summaryrefslogtreecommitdiffstats
path: root/ast/matrixmap.c
diff options
context:
space:
mode:
Diffstat (limited to 'ast/matrixmap.c')
-rw-r--r--ast/matrixmap.c5767
1 files changed, 5767 insertions, 0 deletions
diff --git a/ast/matrixmap.c b/ast/matrixmap.c
new file mode 100644
index 0000000..ed9600b
--- /dev/null
+++ b/ast/matrixmap.c
@@ -0,0 +1,5767 @@
+/*
+*class++
+* Name:
+* MatrixMap
+
+* Purpose:
+* Map coordinates by multiplying by a matrix.
+
+* Constructor Function:
+c astMatrixMap
+f AST_MATRIXMAP
+
+* Description:
+* A MatrixMap is form of Mapping which performs a general linear
+* transformation. Each set of input coordinates, regarded as a
+* column-vector, are pre-multiplied by a matrix (whose elements
+* are specified when the MatrixMap is created) to give a new
+* column-vector containing the output coordinates. If appropriate,
+* the inverse transformation may also be performed.
+
+* Inheritance:
+* The MatrixMap class inherits from the Mapping class.
+
+* Attributes:
+* The MatrixMap class does not define any new attributes beyond
+* those which are applicable to all Mappings.
+
+* Functions:
+c The MatrixMap class does not define any new functions beyond those
+f The MatrixMap class does not define any new routines beyond those
+* which are applicable to all Mappings.
+
+* Copyright:
+* Copyright (C) 1997-2006 Council for the Central Laboratory of the
+* Research Councils
+* Copyright (C) 2009 Science & Technology Facilities Council.
+* All Rights Reserved.
+
+* Licence:
+* This program is free software: you can redistribute it and/or
+* modify it under the terms of the GNU Lesser General Public
+* License as published by the Free Software Foundation, either
+* version 3 of the License, or (at your option) any later
+* version.
+*
+* This program is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+* GNU Lesser General Public License for more details.
+*
+* You should have received a copy of the GNU Lesser General
+* License along with this program. If not, see
+* <http://www.gnu.org/licenses/>.
+
+* Authors:
+* DSB: D.S. Berry (Starlink)
+* RFWS: R.F. Warren-Smith (Starlink)
+
+* History:
+* 9-FEB-1996 (DSB):
+* Original version.
+* 13-NOV-1996 (DSB):
+* Updated to support attributes, I/O and an external interface.
+* 3-JUN-1997 (DSB):
+* astMtrMult and astMtrRot made protected instead of public.
+* 16-JUN-1997 (RFWS):
+* Tidied public prologues.
+* 24-JUN-1997 (DSB):
+* Zero returned for coordinates which are indeterminate as a
+* result of using an inverted, non-square, diagonal matrix.
+* 10-OCT-1997 (DSB):
+* o The inverse matrix is no longer dumped by the Dump function.
+* Instead, it is re-calculated by the Load function.
+* o The description of argument "form" in astMatrixMap corrected
+* to indicate that a value of 2 produces a unit matrix.
+* o String values used to represent choices externally, instead
+* of integers.
+* 24-NOV-1997 (DSB):
+* Use of error code AST__OPT replaced by AST__RDERR.
+* 28-JAN-1998 (DSB):
+* Bug fix in astMtrMult: the matrix (forward or inverse) used for
+* the "a" MatrixMap was determined by the Invert flag of the other
+* ("this") MatrixMap.
+* 14-APR-1998 (DSB):
+* Bug fix in Dump. Previously, matrix elements with value AST__BAD
+* were explicitly written out. Now they are not written out, since
+* AST__BAD can have different values on different machines. Missing
+* elements default to AST__BAD when read back in using astLoadMatrixMap.
+* 20-APR-1998 (DSB):
+* Bug fix in astLoadMatrixMap: initialise the pointer to the inverse
+* matrix array to NULL if no inverse matrix is needed.
+* 25-AUG-1998 (DSB):
+* - Transform changed so that bad input axis values are not
+* propagated to output axes which are independant of the input axis.
+* - CompressMatrix changed to allow a tolerance of DBL_EPSILON when
+* determining if a matrix is a unit matrix, or a diagonal matrix.
+* - MapMerge changed to allow MatrixMaps to swap with PermMaps
+* in order to move the MatrixMap closer to a Mapping with which it
+* could merge.
+* 22-FEB-1999 (DSB):
+* Changed logic of MapMerge to avoid infinite looping.
+* 5-MAY-1999 (DSB):
+* More corrections to MapMerge: Cleared up errors in the use of the
+* supplied invert flags, and corrected logic for deciding which
+* neighbouring Mapping to swap with.
+* 16-JUL-1999 (DSB):
+* Fixed memory leaks in MatWin and MapMerge.
+* 8-JAN-2003 (DSB):
+* Changed private InitVtab method to protected astInitatrixMapVtab
+* method.
+* 11-SEP-2003 (DSB):
+* Increased tolerance on checks for unit matrices within
+* CompressMatrix. Now uses sqrt(DBL_EPSILON)*diag (previously was
+* DBL_EPSILON*DIAG ).
+* 10-NOV-2003 (DSB):
+* Modified functions which swap a MatrixMap with another Mapping
+* (e.g. MatSwapPerm, etc), to simplify the returned Mappings.
+* 13-JAN-2003 (DSB):
+* Modified the tolerance used by CompressMatrix when checking for
+* zero matrix elements. Old system compared each element to thre
+* size of the diagonal, but different scalings on different axes could
+* cause this to trat as zero values which should nto be treated as
+* zero.
+* 23-APR-2004 (DSB):
+* Changes to simplification algorithm.
+* 8-JUL-2004 (DSB):
+* astMtrMult - Report an error if either MatrixMap does not have a
+* defined forward transformation.
+* 1-SEP-2004 (DSB):
+* Ensure do1 and do2 are initialised before use in MapMerge.
+* 7-SEP-2005 (DSB):
+* Take account of the Invert flag when using the zoom factor from
+* a ZoomMap.
+* 14-FEB-2006 (DSB):
+* Correct row/col confusion in CompressMatrix.
+* 15-MAR-2006 (DSB):
+* Override astEqual.
+* 15-MAR-2009 (DSB):
+* MapSplit: Only create the returned Mapping if it would have some
+* outputs. Also, do not create the returned Mapping if any output
+* depends on a mixture of selected and unselected inputs.
+* 16-JUL-2009 (DSB):
+* MatPerm: Fix memory leak (mm2 was not being annulled).
+* 2-OCT-2012 (DSB):
+* - Check for Infs as well as NaNs.
+* - In MapSplit do not split the MatrixMap if the resulting
+* matrix would contain only bad elements.
+* - Report an error if an attempt is made to create a MatrixMap
+* containing only bad elements.
+* 4-NOV-2013 (DSB):
+* Allow a full form MatrixMap to be simplified to a diagonal form
+* MatrixMap if all the off-diagonal values are zero.
+* 23-APR-2015 (DSB):
+* Improve MapMerge. If a MatrixMap can merge with its next-but-one
+* neighbour, then swap the MatrixMap with its neighbour, so that
+* it is then next its next-but-one neighbour, and then merge the
+* two Mappings into a single Mapping. Previously, only the swap
+* was performed - not the merger. And the swap was only performed
+* if the intervening neighbour could not itself merge. This could
+* result in an infinite simplification loop, which was detected by
+* CmpMap and and aborted, resulting in no useful simplification.
+* 15-JUN-2017 (DSB):
+* A diagonal MatrixMap in which the diagonal elements are all zero
+* cannot be simplified to a ZoomMap, since ZoomMaps cannot have
+* zero zoom factor.
+* 16-JUN-2017 (DSB):
+* Fix error checking bug in MtrMult - it was checking for the
+* inverse transformation of "this" instead of the forward
+* transformation of "a".
+* 7-NOW-2017 (DSB):
+* Allow a diagonal MatrixMap to merge with a WinMap.
+* 5-JUN-2018 (DSB):
+* Include the inverse matrix in the dump of a MatrixMap. Previously,
+* the inverse matrix was calculated afresh using function InvertMatrix
+* when a MatrixMap was read from a dump. However this could introduce
+* small round-trip errors if the inverse matrix in the original
+* MatrixMap was created by astMtrRot etc, rather than the InvertMatrix
+* function.
+*class--
+*/
+
+/* Module Macros. */
+/* ============== */
+/* Set the name of the class we are implementing. This indicates to
+ the header files that define class interfaces that they should make
+ "protected" symbols available. */
+#define astCLASS MatrixMap
+
+/* Define identifiers for the different forms of matrix storage. */
+#define FULL 0
+#define DIAGONAL 1
+#define UNIT 2
+
+/* Include files. */
+/* ============== */
+/* Interface definitions. */
+/* ---------------------- */
+
+#include "globals.h" /* Thread-safe global data access */
+#include "error.h" /* Error reporting facilities */
+#include "memory.h" /* Memory allocation facilities */
+#include "object.h" /* Base Object class */
+#include "pointset.h" /* Sets of points/coordinates */
+#include "mapping.h" /* Coordinate mappings (parent class) */
+#include "matrixmap.h" /* Interface definition for this class */
+#include "pal.h" /* SLALIB function definitions */
+#include "permmap.h"
+#include "zoommap.h"
+#include "unitmap.h"
+#include "winmap.h"
+
+/* Error code definitions. */
+/* ----------------------- */
+#include "ast_err.h" /* AST error codes */
+
+/* C header files. */
+/* --------------- */
+#include <ctype.h>
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+/* Module Variables. */
+/* ================= */
+
+/* Address of this static variable is used as a unique identifier for
+ member of this class. */
+static int class_check;
+static const char *Form[3] = { "Full", "Diagonal", "Unit" }; /* Text values
+ used to represent storage form externally */
+
+/* Pointers to parent class methods which are extended by this class. */
+static AstPointSet *(* parent_transform)( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
+static int *(* parent_mapsplit)( AstMapping *, int, const int *, AstMapping **, int * );
+
+
+#ifdef THREAD_SAFE
+/* Define how to initialise thread-specific globals. */
+#define GLOBAL_inits \
+ globals->Class_Init = 0;
+
+/* Create the function that initialises global data for this module. */
+astMAKE_INITGLOBALS(MatrixMap)
+
+/* Define macros for accessing each item of thread specific global data. */
+#define class_init astGLOBAL(MatrixMap,Class_Init)
+#define class_vtab astGLOBAL(MatrixMap,Class_Vtab)
+
+
+#include <pthread.h>
+
+
+#else
+
+
+/* Define the class virtual function table and its initialisation flag
+ as static variables. */
+static AstMatrixMapVtab class_vtab; /* Virtual function table */
+static int class_init = 0; /* Virtual function table initialised? */
+
+#endif
+
+/* External Interface Function Prototypes. */
+/* ======================================= */
+/* The following functions have public prototypes only (i.e. no
+ protected prototypes), so we must provide local prototypes for use
+ within this module. */
+AstMatrixMap *astMatrixMapId_( int, int, int, const double [], const char *, ... );
+
+/* Prototypes for Private Member Functions. */
+/* ======================================== */
+static AstMatrixMap *MatMat( AstMapping *, AstMapping *, int, int, int * );
+static AstMatrixMap *MatPerm( AstMatrixMap *, AstPermMap *, int, int, int, int * );
+static AstMatrixMap *MatZoom( AstMatrixMap *, AstZoomMap *, int, int, int * );
+static AstMatrixMap *MtrMult( AstMatrixMap *, AstMatrixMap *, int * );
+static AstMatrixMap *MtrRot( AstMatrixMap *, double, const double[], int * );
+static AstPointSet *Transform( AstMapping *, AstPointSet *, int, AstPointSet *, int * );
+static AstWinMap *MatWin2( AstMatrixMap *, AstWinMap *, int, int, int, int * );
+static double *InvertMatrix( int, int, int, double *, int * );
+static double Rate( AstMapping *, double *, int, int, int * );
+static int Equal( AstObject *, AstObject *, int * );
+static int FindString( int, const char *[], const char *, const char *, const char *, const char *, int * );
+static int Ustrcmp( const char *, const char *, int * );
+static int GetTranForward( AstMapping *, int * );
+static int GetIsLinear( AstMapping *, int * );
+static int GetTranInverse( AstMapping *, int * );
+static int CanSwap( AstMapping *, AstMapping *, int, int, int *, int * );
+static int MapMerge( AstMapping *, int, int, int *, AstMapping ***, int **, int * );
+static int PermOK( AstMapping *, int * );
+static int ScalingRowCol( AstMatrixMap *, int, int * );
+static void CompressMatrix( AstMatrixMap *, int * );
+static void Copy( const AstObject *, AstObject *, int * );
+static void Delete( AstObject *obj, int * );
+static void Dump( AstObject *, AstChannel *, int * );
+static void ExpandMatrix( AstMatrixMap *, int * );
+static void MatWin( AstMapping **, int *, int, int * );
+static void MatPermSwap( AstMapping **, int *, int, int * );
+static void PermGet( AstPermMap *, int **, int **, double **, int * );
+static void SMtrMult( int, int, int, const double *, double *, double*, int * );
+static int *MapSplit( AstMapping *, int, const int *, AstMapping **, int * );
+
+/* Member functions. */
+/* ================= */
+static int CanSwap( AstMapping *map1, AstMapping *map2, int inv1, int inv2,
+ int *simpler, int *status ){
+/*
+* Name:
+* CanSwap
+
+* Purpose:
+* Determine if two Mappings could be swapped.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* int CanSwap( AstMapping *map1, AstMapping *map2, int inv1, int inv2,
+* int *simpler, int *status )
+
+* Class Membership:
+* MatrixMap member function
+
+* Description:
+* This function returns a flag indicating if the pair of supplied
+* Mappings could be replaced by an equivalent pair of Mappings from the
+* same classes as the supplied pair, but in reversed order. Each pair
+* of Mappings is considered to be compunded in series. The supplied
+* Mapings are not changed in any way.
+
+* Parameters:
+* map1
+* The Mapping to be applied first.
+* map2
+* The Mapping to be applied second.
+* inv1
+* The invert flag to use with map1. A value of zero causes the forward
+* mapping to be used, and a non-zero value causes the inverse
+* mapping to be used.
+* inv2
+* The invert flag to use with map2.
+* simpler
+* Addresss of a location at which to return a flag indicating if
+* the swapped Mappings would be intrinsically simpler than the
+* original Mappings.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* 1 if the Mappings could be swapped, 0 otherwise.
+
+* Notes:
+* - One of the supplied pair of Mappings must be a MatrixMap.
+* - A value of 0 is returned if an error has already occurred, or if
+* this function should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *mat; /* Pointer to MatrixMap Mapping */
+ AstMapping *nomat; /* Pointer to non-MatrixMap Mapping */
+ const char *class1; /* Pointer to map1 class string */
+ const char *class2; /* Pointer to map2 class string */
+ const char *nomat_class; /* Pointer to non-MatrixMap class string */
+ double *consts; /* Pointer to constants array */
+ int *inperm; /* Pointer to input axis permutation array */
+ int *outperm; /* Pointer to output axis permutation array */
+ int i; /* Loop count */
+ int invert[ 2 ]; /* Original invert flags */
+ int nax; /* No. of in/out coordinates for the MatrixMap */
+ int nin; /* No. of input coordinates for the PermMap */
+ int nout; /* No. of output coordinates for the PermMap */
+ int ret; /* Returned flag */
+
+/* Check the global error status. */
+ if ( !astOK ) return 0;
+
+/* Initialise */
+ ret = 0;
+ *simpler = 0;
+
+/* Temporarily set the Invert attributes of both Mappings to the supplied
+ values. */
+ invert[ 0 ] = astGetInvert( map1 );
+ astSetInvert( map1, inv1 );
+
+ invert[ 1 ] = astGetInvert( map2 );
+ astSetInvert( map2, inv2 );
+
+/* Get the classes of the two mappings. */
+ class1 = astGetClass( map1 );
+ class2 = astGetClass( map2 );
+ if( astOK ){
+
+/* Get a pointer to the MatrixMap and non-MatrixMap Mappings. */
+ if( !strcmp( class1, "MatrixMap" ) ){
+ mat = (AstMatrixMap *) map1;
+ nomat = map2;
+ nomat_class = class2;
+ } else {
+ nomat = map1;
+ mat = (AstMatrixMap *) map2;
+ nomat_class = class1;
+ }
+
+/* Get the number of input axes for the MatrixMap. */
+ nax = astGetNin( mat );
+
+/* If it is a WinMap, the Mappings can be swapped. */
+ if( !strcmp( nomat_class, "WinMap" ) ){
+ ret = 1;
+
+/* If it is a PermMap, the Mappings can be swapped so long as:
+ 1) all links between input and output axes in the PermMap are
+ bi-directional. This does not preclude the existence of unconnected
+ axes, which do not have links (bi-directional or otherwise).
+ 2) The MatrixMap is square, and invertable.
+ 3) If the permMap is applied first, then each output of the PermMap
+ which is assigned a constant value must correspond to a "scaling" row
+ and column in the MatrixMap. I.e. if PermMap output axis "i" is
+ assigned a constant value, then row i and column i of the following
+ MatrixMap must contain only zeros, EXCEPT for the diagonal term (row
+ i, column i) which must be non-zero. If the Mappings are in the other
+ order, then the same applies to PermMap input axes assigned a constant
+ value. */
+
+/* Check the other Mapping is a PermMap, and that the MatrixMap is square
+ and has an inverse. */
+ } else if( !strcmp( nomat_class, "PermMap" ) &&
+ nax == astGetNout( mat ) && ( mat->form == UNIT ||
+ ( mat->i_matrix != NULL &&
+ mat->f_matrix != NULL ) ) ) {
+
+/* Get the number of input and output coordinates for the PermMap. */
+ nin = astGetNin( nomat );
+ nout = astGetNout( nomat );
+
+/* We need to know the axis permutation arrays and constants array for
+ the PermMap. */
+ PermGet( (AstPermMap *) nomat, &outperm, &inperm, &consts, status );
+ if( astOK ) {
+
+/* Indicate we can swap with the PermMap. */
+ ret = 1;
+
+/* Check each output axis. If any links between axes are found which are
+ not bi-directional, indicate that we cannot swap with the PermMap. */
+ for( i = 0; i < nout; i++ ){
+ if( outperm[ i ] >= 0 && outperm[ i ] < nin ) {
+ if( inperm[ outperm[ i ] ] != i ) {
+ ret = 0;
+ break;
+ }
+ }
+ }
+
+/* Check each input axis. If any links between axes are found which are
+ not bi-directional, indicate that we cannot swap with the PermMap. */
+ for( i = 0; i < nin; i++ ){
+ if( inperm[ i ] >= 0 && inperm[ i ] < nout ) {
+ if( outperm[ inperm[ i ] ] != i ) {
+ ret = 0;
+ break;
+ }
+ }
+ }
+
+/* If the PermMap is suitable, check that any constant values fed from the
+ PermMap into the MatrixMap (in either forward or inverse direction)
+ are not changed by the MatrixMap. This requires the row and column for
+ each constant axis to be zeros, ecept for a value of 1.0 on the
+ diagonal. First deal with the cases where the PermMap is applied
+ first, so the outputs of the PermMap are fed into the MatrixMap in the
+ forward direction. */
+ if( ret && ( nomat == map1 ) ) {
+
+ if( nout != nax ){
+ astError( AST__RDERR, "PermMap produces %d outputs, but the following"
+ "MatrixMap has %d inputs\n", status, nout, nax );
+ ret = 0;
+ }
+
+/* Consider each output axis of the PermMap. */
+ for( i = 0; i < nout && astOK ; i++ ) {
+
+/* If this PermMap output is assigned a constant... */
+ if( outperm[ i ] < 0 || outperm[ i ] >= nin ) {
+
+/* Check the i'th row of the MatrixMap is all zero except for the i'th
+ column which must be non-zero. If not indicate that the MatrixMap cannot
+ swap with the PermMap and leave the loop. */
+ if( !ScalingRowCol( mat, i, status ) ) {
+ ret = 0;
+ break;
+ }
+ }
+ }
+ }
+
+/* Now deal with the cases where the PermMap is applied second, so the inputs
+ of the PermMap are fed into the MatrixMap in the inverse direction. */
+ if( ret && ( nomat == map2 ) ) {
+
+ if( nin != nax ){
+ astError( AST__RDERR, "Inverse PermMap produces %d inputs, but the "
+ "preceding MatrixMap has %d outputs\n", status, nin, nax );
+ ret = 0;
+ }
+
+/* Consider each input axis of the PermMap. */
+ for( i = 0; i < nin && astOK; i++ ){
+
+/* If this PermMap input is assigned a constant (by the inverse Mapping)... */
+ if( inperm[ i ] < 0 || inperm[ i ] >= nout ) {
+
+/* Check the i'th row of the MatrixMap is all zero except for the i'th
+ column which must be non-zero. If not indicate that the MatrixMap cannot
+ swap with the PermMap and leave the loop. */
+ if( !ScalingRowCol( mat, i, status ) ) {
+ ret = 0;
+ break;
+ }
+ }
+ }
+ }
+
+/* If we can swap with the PermMap, the swapped Mappings may be
+ intrinsically simpler than the original mappings. */
+ if( ret ) {
+
+/* If the PermMap precedes the WinMap, this will be the case if the PermMap
+ has more outputs than inputs. If the WinMap precedes the PermMap, this
+ will be the case if the PermMap has more inputs than outputs. */
+ *simpler = ( nomat == map1 ) ? nout > nin : nin > nout;
+ }
+
+/* Free the axis permutation and constants arrays. */
+ outperm = (int *) astFree( (void *) outperm );
+ inperm = (int *) astFree( (void *) inperm );
+ consts = (double *) astFree( (void *) consts );
+ }
+ }
+ }
+
+/* Re-instate the original settings of the Invert attributes for the
+ supplied MatrixMaps. */
+ astSetInvert( map1, invert[ 0 ] );
+ astSetInvert( map2, invert[ 1 ] );
+
+/* Return the answer. */
+ return astOK ? ret : 0;
+}
+
+static void CompressMatrix( AstMatrixMap *this, int *status ){
+/*
+* Name:
+* CompressMatrix
+
+* Purpose:
+* If possible, reduce the amount of storage needed to store a MatrixMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* void CompressMatrix( AstMatrixMap *this, int *status )
+
+* Class Membership:
+* MatrixMap member function.
+
+* Description:
+* The supplid MatrixMap is converted to its most compressed form
+* (i.e no element values if it is a unit matrix, diagonal elements only
+* if it is a diagonal matrix, or all elements otherwise).
+
+* Parameters:
+* this
+* A pointer to the MatrixMap to be compressed.
+* status
+* Pointer to the inherited status variable.
