Neither the name of the Standards Of Fundamental Astronomy Board,
**    the International Astronomical Union nor the names of its
**    contributors may be used to endorse or promote products derived
**    from this software without specific prior written permission.
**  
**  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
**  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
**  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
**  FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
**  COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
**  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
**  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
**  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
**  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
**  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
**  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
**  POSSIBILITY OF SUCH DAMAGE.
**  
*/