+
+*/
+
+/* Local Variables: */
+ double *a; /* Pointer to next element */
+ double *colmax; /* Pointer to array holding column max values */
+ double *fmat; /* Pointer to compressed forward matrix */
+ double *rowmax; /* Pointer to array holding row max values */
+ double mval; /* Matrix element value */
+ int i; /* Loop count */
+ int j; /* Loop count */
+ int k; /* Loop count */
+ int ncol; /* No. of columns in forward matrix */
+ int ndiag; /* No. of diagonal elements in matrix */
+ int new_form; /* Compressed storage form */
+ int new_inv; /* New inverse requied? */
+ int next_diag; /* Index of next diagonal element */
+ int nrow; /* No. of rows in forward matrix */
+
+/* Check the global error status. */
+ if ( !astOK || !this ) return;
+
+/* Initialise variables to avoid "used of uninitialised variable"
+ messages from dumb compilers. */
+ new_inv = 0;
+
+/* Get the dimensions of the forward matrix. */
+ if( astGetInvert( this ) ){
+ nrow = astGetNin( this );
+ ncol = astGetNout( this );
+ } else {
+ ncol = astGetNin( this );
+ nrow = astGetNout( this );
+ }
+
+/* Store the number of diagonal elements in the matrix. This is the
+ minimum of the number of rows and columns. */
+ if( ncol < nrow ){
+ ndiag = ncol;
+ } else {
+ ndiag = nrow;
+ }
+
+/* If the MatrixMap is already stored in UNIT form, it cannot be compressed
+ any further. */
+ if( this->form == UNIT){
+ return;
+
+/* Otherwise, if the MatrixMap is stored in DIAGONAL form, it could be
+ compressed into a UNIT MatrixMap if all the supplied element values are
+ one. */
+ } else if( this->form == DIAGONAL ){
+ new_form = UNIT;
+ for( i = 0; i < ndiag; i++ ){
+ if( !astEQUAL( (this->f_matrix)[ i ], 1.0 ) ){
+ new_form = DIAGONAL;
+ break;
+ }
+ }
+
+/* If it can be compressed, change the storage form and free the arrays
+ holding the diagonal element values. */
+ if( new_form == UNIT ) {
+ this->f_matrix = (double *) astFree( (void *)( this->f_matrix ) );
+ this->i_matrix = (double *) astFree( (void *)( this->i_matrix ) );
+ this->form = UNIT;
+ }
+
+/* Otherwise, a full MatrixMap has been supplied, but this could be stored
+ in a unit or diagonal MatrixMap if the element values are appropriate. */
+ } else {
+ new_form = FULL;
+
+/* Find the maximum absolute value in each column. Scale by
+ sqrt(DBL_EPSILON) to be come a lower limit for non-zero values. */
+ colmax = astMalloc( ncol*sizeof( double ) );
+ if( colmax ) {
+ for( j = 0; j < ncol; j++ ) {
+ colmax[ j ] = 0.0;
+ i = j;
+ for( k = 0; k < nrow; k++ ) {
+ mval = (this->f_matrix)[ i ];
+ if( mval != AST__BAD ) {
+ mval = fabs( mval );
+ if( mval > colmax[ j ] ) colmax[ j ] = mval;
+ }
+ i += ncol;
+ }
+ colmax[ j ] *= sqrt( DBL_EPSILON );
+ }
+ }
+
+/* Find the maximum absolute value in each row. Scale by
+ sqrt(DBL_EPSILON) to be come a lower limit for non-zero values. */
+ rowmax = astMalloc( nrow*sizeof( double ) );
+ if( rowmax ) {
+ for( k = 0; k < nrow; k++ ) {
+ rowmax[ k ] = 0.0;
+ i = k*ncol;
+ for( j = 0; j < ncol; j++ ) {
+ mval = (this->f_matrix)[ i ];
+ if( mval != AST__BAD ) {
+ mval = fabs( mval );
+ if( mval > rowmax[ k ] ) rowmax[ k ] = mval;
+ }
+ i++;
+ }
+ rowmax[ k ] *= sqrt( DBL_EPSILON );
+ }
+ }
+
+/* Check memory can be used */
+ if( astOK ) {
+
+/* Initialise a flag indicating that the inverse matrix does not need to
+ be re-calculated. */
+ new_inv = 0;
+
+/* Initially assume that the forward matrix is a unit matrix. */
+ new_form = UNIT;
+
+/* Store a pointer to the next matrix element. */
+ a = this->f_matrix;
+
+/* Loop through all the rows in the forward matrix array. */
+ for( k = 0; k < nrow; k++ ) {
+
+/* Loop through all the elements in this column. */
+ for( j = 0; j < ncol; j++, a++ ) {
+
+/* If this element is bad, use full form. */
+ if( *a == AST__BAD ) {
+ new_form = FULL;
+
+/* Otherwise, if this is a diagonal term, check its value. If it is not one,
+ then the matrix cannot be a unit matrix, but it could still be a diagonal
+ matrix. */
+ } else {
+ if( j == k ) {
+ if( *a != 1.0 && new_form == UNIT ) new_form = DIAGONAL;
+
+/* If this is not a diagonal element, and the element value is not zero,
+ then the matrix is not a diagonal matrix. Allow a tolerance of
+ SQRT(DBL_EPSILON) times the largest value in the same row or column as
+ the current matrix element. That is, an element must be insignificant
+ to both its row and its column to be considered as effectively zero.
+ Replace values less than this limit with zero. */
+ } else {
+ mval = fabs( *a );
+ if( mval <= rowmax[ k ] &&
+ mval <= colmax[ j ] ) {
+
+/* If the element will change value, set a flag indicating that the inverse
+ matrix needs to be re-calculated. */
+ if( *a != 0.0 ) new_inv = 1;
+
+/* Ensure this element value is zero. */
+ *a = 0.0;
+
+ } else {
+ new_form = FULL;
+ }
+ }
+ }
+ }
+ }
+ }
+
+/* Free memory. */
+ colmax = astFree( colmax );
+ rowmax = astFree( rowmax );
+
+/* If it can be compressed into a UNIT MatrixMap, change the storage form and
+ free the arrays holding the element values. */
+ if( new_form == UNIT ) {
+ this->f_matrix = (double *) astFree( (void *)( this->f_matrix ) );
+ this->i_matrix = (double *) astFree( (void *)( this->i_matrix ) );
+ this->form = UNIT;
+
+/* Otherwise, if it can be compressed into a DIAGONAL MatrixMap, copy the
+ diagonal elements from the full forward matrix into a newly allocated
+ array, use this array to replace the forward matrix array in the MatrixMap,
+ create a new inverse matrix, and change the storage form. */
+ } else if( new_form == DIAGONAL ) {
+ fmat = astMalloc( sizeof(double)*(size_t)ndiag );
+ if( fmat ){
+
+ next_diag = 0;
+ for( i = 0; i < ndiag; i++ ){
+ fmat[ i ] = (this->f_matrix)[ next_diag ];
+ next_diag += ncol + 1;
+ }
+
+ (void) astFree( (void *) this->f_matrix );
+ (void) astFree( (void *) this->i_matrix );
+
+ this->f_matrix = fmat;
+ this->i_matrix = InvertMatrix( DIAGONAL, nrow, ncol, fmat, status );
+ this->form = DIAGONAL;
+
+ }
+
+/* Calculate a new inverse matrix if necessary. */
+ } else if( new_inv ) {
+ (void) astFree( (void *) this->i_matrix );
+ this->i_matrix = InvertMatrix( FULL, nrow, ncol, this->f_matrix, status );
+ }
+ }
+
+ return;
+
+}
+
+static int Equal( AstObject *this_object, AstObject *that_object, int *status ) {
+/*
+* Name:
+* Equal
+
+* Purpose:
+* Test if two MatrixMaps are equivalent.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* int Equal( AstObject *this, AstObject *that, int *status )
+
+* Class Membership:
+* MatrixMap member function (over-rides the astEqual protected
+* method inherited from the astMapping class).
+
+* Description:
+* This function returns a boolean result (0 or 1) to indicate whether
+* two MatrixMaps are equivalent.
+
+* Parameters:
+* this
+* Pointer to the first Object (a MatrixMap).
+* that
+* Pointer to the second Object.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* One if the MatrixMaps are equivalent, zero otherwise.
+
+* Notes:
+* - A value of zero will be returned if this function is invoked
+* with the global status set, or if it should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *that;
+ AstMatrixMap *this;
+ double *that_matrix;
+ double *this_matrix;
+ int i;
+ int nin;
+ int nout;
+ int result;
+
+/* Initialise. */
+ result = 0;
+
+/* Check the global error status. */
+ if ( !astOK ) return result;
+
+/* Obtain pointers to the two MatrixMap structures. */
+ this = (AstMatrixMap *) this_object;
+ that = (AstMatrixMap *) that_object;
+
+/* Check the second object is a MatrixMap. We know the first is a
+ MatrixMap since we have arrived at this implementation of the virtual
+ function. */
+ if( astIsAMatrixMap( that ) ) {
+
+/* Get the number of inputs and outputs and check they are the same for both. */
+ nin = astGetNin( this );
+ nout = astGetNout( this );
+ if( astGetNout( that ) == nout && astGetNin( that ) == nin ) {
+
+/* Assume the MatrixMaps are equivalent. */
+ result = 1;
+
+/* Ensure both MatrixMaps are stored in full form. */
+ ExpandMatrix( this, status );
+ ExpandMatrix( that, status );
+
+/* Get pointers to the arrays holding the elements of the forward matrix
+ for both MatrixMaps. */
+ if( astGetInvert( this ) ) {
+ this_matrix = this->i_matrix;
+ } else {
+ this_matrix = this->f_matrix;
+ }
+
+ if( astGetInvert( that ) ) {
+ that_matrix = that->i_matrix;
+ } else {
+ that_matrix = that->f_matrix;
+ }
+
+/* If either of the above arrays is not available, try to get the inverse
+ matrix arrays. */
+ if( !this_matrix || !that_matrix ) {
+ if( astGetInvert( this ) ) {
+ this_matrix = this->f_matrix;
+ } else {
+ this_matrix = this->i_matrix;
+ }
+
+ if( astGetInvert( that ) ) {
+ that_matrix = that->f_matrix;
+ } else {
+ that_matrix = that->i_matrix;
+ }
+ }
+
+/* If both arrays are now available compare their elements. */
+ if( this_matrix && that_matrix ) {
+ result = 1;
+ for( i = 0; i < nin*nout; i++ ) {
+ if( !astEQUAL( this_matrix[ i ], that_matrix[ i ] ) ){
+ result = 0;
+ break;
+ }
+ }
+ }
+
+/* Ensure the supplied MatrixMaps are stored back in compressed form. */
+ CompressMatrix( this, status );
+ CompressMatrix( that, status );
+ }
+ }
+
+/* If an error occurred, clear the result value. */
+ if ( !astOK ) result = 0;
+
+/* Return the result, */
+ return result;
+}
+
+static void ExpandMatrix( AstMatrixMap *this, int *status ){
+/*
+* Name:
+* ExpandMatrix
+
+* Purpose:
+* Ensure the MatrixMap is stored in full (non-compressed) form.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* void ExpandMatrix( AstMatrixMap *this, int *status )
+
+* Class Membership:
+* MatrixMap member function.
+
+* Description:
+* If the supplid MatrixMap is stored in a compressed form (i.e no
+* element values if it is a unit matrix, diagonal elements only
+* if it is a diagonal matrix), it is expanded into a full MatrixMap
+* in which all elements are stored.
+
+* Parameters:
+* this
+* A pointer to the MatrixMap to be expanded.
+* status
+* Pointer to the inherited status variable.
+
+*/
+
+/* Local Variables: */
+ double *fmat; /* Pointer to full forward matrix */
+ double *imat; /* Pointer to full inverse matrix */
+ int i; /* Loop count */
+ int ncol; /* No. of columns in forward matrix */
+ int ndiag; /* No. of diagonal elements in matrix */
+ int nrow; /* No. of rows in forward matrix */
+
+/* Check the global error status. Also return if the MatrixMap
+ pointer is null. */
+ if ( !astOK || !this ) return;
+
+/* Return without action if the MatrixMap is already in full form. */
+ if( this->form == FULL ) return;
+
+/* Get the dimensions of the forward matrix. */
+ if( astGetInvert( this ) ){
+ nrow = astGetNin( this );
+ ncol = astGetNout( this );
+ } else {
+ ncol = astGetNin( this );
+ nrow = astGetNout( this );
+ }
+
+/* Store the number of diagonal elements. */
+ if( nrow > ncol ){
+ ndiag = ncol;
+ } else {
+ ndiag = nrow;
+ }
+
+/* Allocate arrays to hold the full forward and inverse matrices. */
+ fmat = (double *) astMalloc( sizeof( double )*(size_t)( nrow*ncol ) );
+ imat = (double *) astMalloc( sizeof( double )*(size_t)( nrow*ncol ) );
+ if( imat && fmat ){
+
+/* Fill them both with zeros. */
+ for( i = 0; i < nrow*ncol; i++ ) {
+ fmat[ i ] = 0.0;
+ imat[ i ] = 0.0;
+ }
+
+/* If a unit MatrixMap was supplied, put ones on the diagonals. */
+ if( this->form == UNIT ){
+ for( i = 0; i < ndiag; i++ ) {
+ fmat[ i*( ncol + 1 ) ] = 1.0;
+ imat[ i*( nrow + 1 ) ] = 1.0;
+ }
+
+/* If a diagonal MatrixMap was supplied, copy the diagonal terms from
+ the supplied MatrixMap. */
+ } else if( this->form == DIAGONAL ){
+ for( i = 0; i < ndiag; i++ ) {
+ fmat[ i*( ncol + 1 ) ] = (this->f_matrix)[ i ];
+ imat[ i*( nrow + 1 ) ] = (this->i_matrix)[ i ];
+ }
+ }
+
+/* Free any existing arrays in the MatrixMap and store the new ones. */
+ (void) astFree( (void *) this->f_matrix );
+ (void) astFree( (void *) this->i_matrix );
+
+ this->f_matrix = fmat;
+ this->i_matrix = imat;
+
+/* Update the storage form. */
+ this->form = FULL;
+
+/* If either of the new matrices could not be allocated, ensure that
+ both have been freed. */
+ } else {
+ fmat = (double *) astFree( (void *) fmat );
+ imat = (double *) astFree( (void *) imat );
+ }
+
+ return;
+
+}
+
+static int FindString( int n, const char *list[], const char *test,
+ const char *text, const char *method,
+ const char *class, int *status ){
+/*
+* Name:
+* FindString
+
+* Purpose:
+* Find a given string within an array of character strings.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrix.h"
+* int FindString( int n, const char *list[], const char *test,
+* const char *text, const char *method, const char *class, int *status )
+
+* Class Membership:
+* MatrixMap method.
+
+* Description:
+* This function identifies a supplied string within a supplied
+* array of valid strings, and returns the index of the string within
+* the array. The test option may not be abbreviated, but case is
+* insignificant.
+
+* Parameters:
+* n
+* The number of strings in the array pointed to be "list".
+* list
+* A pointer to an array of legal character strings.
+* test
+* A candidate string.
+* text
+* A string giving a description of the object, parameter,
+* attribute, etc, to which the test value refers.
+* This is only for use in constructing error messages. It should
+* start with a lower case letter.
+* method
+* Pointer to a string holding the name of the calling method.
+* This is only for use in constructing error messages.
+* class
+* Pointer to a string holding the name of the supplied object class.
+* This is only for use in constructing error messages.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* The index of the identified string within the supplied array, starting
+* at zero.
+
+* Notes:
+* - A value of -1 is returned if an error has already occurred, or
+* if this function should fail for any reason (for instance if the
+* supplied option is not specified in the supplied list).
+
+*/
+
+/* Local Variables: */
+ int ret; /* The returned index */
+
+/* Check global status. */
+ if( !astOK ) return -1;
+
+/* Compare the test string with each element of the supplied list. Leave
+ the loop when a match is found. */
+ for( ret = 0; ret < n; ret++ ) {
+ if( !Ustrcmp( test, list[ ret ], status ) ) break;
+ }
+
+/* Report an error if the supplied test string does not match any element
+ in the supplied list. */
+ if( ret >= n ) {
+ astError( AST__RDERR, "%s(%s): Illegal value '%s' supplied for %s.", status,
+ method, class, test, text );
+ ret = -1;
+ }
+
+/* Return the answer. */
+ return ret;
+}
+
+static int GetIsLinear( AstMapping *this_mapping, int *status ){
+/*
+* Name:
+* GetIsLinear
+
+* Purpose:
+* Return the value of the IsLinear attribute for a MatrixMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "mapping.h"
+* void GetIsLinear( AstMapping *this, int *status )
+
+* Class Membership:
+* MatrixMap member function (over-rides the protected astGetIsLinear
+* method inherited from the Mapping class).
+
+* Description:
+* This function returns the value of the IsLinear attribute for a
+* Frame, which is always one.
+
+* Parameters:
+* this
+* Pointer to the MatrixMap.
+* status
+* Pointer to the inherited status variable.
+*/
+ return 1;
+}
+
+static int Ustrcmp( const char *a, const char *b, int *status ){
+/*
+* Name:
+* Ustrncmp
+
+* Purpose:
+* A case blind version of strcmp.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* int Ustrcmp( const char *a, const char *b )
+
+* Class Membership:
+* MatrixMap member function.
+
+* Description:
+* Returns 0 if there are no differences between the two strings, and 1
+* otherwise. Comparisons are case blind.
+
+* Parameters:
+* a
+* Pointer to first string.
+* b
+* Pointer to second string.
+
+* Returned Value:
+* Zero if the strings match, otherwise one.
+
+* Notes:
+* - This function does not consider the sign of the difference between
+* the two strings, whereas "strcmp" does.
+* - This function attempts to execute even if an error has occurred.
+
+*/
+
+/* Local Variables: */
+ const char *aa; /* Pointer to next "a" character */
+ const char *bb; /* Pointer to next "b" character */
+ int ret; /* Returned value */
+
+/* Initialise the returned value to indicate that the strings match. */
+ ret = 0;
+
+/* Initialise pointers to the start of each string. */
+ aa = a;
+ bb = b;
+
+/* Loop round each character. */
+ while( 1 ){
+
+/* We leave the loop if either of the strings has been exhausted. */
+ if( !(*aa ) || !(*bb) ){
+
+/* If one of the strings has not been exhausted, indicate that the
+ strings are different. */
+ if( *aa || *bb ) ret = 1;
+
+/* Break out of the loop. */
+ break;
+
+/* If neither string has been exhausted, convert the next characters to
+ upper case and compare them, incrementing the pointers to the next
+ characters at the same time. If they are different, break out of the
+ loop. */
+ } else {
+
+ if( toupper( (int) *(aa++) ) != toupper( (int) *(bb++) ) ){
+ ret = 1;
+ break;
+ }
+
+ }
+
+ }
+
+/* Return the result. */
+ return ret;
+
+}
+
+void astInitMatrixMapVtab_( AstMatrixMapVtab *vtab, const char *name, int *status ) {
+/*
+*+
+* Name:
+* astInitMatrixMapVtab
+
+* Purpose:
+* Initialise a virtual function table for a MatrixMap.
+
+* Type:
+* Protected function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* void astInitMatrixMapVtab( AstMatrixMapVtab *vtab, const char *name )
+
+* Class Membership:
+* MatrixMap vtab initialiser.
+
+* Description:
+* This function initialises the component of a virtual function
+* table which is used by the MatrixMap class.
+
+* Parameters:
+* vtab
+* Pointer to the virtual function table. The components used by
+* all ancestral classes will be initialised if they have not already
+* been initialised.
+* name
+* Pointer to a constant null-terminated character string which contains
+* the name of the class to which the virtual function table belongs (it
+* is this pointer value that will subsequently be returned by the Object
+* astClass function).
+*-
+*/
+
+/* Local Variables: */
+ astDECLARE_GLOBALS /* Pointer to thread-specific global data */
+ AstObjectVtab *object; /* Pointer to Object component of Vtab */
+ AstMappingVtab *mapping; /* Pointer to Mapping component of Vtab */
+
+/* Check the local error status. */
+ if ( !astOK ) return;
+
+/* Get a pointer to the thread specific global data structure. */
+ astGET_GLOBALS(NULL);
+
+/* Initialize the component of the virtual function table used by the
+ parent class. */
+ astInitMappingVtab( (AstMappingVtab *) vtab, name );
+
+/* Store a unique "magic" value in the virtual function table. This
+ will be used (by astIsAMatrixMap) to determine if an object belongs
+ to this class. We can conveniently use the address of the (static)
+ class_check variable to generate this unique value. */
+ vtab->id.check = &class_check;
+ vtab->id.parent = &(((AstMappingVtab *) vtab)->id);
+
+/* Initialise member function pointers. */
+/* ------------------------------------ */
+/* Store pointers to the member functions (implemented here) that provide
+ virtual methods for this class. */
+ vtab->MtrRot = MtrRot;
+ vtab->MtrMult = MtrMult;
+
+/* Save the inherited pointers to methods that will be extended, and
+ replace them with pointers to the new member functions. */
+ object = (AstObjectVtab *) vtab;
+ mapping = (AstMappingVtab *) vtab;
+
+ parent_transform = mapping->Transform;
+ mapping->Transform = Transform;
+
+ parent_mapsplit = mapping->MapSplit;
+ mapping->MapSplit = MapSplit;
+
+/* Store replacement pointers for methods which will be over-ridden by
+ new member functions implemented here. */
+ object->Equal = Equal;
+ mapping->GetIsLinear = GetIsLinear;
+ mapping->GetTranForward = GetTranForward;
+ mapping->GetTranInverse = GetTranInverse;
+ mapping->MapMerge = MapMerge;
+ mapping->Rate = Rate;
+
+/* Declare the destructor and copy constructor. */
+ astSetDelete( (AstObjectVtab *) vtab, Delete );
+ astSetCopy( (AstObjectVtab *) vtab, Copy );
+
+/* Declare the class dump function. */
+ astSetDump( vtab, Dump, "MatrixMap", "Matrix transformation" );
+
+/* If we have just initialised the vtab for the current class, indicate
+ that the vtab is now initialised, and store a pointer to the class
+ identifier in the base "object" level of the vtab. */
+ if( vtab == &class_vtab ) {
+ class_init = 1;
+ astSetVtabClassIdentifier( vtab, &(vtab->id) );
+ }
+}
+
+
+static double *InvertMatrix( int form, int nrow, int ncol, double *matrix, int *status ){
+/*
+* Name:
+* InvertMatrix
+
+* Purpose:
+* Invert a suplied matrix.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* double *InvertMatrix( int form, int nrow, int ncol, double *matrix, int *status )
+
+* Class Membership:
+* MatrixMap member function.
+
+* Description:
+* This function returns a pointer to a matrix holding the inverse of
+* the supplied matrix, or a NULL pointer if the inverse is not defined.
+* The memory to store the inverse matrix is allocated internally, and
+* should be freed using astFree when no longer required.
+*
+* The correspondence between a full matrix and its inverse is only
+* unique if the matrix is square, and so a NULL pointer is returned if
+* the supplied matrix is not square.
+
+* Parameters:
+* form
+* The form of the MatrixMap; UNIT, DIAGONAL or FULL.
+* nrow
+* Number of rows in the supplied matrix.
+* ncol
+* Number of columns in the supplied matrix.
+* matrix
+* A pointer to the input matrix. Elements should be stored in row
+* order (i.e. (row 1,column 1 ), (row 1,column 2 )... (row 2,column 1),
+* etc).
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* Pointer to the output matrix.
+
+* Notes:
+* - A NULL pointer is returned if a unit matrix is supplied.
+* - A NULL pointer will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+* - No error is reported if the inverse is not defined.
+*/
+
+/* Local Variables: */
+ double det; /* Determinant of supplied matrix */
+ double mval; /* Matrix element value */
+ double *out; /* Pointer to returned inverse matrix */
+ double *vector; /* Pointer to vector used by palDmat */
+ int i; /* Matrix element number */
+ int *iw; /* Pointer to workspace used by palDmat */
+ int nel; /* No. of elements in square matrix */
+ int ndiag; /* No. of diagonal elements */
+ int ok; /* Zero if any bad matrix values found */
+ int sing; /* Zero if matrix is not singular */
+
+/* Check the global error status. */
+ if ( !astOK ) return NULL;
+
+/* Return a NULL pointer if the input matrix is NULL. */
+ if( !matrix ) return NULL;
+
+/* If a unit matrix map has been supplied, return NULL. */
+ if( form == UNIT ){
+ return NULL;
+
+/* If a diagonal matrix has been supplied, allocate an array to hold
+ the diagonal terms of the inverse matrix. Store the reciprocal
+ of the input matrix diagonal terms in it. If any of the input diagonal
+ terms are zero or BAD, set the associated elements of the inverse matrix
+ BAD. */
+ } else if( form == DIAGONAL ){
+ if( nrow > ncol ) {
+ ndiag = ncol;
+ } else {
+ ndiag = nrow;
+ }
+
+ out = (double *) astMalloc( sizeof( double )*(size_t)ndiag );
+
+ if( out ) {
+ for( i = 0; i < ndiag; i++ ) {
+ mval = matrix[ i ];
+ if( mval != 0.0 && mval != AST__BAD ){
+ out[ i ] = 1.0/mval;
+ } else {
+ out[ i ] = AST__BAD;
+ }
+ }
+ }
+
+/* If a full matrix has been supplied, initialise the returned pointer. */
+ } else {
+ out = NULL;
+
+/* Check that the matrix is square. */
+ if( nrow == ncol ){
+
+/* Find the number of elements in the matrix. */
+ nel = nrow*ncol;
+
+/* See if there are any bad values in the matrix. */
+ ok = 1;
+ for ( i=0; i<nel; i++ ) {
+ if ( matrix[i] == AST__BAD ) {
+ ok = 0;
+ break;
+ }
+ }
+
+/* Only continue if there are no bad matrix values. */
+ if( ok ) {
+
+/* Take a copy of the supplied matrix */
+ out = (double *) astStore( NULL, (void *) matrix,
+ astSizeOf( (void *) matrix ) );
+
+/* The SLALIB function which inverts the matrix also applies the inverse
+ matrix to a vector. We are not interested in the vector in this
+ instance, but we still have to provide one for SLALIB to use. Allocate
+ memory for the vector. */
+ vector = (double *) astMalloc( sizeof(double)*(size_t) nrow );
+
+/* If it was allocated succesfully, fill it with zeros. */
+ if( astOK ){
+ for ( i=0; i<nrow; i++ ) vector[i] = 0.0;
+
+/* Obtain work space and attempt to invert the matrix using SLALIB, then
+ free the work space. */
+ iw = (int *) astMalloc( sizeof(int)*(size_t) nrow );
+ if( astOK ) palDmat( nrow, out, vector, &det, &sing, iw );
+ iw = (int *) astFree( (void *) iw );
+
+ }
+
+/* If the matrix could not be inverted, free the memory used to hold the
+ square matrix, and return the NULL pointer. */
+ if ( !astOK || sing != 0 ){
+ out = (double *) astFree( (void *) out );
+ }
+
+/* Free the memory used to hold the vector. */
+ vector = (double *) astFree( (void *) vector );
+ }
+ }
+ }
+
+/* Return the pointer. */
+
+ return out;
+
+}
+
+static int MapMerge( AstMapping *this, int where, int series, int *nmap,
+ AstMapping ***map_list, int **invert_list, int *status ) {
+/*
+* Name:
+* MapMerge
+
+* Purpose:
+* Simplify a sequence of Mappings containing a MatrixMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "mapping.h"
+* int MapMerge( AstMapping *this, int where, int series, int *nmap,
+* AstMapping ***map_list, int **invert_list, int *status )
+
+* Class Membership:
+* MatrixMap method (over-rides the protected astMapMerge method
+* inherited from the Mapping class).
+
+* Description:
+* This function attempts to simplify a sequence of Mappings by
+* merging a nominated MatrixMap in the sequence with its neighbours,
+* so as to shorten the sequence if possible.
+*
+* In many cases, simplification will not be possible and the
+* function will return -1 to indicate this, without further
+* action.
+*
+* In most cases of interest, however, this function will either
+* attempt to replace the nominated MatrixMap with a Mapping which it
+* considers simpler, or to merge it with the Mappings which
+* immediately precede it or follow it in the sequence (both will
+* normally be considered). This is sufficient to ensure the
+* eventual simplification of most Mapping sequences by repeated
+* application of this function.
+*
+* In some cases, the function may attempt more elaborate
+* simplification, involving any number of other Mappings in the
+* sequence. It is not restricted in the type or scope of
+* simplification it may perform, but will normally only attempt
+* elaborate simplification in cases where a more straightforward
+* approach is not adequate.
+
+* Parameters:
+* this
+* Pointer to the nominated MatrixMap which is to be merged with
+* its neighbours. This should be a cloned copy of the MatrixMap
+* pointer contained in the array element "(*map_list)[where]"
+* (see below). This pointer will not be annulled, and the
+* MatrixMap it identifies will not be modified by this function.
+* where
+* Index in the "*map_list" array (below) at which the pointer
+* to the nominated MatrixMap resides.
+* series
+* A non-zero value indicates that the sequence of Mappings to
+* be simplified will be applied in series (i.e. one after the
+* other), whereas a zero value indicates that they will be
+* applied in parallel (i.e. on successive sub-sets of the
+* input/output coordinates).
+* nmap
+* Address of an int which counts the number of Mappings in the
+* sequence. On entry this should be set to the initial number
+* of Mappings. On exit it will be updated to record the number
+* of Mappings remaining after simplification.
+* map_list
+* Address of a pointer to a dynamically allocated array of
+* Mapping pointers (produced, for example, by the astMapList
+* method) which identifies the sequence of Mappings. On entry,
+* the initial sequence of Mappings to be simplified should be
+* supplied.
+*
+* On exit, the contents of this array will be modified to
+* reflect any simplification carried out. Any form of
+* simplification may be performed. This may involve any of: (a)
+* removing Mappings by annulling any of the pointers supplied,
+* (b) replacing them with pointers to new Mappings, (c)
+* inserting additional Mappings and (d) changing their order.
+*
+* The intention is to reduce the number of Mappings in the
+* sequence, if possible, and any reduction will be reflected in
+* the value of "*nmap" returned. However, simplifications which
+* do not reduce the length of the sequence (but improve its
+* execution time, for example) may also be performed, and the
+* sequence might conceivably increase in length (but normally
+* only in order to split up a Mapping into pieces that can be
+* more easily merged with their neighbours on subsequent
+* invocations of this function).
+*
+* If Mappings are removed from the sequence, any gaps that
+* remain will be closed up, by moving subsequent Mapping
+* pointers along in the array, so that vacated elements occur
+* at the end. If the sequence increases in length, the array
+* will be extended (and its pointer updated) if necessary to
+* accommodate any new elements.
+*
+* Note that any (or all) of the Mapping pointers supplied in
+* this array may be annulled by this function, but the Mappings
+* to which they refer are not modified in any way (although
+* they may, of course, be deleted if the annulled pointer is
+* the final one).
+* invert_list
+* Address of a pointer to a dynamically allocated array which,
+* on entry, should contain values to be assigned to the Invert
+* attributes of the Mappings identified in the "*map_list"
+* array before they are applied (this array might have been
+* produced, for example, by the astMapList method). These
+* values will be used by this function instead of the actual
+* Invert attributes of the Mappings supplied, which are
+* ignored.
+*
+* On exit, the contents of this array will be updated to
+* correspond with the possibly modified contents of the
+* "*map_list" array. If the Mapping sequence increases in
+* length, the "*invert_list" array will be extended (and its
+* pointer updated) if necessary to accommodate any new
+* elements.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* If simplification was possible, the function returns the index
+* in the "map_list" array of the first element which was
+* modified. Otherwise, it returns -1 (and makes no changes to the
+* arrays supplied).
+
+* Notes:
+* - A value of -1 will be returned if this function is invoked
+* with the global error status set, or if it should fail for any
+* reason.
+*/
+
+/* Local Variables: */
+ AstMapping **maplt; /* New mappings list pointer */
+ AstMapping *map2; /* Pointer to replacement Mapping */
+ AstMapping *mc[2]; /* Copies of supplied Mappings to swap */
+ AstMapping *newmap; /* Pointer to replacement MatrixMap */
+ AstMapping *smc0; /* Simplied Mapping */
+ AstMapping *smc1; /* Simplied Mapping */
+ AstMatrixMap *mm; /* Pointer to supplied MatrixMap */
+ const char *class1; /* Pointer to first Mapping class string */
+ const char *class2; /* Pointer to second Mapping class string */
+ const char *nclass; /* Pointer to neighbouring Mapping class */
+ double *b; /* Pointer to scale terms */
+ double *new_mat; /* Pointer to elements of new MatrixMap */
+ double factor; /* Zoom factor for new ZoomMap */
+ int *invlt; /* New invert flags list pointer */
+ int do1; /* Would a backward swap make a simplification? */
+ int do2; /* Would a forward swap make a simplification? */
+ int i1; /* Index of first MatrixMap to merge */
+ int i2; /* Index of last MatrixMap to merge */
+ int i; /* Loop counter */
+ int ic[2]; /* Copies of supplied invert flags to swap */
+ int invert; /* Should the inverted Mapping be used? */
+ int j; /* Loop counter */
+ int nin; /* Number of input coordinates for MatrixMap */
+ int nmapt; /* No. of Mappings in list */
+ int nout; /* Number of output coordinates for MatrixMap */
+ int nstep1; /* No. of Mappings backwards to next mergable Mapping */
+ int nstep2; /* No. of Mappings forward to next mergable Mapping */
+ int result; /* Result value to return */
+ int swaphi; /* Can MatrixMap be swapped with higher neighbour? */
+ int swaplo; /* Can MatrixMap be swapped with lower neighbour? */
+ int zoom; /* Can MatrixMap be replaced by a ZoomMap? */
+
+/* Initialise. */
+ result = -1;
+
+/* Check the global error status. */
+ if ( !astOK ) return result;
+
+/* Initialise variables to avoid "used of uninitialised variable"
+ messages from dumb compilers. */
+ i1 = 0;
+ i2 = 0;
+
+/* Get the Invert attribute for the specified mapping. */
+ invert = astGetInvert( ( *map_list )[ where ] );
+
+/* Get the number of input and output axes for the MatrixMap. Swap these
+ if the supplied invert flag is not the same as the Invert attribute of
+ the Mapping. */
+ if( ( invert && !( *invert_list )[ where ] ) ||
+ ( !invert && ( *invert_list )[ where ] ) ) {
+ nout = astGetNin( ( *map_list )[ where ] );
+ nin = astGetNout( ( *map_list )[ where ] );
+
+ } else {
+ nin = astGetNin( ( *map_list )[ where ] );
+ nout = astGetNout( ( *map_list )[ where ] );
+ }
+
+/* First of all, see if the MatrixMap can be replaced by a simpler Mapping,
+ without reference to the neighbouring Mappings in the list. */
+/* ======================================================================*/
+ map2 = NULL;
+ mm = (AstMatrixMap *) ( *map_list )[ where ];
+
+/* If the MatrixMap is a square unit matrix, it can be replaced by a
+ UnitMap. */
+ if( mm->form == UNIT && nin == nout ){
+ map2 = (AstMapping *) astUnitMap( nin, "", status );
+
+/* If the MatrixMap is a square diagonal matrix with equal diagonal
+ terms, then it can be replaced by a ZoomMap, so long as the
+ diagonal elements are not all zero. */
+ } else if( mm->form == DIAGONAL && nin == nout &&
+ mm->f_matrix && mm->i_matrix &&
+ (mm->f_matrix)[ 0 ] != AST__BAD ){
+ zoom = 1;
+ b = mm->f_matrix + 1;
+ for( i = 1; i < nin; i++ ){
+ if( !astEQUAL( *b, *( b - 1 ) ) ){
+ zoom = 0;
+ break;
+ }
+ b++;
+ }
+
+ if( zoom ){
+ if( ( *invert_list )[ where ] ){
+ factor = (mm->i_matrix)[ 0 ];
+ } else {
+ factor = (mm->f_matrix)[ 0 ];
+ }
+
+ if( factor != 0.0 ){
+ map2 = (AstMapping *) astZoomMap( nin, factor, "", status );
+ }
+ }
+
+/* If the MatrixMap is a full matrix but all off-diagonal elements are
+ zero, it can be replaced by a diagonal MatrixMap. */
+ } else if( mm->form == FULL && nin == nout && mm->f_matrix ){
+ new_mat = astMalloc( sizeof( double )*nin );
+ b = mm->f_matrix;
+ for( i = 0; i < nin && new_mat; i++ ){
+ for( j = 0; j < nout; j++,b++ ){
+ if( i == j ) {
+ new_mat[ i ] = *b;
+ } else if( *b != 0.0 ) {
+ new_mat = astFree( new_mat );
+ break;
+ }
+ }
+ }
+
+ if( new_mat ) {
+ map2 = (AstMapping *) astMatrixMap( nin, nout, 1, new_mat, "",
+ status );
+ new_mat = astFree( new_mat );
+ }
+ }
+
+/* If the MatrixMap can be replaced, annul the MatrixMap pointer in the
+ list and replace it with the new Mapping pointer, and indicate that the
+ forward transformation of the returned Mapping should be used. */
+ if( map2 ){
+ (void) astAnnul( ( *map_list )[ where ] );
+ ( *map_list )[ where ] = map2;
+ ( *invert_list )[ where ] = 0;
+
+/* Return the index of the first modified element. */
+ result = where;
+
+/* If the MatrixMap itself could not be simplified, see if it can be merged
+ with the Mappings on either side of it in the list. */
+/*==========================================================================*/
+ } else {
+
+/* Store the classes of the neighbouring Mappings in the list. */
+ class1 = ( where > 0 ) ? astGetClass( ( *map_list )[ where - 1 ] ) : NULL;
+ class2 = ( where < *nmap - 1 ) ? astGetClass( ( *map_list )[ where + 1 ] ) : NULL;
+
+/* In series. */
+/* ========== */
+ if ( series ) {
+
+/* We first look to see if the MatrixMap can be merged with one of its
+ neighbours, resulting in a reduction of one in the number of Mappings
+ in the list. MatrixMaps can merge directly with another MatrixMap, a
+ ZoomMap, an invertable PermMap, or a UnitMap. */
+ if( class1 && ( !strcmp( class1, "MatrixMap" ) ||
+ !strcmp( class1, "ZoomMap" ) ||
+ !strcmp( class1, "PermMap" ) ||
+ !strcmp( class1, "UnitMap" ) ) ){
+ nclass = class1;
+ i1 = where - 1;
+ i2 = where;
+
+ } else if( class2 && ( !strcmp( class2, "MatrixMap" ) ||
+ !strcmp( class2, "ZoomMap" ) ||
+ !strcmp( class2, "PermMap" ) ||
+ !strcmp( class2, "UnitMap" ) ) ){
+ nclass = class2;
+ i1 = where;
+ i2 = where + 1;
+
+ } else {
+ nclass = NULL;
+ }
+
+/* Only some PermMaps can be merged with (those which have consistent
+ forward and inverse mappings). If this is not one of them, set nclass
+ NULL to indicate this. */
+ if( nclass && !strcmp( nclass, "PermMap" ) &&
+ !PermOK( ( *map_list )[ (i1==where)?i2:i1 ], status ) ) nclass = NULL;
+
+/* If the MatrixMap is diagonal it can also merge with a WinMap. */
+ if( !nclass && mm->form == DIAGONAL) {
+ if( class1 && ( !strcmp( class1, "WinMap" ) ) ){
+ nclass = class1;
+ i1 = where - 1;
+ i2 = where;
+
+ } else if( class2 && ( !strcmp( class2, "WinMap" ) ) ){
+ nclass = class2;
+ i1 = where;
+ i2 = where + 1;
+
+ }
+ }
+
+/* If the MatrixMap can merge with one of its neighbours, create the merged
+ Mapping. */
+ if( nclass ){
+
+ if( !strcmp( nclass, "MatrixMap" ) ){
+ newmap = (AstMapping *) MatMat( ( *map_list )[ i1 ], ( *map_list )[ i2 ],
+ ( *invert_list )[ i1 ], ( *invert_list )[ i2 ], status );
+ invert = 0;
+
+ } else if( !strcmp( nclass, "ZoomMap" ) ){
+ if( i1 == where ){
+ newmap = (AstMapping *) MatZoom( (AstMatrixMap *)( *map_list )[ i1 ],
+ (AstZoomMap *)( *map_list )[ i2 ],
+ ( *invert_list )[ i1 ], ( *invert_list )[ i2 ], status );
+ } else {
+ newmap = (AstMapping *) MatZoom( (AstMatrixMap *)( *map_list )[ i2 ],
+ (AstZoomMap *)( *map_list )[ i1 ],
+ ( *invert_list )[ i2 ], ( *invert_list )[ i1 ], status );
+ }
+ invert = 0;
+
+ } else if( !strcmp( nclass, "PermMap" ) ){
+ if( i1 == where ){
+ newmap = (AstMapping *) MatPerm( (AstMatrixMap *)( *map_list )[ i1 ],
+ (AstPermMap *)( *map_list )[ i2 ],
+ ( *invert_list )[ i1 ], ( *invert_list )[ i2 ], 1, status );
+ } else {
+ newmap = (AstMapping *) MatPerm( (AstMatrixMap *)( *map_list )[ i2 ],
+ (AstPermMap *)( *map_list )[ i1 ],
+ ( *invert_list )[ i2 ], ( *invert_list )[ i1 ], 0, status );
+ }
+ invert = 0;
+
+ } else if( !strcmp( nclass, "WinMap" ) ){
+ if( i1 == where ){
+ newmap = (AstMapping *) MatWin2( (AstMatrixMap *)( *map_list )[ i1 ],
+ (AstWinMap *)( *map_list )[ i2 ],
+ ( *invert_list )[ i1 ], ( *invert_list )[ i2 ], 1, status );
+ } else {
+ newmap = (AstMapping *) MatWin2( (AstMatrixMap *)( *map_list )[ i2 ],
+ (AstWinMap *)( *map_list )[ i1 ],
+ ( *invert_list )[ i2 ], ( *invert_list )[ i1 ], 0, status );
+ }
+ invert = 0;
+
+ } else {
+ newmap = astClone( ( *map_list )[ where ] );
+ invert = ( *invert_list )[ where ];
+ }
+
+/* If succesfull... */
+ if( astOK ){
+
+/* Annul the first of the two Mappings, and replace it with the merged
+ MatrixMap. Also set the invert flag. */
+ (void) astAnnul( ( *map_list )[ i1 ] );
+ ( *map_list )[ i1 ] = newmap;
+ ( *invert_list )[ i1 ] = invert;
+
+/* Annul the second of the two Mappings, and shuffle down the rest of the
+ list to fill the gap. */
+ (void) astAnnul( ( *map_list )[ i2 ] );
+ for ( i = i2 + 1; i < *nmap; i++ ) {
+ ( *map_list )[ i - 1 ] = ( *map_list )[ i ];
+ ( *invert_list )[ i - 1 ] = ( *invert_list )[ i ];
+ }
+
+/* Clear the vacated element at the end. */
+ ( *map_list )[ *nmap - 1 ] = NULL;
+ ( *invert_list )[ *nmap - 1 ] = 0;
+
+/* Decrement the Mapping count and return the index of the first
+ modified element. */
+ ( *nmap )--;
+ result = i1;
+
+ }
+
+/* If the MatrixMap could not merge directly with either of its neighbours,
+ we consider whether it would be worthwhile to swap the MatrixMap with
+ either of its neighbours. This can only be done for certain classes
+ of Mapping (WinMaps and some PermMaps), and will usually require both
+ Mappings to be modified (unless they are commutative). The advantage of
+ swapping the order of the Mappings is that it may result in the MatrixMap
+ being adjacent to a Mapping with which it can merge directly on the next
+ invocation of this function, thus reducing the number of Mappings
+ in the list. */
+ } else {
+
+/* Set a flag if we could swap the MatrixMap with its higher neighbour. "do2"
+ is returned if swapping the Mappings would simplify either of the Mappings. */
+ if( where + 1 < *nmap ){
+ swaphi = CanSwap( ( *map_list )[ where ],
+ ( *map_list )[ where + 1 ],
+ ( *invert_list )[ where ],
+ ( *invert_list )[ where + 1 ], &do2, status );
+ } else {
+ swaphi = 0;
+ do2 = 0;
+ }
+
+/* If so, step through each of the Mappings which follow the MatrixMap,
+ looking for a Mapping with which the MatrixMap could merge directly. Stop
+ when such a Mapping is found, or if a Mapping is found with which the
+ MatrixMap could definitely not swap. Note the number of Mappings which
+ separate the MatrixMap from the Mapping with which it could merge (if
+ any). */
+ nstep2 = -1;
+ if( swaphi ){
+ for( i2 = where + 1; i2 < *nmap; i2++ ){
+
+/* See if we can merge with this Mapping. If so, note the number of steps
+ between the two Mappings and leave the loop. */
+ nclass = astGetClass( ( *map_list )[ i2 ] );
+ if( !strcmp( nclass, "MatrixMap" ) ||
+ !strcmp( nclass, "ZoomMap" ) ||
+ ( !strcmp( nclass, "PermMap" ) && PermOK( ( *map_list )[ i2 ], status ) ) ||
+ !strcmp( nclass, "UnitMap" ) ) {
+ nstep2 = i2 - where - 1;
+ break;
+ }
+
+/* If there is no chance that we can swap with this Mapping, leave the loop
+ with -1 for the number of steps to indicate that no merging is possible.
+ MatrixMaps can swap with WinMaps and some permmaps. */
+ if( strcmp( nclass, "WinMap" ) &&
+ strcmp( nclass, "PermMap" ) ) {
+ break;
+ }
+
+ }
+
+ }
+
+/* Do the same working forward from the MatrixMap towards the start of the map
+ list. */
+ if( where > 0 ){
+ swaplo = CanSwap( ( *map_list )[ where - 1 ],
+ ( *map_list )[ where ],
+ ( *invert_list )[ where - 1 ],
+ ( *invert_list )[ where ], &do1, status );
+ } else {
+ swaplo = 0;
+ do1 = 0;
+ }
+
+ nstep1 = -1;
+ if( swaplo ){
+ for( i1 = where - 1; i1 >= 0; i1-- ){
+
+ nclass = astGetClass( ( *map_list )[ i1 ] );
+ if( !strcmp( nclass, "MatrixMap" ) ||
+ ( !strcmp( nclass, "PermMap" ) && PermOK( ( *map_list )[ i1 ], status ) ) ||
+ !strcmp( nclass, "ZoomMap" ) ||
+ !strcmp( nclass, "UnitMap" ) ) {
+ nstep1 = where - 1 - i1;
+ break;
+ }
+
+ if( strcmp( nclass, "WinMap" ) &&
+ strcmp( nclass, "PermMap" ) ) {
+ break;
+ }
+
+ }
+
+ }
+
+/* Choose which neighbour to swap with so that the MatrixMap moves towards the
+ nearest Mapping with which it can merge. */
+ if( do1 || (
+ nstep1 != -1 && ( nstep2 == -1 || nstep2 > nstep1 ) ) ){
+ nclass = class1;
+ i1 = where - 1;
+ i2 = where;
+ } else if( do2 || nstep2 != -1 ){
+ nclass = class2;
+ i1 = where;
+ i2 = where + 1;
+ } else {
+ nclass = NULL;
+ }
+
+/* If there is a target Mapping in the list with which the MatrixMap could
+ merge, consider replacing the supplied Mappings with swapped Mappings to
+ bring the MatrixMap closer to the target Mapping. */
+ if( nclass ){
+
+/* Swap the Mappings. */
+ if (!strcmp( nclass, "WinMap" ) ){
+ MatWin( (*map_list) + i1, (*invert_list) + i1, where - i1, status );
+
+ } else if( !strcmp( nclass, "PermMap" ) ){
+ MatPermSwap( (*map_list) + i1, (*invert_list) + i1, where - i1, status );
+ }
+
+/* And then merge them. */
+ if( where == i1 && where + 1 < *nmap ) { /* Merging upwards */
+ map2 = astClone( (*map_list)[ where + 1 ] );
+ nmapt = *nmap - where - 1;
+ maplt = *map_list + where + 1;
+ invlt = *invert_list + where + 1;
+
+ (void) astMapMerge( map2, 0, series, &nmapt, &maplt, &invlt );
+ map2 = astAnnul( map2 );
+ *nmap = where + 1 + nmapt;
+
+ } else if( where - 2 >= 0 ) { /* Merging downwards */
+ map2 = astClone( (*map_list)[ where - 2 ] );
+ nmapt = *nmap - where + 2;
+ maplt = *map_list + where - 2 ;
+ invlt = *invert_list + where - 2;
+
+ (void) astMapMerge( map2, 0, series, &nmapt, &maplt, &invlt );
+ map2 = astAnnul( map2 );
+ *nmap = where - 2 + nmapt;
+ }
+
+ result = i1;
+
+/* If there is no Mapping available for merging, it may still be
+ advantageous to swap with a neighbour because the swapped Mapping may
+ be simpler than the original Mappings. For instance, a PermMap may
+ strip rows of the MatrixMap leaving only a UnitMap. */
+ } else if( swaphi || swaplo ) {
+
+/* Try swapping with each possible neighbour in turn. */
+ for( i = 0; i < 2; i++ ) {
+
+/* Set up the class and pointers for the mappings to be swapped, first
+ the lower neighbour, then the upper neighbour. */
+ if( i == 0 && swaplo ){
+ nclass = class1;
+ i1 = where - 1;
+ i2 = where;
+
+ } else if( i == 1 && swaphi ){
+ nclass = class2;
+ i1 = where;
+ i2 = where + 1;
+
+ } else {
+ nclass = NULL;
+ }
+
+/* If we have a Mapping to swap with... */
+ if( nclass ) {
+
+/* Take copies of the Mapping and Invert flag arrays so we do not change
+ the supplied values. */
+ mc[ 0 ] = (AstMapping *) astCopy( ( (*map_list) + i1 )[0] );
+ mc[ 1 ] = (AstMapping *) astCopy( ( (*map_list) + i1 )[1] );
+ ic[ 0 ] = ( (*invert_list) + i1 )[0];
+ ic[ 1 ] = ( (*invert_list) + i1 )[1];
+
+/* Swap these Mappings. */
+ if( !strcmp( nclass, "WinMap" ) ){
+ MatWin( mc, ic, where - i1, status );
+ } else if( !strcmp( nclass, "PermMap" ) ){
+ MatPermSwap( mc, ic, where - i1, status );
+ }
+
+/* If neither of the swapped Mappings can be simplified further, then there
+ is no point in swapping the Mappings, so just annul the map copies. */
+ smc0 = astSimplify( mc[0] );
+ smc1 = astSimplify( mc[1] );
+
+ if( astGetClass( smc0 ) == astGetClass( mc[0] ) &&
+ astGetClass( smc1 ) == astGetClass( mc[1] ) ) {
+
+ mc[ 0 ] = (AstMapping *) astAnnul( mc[ 0 ] );
+ mc[ 1 ] = (AstMapping *) astAnnul( mc[ 1 ] );
+
+/* If one or both of the swapped Mappings could be simplified, then annul
+ the supplied Mappings and return the swapped mappings, storing the index
+ of the first modified Mapping. */
+ } else {
+ (void ) astAnnul( ( (*map_list) + i1 )[0] );
+ (void ) astAnnul( ( (*map_list) + i1 )[1] );
+
+ ( (*map_list) + i1 )[0] = mc[ 0 ];
+ ( (*map_list) + i1 )[1] = mc[ 1 ];
+
+ ( (*invert_list) + i1 )[0] = ic[ 0 ];
+ ( (*invert_list) + i1 )[1] = ic[ 1 ];
+
+ result = i1;
+ break;
+ }
+
+/* Annul the simplied Mappings */
+ smc0 = astAnnul( smc0 );
+ smc1 = astAnnul( smc1 );
+
+ }
+ }
+ }
+ }
+ }
+ }
+
+/* Return the result. */
+ return result;
+}
+
+static int *MapSplit( AstMapping *this_map, int nin, const int *in, AstMapping **map, int *status ){
+/*
+* Name:
+* MapSplit
+
+* Purpose:
+* Create a Mapping representing a subset of the inputs of an existing
+* MatrixMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* int *MapSplit( AstMapping *this, int nin, const int *in, AstMapping **map, int *status )
+
+* Class Membership:
+* MatrixMap method (over-rides the protected astMapSplit method
+* inherited from the Mapping class).
+
+* Description:
+* This function creates a new Mapping by picking specified inputs from
+* an existing MatrixMap. This is only possible if the specified inputs
+* correspond to some subset of the MatrixMap outputs. That is, there
+* must exist a subset of the MatrixMap outputs for which each output
+* depends only on the selected MatrixMap inputs, and not on any of the
+* inputs which have not been selected. In addition, outputs that are
+* not in this subset must not depend on any selected inputs. If these
+* conditions are not met by the supplied MatrixMap, then a NULL Mapping
+* is returned.
+
+* Parameters:
+* this
+* Pointer to the MatrixMap to be split (the MatrixMap is not actually
+* modified by this function).
+* nin
+* The number of inputs to pick from "this".
+* in
+* Pointer to an array of indices (zero based) for the inputs which
+* are to be picked. This array should have "nin" elements. If "Nin"
+* is the number of inputs of the supplied MatrixMap, then each element
+* should have a value in the range zero to Nin-1.
+* map
+* Address of a location at which to return a pointer to the new
+* Mapping. This Mapping will have "nin" inputs (the number of
+* outputs may be different to "nin"). A NULL pointer will be
+* returned if the supplied MatrixMap has no subset of outputs which
+* depend only on the selected inputs.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* A pointer to a dynamically allocated array of ints. The number of
+* elements in this array will equal the number of outputs for the
+* returned Mapping. Each element will hold the index of the
+* corresponding output in the supplied MatrixMap. The array should be
+* freed using astFree when no longer needed. A NULL pointer will
+* be returned if no output Mapping can be created.
+
+* Notes:
+* - If this function is invoked with the global error status set,
+* or if it should fail for any reason, then NULL values will be
+* returned as the function value and for the "map" pointer.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *this; /* Pointer to MatrixMap structure */
+ double *mat; /* Pointer to matrix for supplied MatrixMap */
+ double *pmat; /* Pointer to row start in returned matrix */
+ double *prow; /* Pointer to row start in supplied matrix */
+ double *rmat; /* Pointer to matrix for returned MatrixMap */
+ double el; /* Next element value in supplied matrix */
+ int *result; /* Pointer to returned array */
+ int good; /* Would new matrix contain any good values/ */
+ int i; /* Loop count */
+ int icol; /* Column index within supplied MatrixMap */
+ int iel; /* Index of next element from the input matrix */
+ int irow; /* Row index within supplied MatrixMap */
+ int isel; /* Does output depend on any selected inputs? */
+ int ncol; /* Number of columns (inputs) in supplied MatrixMap */
+ int nout; /* Number of outputs in returned MatrixMap */
+ int nrow; /* Number of rows (outputs) in supplied MatrixMap */
+ int ok; /* Are input indices OK? */
+ int sel; /* Does any output depend on selected inputs? */
+ int unsel; /* Does any output depend on unselected inputs? */
+
+/* Initialise */
+ result = NULL;
+ *map = NULL;
+
+/* Check the global error status. */
+ if ( !astOK ) return result;
+
+/* Invoke the parent astMapSplit method to see if it can do the job. */
+ result = (*parent_mapsplit)( this_map, nin, in, map, status );
+
+/* If not, we provide a special implementation here. */
+ if( !result ) {
+
+/* Get a pointer to the MatrixMap structure. */
+ this = (AstMatrixMap *) this_map;
+
+/* Get the number of inputs and outputs. */
+ ncol = astGetNin( this );
+ nrow = astGetNout( this );
+
+/* Check the supplied input indices are usable. */
+ ok = 1;
+ for( i = 0; i < nin; i++ ) {
+ if( in[ i ] < 0 || in[ i ] >= ncol ) {
+ ok = 0;
+ break;
+ }
+ }
+
+ if( ok ) {
+
+/* Ensure the MatrixMap is stored in full form. */
+ ExpandMatrix( this, status );
+
+/* Allocate the largest array that could be necessary to hold the
+ returned array of Mapping outputs. */
+ result = astMalloc( sizeof(int)*(size_t) nrow );
+
+/* Allocate the largest array that could be necessary to hold the
+ matrix representing the returned MatrixMap. */
+ rmat = astMalloc( sizeof(double)*(size_t) (nrow*ncol) );
+
+/* Get the matrix which defines the current forward transformation. This
+ takes into account whether the MatrixMap has been inverted or not. */
+ if( astGetInvert( this ) ) {
+ mat = this->i_matrix;
+ } else {
+ mat = this->f_matrix;
+ }
+
+/* We cannot create the require Mapping if the matrix is undefined. */
+ if( !mat || !astOK ) {
+ ok = 0;
+ nout = 0;
+ good = 0;
+
+/* Otherwise, loop round all the rows in the matrix. */
+ } else {
+ nout = 0;
+ good = 0;
+ pmat = rmat;
+ iel = 0;
+ for( irow = 0; irow < nrow; irow++ ) {
+
+/* Indicate that this output (i.e. row of the matrix) depends on neither
+ selected nor unselected inputs as yet. */
+ sel = 0;
+ unsel = 0;
+
+/* Save a pointer to the first element of this row in the MatrixMap
+ matrix. */
+ prow = mat + iel;
+
+/* Loop round all the elements in the current row of the matrix. */
+ for( icol = 0; icol < ncol; icol++ ) {
+
+/* If this element is non-zero and non-bad, then output "irow" depends on
+ input "icol". */
+ el = mat[ iel++ ];
+ if( el != 0.0 && el != AST__BAD ) {
+
+/* Is input "icol" one of the selected inputs? */
+ isel = 0;
+ for( i = 0; i < nin; i++ ) {
+ if( in[ i ] == icol ) {
+ isel = 1;
+ break;
+ }
+ }
+
+/* If so, note that this output depends on selected inputs. Otherwise note
+ it depends on unselected inputs. */
+ if( isel ) {
+ sel = 1;
+ } else {
+ unsel = 1;
+ }
+ }
+ }
+
+/* If this output depends only on selected inputs, we can include it in
+ the returned Mapping.*/
+ if( sel && !unsel ) {
+
+/* Store the index of the output within the original MatrixMap. */
+ result[ nout ] = irow;
+
+/* Increment the number of outputs in the returned Mapping. */
+ nout++;
+
+/* Copy the elements of the current matrix row which correspond to the
+ selected inputs into the new matrix. */
+ for( i = 0; i < nin; i++ ) {
+ if( astISGOOD( prow[ in[ i ] ] ) ) {
+ *(pmat++) = prow[ in[ i ] ];
+ good = 1;
+ }
+ }
+ }
+
+/* If this output depends on a selected input, but also depends on an
+ unselected input, we cannot split the MatrixMap. */
+ if( sel && unsel ) {
+ ok = 0;
+ break;
+ }
+ }
+ }
+
+
+/* If the returned Mapping can be created, create it. */
+ if( ok && nout > 0 && good ) {
+ *map = (AstMapping *) astMatrixMap( nin, nout, 0, rmat, "", status );
+
+/* Otherwise, free the returned array. */
+ } else {
+ result = astFree( result );
+ }
+
+/* Free resources. */
+ rmat = astFree( rmat );
+
+/* Re-compress the supplied MatrixMap. */
+ CompressMatrix( this, status );
+ }
+ }
+
+/* Free returned resources if an error has occurred. */
+ if( !astOK ) {
+ result = astFree( result );
+ *map = astAnnul( *map );
+ }
+
+/* Return the list of output indices. */
+ return result;
+}
+
+static AstMatrixMap *MatMat( AstMapping *map1, AstMapping *map2, int inv1,
+ int inv2, int *status ){
+/*
+* Name:
+* MatMat
+
+* Purpose:
+* Create a merged MatrixMap from two supplied MatrixMaps.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstMatrixMap *MatMat( AstMapping *map1, AstMapping *map2, int inv1,
+* int inv2, int *status )
+
+* Class Membership:
+* MatrixMap member function
+
+* Description:
+* This function creates a new MatrixMap which performs a mapping
+* equivalent to applying the two supplied MatrixMaps in series, in the
+* directions specified by the "invert" flags (the Invert attributes of
+* the supplied MatrixMaps are ignored).
+
+* Parameters:
+* map1
+* A pointer to the MatrixMap to apply first.
+* map2
+* A pointer to the MatrixMap to apply second.
+* inv1
+* The invert flag to use with map1. A value of zero causes the forward
+* mapping to be used, and a non-zero value causes the inverse
+* mapping to be used.
+* inv2
+* The invert flag to use with map2.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* Pointer to the new MatrixMap.
+
+* Notes:
+* - The forward direction of the returned MatrixMap is equivalent to the
+* combined effect of the two supplied MatrixMap, operating in the
+* directions specified by "inv1" and "inv2".
+* - A null pointer will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *result; /* Pointer to output MatrixMap */
+ int invert[ 2 ]; /* Original invert flags */
+
+/* Check the global error status. */
+ if ( !astOK ) return NULL;
+
+/* Initialise the returned pointer. */
+ result = NULL;
+
+/* Temporarily set their Invert attributes to the supplied values. */
+ invert[ 0 ] = astGetInvert( map1 );
+ astSetInvert( map1, inv1 );
+
+ invert[ 1 ] = astGetInvert( map2 );
+ astSetInvert( map2, inv2 );
+
+/* Create a new MatrixMap by multiplying them together. */
+ result = astMtrMult( (AstMatrixMap *) map1, (AstMatrixMap *) map2 );
+
+/* Re-instate the original settings of the Invert attributes for the
+ supplied MatrixMaps. */
+ astSetInvert( map1, invert[ 0 ] );
+ astSetInvert( map2, invert[ 1 ] );
+
+/* If an error has occurred, annull the returned MatrixMap. */
+ if( !astOK ) result = astAnnul( result );
+
+/* Return a pointer to the output MatrixMap. */
+ return result;
+}
+
+static AstMatrixMap *MatPerm( AstMatrixMap *mm, AstPermMap *pm, int minv,
+ int pinv, int mat1, int *status ){
+/*
+* Name:
+* MatPerm
+
+* Purpose:
+* Create a MatrixMap by merging a MatrixMap and a PermMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstMatrixMap *MatPerm( AstMatrixMap *mm, AstPermMap *pm, int minv,
+* int pinv, int mat1, int *status )
+
+* Class Membership:
+* MatrixMap member function
+
+* Description:
+* This function creates a new MatrixMap which performs a mapping
+* equivalent to applying the two supplied Mappings in series in the
+* directions specified by the "invert" flags (the Invert attributes of
+* the supplied MatrixMaps are ignored).
+
+* Parameters:
+* mm
+* A pointer to the MatrixMap.
+* pm
+* A pointer to the PermMap.
+* minv
+* The invert flag to use with mm. A value of zero causes the forward
+* mapping to be used, and a non-zero value causes the inverse
+* mapping to be used.
+* pinv
+* The invert flag to use with pm.
+* mat1
+* If non-zero, then "mm" is applied first followed by "pm". Otherwise,
+* "pm" is applied first followed by "mm".
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* Pointer to the new MatrixMap.
+
+* Notes:
+* - The forward direction of the returned MatrixMap is equivalent to the
+* combined effect of the two supplied Mappings, operating in the
+* directions specified by "pinv" and "minv".
+* - A null pointer will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *mm2; /* Pointer to an intermediate MatrixMap */
+ AstMatrixMap *result; /* Pointer to output MatrixMap */
+ AstPointSet *pset1; /* Pointer to a PointSet holding unpermuted unit vectors */
+ AstPointSet *pset2; /* Pointer to a PointSet holding permuted unit vectors */
+ double *matrix; /* Pointer to a matrix representing the PermMap */
+ double *p; /* Pointer to next matrix element */
+ double **ptr1; /* Pointer to the data in pset1 */
+ double **ptr2; /* Pointer to the data in pset2 */
+ int i; /* Axis index */
+ int j; /* Point index */
+ int nax; /* No. of axes in the PermMap */
+ int old_minv; /* Original setting of MatrixMap Invert attribute */
+ int old_pinv; /* Original setting of PermMap Invert attribute */
+
+/* Check the global error status. */
+ if ( !astOK ) return NULL;
+
+/* Initialise the returned pointer. */
+ result = NULL;
+
+/* Temporarily set the Invert attributes of both Mappings to the supplied
+ values. */
+ old_minv = astGetInvert( mm );
+ astSetInvert( mm, minv );
+
+ old_pinv = astGetInvert( pm );
+ astSetInvert( pm, pinv );
+
+/* Get the number of axes in the PermMap. The PermMap will have the same
+ number of input and output axes because a check has already been made on
+ it to ensure that this is so (in function PermOK). */
+ nax = astGetNin( pm );
+
+/* We first represent the PermMap as a MatrixMap containing elements with
+ values zero or one. Each row of this matrix is obtained by transforming a
+ unit vector along each axis using the inverse PermMap. Allocate memory
+ to hold the matrix array, and create a PointSet holding the unit
+ vectors. */
+ matrix = (double *) astMalloc( sizeof( double )*(size_t)( nax*nax ) );
+
+ pset1 = astPointSet( nax, nax, "", status );
+ ptr1 = astGetPoints( pset1 );
+
+ pset2 = astPointSet( nax, nax, "", status );
+ ptr2 = astGetPoints( pset2 );
+
+ if( astOK ){
+ for( i = 0; i < nax; i++ ){
+ for( j = 0; j < nax; j++ ) ptr1[ i ][ j ] = 0.0;
+ ptr1[ i ][ i ] = 1.0;
+ }
+
+/* Transform these unit vectors using the inverse PermMap. */
+ (void) astTransform( pm, pset1, 0, pset2 );
+
+/* Copy the transformed vectors into the matrix array. */
+ p = matrix;
+ for( j = 0; j < nax; j++ ){
+ for( i = 0; i < nax; i++ ) *(p++) = ptr2[ i ][ j ];
+ }
+
+/* Create a MatrixMap holding this array. */
+ mm2 = astMatrixMap( nax, nax, 0, matrix, "", status );
+
+/* Create a new MatrixMap equal to the product of the supplied MatrixMap
+ and the MatrixMap just created from the PermMap. */
+ if( mat1 ){
+ result = astMtrMult( mm, mm2 );
+ } else {
+ result = astMtrMult( mm2, mm );
+ }
+
+/* Free everything. */
+ mm2 = astAnnul( mm2 ) ;
+ }
+
+ pset2 = astAnnul( pset2 );
+ pset1 = astAnnul( pset1 );
+ matrix = (double *) astFree( (void *) matrix );
+
+/* Re-instate the original settings of the Invert attribute for the
+ supplied Mappings. */
+ astSetInvert( mm, old_minv );
+ astSetInvert( pm, old_pinv );
+
+/* If an error has occurred, annull the returned MatrixMap. */
+ if( !astOK ) result = astAnnul( result );
+
+/* Return a pointer to the output MatrixMap. */
+ return result;
+}
+
+static void MatPermSwap( AstMapping **maps, int *inverts, int imm, int *status ){
+/*
+* Name:
+* MatPermSwap
+
+* Purpose:
+* Swap a PermMap and a MatrixMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* void MatPermSwap( AstMapping **maps, int *inverts, int imm )
+
+* Class Membership:
+* MatrixMap member function
+
+* Description:
+* A list of two Mappings is supplied containing a PermMap and a
+* MatrixMap. These Mappings are annulled, and replaced with
+* another pair of Mappings consisting of a PermMap and a MatrixMap
+* in the opposite order. These Mappings are chosen so that their
+* combined effect is the same as the original pair of Mappings.
+
+* Parameters:
+* maps
+* A pointer to an array of two Mapping pointers.
+* inverts
+* A pointer to an array of two invert flags.
+* imm
+* The index within "maps" of the MatrixMap.
+
+* Notes:
+* - There are restictions on the sorts of PermMaps which can be
+* swapped with a MatrixMap -- see function CanSwap. It is assumed
+* that the supplied MatrixMap and PermMap satisfy these requirements.
+
+*/
+
+/* Local Variables: */
+ AstMatrixMap *mm; /* Pointer to the supplied MatrixMap */
+ AstMatrixMap *mmnew; /* Pointer to new MatrixMap */
+ AstMatrixMap *smmnew; /* Pointer to new simplified MatrixMap */
+ AstPermMap *pm; /* Pointer to the supplied PermMap */
+ AstPermMap *pmnew; /* Pointer to new PermMap */
+ AstPermMap *spmnew; /* Pointer to new simplified PermMap */
+ double *consts; /* Pointer to constants array */
+ double *matrix; /* Supplied array of matrix elements */
+ double *out_el; /* Pointer to next element of new MatrixMap */
+ double *out_mat; /* Matrix elements for new MatrixMap */
+ double c; /* Constant */
+ double matel; /* Matrix element */
+ int *inperm; /* Pointer to input axis permutation array */
+ int *outperm; /* Pointer to output axis permutation array */
+ int col; /* Index of matrix column */
+ int i; /* Axis count */
+ int k; /* Axis count */
+ int nin; /* No. of axes in supplied PermMap */
+ int nout; /* No. of axes in returned PermMap */
+ int old_pinv; /* Invert value for the supplied PermMap */
+ int row; /* Index of matrix row */
+
+/* Check the global error status. */
+ if ( !astOK ) return;
+
+/* Initialise variables to avoid "used of uninitialised variable"
+ messages from dumb compilers. */
+ mmnew = NULL;
+ pmnew = NULL;
+
+/* Store pointers to the supplied PermMap and the MatrixMap. */
+ pm = (AstPermMap *) maps[ 1 - imm ];
+ mm = (AstMatrixMap *) maps[ imm ];
+
+/* Temporarily set the Invert attribute of the supplied PermMap to the
+ supplied value. */
+ old_pinv = astGetInvert( pm );
+ astSetInvert( pm, inverts[ 1 - imm ] );
+
+/* Ensure the MatrixMap is stored in full form. */
+ ExpandMatrix( mm, status );
+
+/* Store a pointer to the required array of matrix elements. */
+ if( inverts[ imm ] ) {
+ matrix = mm->i_matrix;
+ } else {
+ matrix = mm->f_matrix;
+ }
+
+/* Get the number of input and output axes of the PermMap. */
+ nin = astGetNin( pm );
+ nout = astGetNout( pm );
+
+/* Allocate memory to hold the matrix elements for the swapped MatrixMap.
+ The number of rows and olumns in the new matrix must equal the number of
+ input or output axes for the PermMap, depending on whether the PermMap
+ or MatrixMap is applied first. */
+ if( imm == 0 ) {
+ out_mat = (double *) astMalloc( sizeof( double )*(size_t)( nout*nout ) );
+ } else {
+ out_mat = (double *) astMalloc( sizeof( double )*(size_t)( nin*nin ) );
+ }
+
+/* We need to know the axis permutation arrays and constants array for
+ the PermMap. */
+ PermGet( pm, &outperm, &inperm, &consts, status );
+ if( astOK ) {
+
+/* First deal with cases where the MatrixMap is applied first. */
+ if( imm == 0 ) {
+
+/* Consider each output axis of the PermMap. */
+ for( i = 0; i < nout; i++ ) {
+
+/* If this output is connected to one of the input axes... */
+ row = outperm[ i ];
+ if( row >= 0 && row < nin ) {
+
+/* Permute the row of the supplied matrix which feeds the corresponding
+ PermMap input axis (i.e. axis outperm[k] ) using the forward PermMap.
+ Store zeros for any output axes which are assigned constants. This forms
+ row i of the new MatrixMap. */
+ out_el = out_mat + nout*i;
+ for( k = 0; k < nout; k++ ){
+ col = outperm[ k ];
+ if( col >= 0 && col < nin ) {
+ *(out_el++) = *( matrix + nin*row + col );
+ } else {
+ *(out_el++) = 0.0;
+ }
+ }
+
+/* If this output is asigned a constant value, use a "diagonal" vector for
+ row i of the new MatrixMap (i.e. all zeros except for a 1.0 in column
+ i ). */
+ } else {
+ out_el = out_mat + nout*i;
+ for( k = 0; k < nout; k++ ) {
+ if( k != i ) {
+ *(out_el++) = 0.0;
+ } else {
+ *(out_el++) = 1.0;
+ }
+ }
+ }
+ }
+
+/* Create the new MatrixMap. */
+ mmnew = astMatrixMap( nout, nout, 0, out_mat, "", status );
+
+/* Any PermMap inputs which are assigned a constant value need to be
+ changed now, since they will no longer be scaled by the inverse
+ MatrixMap. CanSwap ensures that the inverse MatrixMap produces a
+ simple scaling for constant axes, so we change the PermMap constant
+ to be the constant AFTER scaling by the inverse MatrixMap.
+
+ Consider each input axis of the PermMap. */
+ for( i = 0; i < nin; i++ ) {
+
+/* If this input is assigned a constant value... */
+ if( inperm[ i ] < 0 ) {
+
+/* Divide the supplied constant value by the corresponding diagonal term
+ in the supplied MatrixMap. */
+ c = consts[ -inperm[ i ] - 1 ];
+ if( c != AST__BAD ) {
+ matel = matrix[ i*( nin + 1 ) ];
+ if( matel != 0.0 && matel != AST__BAD ) {
+ consts[ -inperm[ i ] - 1 ] /= matel;
+ } else {
+ consts[ -inperm[ i ] - 1 ] = AST__BAD;
+ }
+ }
+ }
+ }
+
+/* Now deal with cases where the PermMap is applied first. */
+ } else {
+
+/* Consider each input axis of the PermMap. */
+ for( i = 0; i < nin; i++ ) {
+
+/* If this input is connected to one of the output axes... */
+ row = inperm[ i ];
+ if( row >= 0 && row < nout ) {
+
+/* Permute the row of the supplied matrix which feeds the corresponding
+ PermMap output axis (i.e. axis inperm[k] ) using the inverse PermMap.
+ Store zeros for any input axes which are assigned constants. This forms
+ row i of the new MatrixMap. */
+ out_el = out_mat + nin*i;
+ for( k = 0; k < nin; k++ ){
+ col = inperm[ k ];
+ if( col >= 0 && col < nout ) {
+ *(out_el++) = *( matrix + nout*row + col );
+ } else {
+ *(out_el++) = 0.0;
+ }
+ }
+
+/* If this input is asigned a constant value, use a "diagonal" vector for
+ row i of the new MatrixMap (i.e. all zeros except for a 1.0 in column
+ i ). */
+ } else {
+ out_el = out_mat + nin*i;
+ for( k = 0; k < nin; k++ ) {
+ if( k != i ) {
+ *(out_el++) = 0.0;
+ } else {
+ *(out_el++) = 1.0;
+ }
+ }
+ }
+ }
+
+/* Create the new MatrixMap. */
+ mmnew = astMatrixMap( nin, nin, 0, out_mat, "", status );
+
+/* Any PermMap outputs which are assigned a constant value need to be
+ changed now, since they will no longer be scaled by the forward
+ MatrixMap. CanSwap ensures that the forward MatrixMap produces a
+ simple scaling for constant axes, so we change the PermMap constant
+ to be the constant AFTER scaling by the forward MatrixMap.
+
+ Consider each output axis of the PermMap. */
+ for( i = 0; i < nout; i++ ) {
+
+/* If this output is assigned a constant value... */
+ if( outperm[ i ] < 0 ) {
+
+/* Multiple the supplied constant value by the corresponding diagonal term in
+ the supplied MatrixMap. */
+ c = consts[ -outperm[ i ] - 1 ];
+ if( c != AST__BAD ) {
+ matel = matrix[ i*( nout + 1 ) ];
+ if( matel != AST__BAD ) {
+ consts[ -outperm[ i ] - 1 ] *= matel;
+ } else {
+ consts[ -outperm[ i ] - 1 ] = AST__BAD;
+ }
+ }
+ }
+ }
+ }
+
+/* Create a new PermMap (since the constants may have changed). */
+ pmnew = astPermMap( nin, inperm, nout, outperm, consts, "", status );
+
+/* Free the axis permutation and constants arrays. */
+ outperm = (int *) astFree( (void *) outperm );
+ inperm = (int *) astFree( (void *) inperm );
+ consts = (double *) astFree( (void *) consts );
+ }
+
+/* Free the memory used to hold the new matrix elements. */
+ out_mat = (double *) astFree( (void *) out_mat );
+
+/* Ensure the supplied MatrixMap is stored back in compressed form. */
+ CompressMatrix( mm, status );
+
+/* Re-instate the original value of the Invert attribute of the supplied
+ PermMap. */
+ astSetInvert( pm, old_pinv );
+
+ if( astOK ) {
+
+/* Annul the supplied PermMap. */
+ (void) astAnnul( pm );
+
+/* Simplify the returned Mappings. */
+ spmnew = astSimplify( pmnew );
+ pmnew = astAnnul( pmnew );
+
+ smmnew = astSimplify( mmnew );
+ mmnew = astAnnul( mmnew );
+
+/* Store a pointer to the new PermMap in place of the supplied MatrixMap. This
+ PermMap should be used in its forward direction. */
+ maps[ imm ] = (AstMapping *) spmnew;
+ inverts[ imm ] = astGetInvert( spmnew );
+
+/* Annul the supplied matrixMap. */
+ (void) astAnnul( mm );
+
+/* Store a pointer to the new MatrixMap. This MatrixMap should be used in
+ its forward direction. */
+ maps[ 1 - imm ] = (AstMapping *) smmnew;
+ inverts[ 1 - imm ] = astGetInvert( smmnew );
+ }
+
+/* Return. */
+ return;
+}
+
+static void MatWin( AstMapping **maps, int *inverts, int imm, int *status ){
+/*
+* Name:
+* MatWin
+
+* Purpose:
+* Swap a WinMap and a MatrixMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* void MatWin( AstMapping **maps, int *inverts, int imm, int *status )
+
+* Class Membership:
+* WinMap member function
+
+* Description:
+* A list of two Mappings is supplied containing a WinMap and a
+* MatrixMap. These Mappings are annulled, and replaced with
+* another pair of Mappings consisting of a WinMap and a MatrixMap
+* in the opposite order. These Mappings are chosen so that their
+* combined effect is the same as the original pair of Mappings.
+* The scale factors in the returned WinMap are always unity (i.e.
+* the differences in scaling get absorbed into the returned
+* MatrixMap).
+
+* Parameters:
+* maps
+* A pointer to an array of two Mapping pointers.
+* inverts
+* A pointer to an array of two invert flags.
+* imm
+* The index within "maps" of the MatrixMap.
+* status
+* Pointer to the inherited status variable.
+
+*/
+
+/* Local Variables: */
+ AstMatrixMap *m1; /* Pointer to Diagonal scale factor MatrixMap */
+ AstMatrixMap *m2; /* Pointer to returned MatrixMap */
+ AstMatrixMap *sm2; /* Pointer to simplified returned MatrixMap */
+ AstMatrixMap *mm; /* Pointer to the supplied MatrixMap */
+ AstPointSet *pset1; /* Shift terms from supplied WinMap */
+ AstPointSet *pset2; /* Shift terms for returned WinMap */
+ AstWinMap *w1; /* Pointer to the returned WinMap */
+ AstWinMap *sw1; /* Pointer to the simplified returned WinMap */
+ AstWinMap *wm; /* Pointer to the supplied WinMap */
+ double **ptr1; /* Pointer to pset1 data */
+ double **ptr2; /* Pointer to pset2 data */
+ double *a; /* Array of shift terms from supplied WinMap */
+ double *aa; /* Pointer to next shift term */
+ double *b; /* Array of scale terms from supplied WinMap */
+ double *bb; /* Pointer to next scale term */
+ int i; /* Axis count */
+ int nin; /* No. of axes in supplied WinMap */
+ int nout; /* No. of axes in returned WinMap */
+ int old_minv; /* Invert value for the supplied MatrixMap */
+ int old_winv; /* Invert value for the supplied WinMap */
+
+/* Check the global error status. */
+ if ( !astOK ) return;
+
+/* Store pointers to the supplied WinMap and the MatrixMap. */
+ wm = (AstWinMap *) maps[ 1 - imm ];
+ mm = (AstMatrixMap *) maps[ imm ];
+
+/* Temporarily set the Invert attribute of the supplied Mappings to the
+ supplied values. */
+ old_winv = astGetInvert( wm );
+ astSetInvert( wm, inverts[ 1 - imm ] );
+
+ old_minv = astGetInvert( mm );
+ astSetInvert( mm, inverts[ imm ] );
+
+/* Get copies of the shift and scale terms used by the WinMap. This
+ also returns the number of axes in the WinMap. */
+ nin = astWinTerms( wm, &a, &b );
+
+/* Create a diagonal MatrixMap holding the scale factors from the
+ supplied WinMap. */
+ m1 = astMatrixMap( nin, nin, 1, b, "", status );
+
+/* Create a PointSet holding a single position given by the shift terms
+ in the supplied WinMap. */
+ pset1 = astPointSet( 1, nin, "", status );
+ ptr1 = astGetPoints( pset1 );
+ if( astOK ){
+ aa = a;
+ for( i = 0; i < nin; i++ ) ptr1[ i ][ 0 ] = *(aa++);
+ }
+
+/* First deal with cases when the WinMap is applied first, followed by
+ the MatrixMap. */
+ if( imm == 1 ){
+
+/* Multiply the diagonal matrix holding the WinMap scale factors by the
+ supplied matrix. The resulting MatrixMap is the one to return in the
+ map list. */
+ m2 = astMtrMult( m1, mm );
+
+/* Transform the position given by the shift terms from the supplied
+ WinMap using the supplied MatrixMap to get the shift terms for
+ the returned WinMap. */
+ pset2 = astTransform( mm, pset1, 1, NULL );
+
+/* Now deal with cases when the MatrixMap is applied first, followed by
+ the WinMap. */
+ } else {
+
+/* Multiply the supplied MatrixMap by the diagonal matrix holding scale
+ factors from the supplied WinMap. The resulting MatrixMap is the one to
+ return in the map list. */
+ m2 = astMtrMult( mm, m1 );
+
+/* Transform the position given by the shift terms from the supplied
+ WinMap using the inverse of the returned MatrixMap to get the shift
+ terms for the returned WinMap. */
+ pset2 = astTransform( m2, pset1, 0, NULL );
+
+ }
+
+/* Re-instate the original value of the Invert attributes of the supplied
+ Mappings. */
+ astSetInvert( wm, old_winv );
+ astSetInvert( mm, old_minv );
+
+/* Get pointers to the shift terms for the returned WinMap. */
+ ptr2 = astGetPoints( pset2 );
+
+/* Create the returned WinMap, initially with undefined corners. The number of
+ axes in the WinMap must equal the number of shift terms. */
+ nout = astGetNcoord( pset2 );
+ w1 = astWinMap( nout, NULL, NULL, NULL, NULL, "", status );
+
+/* If succesful, store the scale and shift terms in the WinMap. The scale
+ terms are always unity. */
+ if( astOK ){
+ bb = w1->b;
+ aa = w1->a;
+ for( i = 0; i < nout; i++ ) {
+ *(bb++) = 1.0;
+ *(aa++) = ptr2[ i ][ 0 ];
+ }
+
+/* Replace the supplied Mappings and invert flags with the ones found
+ above. Remember that the order of the Mappings is now swapped */
+ (void) astAnnul( maps[ 0 ] );
+ (void) astAnnul( maps[ 1 ] );
+
+ sw1 = astSimplify( w1 );
+ w1 = astAnnul( w1 );
+
+ maps[ imm ] = (AstMapping *) sw1;
+ inverts[ imm ] = astGetInvert( sw1 );
+
+ sm2 = astSimplify( m2 );
+ m2 = astAnnul( m2 );
+
+ maps[ 1 - imm ] = (AstMapping *) sm2;
+ inverts[ 1 - imm ] = astGetInvert( sm2 );
+
+ }
+
+/* Annul the MatrixMap and PointSet holding the scale and shift terms from the
+ supplied WinMap. */
+ m1 = astAnnul( m1 );
+ pset1 = astAnnul( pset1 );
+ pset2 = astAnnul( pset2 );
+
+/* Free the copies of the scale and shift terms from the supplied WinMap. */
+ b = (double *) astFree( (void *) b );
+ a = (double *) astFree( (void *) a );
+
+/* Return. */
+ return;
+}
+
+static AstWinMap *MatWin2( AstMatrixMap *mm, AstWinMap *wm, int minv,
+ int winv, int mat1, int *status ){
+/*
+* Name:
+* MatWin2
+
+* Purpose:
+* Create a WinMap by merging a diagonal MatrixMap and a WinMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstWinMap *MatWin2( AstMatrixMap *mm, AstWinMap *wm, int minv,
+* int winv, int mat1, int *status )
+
+* Class Membership:
+* MatrixMap member function
+
+* Description:
+* This function creates a new WinMap which performs a mapping
+* equivalent to applying the two supplied Mappings in series in the
+* directions specified by the "invert" flags (the Invert attributes of
+* the supplied MatrixMaps are ignored), in the order specified by
+* "mat1".
+
+* Parameters:
+* mm
+* A pointer to the MatrixMap. Assumed to be diagonal.
+* wm
+* A pointer to the WinMap.
+* minv
+* The invert flag to use with mm. A value of zero causes the forward
+* mapping to be used, and a non-zero value causes the inverse
+* mapping to be used.
+* winv
+* The invert flag to use with wm.
+* mat1
+* If non-zero, then "mm" is applied first followed by "wm". Otherwise,
+* "wm" is applied first followed by "mm".
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* Pointer to the new MatrixMap.
+
+* Notes:
+* - The forward direction of the returned MatrixMap is equivalent to the
+* combined effect of the two supplied Mappings, operating in the
+* directions specified by "winv" and "minv".
+* - A null pointer will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstWinMap *result; /* Pointer to output WinMap */
+ double *ina; /* Input corner A in new WinMap */
+ double *inb; /* Input corner B in new WinMap */
+ double *newscales; /* Scales for new WinMap */
+ double *newshifts; /* Shifts for new WinMap */
+ double *outa; /* Output corner A in new WinMap */
+ double *outb; /* Output corner B in new WinMap */
+ double *scales2; /* Pointer to extended WinMap scales array */
+ double *scales; /* Pointer to WinMap scales array */
+ double *shifts; /* Pointer to WinMap shifts array */
+ int i; /* Axis index */
+ int ncol; /* No. of columns in the MatrixMap */
+ int nrow; /* No. of rows in the MatrixMap */
+ int nt; /* Number of axes in WinMap */
+ int old_minv; /* Original setting of MatrixMap Invert attribute */
+ int old_winv; /* Original setting of WinMap Invert attribute */
+
+/* Check the global error status. */
+ if ( !astOK ) return NULL;
+
+/* Initialise the returned pointer. */
+ result = NULL;
+
+/* Temporarily set the Invert attributes of both Mappings to the supplied
+ values. */
+ old_minv = astGetInvert( mm );
+ astSetInvert( mm, minv );
+
+ old_winv = astGetInvert( wm );
+ astSetInvert( wm, winv );
+
+/* Get the number of inputs (columns) and outputs (rows) for the MatrixMap. */
+ ncol = astGetNin( mm );
+ nrow = astGetNout( mm );
+
+/* Get the scales and shifts implemented by the WinMap. These take into
+ account the current Invert attribute of the WinMap. */
+ nt = astWinTerms( wm, &shifts, &scales );
+
+/* First deal with cases where the MatrixMap is applied first. */
+ if( mat1 ){
+
+/* Sanity check. */
+ if( nt != nrow ) {
+ if( astOK ) astError( AST__INTER, "astMapMerge(%s): WinMap has %d axes, "
+ "but MatrixMap has %d rows (internal AST programming "
+ "error).", status, astGetClass(mm), nt, nrow );
+
+ } else {
+
+/* Allocate the array to hold the scale terms for the new WinMap. */
+ newscales = astMalloc( nrow*sizeof(double) );
+
+/* Ensure that the original scales array is padded with sufficient zeros
+ to allow it to be transformed using the matrixmap. */
+ scales2 = astCalloc( ncol, sizeof(double) );
+ if( astOK ) memcpy( scales2, scales,
+ (ncol<nrow?ncol:nrow)*sizeof(double) );
+
+/* Use the MatrixMap to transform the scale terms from the WinMap. */
+ astTranN( mm, 1, ncol, 1, scales2, 1, nrow, 1, newscales );
+
+/* Free resources. */
+ scales2 = astFree( scales2 );
+
+/* The shifts are unchanged. */
+ newshifts = shifts;
+ }
+
+/* Now deal with cases where the WinMap is applied first. */
+ } else {
+
+/* Sanity check. */
+ if( nt != ncol ) {
+ if( astOK ) astError( AST__INTER, "astMapMerge(%s): WinMap has %d axes, "
+ "but MatrixMap has %d columns (internal AST programming "
+ "error).", status, astGetClass(mm), nt, ncol );
+
+ } else {
+
+/* Allocate the array to hold the scale and shift terms for the new WinMap. */
+ newscales = astMalloc( nrow*sizeof(double) );
+ newshifts = astMalloc( nrow*sizeof(double) );
+
+/* Use the MatrixMap to transform the scale terms from the WinMap. */
+ astTranN( mm, 1, ncol, 1, scales, 1, nrow, 1, newscales );
+
+/* Use the MatrixMap to transform the shift terms from the WinMap. */
+ astTranN( mm, 1, ncol, 1, shifts, 1, nrow, 1, newshifts );
+
+ }
+ }
+
+/* Create the new WinMap. */
+ ina = astMalloc( nt*sizeof(double) );
+ inb = astMalloc( nt*sizeof(double) );
+ outa = astMalloc( nt*sizeof(double) );
+ outb = astMalloc( nt*sizeof(double) );
+ if( astOK ) {
+ for( i = 0; i < nt; i++ ) {
+ ina[ i ] = 0.0;
+ inb[ i ] = 1.0;
+ outa[ i ] = newshifts[ i ];
+ outb[ i ] = newscales[ i ] + newshifts[ i ];
+ }
+ result = astWinMap( nt, ina, inb, outa, outb, "", status );
+ }
+
+/* Re-instate the original settings of the Invert attribute for the
+ supplied Mappings. */
+ astSetInvert( mm, old_minv );
+ astSetInvert( wm, old_winv );
+
+/* Free resources. */
+ ina = astFree( ina );
+ inb = astFree( inb );
+ outa = astFree( outa );
+ outb = astFree( outb );
+ if( newscales != scales ) newscales = astFree( newscales );
+ if( newshifts != shifts ) newshifts = astFree( newshifts );
+ scales = astFree( scales );
+ shifts = astFree( shifts );
+
+/* If an error has occurred, annull the returned MatrixMap. */
+ if( !astOK ) result = astAnnul( result );
+
+/* Return a pointer to the output MatrixMap. */
+ return result;
+}
+
+static AstMatrixMap *MatZoom( AstMatrixMap *mm, AstZoomMap *zm, int minv,
+ int zinv, int *status ){
+/*
+* Name:
+* MatZoom
+
+* Purpose:
+* Create a MatrixMap by merging a MatrixMap and a ZoomMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstMatrixMap *MatZoom( AstMatrixMap *mm, AstZoomMap *zm, int minv,
+* int zinv, int *status )
+
+* Class Membership:
+* MatrixMap member function
+
+* Description:
+* This function creates a new MatrixMap which performs a mapping
+* equivalent to applying the two supplied Mappings in series in the
+* directions specified by the "invert" flags (the Invert attributes of
+* the supplied MatrixMaps are ignored).
+
+* Parameters:
+* mm
+* A pointer to the MatrixMap.
+* zm
+* A pointer to the ZoomMap.
+* minv
+* The invert flag to use with mm. A value of zero causes the forward
+* mapping to be used, and a non-zero value causes the inverse
+* mapping to be used.
+* zinv
+* The invert flag to use with zm.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* Pointer to the new MatrixMap.
+
+* Notes:
+* - The forward direction of the returned MatrixMap is equivalent to the
+* combined effect of the two supplied Mappings, operating in the
+* directions specified by "zinv" and "minv".
+* - A null pointer will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *mm2; /* Pointer to intermediate MatrixMap */
+ AstMatrixMap *result; /* Pointer to output MatrixMap */
+ double *matrix; /* Pointer to diagonal matrix elements array */
+ double zfac; /* Zoom factor */
+ int i; /* Axis index */
+ int nrow; /* No. of rows in the MatrixMap */
+ int old_minv; /* Original setting of MatrixMap Invert attribute */
+ int old_zinv; /* Original setting of ZoomMap Invert attribute */
+
+/* Check the global error status. */
+ if ( !astOK ) return NULL;
+
+/* Initialise the returned pointer. */
+ result = NULL;
+
+/* Temporarily set the Invert attributes of both Mappings to the supplied
+ values. */
+ old_minv = astGetInvert( mm );
+ astSetInvert( mm, minv );
+
+ old_zinv = astGetInvert( zm );
+ astSetInvert( zm, zinv );
+
+/* Get the number of rows in the MatrixMap (i.e. the number of output
+ axes). */
+ nrow = astGetNout( mm );
+
+/* Get the zoom factor implemented by the ZoomMap. Invert it if necessary
+ since astGetZoom does not take account of the Invert setting. */
+ zfac = astGetZoom( zm );
+ if( zinv ) zfac = 1.0 / zfac;
+
+/* Create a diagonal matrix map in which each diagonal element is equal
+ to the zoom factor. */
+ matrix = (double *) astMalloc( sizeof( double )*(size_t) nrow );
+ if( astOK ) {
+ for( i = 0; i < nrow; i++ ) matrix[ i ] = zfac;
+ }
+ mm2 = astMatrixMap( nrow, nrow, 1, matrix, "", status );
+ matrix = (double *) astFree( (void *) matrix );
+
+/* Create a new MatrixMap holding the product of the supplied MatrixMap
+ and the diagonal MatrixMap just created. */
+ result = astMtrMult( mm, mm2 );
+ mm2 = astAnnul( mm2 );
+
+/* Re-instate the original settings of the Invert attribute for the
+ supplied Mappings. */
+ astSetInvert( mm, old_minv );
+ astSetInvert( zm, old_zinv );
+
+/* If an error has occurred, annull the returned MatrixMap. */
+ if( !astOK ) result = astAnnul( result );
+
+/* Return a pointer to the output MatrixMap. */
+ return result;
+}
+
+/* Functions which access class attributes. */
+/* ---------------------------------------- */
+/* Implement member functions to access the attributes associated with
+ this class using the macros defined for this purpose in the
+ "object.h" file. For a description of each attribute, see the class
+ interface (in the associated .h file). */
+
+static AstMatrixMap *MtrMult( AstMatrixMap *this, AstMatrixMap *a, int *status ){
+/*
+*+
+* Name:
+* astMtrMult
+
+* Purpose:
+* Multiply a MatrixMap by another MatrixMap.
+
+* Type:
+* Protected virtual function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstMatrixMap *MtrMult( astMatrixMap *this, astMatrixMap *a )
+
+* Class Membership:
+* MatrixMap method
+
+* Description:
+* This function multiples the matrices given by "this" and "a", returning
+* a pointer to a new MatrixMap holding the product "a x this".
+*
+* The number of columns in the "a" matrix must match the number of
+* rows in the "this" matrix. The number of rows in the returned
+* MatrixMap is equal to the number of rows in "a", and the number of
+* columns is the same as the number of rows in "this".
+
+* Parameters:
+* this
+* Pointer to the first MatrixMap.
+* a
+* Pointer to a second MatrixMap.
+
+* Returned Value:
+* A pointer to the product MatrixMap.
+
+* Notes:
+* - An error is reported if the two MatrixMaps have incompatible
+* shapes, or if either MatrixMap does not have a defined forward
+* transformation.
+* - A null Object pointer will also be returned if this function
+* is invoked with the AST error status set, or if it should fail
+* for any reason.
+*-
+*/
+
+/* Local variables. */
+ astDECLARE_GLOBALS /* Pointer to thread-specific global data */
+ AstMatrixMap *new; /* New MatrixMap holding the product matrix */
+ double *a_matrix; /* Pointer to the forward "a" matrix */
+ double *a_row; /* Pointer to start of current row in "a" */
+ double a_val; /* Current element value from "a" */
+ double factor; /* Diagonal matrix term */
+ double *new_matrix; /* Pointer to the new forward "this" matrix */
+ double *new_val; /* Pointer to current output element value */
+ double sum; /* Dot product value */
+ double *this_col; /* Pointer to start of current column in "this" */
+ double *this_matrix; /* Pointer to the forward "this" matrix */
+ double this_val; /* Current element value from "this" */
+ int col; /* Current output column number */
+ int i; /* Loop count */
+ int minrow; /* Min. number of rows in "a" or "this" */
+ int ncol_a; /* No. of columns in the "a" MatrixMap */
+ int ncol_this; /* No. of columns in the "this" MatrixMap */
+ int nrow_a; /* No. of rows in the "a" MatrixMap */
+ int nrow_this; /* No. of rows in the "this" MatrixMap */
+ int row; /* Current output row number */
+
+/* Return a NULL pointer if an error has already occurred. */
+ if ( !astOK ) return NULL;
+
+/* Get a pointer to the thread specific global data structure. */
+ astGET_GLOBALS(NULL);
+
+/* Initialise */
+ new = NULL;
+
+/* Report an error if eitherof the MatrixMaps doe snot have a defined
+ forward transformation.*/
+ if( !astGetTranForward( this ) ){
+ astError( AST__MTRML, "astMtrMult(%s): Cannot find the product of 2 "
+ "MatrixMaps- the first MatrixMap has no forward transformation.", status,
+ astClass(this) );
+ return NULL;
+ }
+
+ if( !astGetTranForward( a ) ){
+ astError( AST__MTRML, "astMtrMult(%s): Cannot find the product of 2 "
+ "MatrixMaps- the second MatrixMap has no forward transformation.", status,
+ astClass(this) );
+ return NULL;
+ }
+
+/* Report an error if the shapes of the two matrices are incompatible. */
+ nrow_a = astGetNout( a );
+ ncol_a = astGetNin( a );
+ nrow_this = astGetNout( this );
+ ncol_this = astGetNin( this );
+
+ if( ncol_a != nrow_this && astOK ){
+ astError( AST__MTRML, "astMtrMult(%s): Number of rows in the first "
+ "MatrixMap (%d) does not equal number of columns in the "
+ "second MatrixMap (%d).", status, astClass(this), nrow_this, ncol_a );
+ return NULL;
+ }
+
+/* Store the minimum number of rows in either matrix for later use. */
+ if( nrow_a < nrow_this ){
+ minrow = nrow_a;
+ } else {
+ minrow = nrow_this;
+ }
+
+/* Ensure that "this" is stored in FULL form (i.e. with all elements
+ stored explicitly, even if the matrix is a unit or diagonal matrix). */
+ ExpandMatrix( this, status );
+
+/* Store pointers to the current forward matrices (taking into
+ account the current states of the Mapping inversion flags ). */
+ this_matrix = astGetInvert( this ) ? this->i_matrix : this->f_matrix;
+ a_matrix = astGetInvert( a ) ? a->i_matrix : a->f_matrix;
+
+/* Get memory to hold the product matrix in full form. */
+ new_matrix = (double *) astMalloc( sizeof( double )*
+ (size_t)( nrow_a*ncol_this ) );
+ if( astOK ){
+
+/* First deal with cases where the "a" MatrixMap represents a unit
+ matrix. */
+ if( a->form == UNIT ){
+
+/* Copy the required number of rows from "this" to "new". */
+ (void) memcpy( (void *) new_matrix, (const void *) this_matrix,
+ sizeof(double)*(size_t)( minrow*ncol_this ) );
+
+/* If there are insufficient rows in "this", append some zero-filled rows. */
+ if( minrow < nrow_a ){
+ for( i = minrow*ncol_this; i < nrow_a*ncol_this; i++ ){
+ new_matrix[ i ] = 0.0;
+ }
+ }
+
+/* Now deal with cases where the "a" MatrixMap represents a diagonal
+ matrix. */
+ } else if( a->form == DIAGONAL ){
+
+/* Scale the required number of rows from "this" storing them in "new",
+ and checking for bad values. */
+ i = 0;
+
+ for( row = 0; row < minrow; row++ ){
+ factor = a_matrix[ row ];
+
+ if( factor != AST__BAD ){
+
+ for( col = 0; col < ncol_this; col++ ){
+ this_val = this_matrix[ i ];
+ if( this_val != AST__BAD ){
+ new_matrix[ i ] = this_val*factor;
+ } else {
+ new_matrix[ i ] = AST__BAD;
+ }
+ i++;
+ }
+
+ } else {
+
+ for( col = 0; col < ncol_this; col++ ){
+ new_matrix[ i++ ] = AST__BAD;
+ }
+
+ }
+ }
+
+/* If there are insufficient rows in "this", append some zero-filled rows. */
+ if( minrow < nrow_a ){
+ for( i = minrow*ncol_this; i < nrow_a*ncol_this; i++ ){
+ new_matrix[ i ] = 0.0;
+ }
+ }
+
+
+/* Now deal with cases where the "a" MatrixMap represents a full, non-diagonal
+ matrix. */
+ } else {
+
+/* Initialise a pointer to the next element in the product matrix. */
+ new_val = new_matrix;
+
+/* Get a pointer to the start of each row of the "a" matrix. */
+ for( row = 0; row < nrow_a; row++ ){
+ a_row = a_matrix + ncol_a*row;
+
+/* Get a pointer to the start of each column of the "this" matrix. */
+ for( col = 0; col < ncol_this; col++ ){
+ this_col = this_matrix + col;
+
+/* Form the dot product of the current row from "a", and the current
+ column from "this", checking for bad values. */
+ sum = 0.0;
+ for( i = 0; i < ncol_a; i++ ){
+ a_val = a_row[ i ];
+ this_val = this_col[ i*ncol_this ];
+ if( a_val != AST__BAD && this_val != AST__BAD ){
+ sum += a_val*this_val;
+ } else {
+ sum = AST__BAD;
+ break;
+ }
+ }
+
+/* Store the output matrix element value. */
+ *(new_val++) = sum;
+
+ }
+ }
+ }
+
+/* Create the new MatrixMap. */
+ new = astInitMatrixMap( NULL, sizeof( AstMatrixMap ), !class_init,
+ &class_vtab, "MatrixMap", ncol_this, nrow_a,
+ FULL, new_matrix );
+
+/* If possible, compress the new MatrixMap by removing off-diagonal zero
+ elements. */
+ CompressMatrix( new, status );
+
+/* Re-compress the original "this" MatrixMap. */
+ CompressMatrix( this, status );
+
+ }
+
+/* Free the memory used to hold the product matrix in full form. */
+ new_matrix = (double *) astFree( (void *) new_matrix );
+
+ return new;
+
+}
+
+static AstMatrixMap *MtrRot( AstMatrixMap *this, double theta,
+ const double axis[], int *status ){
+/*
+*+
+* Name:
+* astMtrRot
+
+* Purpose:
+* Multiply a MatrixMap by a rotation matrix.
+
+* Type:
+* Protected virtual function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstMatrixMap *astMtrRot( astMatrixMap *this, double theta,
+* const double axis[] )
+
+* Class Membership:
+* MatrixMap method.
+
+* Description:
+* This function creates a new MatrixMap which is a copy of "this",
+* rotated by a specified angle. It can only be used on MatrixMaps which
+* have either 2 or 3 output coordinates. In the 3-D case, the rotation
+* is about an arbitrary axis passing through the origin.
+
+* Parameters:
+* this
+* Pointer to the MatrixMap.
+* theta
+* The angle by which to rotate the matrix, in radians. If the matrix
+* is applied to a 2-D vector position, the resulting vector is
+* rotated clockwise about the origin (i.e. from the positive direction
+* of the second axis to the positive direction of the first axis). If
+* the vector positions are three dimensional, the rotation is clockwise
+* when looking along the vector given by "axis". Note, "theta" measures
+f when looking along the vector given by AXIS. Note, THETA measures
+* the movemement of the vectors relative to a fixed reference frame.
+* Alternatively, the reference frame can be thought of as rotating by
+* (-theta) relative to the fixed vectors.
+* axis
+* A 3-D vector specifying the axis of rotation. This parameter is
+* ignored if the output from MatrixMap is 2-dimensional.
+
+* Returned Value:
+* A pointer to the rotated MatrixMap.
+
+* Notes:
+* - A null Object pointer will also be returned if this function
+* is invoked with the AST error status set, or if it should fail
+* for any reason.
+*-
+*/
+
+/* Local variables. */
+ AstMatrixMap *new; /* New MatrixMap holding the rotated matrix */
+ double as,a,b,c,d,e,f,g; /* Intermediate quantities */
+ double axlen; /* Length of axis vector */
+ double axlen2; /* Squared length of axis vector */
+ double costh; /* Cos(rotation angle) */
+ double sinth; /* Sin(rotation angle) */
+ double rotmat[9]; /* Rotation matrix */
+ double work[3]; /* Work space for matrix multiplication */
+ int ncol; /* No. of columns in the MatrixMap */
+ int nrow; /* No. of rows in the MatrixMap */
+
+/* Return a NULL pointer if an error has already occurred. */
+ if ( !astOK ) return NULL;
+
+/* Initialise the returned MarixMap to be a copy of the supplied MatrixMap. */
+ new = astCopy( this );
+
+/* Save the cos and sin of the rotation angle for future use. */
+ costh = cos( theta );
+ sinth = sin( theta );
+
+/* Return without changing the MatrixMap if the rotation angle is a
+ multiple of 360 degrees. */
+ if ( costh == 1.0 ) return new;
+
+/* Get the dimensions of the MatrixMap. */
+ nrow = astGetNout( new );
+ ncol = astGetNin( new );
+
+/* First do rotation of a plane about the origin. */
+ if( nrow == 2 ){
+
+/* Ensure that the MatrixMap is stored in full form rather than
+ compressed form. */
+ ExpandMatrix( new, status );
+
+/* Form the 2x2 forward rotation matrix. Theta is the clockwise angle
+ of rotation. */
+ rotmat[0] = costh;
+ rotmat[1] = sinth;
+ rotmat[2] = -sinth;
+ rotmat[3] = costh;
+
+/* Post-multiply the current forward matrix (depending on whether or not
+ the MatrixMap has been inverted) by the forward rotation matrix. */
+ if( !astGetInvert( new ) ){
+ SMtrMult( 1, 2, ncol, rotmat, new->f_matrix, work, status );
+ } else {
+ SMtrMult( 1, 2, ncol, rotmat, new->i_matrix, work, status );
+ }
+
+/* Now form the 2x2 inverse rotation matrix (the diagonal elements
+ don't change). */
+ rotmat[1] = -sinth;
+ rotmat[2] = sinth;
+
+/* Pre-multiply the current inverse matrix (depending on whether or
+ not the MatrixMap has been inverted) by the inverse rotation matrix. */
+ if( !astGetInvert( new ) ){
+ SMtrMult( 0, ncol, 2, rotmat, new->i_matrix, work, status );
+ } else {
+ SMtrMult( 0, ncol, 2, rotmat, new->f_matrix, work, status );
+ }
+
+/* See if the matrix can be stored as a UNIT or DIAGONAL matrix. */
+ CompressMatrix( new, status );
+
+/* Now do rotation of a volume about an axis passing through the origin. */
+ } else if( nrow == 3 ){
+
+/* Find the length of the axis vector. Report an error if it has zero
+ length or has not been supplied. */
+ if( axis ) {
+ axlen2 = axis[0]*axis[0] + axis[1]*axis[1] + axis[2]*axis[2];
+ } else {
+ axlen2 = 0.0;
+ }
+ if( axlen2 <= 0.0 ) {
+ astError( AST__MTRAX, "astMtrRot(%s): NULL or zero length "
+ "axis vector supplied.", status, astClass(new) );
+ }
+ axlen = sqrt( axlen2 );
+
+/* Ensure that the MatrixMap is stored in full form rather than
+ compressed form. */
+ ExpandMatrix( new, status );
+
+/* Form commonly used terms in the rotation matrix. */
+ as = sinth/axlen;
+ a = (1.0 - costh)/axlen2;
+ b = a*axis[0]*axis[1];
+ c = as*axis[2];
+ d = a*axis[0]*axis[2];
+ e = as*axis[1];
+ f = a*axis[1]*axis[2];
+ g = as*axis[0];
+
+/* Form the 3x3 forward rotation matrix. Theta is the clockwise angle
+ of rotation looking in the direction of the axis vector. */
+ rotmat[0] = a*axis[0]*axis[0] + costh;
+ rotmat[1] = b - c;
+ rotmat[2] = d + e;
+ rotmat[3] = b + c;
+ rotmat[4] = a*axis[1]*axis[1] + costh;
+ rotmat[5] = f - g;
+ rotmat[6] = d - e;
+ rotmat[7] = f + g;
+ rotmat[8] = a*axis[2]*axis[2] + costh;
+
+/* Post-multiply the current forward matrix (depending on whether or not
+ the MatrixMap has been inverted) by the forward rotation matrix. */
+ if( !astGetInvert( new ) ){
+ SMtrMult( 1, 3, ncol, rotmat, new->f_matrix, work, status );
+ } else {
+ SMtrMult( 1, 3, ncol, rotmat, new->i_matrix, work, status );
+ }
+
+/* Now form the 3x3 inverse rotation matrix (the diagonal elements
+ don't change). */
+ rotmat[1] = b + c;
+ rotmat[2] = d - e;
+ rotmat[3] = b - c;
+ rotmat[5] = f + g;
+ rotmat[6] = d + e;
+ rotmat[7] = f - g;
+
+/* Pre-multiply the current inverse matrix (depending on whether or
+ not the MatrixMap has been inverted) by the inverse rotation matrix. */
+ if( !astGetInvert( new ) ){
+ SMtrMult( 0, ncol, 3, rotmat, new->i_matrix, work, status );
+ } else {
+ SMtrMult( 0, ncol, 3, rotmat, new->f_matrix, work, status );
+ }
+
+/* See if the matrix can be stored as a UNIT or DIAGONAL matrix. */
+ CompressMatrix( new, status );
+
+/* Report an error if the matrix is not suitable for rotation. */
+ } else {
+ astError( AST__MTR23, "astMtrRot(%s): Cannot rotate a %dx%d"
+ " MatrixMap.", status, astClass(new), nrow, ncol );
+ }
+
+/* Delete the new MatrixMap if an error has occurred. */
+ if( !astOK ) new = astDelete( new );
+
+ return new;
+
+}
+
+static void PermGet( AstPermMap *map, int **outperm, int **inperm,
+ double **consts, int *status ){
+/*
+* Name:
+* PermGet
+
+* Purpose:
+* Get the axis permutation and constants array for a PermMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* void PermGet( AstPermMap *map, int **outperm, int **inperm,
+* double **const, int *status )
+
+* Class Membership:
+* MatrixMap member function
+
+* Description:
+* This function returns axis permutation and constants arrays which can
+* be used to create a PermMap which is equivalent to the supplied PermMap.
+
+* Parameters:
+* map
+* The PermMap.
+* outperm
+* An address at which to return a popinter to an array of ints
+* holding the output axis permutation array. The array should be
+* released using astFree when no longer needed.
+* inperm
+* An address at which to return a popinter to an array of ints
+* holding the input axis permutation array. The array should be
+* released using astFree when no longer needed.
+* consts
+* An address at which to return a popinter to an array of doubles
+* holding the constants array. The array should be released using
+* astFree when no longer needed.
+* status
+* Pointer to the inherited status variable.
+
+* Notes:
+* - NULL pointers are returned if an error has already occurred, or if
+* this function should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstPointSet *pset1; /* PointSet holding input positions for PermMap */
+ AstPointSet *pset2; /* PointSet holding output positions for PermMap */
+ double **ptr1; /* Pointer to pset1 data */
+ double **ptr2; /* Pointer to pset2 data */
+ double *cnst; /* Pointer to constants array */
+ double cn; /* Potential new constant value */
+ double ip; /* Potential output axis index */
+ double op; /* Potential input axis index */
+ int *inprm; /* Pointer to input axis permutation array */
+ int *outprm; /* Pointer to output axis permutation array */
+ int i; /* Axis count */
+ int nc; /* Number of constants stored so far */
+ int nin; /* No. of input coordinates for the PermMap */
+ int nout; /* No. of output coordinates for the PermMap */
+
+/* Initialise. */
+ if( outperm ) *outperm = NULL;
+ if( inperm ) *inperm = NULL;
+ if( consts ) *consts = NULL;
+
+/* Check the global error status and the supplied pointers. */
+ if ( !astOK || !outperm || !inperm || !consts ) return;
+
+/* Get the number of input and output axes for the supplied PermMap. */
+ nin = astGetNin( map );
+ nout = astGetNout( map );
+
+/* Allocate the memory for the returned arrays. */
+ outprm = (int *) astMalloc( sizeof( int )* (size_t) nout );
+ inprm = (int *) astMalloc( sizeof( int )* (size_t) nin );
+ cnst = (double *) astMalloc( sizeof( double )* (size_t) ( nout + nin ) );
+
+/* Returned the pointers to these arrays.*/
+ *outperm = outprm;
+ *inperm = inprm;
+ *consts = cnst;
+
+/* Create two PointSets, each holding two points, which can be used for
+ input and output positions with the PermMap. */
+ pset1 = astPointSet( 2, nin, "", status );
+ pset2 = astPointSet( 2, nout, "", status );
+
+/* Set up the two input positions to be [0,1,2...] and [-1,-1,-1,...]. The
+ first position is used to enumerate the axes, and the second is used to
+ check for constant axis values. */
+ ptr1 = astGetPoints( pset1 );
+ if( astOK ){
+ for( i = 0; i < nin; i++ ){
+ ptr1[ i ][ 0 ] = ( double ) i;
+ ptr1[ i ][ 1 ] = -1.0;
+ }
+ }
+
+/* Use the PermMap to transform these positions in the forward direction. */
+ (void) astTransform( map, pset1, 1, pset2 );
+
+/* No constant axis valeus found yet. */
+ nc = 0;
+
+/* Look at the mapped positions to determine the output axis permutation
+ array. */
+ ptr2 = astGetPoints( pset2 );
+ if( astOK ){
+
+/* Do each output axis. */
+ for( i = 0; i < nout; i++ ){
+
+/* If the output axis value is copied from an input axis value, the index
+ of the appropriate input axis will be in the mapped first position. */
+ op = ptr2[ i ][ 0 ];
+
+/* If the output axis value is assigned a constant value, the result of
+ mapping the two different input axis values will be the same. */
+ cn = ptr2[ i ][ 1 ];
+ if( op == cn ) {
+
+/* We have found another constant. Store it in the constants array, and
+ store the index of the constant in the output axis permutation array. */
+ cnst[ nc ] = cn;
+ outprm[ i ] = -( nc + 1 );
+ nc++;
+
+/* If the output axis values are different, then the output axis value
+ must be copied from the input axis value. */
+ } else {
+ outprm[ i ] = (int) ( op + 0.5 );
+ }
+ }
+ }
+
+/* Now do the same thing to determine the input permutation array. */
+ if( astOK ){
+ for( i = 0; i < nout; i++ ){
+ ptr2[ i ][ 0 ] = ( double ) i;
+ ptr2[ i ][ 1 ] = -1.0;
+ }
+ }
+
+ (void) astTransform( map, pset2, 0, pset1 );
+
+ if( astOK ){
+
+ for( i = 0; i < nin; i++ ){
+
+ ip = ptr1[ i ][ 0 ];
+ cn = ptr1[ i ][ 1 ];
+ if( ip == cn ) {
+
+ cnst[ nc ] = cn;
+ inprm[ i ] = -( nc + 1 );
+ nc++;
+
+ } else {
+ inprm[ i ] = (int) ( ip + 0.5 );
+ }
+ }
+ }
+
+/* Annul the PointSets. */
+ pset1 = astAnnul( pset1 );
+ pset2 = astAnnul( pset2 );
+
+/* If an error has occurred, attempt to free the returned arrays. */
+ if( !astOK ) {
+ *outperm = (int *) astFree( (void *) *outperm );
+ *inperm = (int *) astFree( (void *) *inperm );
+ *consts = (double *) astFree( (void *) *consts );
+ }
+
+/* Return. */
+ return;
+}
+
+static int PermOK( AstMapping *pm, int *status ){
+/*
+* Name:
+* PermOK
+
+* Purpose:
+* Determine if a PermMap can be merged with a MatrixMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* int PermOK( AstMapping *pm, int *status )
+
+* Class Membership:
+* PermMap member function
+
+* Description:
+* This function returns a flag indicating if the supplied PermMap
+* could be merged with a MatrixMap. For thios to be possible, the
+* PermMap must have the same number of input and output axes, and the
+* inverse and forward mappings must be consistent.
+
+* Parameters:
+* pm
+* The PermMap.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* 1 if the PermMap can be merged, 0 otherwise.
+
+* Notes:
+* - A value of 0 is returned if an error has already occurred, or if
+* this function should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstPointSet *pset1; /* PointSet holding input positions for PermMap */
+ AstPointSet *pset2; /* PointSet holding output positions for PermMap */
+ double **ptr1; /* Pointer to pset1 data */
+ int i; /* Loop count */
+ int nin; /* No. of input coordinates for the PermMap */
+ int nout; /* No. of output coordinates for the PermMap */
+ int ret; /* Returned flag */
+
+/* Check the global error status. */
+ if ( !astOK ) return 0;
+
+/* Initialise */
+ ret = 0;
+
+/* The PermMap must have the same number of input and output coordinates. */
+ nin = astGetNin( pm );
+ nout = astGetNout( pm );
+ if( nin == nout ){
+
+/* Create two PointSets, each holding two points, which can be used for
+ the input and output positions with the PermMap. */
+ pset1 = astPointSet( 2, nin, "", status );
+ pset2 = astPointSet( 2, nout, "", status );
+
+/* Set up the two input positions to be [1,2,3...] and [0,-1,-2,...] */
+ ptr1 = astGetPoints( pset1 );
+ if( astOK ){
+ for( i = 0; i < nin; i++ ){
+ ptr1[ i ][ 0 ] = ( double )( i + 1 );
+ ptr1[ i ][ 1 ] = ( double )( -i );
+ }
+
+ }
+
+/* Use the PermMap to transform these positions in the forward direction. */
+ (void) astTransform( pm, pset1, 1, pset2 );
+
+/* Now transform the results back again using the inverse PermMap. */
+ (void) astTransform( pm, pset2, 0, pset1 );
+
+/* See if the input positions have changed. If they have, then the PermMap
+ does not have a consistent pair of transformations. If they have not,
+ then the transformations must be consistent because we used two
+ different input positions and only one could come out unchanged by
+ chance. */
+ if( astOK ){
+ ret = 1;
+ for( i = 0; i < nin; i++ ){
+ if( ptr1[ i ][ 0 ] != ( double )( i + 1 ) ||
+ ptr1[ i ][ 1 ] != ( double )( -i ) ){
+ ret = 0;
+ break;
+ }
+ }
+ }
+
+/* Annul the PointSets. */
+ pset1 = astAnnul( pset1 );
+ pset2 = astAnnul( pset2 );
+ }
+
+/* Return the answer. */
+ return astOK ? ret : 0;
+}
+
+static double Rate( AstMapping *this, double *at, int ax1, int ax2, int *status ){
+/*
+* Name:
+* Rate
+
+* Purpose:
+* Calculate the rate of change of a Mapping output.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* result = Rate( AstMapping *this, double *at, int ax1, int ax2, int *status )
+
+* Class Membership:
+* MatrixMap member function (overrides the astRate method inherited
+* from the Mapping class ).
+
+* Description:
+* This function returns the rate of change of a specified output of
+* the supplied Mapping with respect to a specified input, at a
+* specified input position.
+
+* Parameters:
+* this
+* Pointer to the Mapping to be applied.
+* at
+* The address of an array holding the axis values at the position
+* at which the rate of change is to be evaluated. The number of
+* elements in this array should equal the number of inputs to the
+* Mapping.
+* ax1
+* The index of the Mapping output for which the rate of change is to
+* be found (output numbering starts at 0 for the first output).
+* ax2
+* The index of the Mapping input which is to be varied in order to
+* find the rate of change (input numbering starts at 0 for the first
+* input).
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* The rate of change of Mapping output "ax1" with respect to input
+* "ax2", evaluated at "at", or AST__BAD if the value cannot be
+* calculated.
+
+*/
+
+/* Local Variables: */
+ AstMatrixMap *map;
+ double *matrix;
+ double result;
+
+/* Check inherited status */
+ if( !astOK ) return AST__BAD;
+
+/* Get a pointer to the MatrixMap structure. */
+ map = (AstMatrixMap *) this;
+
+/* Get a pointer to the array holding the required matrix elements, according
+ to whether the MatrixMap has been inverted. */
+ if( !astGetInvert( this ) ) {
+ matrix = map->f_matrix;
+ } else {
+ matrix = map->i_matrix;
+ }
+
+/* First deal with full MatrixMaps in which all matrix elements are stored. */
+ if( map->form == FULL ){
+ result = matrix[ ax1*astGetNin( this ) + ax2 ];
+
+/* For unit matrices, the rate is unity if the input and output axes are
+ equal, and zero otherwise. */
+ } else if( map->form == UNIT ){
+ result = (ax1 == ax2 ) ? 1.0 : 0.0;
+
+/* For diagonal matrices, the rate is zero for off diagonal elements and
+ the matrix array stored the on-diagonal rates. */
+ } else if( ax1 == ax2 ) {
+ result = matrix[ ax1 ];
+
+ } else {
+ result = 0.0;
+ }
+
+/* Return the result. */
+ return result;
+}
+
+static void SMtrMult( int post, int m, int n, const double *mat1,
+ double *mat2, double *work, int *status ){
+/*
+* Name:
+* SMtrMult
+
+* Purpose:
+* Multiply a square matrix and a non-square matrix.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* void SMtrMult( int post, int m, int n, const double *mat1,
+* double *mat2, double *work, int *status )
+
+* Class Membership:
+* MatrixMap member function.
+
+* Description:
+* The matrix pointed to by "mat2" is modified by multiplying it by
+* the square matrix pointed to by "mat1". If "post" is 1, then:
+*
+* mat2 -> mat1*mat2 (mat1 is mxm and mat2 is mxn)
+*
+* If "post" is zero, then:
+*
+* mat2 -> mat2*mat1 (mat1 is nxn and mat2 is mxn)
+*
+* The restriction that "mat1" must be square is imposed so that the
+* returned matrix will have the same shape as the supplied matrix (mat1).
+
+* Parameters:
+* post
+* Specifies whether to post- or pre- multiply mat2 by mat1.
+* m
+* The number of rows in mat2.
+* n
+* The number of columns in mat2.
+* mat1
+* The multiplier matrix. It must be square of size m or n, depending
+* on "post".
+* mat2
+* The multiplicand matrix.
+* work
+* Pointer to work space containing room for m doubles (if "post"
+* is 1), or n doubles (if "post" is 0).
+* status
+* Pointer to the inherited status variable.
+
+* Notes:
+* - No error is reported if "mat2" is supplied NULL. In this case
+* it will also be returned NULL.
+*/
+
+/* Local Variables */
+ double dot; /* Output matrix element value */
+ const double *mat1_col; /* Pointer to start of current column of mat1 */
+ const double *mat1_row; /* Pointer to start of current row of mat1 */
+ double *mat2_col; /* Pointer to start of current column of mat2 */
+ double *mat2_row; /* Pointer to start of current row of mat2 */
+ double cel; /* Column element value */
+ double rel; /* Row element value */
+ int i; /* Index of current output row */
+ int j; /* Index of current output column */
+ int k; /* Dot product index */
+
+/* Do nothing if mat2 is NULL */
+ if ( mat2 ){
+
+/* First deal with cases where the supplied matrix is post-multiplied
+ (i.e. the returned matrix is mat1*mat2). */
+ if( post ){
+
+/* Loop round each column of the output matrix, storing a pointer to
+ the start of the corresponding column of mat2. */
+ for( j=0; j<n; j++ ){
+ mat2_col = mat2 + j;
+
+/* Loop round each row of the output matrix, storing a pointer to
+ the start of the corresponding row of mat1. */
+ for( i=0; i<m; i++ ){
+ mat1_row = mat1 + i*m;
+
+/* Get the dot product of the corresponding row from mat1 and the
+ corresponding column from mat2 and store it in the work array. */
+ dot = 0.0;
+ for( k=0; k<m; k++ ) {
+ rel = mat1_row[ k ];
+ cel = mat2_col[ k*n ];
+ if( rel != AST__BAD && cel != AST__BAD ){
+ dot += rel*cel;
+ } else {
+ dot = AST__BAD;
+ break;
+ }
+ }
+ work[ i ] = dot;
+ }
+
+/* Copy the values stored in the work array to the current column of
+ the output matrix. */
+ for( i=0; i<m; i++ ) mat2_col[ i*n ] = work[ i ];
+ }
+
+/* Now deal with cases where the supplied matrix is pre-multiplied
+ (i.e. the returned matrix is mat2*mat1). */
+ } else {
+
+/* Loop round each row of the output matrix, storing a pointer to
+ the start of the corresponding row of mat2. */
+ for( i=0; i<m; i++ ){
+ mat2_row = mat2 + i*n;
+
+/* Loop round each column of the output matrix, storing a pointer to
+ the start of the corresponding column of mat1. */
+ for( j=0; j<n; j++ ){
+ mat1_col = mat1 + j;
+
+/* Get the dot product of the corresponding row from mat2 and the
+ corresponding column from mat1 and store it in the work array. */
+ dot = 0.0;
+ for( k=0; k<n; k++ ) {
+ rel = mat2_row[ k ];
+ cel = mat1_col[ k*n ];
+ if( rel != AST__BAD && cel != AST__BAD ){
+ dot += rel*cel;
+ } else {
+ dot = AST__BAD;
+ break;
+ }
+ }
+ work[ j ] = dot;
+ }
+
+/* Copy the values stored in the work array to the current row of
+ the output matrix. */
+ for( j=0; j<n; j++ ) mat2_row[ j ] = work[ j ];
+ }
+ }
+ }
+
+ return;
+
+}
+
+static int GetTranForward( AstMapping *this, int *status ) {
+/*
+*
+* Name:
+* GetTranForward
+
+* Purpose:
+* Determine if a MatrixMap defines a forward coordinate transformation.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* int GetTranForward( AstMapping *this, int *status )
+
+* Class Membership:
+* MatrixMap member function (over-rides the astGetTranForward method
+* inherited from the Mapping class).
+
+* Description:
+* This function returns a value indicating if the MatrixMap is able
+* to perform a forward coordinate transformation.
+
+* Parameters:
+* this
+* Pointer to the MatrixMap.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* Zero if the forward coordinate transformation is not defined, or 1 if it
+* is.
+
+* Notes:
+* - A value of zero will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *map; /* Pointer to MatrixMap to be queried */
+ int invert; /* Has the mapping been inverted? */
+ int result; /* The returned value */
+
+/* Initialise. */
+ result = 0;
+
+/* Check the global error status. */
+ if ( !astOK ) return result;
+
+/* Obtain a pointer to the MatrixMap. */
+ map = (AstMatrixMap *) this;
+
+/* All unit MatrixMaps are defined in both directions. */
+ if( map->form == UNIT ) {
+ result = 1;
+
+/* Otherwise, check that the appropriate array is defined in the
+ MatrixMap. */
+ } else {
+
+/* Determine if the Mapping has been inverted. */
+ invert = astGetInvert( this );
+
+/* If OK, obtain the result. */
+ if ( astOK ) {
+
+ if( invert ){
+ result = ( map->i_matrix != NULL );
+ } else {
+ result = ( map->f_matrix != NULL );
+ }
+
+ }
+
+ }
+
+/* Return the result. */
+ return result;
+
+}
+
+static int GetTranInverse( AstMapping *this, int *status ) {
+/*
+*
+* Name:
+* GetTranInverse
+
+* Purpose:
+* Determine if a MatrixMap defines an inverse coordinate transformation.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* int GetTranInverse( AstMapping *this, int *status )
+
+* Class Membership:
+* MatrixMap member function (over-rides the astGetTranInverse method
+* inherited from the Mapping class).
+
+* Description:
+* This function returns a value indicating if the MatrixMap is able
+* to perform an inverse coordinate transformation.
+
+* Parameters:
+* this
+* Pointer to the MatrixMap.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* Zero if the inverse coordinate transformation is not defined, or 1 if it
+* is.
+
+* Notes:
+* - A value of zero will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *map; /* Pointer to MatrixMap to be queried */
+ int invert; /* Has the mapping been inverted? */
+ int result; /* The returned value */
+
+/* Initialise. */
+ result = 0;
+
+/* Check the global error status. */
+ if ( !astOK ) return result;
+
+/* Obtain a pointer to the MatrixMap. */
+ map = (AstMatrixMap *) this;
+
+/* All unit MatrixMaps are defined in both directions. */
+ if( map->form == UNIT ) {
+ result = 1;
+
+/* Otherwise, check that the appropriate array is defined in the
+ MatrixMap. */
+ } else {
+
+/* Determine if the Mapping has been inverted. */
+ invert = astGetInvert( this );
+
+/* If OK, obtain the result. */
+ if ( astOK ) {
+
+ if( invert ){
+ result = ( map->f_matrix != NULL );
+ } else {
+ result = ( map->i_matrix != NULL );
+ }
+
+ }
+
+ }
+
+/* Return the result. */
+ return result;
+
+}
+
+static AstPointSet *Transform( AstMapping *this, AstPointSet *in,
+ int forward, AstPointSet *out, int *status ) {
+/*
+* Name:
+* Transform
+
+* Purpose:
+* Apply a MatrixMap to transform a set of points.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstPointSet *Transform( AstMapping *this, AstPointSet *in,
+* int forward, AstPointSet *out, int *status )
+
+* Class Membership:
+* MatrixMap member function (over-rides the astTransform protected
+* method inherited from the Mapping class).
+
+* Description:
+* This function takes a MatrixMap and a set of points encapsulated in a
+* PointSet and transforms the points by multiplying them by the matrix.
+
+* Parameters:
+* this
+* Pointer to the MatrixMap.
+* in
+* Pointer to the PointSet holding the input coordinate data.
+* forward
+* A non-zero value indicates that the forward coordinate transformation
+* should be applied, while a zero value requests the inverse
+* transformation.
+* out
+* Pointer to a PointSet which will hold the transformed (output)
+* coordinate values. A NULL value may also be given, in which case a
+* new PointSet will be created by this function.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* Pointer to the output (possibly new) PointSet.
+
+* Notes:
+* - A null pointer will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+* - The number of coordinate values per point in the input PointSet must
+* match the number of columns in the MatrixMap being applied.
+* - The number of coordinate values per point in the output PointSet will
+* equal the number of rows in the MatrixMap being applied.
+* - If an output PointSet is supplied, it must have space for sufficient
+* number of points and coordinate values per point to accommodate the
+* result. Any excess space will be ignored.
+*/
+
+/* Local Variables: */
+ AstPointSet *result; /* Pointer to output PointSet */
+ AstMatrixMap *map; /* Pointer to MatrixMap to be applied */
+ double diag_term; /* Current diagonal element value */
+ double *indata; /* Pointer to next input data value */
+ double *matrix; /* Pointer to start of matrix element array */
+ double *matrix_element; /* Pointer to current matrix element value */
+ double *outdata; /* Pointer to next output data value */
+ double **ptr_in; /* Pointer to input coordinate data */
+ double **ptr_out; /* Pointer to output coordinate data */
+ double sum; /* Partial output value */
+ double val; /* Data value */
+ int in_coord; /* Index of output coordinate */
+ int nax; /* Output axes for which input axes exist */
+ int ncoord_in; /* Number of coordinates per input point */
+ int ncoord_out; /* Number of coordinates per output point */
+ int npoint; /* Number of points */
+ int out_coord; /* Index of output coordinate */
+ int point; /* Loop counter for points */
+
+/* Check the global error status. */
+ if ( !astOK ) return NULL;
+
+/* Obtain a pointer to the MatrixMap. */
+ map = (AstMatrixMap *) this;
+
+/* Apply the parent mapping using the stored pointer to the Transform member
+ function inherited from the parent Mapping class. This function validates
+ all arguments and generates an output PointSet if necessary, but does not
+ actually transform any coordinate values. */
+ result = (*parent_transform)( this, in, forward, out, status );
+
+/* We will now extend the parent astTransform method by performing the
+ calculations needed to generate the output coordinate values. */
+
+/* Determine the numbers of points and coordinates per point from the input
+ and output PointSets and obtain pointers for accessing the input and
+ output coordinate values. */
+ ncoord_in = astGetNcoord( in );
+ ncoord_out = astGetNcoord( result );
+ npoint = astGetNpoint( in );
+ ptr_in = astGetPoints( in );
+ ptr_out = astGetPoints( result );
+
+/* Determine whether to apply the forward or inverse mapping, according to the
+ direction specified and whether the mapping has been inverted. */
+ if ( astGetInvert( map ) ) forward = !forward;
+
+/* Get a pointer to the array holding the required matrix elements, according
+ to the direction of mapping required. */
+ if ( forward ) {
+ matrix = map->f_matrix;
+ } else {
+ matrix = map->i_matrix;
+ }
+
+/* Perform coordinate arithmetic. */
+/* ------------------------------ */
+ if ( astOK ) {
+
+/* First deal with full MatrixMaps in which all matrix elements are stored. */
+ if( map->form == FULL ){
+
+/* Loop to apply the matrix to each point in turn, checking for
+ (and propagating) bad values in the process. The matrix elements are
+ accessed sequentially in row order. The next matrix element to be
+ used is identified by a pointer which is initialised to point to the
+ first element of the matrix prior to processing each point. */
+ for ( point = 0; point < npoint; point++ ) {
+ matrix_element = matrix;
+
+/* Each output co-ordinate value is created by summing the product of the
+ corresponding input co-ordinates and the elements of one row of the
+ matrix. */
+ for ( out_coord = 0; out_coord < ncoord_out; out_coord++ ) {
+ sum = 0.0;
+
+ for ( in_coord = 0; in_coord < ncoord_in; in_coord++ ) {
+
+/* Check the current input coordinate value and the current matrix element.
+ If the coordinate value is bad, then the output value will also be
+ bad unless the matrix element is zero. That is, a zero matrix element
+ results in the input coordinate value being ignored, even if it is bad.
+ This prevents bad input values being propagated to output axes which
+ are independant of the bad input axis. A bad matrix element always results
+ in the output value being bad. In either of these cases, break out of the
+ loop, remembering to advance the pointer to the next matrix element so
+ that it points to the start of the next row ready for doing the next
+ output coordinate. */
+ if ( ( ptr_in[ in_coord ][ point ] == AST__BAD &&
+ (*matrix_element) != 0.0 ) ||
+ (*matrix_element) == AST__BAD ) {
+ sum = AST__BAD;
+ matrix_element += ncoord_in - in_coord;
+ break;
+
+/* If the input coordinate and the current matrix element are both
+ valid, increment the sum by their product, and step to the next matrix
+ element pointer If we arrive here with a bad input value, then the
+ matrix element must be zero, in which case the running sum is left
+ unchanged. */
+ } else {
+ if ( ptr_in[ in_coord ][ point ] != AST__BAD ) {
+ sum += ptr_in[ in_coord ][ point ] * (*matrix_element);
+ }
+ matrix_element++;
+ }
+ }
+
+/* Store the output coordinate value. */
+ ptr_out[ out_coord ][ point ] = sum;
+
+ }
+
+ }
+
+/* Now deal with unit and diagonal MatrixMaps. */
+ } else {
+
+/* Find the number of output axes for which input data is available. */
+ if( ncoord_in < ncoord_out ){
+ nax = ncoord_in;
+ } else {
+ nax = ncoord_out;
+ }
+
+/* For unit matrices, copy the input axes to the corresponding output axes. */
+ if( map->form == UNIT ){
+ for( out_coord = 0; out_coord < nax; out_coord++ ) {
+ (void) memcpy( ptr_out[ out_coord ],
+ (const void *) ptr_in[ out_coord ],
+ sizeof( double )*(size_t)npoint );
+ }
+
+/* For diagonal matrices, scale each input axis using the appropriate
+ diagonal element from the matrix, and store in the output. */
+ } else {
+ for( out_coord = 0; out_coord < nax; out_coord++ ){
+ diag_term = matrix[ out_coord ];
+ outdata = ptr_out[ out_coord ];
+ indata = ptr_in[ out_coord ];
+
+ if( diag_term != AST__BAD ){
+ for( point = 0; point < npoint; point++ ){
+ val = *(indata++);
+ if( val != AST__BAD ){
+ *(outdata++) = diag_term*val;
+ } else {
+ *(outdata++) = AST__BAD;
+ }
+ }
+
+ } else {
+ for( point = 0; point < npoint; point++ ){
+ *(outdata++) = AST__BAD;
+ }
+ }
+ }
+ }
+
+/* If there are any remaining output axes, fill the first one with zeros. */
+ if( nax < ncoord_out ){
+ outdata = ptr_out[ nax ];
+ for( point = 0; point < npoint; point++ ) *(outdata++) = 0.0;
+
+/* Copy this axis to any remaining output axes. */
+ outdata = ptr_out[ nax ];
+ for( out_coord = nax + 1; out_coord < ncoord_out; out_coord++ ) {
+ (void) memcpy( ptr_out[ out_coord ], (const void *) outdata,
+ sizeof( double )*(size_t)npoint );
+ }
+ }
+ }
+ }
+
+/* Return a pointer to the output PointSet. */
+ return result;
+}
+
+static int ScalingRowCol( AstMatrixMap *map, int axis, int *status ){
+/*
+* Name:
+* ScalingRowCol
+
+* Purpose:
+* Determine if a given row and column of a MatrixMap are zeros
+* with a non-zero diagonal term.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* int ScalingRowCol( AstMatrixMap *map, int axis, int *status )
+
+* Class Membership:
+* MatrixMap member function
+
+* Description:
+* This function returns a flag indicating if a MatrixMap presents a
+* simple scaling for a given axis in both directions. The MatrixMap
+* must be square. A value of one is returned if every element of the
+* row and column corresponding to the given axis is zero, except for
+* the diagonal term which must be non-zero.
+
+* Parameters:
+* map
+* The MatrixMap.
+* axis
+* The zero-based index of the axis to check.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* 1 if the row/column produces a simple scaling, 0 otherwise.
+
+*/
+
+/* Local Variables: */
+ double *el; /* Pointer to matrix element */
+ int i; /* Element count */
+ int ncol; /* No. of input coordinates */
+ int ret; /* Returned flag */
+
+/* Initialise */
+ ret = 0;
+
+/* Check the global error status. */
+ if ( !astOK ) return ret;
+
+/* If a unit or diagonal MatrixMap has been supplied, return 1. */
+ if( map->form != FULL ){
+ ret = 1;
+
+/* If a full matrix has been supplied... */
+ } else {
+
+/* Assume the row/column gives a unit mapping. */
+ ret = 1;
+
+/* Get the number of input axes for the MatrixMap. */
+ ncol = astGetNin( map );
+
+/* Check that all elements of the "axis"th row are effectively zero, except
+ for the "axis"th element which must be non-zero. */
+ el = map->f_matrix + axis*ncol;
+ for( i = 0; i < ncol; i++ ) {
+ if( i == axis ) {
+ if( fabs( *el ) <= DBL_EPSILON ) {
+ ret = 0;
+ break;
+ }
+ } else if( fabs( *el ) > DBL_EPSILON ) {
+ ret = 0;
+ break;
+ }
+ el++;
+ }
+
+/* Check that all elements of the "axis"th column are effectively zero, except
+ for the "axis"th element which must be non-zero. */
+ if( ret ) {
+ el = map->f_matrix + axis;
+ for( i = 0; i < ncol; i++ ) {
+ if( i == axis ) {
+ if( fabs( *el ) <= DBL_EPSILON ) {
+ ret = 0;
+ break;
+ }
+ } else if( fabs( *el ) > DBL_EPSILON ) {
+ ret = 0;
+ break;
+ }
+ el += ncol;
+ }
+ }
+ }
+
+/* Return the answer. */
+ return astOK ? ret : 0;
+}
+
+/* Functions which access class attributes. */
+/* ---------------------------------------- */
+/* Implement member functions to access the attributes associated with
+ this class using the macros defined for this purpose in the
+ "object.h" file. For a description of each attribute, see the class
+ interface (in the associated .h file). */
+
+/* Copy constructor. */
+/* ----------------- */
+static void Copy( const AstObject *objin, AstObject *objout, int *status ) {
+/*
+* Name:
+* Copy
+
+* Purpose:
+* Copy constructor for MatrixMap objects.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* void Copy( const AstObject *objin, AstObject *objout, int *status )
+
+* Description:
+* This function implements the copy constructor for MatrixMap objects.
+
+* Parameters:
+* objin
+* Pointer to the object to be copied.
+* objout
+* Pointer to the object being constructed.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* void
+
+* Notes:
+* - This constructor makes a deep copy, including a copy of the matrix
+* element values associated with the input MatrixMap.
+*/
+
+
+/* Local Variables: */
+ AstMatrixMap *in; /* Pointer to input MatrixMap */
+ AstMatrixMap *out; /* Pointer to output MatrixMap */
+ int nel; /* No. of elements in the matrix */
+ int nin; /* No. of input coordinates */
+ int nout; /* No. of output coordinates */
+
+/* Check the global error status. */
+ if ( !astOK ) return;
+
+/* Obtain pointers to the input and output MatrixMaps. */
+ in = (AstMatrixMap *) objin;
+ out = (AstMatrixMap *) objout;
+
+/* Nullify the pointers stored in the output object since these will
+ currently be pointing at the input data (since the output is a simple
+ byte-for-byte copy of the input). Otherwise, the input data could be
+ freed by accidient if the output object is deleted due to an error
+ occuring in this function. */
+ out->f_matrix = NULL;
+ out->i_matrix = NULL;
+
+/* If the input MatrixMap is a unit mapping, then no matrix elements are
+ stored with it, so do nothing in this case. */
+ if( out->form != UNIT ){
+
+/* Obtain the number of stored values in the MatrixMap. This is independant of
+ whether the Mapping has been inverted or not. If the MatrixMap is diagonal,
+ only the diagonal terms are stored. */
+ nin = astGetNin( in );
+ nout = astGetNout( in );
+
+ if( out->form == DIAGONAL ){
+ if( nin < nout ){
+ nel = nin;
+ } else {
+ nel = nout;
+ }
+
+ } else {
+ nel = nin*nout;
+ }
+
+/* Store the forward matrix elements in the output MatrixMap. */
+ out->f_matrix = (double *) astStore( NULL, (void *) in->f_matrix,
+ sizeof( double )*(size_t) nel );
+
+/* Store the inverse matrix elements (if defined) in the output
+ MatrixMap. */
+ if( in->i_matrix ){
+ out->i_matrix = (double *) astStore( NULL, (void *) in->i_matrix,
+ sizeof( double )*(size_t) nel );
+ }
+
+/* If an error has occurred, free the output MatrixMap arrays. */
+ if( !astOK ) {
+ out->f_matrix = (double *) astFree( (void *) out->f_matrix );
+ out->i_matrix = (double *) astFree( (void *) out->i_matrix );
+ }
+ }
+
+ return;
+
+}
+
+/* Destructor. */
+/* ----------- */
+static void Delete( AstObject *obj, int *status ) {
+/*
+* Name:
+* Delete
+
+* Purpose:
+* Destructor for MatrixMap objects.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* void Delete( AstObject *obj, int *status )
+
+* Description:
+* This function implements the destructor for MatrixMap objects.
+
+* Parameters:
+* obj
+* Pointer to the object to be deleted.
+* status
+* Pointer to the inherited status variable.
+
+* Returned Value:
+* void
+
+* Notes:
+* This function attempts to execute even if the global error status is
+* set.
+*/
+
+/* Local Variables: */
+ AstMatrixMap *this; /* Pointer to MatrixMap */
+
+/* Obtain a pointer to the MatrixMap structure. */
+ this = (AstMatrixMap *) obj;
+
+/* Free the arrays used to store element values for forward and inverse
+ matrices. */
+ this->f_matrix = (double *) astFree( (void *) this->f_matrix );
+ this->i_matrix = (double *) astFree( (void *) this->i_matrix );
+}
+
+/* Dump function. */
+/* -------------- */
+static void Dump( AstObject *this_object, AstChannel *channel, int *status ) {
+/*
+* Name:
+* Dump
+
+* Purpose:
+* Dump function for MatrixMap objects.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* void Dump( AstObject *this, AstChannel *channel, int *status )
+
+* Description:
+* This function implements the Dump function which writes out data
+* for the MatrixMap class to an output Channel.
+
+* Parameters:
+* this
+* Pointer to the MatrixMap whose data are being written.
+* channel
+* Pointer to the Channel to which the data are being written.
+* status
+* Pointer to the inherited status variable.
+*/
+
+#define KEY_LEN 50 /* Maximum length of a keyword */
+
+/* Local Variables: */
+ AstMatrixMap *this; /* Pointer to the MatrixMap structure */
+ char buff[ KEY_LEN + 1 ]; /* Buffer for keyword string */
+ int el; /* Element index */
+ int nel; /* No. of elements in the matrix */
+ int nin; /* No. of input coords */
+ int nout; /* No. of output coords */
+
+/* Check the global error status. */
+ if ( !astOK ) return;
+
+/* Obtain a pointer to the MatrixMap structure. */
+ this = (AstMatrixMap *) this_object;
+
+/* Find the number of elements stored for each matrix. */
+ nin = astGetNin( this );
+ nout = astGetNout( this );
+
+ if( this->form == FULL ){
+ nel = nin*nout;
+
+ } else if( this->form == DIAGONAL ){
+ nel = astMIN( nin, nout );
+
+ } else {
+ nel = 0;
+ }
+
+/* Write out values representing the instance variables for the
+ MatrixMap class. */
+
+/* The forward matrix. Note BAD values are not written out as the
+ AST__BAD value may differ on different machines. If a matrix element
+ is not found when reading the matrix back in again (in astLoadMatrixMap),
+ then it is assigned a default value of AST__BAD. */
+ if( this->f_matrix ){
+ for( el = 0; el < nel; el++ ){
+ if( (this->f_matrix)[ el ] != AST__BAD ) {
+ (void) sprintf( buff, "M%d", el );
+ astWriteDouble( channel, buff, 1, 1, (this->f_matrix)[ el ],
+ "Forward matrix value" );
+ }
+ }
+ }
+
+/* The inverse matrix. */
+ if( this->i_matrix ){
+ for( el = 0; el < nel; el++ ){
+ if( (this->i_matrix)[ el ] != AST__BAD ) {
+ (void) sprintf( buff, "IM%d", el );
+ astWriteDouble( channel, buff, 1, 1, (this->i_matrix)[ el ],
+ "Inverse matrix value" );
+ }
+ }
+ }
+
+/* The matrix storage form. */
+ astWriteString( channel, "Form", 1, 1, Form[ this->form ],
+ "Matrix storage form" );
+
+/* Undefine macros local to this function. */
+#undef KEY_LEN
+}
+
+/* Standard class functions. */
+/* ========================= */
+/* Implement the astIsAMatrixMap and astCheckMatrixMap functions using the macros
+ defined for this purpose in the "object.h" header file. */
+astMAKE_ISA(MatrixMap,Mapping)
+astMAKE_CHECK(MatrixMap)
+
+AstMatrixMap *astMatrixMap_( int nin, int nout, int form,
+ const double matrix[], const char *options, int *status, ...){
+/*
+*++
+* Name:
+c astMatrixMap
+f AST_MATRIXMAP
+
+* Purpose:
+* Create a MatrixMap.
+
+* Type:
+* Public function.
+
+* Synopsis:
+c #include "matrixmap.h"
+c AstMatrixMap *astMatrixMap( int nin, int nout, int form,
+c const double matrix[],
+c const char *options, ... )
+f RESULT = AST_MATRIXMAP( NIN, NOUT, FORM, MATRIX, OPTIONS, STATUS )
+
+* Class Membership:
+* MatrixMap constructor.
+
+* Description:
+* This function creates a new MatrixMap and optionally initialises
+* its attributes.
+*
+* A MatrixMap is a form of Mapping which performs a general linear
+* transformation. Each set of input coordinates, regarded as a
+* column-vector, are pre-multiplied by a matrix (whose elements
+* are specified when the MatrixMap is created) to give a new
+* column-vector containing the output coordinates. If appropriate,
+* the inverse transformation may also be performed.
+
+* Parameters:
+c nin
+f NIN = INTEGER (Given)
+* The number of input coordinates, which determines the number
+* of columns in the matrix.
+c nout
+f NOUT = INTEGER (Given)
+* The number of output coordinates, which determines the number
+* of rows in the matrix.
+c form
+f FORM = INTEGER (Given)
+* An integer which indicates the form in which the matrix
+* elements will be supplied.
+*
+c A value of zero indicates that a full "nout" x "nin" matrix
+f A value of zero indicates that a full NOUT x NIN matrix
+c of values will be supplied via the "matrix" parameter
+f of values will be supplied via the MATRIX argument
+* (below). In this case, the elements should be given in row
+* order (the elements of the first row, followed by the
+* elements of the second row, etc.).
+*
+* A value of 1 indicates that only the diagonal elements of the
+* matrix will be supplied, and that all others should be
+c zero. In this case, the elements of "matrix" should contain
+f zero. In this case, the elements of MATRIX should contain
+* only the diagonal elements, stored consecutively.
+*
+* A value of 2 indicates that a "unit" matrix is required,
+* whose diagonal elements are set to unity (with all other
+c elements zero). In this case, the "matrix" parameter is
+c ignored and a NULL pointer may be supplied.
+f elements zero). In this case, the MATRIX argument is not used.
+c matrix
+f MATRIX( * ) = DOUBLE PRECISION (Given)
+* The array of matrix elements to be used, stored according to
+c the value of "form".
+f the value of FORM.
+c options
+f OPTIONS = CHARACTER * ( * ) (Given)
+c Pointer to a null-terminated string containing an optional
+c comma-separated list of attribute assignments to be used for
+c initialising the new MatrixMap. The syntax used is identical to
+c that for the astSet function and may include "printf" format
+c specifiers identified by "%" symbols in the normal way.
+f A character string containing an optional comma-separated
+f list of attribute assignments to be used for initialising the
+f new MatrixMap. The syntax used is identical to that for the
+f AST_SET routine.
+c ...
+c If the "options" string contains "%" format specifiers, then
+c an optional list of additional arguments may follow it in
+c order to supply values to be substituted for these
+c specifiers. The rules for supplying these are identical to
+c those for the astSet function (and for the C "printf"
+c function).
+f STATUS = INTEGER (Given and Returned)
+f The global status.
+
+* Returned Value:
+c astMatrixMap()
+f AST_MATRIXMAP = INTEGER
+* A pointer to the new MatrixMap.
+
+* Notes:
+* - In general, a MatrixMap's forward transformation will always
+* be available (as indicated by its TranForward attribute), but
+* its inverse transformation (TranInverse attribute) will only be
+* available if the associated matrix is square and non-singular.
+* - As an exception to this, the inverse transformation is always
+* available if a unit or diagonal matrix is specified. In this
+* case, if the matrix is not square, one or more of the input
+* coordinate values may not be recoverable from a set of output
+* coordinates. Any coordinates affected in this way will simply be
+* set to the value zero.
+* - A null Object pointer (AST__NULL) will be returned if this
+c function is invoked with the AST error status set, or if it
+f function is invoked with STATUS set to an error value, or if it
+* should fail for any reason.
+
+* Status Handling:
+* The protected interface to this function includes an extra
+* parameter at the end of the parameter list descirbed above. This
+* parameter is a pointer to the integer inherited status
+* variable: "int *status".
+
+*--
+*/
+
+/* Local Variables: */
+ astDECLARE_GLOBALS /* Pointer to thread-specific global data */
+ AstMatrixMap *new; /* Pointer to new MatrixMap */
+ va_list args; /* Variable argument list */
+
+/* Check the global status. */
+ if ( !astOK ) return NULL;
+
+/* Get a pointer to the thread specific global data structure. */
+ astGET_GLOBALS(NULL);
+
+/* Initialise the MatrixMap, allocating memory and initialising the
+ virtual function table as well if necessary. */
+ new = astInitMatrixMap( NULL, sizeof( AstMatrixMap ), !class_init,
+ &class_vtab, "MatrixMap", nin, nout, form, matrix);
+
+/* If successful, note that the virtual function table has been
+ initialised. */
+ if ( astOK ) {
+ class_init = 1;
+
+/* Obtain the variable argument list and pass it along with the options string
+ to the astVSet method to initialise the new MatrixMap's attributes. */
+ va_start( args, status );
+ astVSet( new, options, NULL, args );
+ va_end( args );
+
+/* If an error occurred, clean up by deleting the new object. */
+ if ( !astOK ) new = astDelete( new );
+ }
+
+/* Return a pointer to the new MatrixMap. */
+ return new;
+}
+
+AstMatrixMap *astMatrixMapId_( int nin, int nout, int form, const double matrix[],
+ const char *options, ... ) {
+/*
+* Name:
+* astMatrixMapId_
+
+* Purpose:
+* Create a MatrixMap.
+
+* Type:
+* Private function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstMatrixMap *astMatrixMapId_( int nin, int nout, int form,
+* const double matrix[], const char *options,
+* ... )
+
+* Class Membership:
+* MatrixMap constructor.
+
+* Description:
+* This function implements the external (public) interface to the
+* astMatrixMap constructor function. It returns an ID value (instead
+* of a true C pointer) to external users, and must be provided
+* because astMatrixMap_ has a variable argument list which cannot be
+* encapsulated in a macro (where this conversion would otherwise
+* occur).
+*
+* The variable argument list also prevents this function from
+* invoking astMatrixMap_ directly, so it must be a re-implementation
+* of it in all respects, except for the final conversion of the
+* result to an ID value.
+
+* Parameters:
+* As for astMatrixMap_.
+
+* Returned Value:
+* The ID value associated with the new MatrixMap.
+*/
+
+/* Local Variables: */
+ astDECLARE_GLOBALS /* Pointer to thread-specific global data */
+ AstMatrixMap *new; /* Pointer to new MatrixMap */
+ va_list args; /* Variable argument list */
+ int *status; /* Pointer to inherited status value */
+
+/* Get a pointer to the inherited status value. */
+ status = astGetStatusPtr;
+
+/* Get a pointer to the thread specific global data structure. */
+ astGET_GLOBALS(NULL);
+
+/* Check the global status. */
+ if ( !astOK ) return NULL;
+
+/* Initialise the MatrixMap, allocating memory and initialising the
+ virtual function table as well if necessary. */
+ new = astInitMatrixMap( NULL, sizeof( AstMatrixMap ), !class_init, &class_vtab,
+ "MatrixMap", nin, nout, form, matrix );
+
+/* If successful, note that the virtual function table has been
+ initialised. */
+ if ( astOK ) {
+ class_init = 1;
+
+/* Obtain the variable argument list and pass it along with the options string
+ to the astVSet method to initialise the new MatrixMap's attributes. */
+ va_start( args, options );
+ astVSet( new, options, NULL, args );
+ va_end( args );
+
+/* If an error occurred, clean up by deleting the new object. */
+ if ( !astOK ) new = astDelete( new );
+ }
+
+/* Return an ID value for the new MatrixMap. */
+ return astMakeId( new );
+}
+
+AstMatrixMap *astInitMatrixMap_( void *mem, size_t size, int init,
+ AstMatrixMapVtab *vtab, const char *name,
+ int nin, int nout, int form,
+ const double *matrix, int *status ) {
+/*
+*+
+* Name:
+* astInitMatrixMap
+
+* Purpose:
+* Initialise a MatrixMap.
+
+* Type:
+* Protected function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstMatrixMap *astInitMatrixMap( void *mem, size_t size, int init,
+* AstMatrixMapVtab *vtab, const char *name,
+* int nin, int nout, int form,
+* const double *matrix )
+
+* Class Membership:
+* MatrixMap initialiser.
+
+* Description:
+* This function is provided for use by class implementations to initialise
+* a new MatrixMap object. It allocates memory (if necessary) to accommodate
+* the MatrixMap plus any additional data associated with the derived class.
+* It then initialises a MatrixMap structure at the start of this memory. If
+* the "init" flag is set, it also initialises the contents of a virtual
+* function table for a MatrixMap at the start of the memory passed via the
+* "vtab" parameter.
+
+* Parameters:
+* mem
+* A pointer to the memory in which the MatrixMap is to be initialised.
+* This must be of sufficient size to accommodate the MatrixMap data
+* (sizeof(MatrixMap)) plus any data used by the derived class. If a value
+* of NULL is given, this function will allocate the memory itself using
+* the "size" parameter to determine its size.
+* size
+* The amount of memory used by the MatrixMap (plus derived class data).
+* This will be used to allocate memory if a value of NULL is given for
+* the "mem" parameter. This value is also stored in the MatrixMap
+* structure, so a valid value must be supplied even if not required for
+* allocating memory.
+* init
+* A logical flag indicating if the MatrixMap's virtual function table is
+* to be initialised. If this value is non-zero, the virtual function
+* table will be initialised by this function.
+* vtab
+* Pointer to the start of the virtual function table to be associated
+* with the new MatrixMap.
+* name
+* Pointer to a constant null-terminated character string which contains
+* the name of the class to which the new object belongs (it is this
+* pointer value that will subsequently be returned by the astGetClass
+* method).
+* nin
+* The number of input coordinate values per point. This is the
+* same as the number of columns in the matrix.
+* nout
+* The number of output coordinate values per point. This is the
+* same as the number of rows in the matrix.
+* form
+* If "form" is 2 or larger, then a unit MatrixMap is created. In this
+* case "matrix" is ignored and can be supplied as NULL. If "form" is
+* 1, then a diagonal MatrixMap is created. In this case, the number of
+* values in "matrix" should be equal to the minimum of nin and nout,
+* and "matrix" should contain the corresponding diagonal terms, in row
+* order. If "form" is 0 or less, then a full MatrixMap is created, and
+* "matrix" should contain all nin*nout element values.
+* matrix
+* A pointer to an array of matrix element values. The values should be
+* supplied in row order. The content of this array is determined by
+* "form". If a full MatrixMap is to be created then the array starts
+* with (row 1, column 1), then comes (row 1, column 2), up to (row 1,
+* column nin), then (row 2, column 1), (row 2, column 2), and so on,
+* finishing with (row nout, column nin) ). An error is reported if a
+* NULL value is supplied unless "form" is 2 or more.
+
+* Returned Value:
+* A pointer to the new MatrixMap.
+
+* Notes:
+* - A null pointer will be returned if this function is invoked with the
+* global error status set, or if it should fail for any reason.
+*-
+*/
+
+/* Local Variables: */
+ AstMatrixMap *new; /* Pointer to new MatrixMap */
+ double *fmat; /* Pointer to the forward matrix */
+ double *imat; /* Pointer to the inverse matrix */
+ int i; /* Loop count */
+ int nel; /* No. of elements in matrix array */
+ int nuse; /* Number of usable matrix elements */
+ int used_form; /* Form limited to 0, 1 or 2 */
+
+/* Check the global status. */
+ if ( !astOK ) return NULL;
+
+/* If necessary, initialise the virtual function table. */
+ if ( init ) astInitMatrixMapVtab( vtab, name );
+
+/* Initialise. */
+ new = NULL;
+
+/* Report an error if a NULL matrix was supplied, unless a unit MatrixMap
+ has been requested. */
+ if( form < 2 && !matrix ){
+ astError( AST__MTRMT, "astInitMatrixMap(%s): NULL matrix supplied.", status,
+ name );
+
+ } else {
+
+/* Initialise a Mapping structure (the parent class) as the first component
+ within the MatrixMap structure, allocating memory if necessary. Specify that
+ the Mapping should be defined in both the forward and inverse directions. */
+ new = (AstMatrixMap *) astInitMapping( mem, size, 0,
+ (AstMappingVtab *) vtab, name,
+ nin, nout, 1, 1 );
+
+ if ( astOK ) {
+
+/* Initialise the MatrixMap data. */
+/* ---------------------------- */
+/* If a unit MatrixMap is being created, then no additional storage is
+ required. */
+ if( form > 1 ){
+ nel = 0;
+ used_form = UNIT;
+
+/* If a diagonal MatrixMap is being created, then memory is needed to hold
+ the diagonal terms. */
+ } else if( form == 1 ){
+ if( nin < nout ){
+ nel = nin;
+ } else {
+ nel = nout;
+ }
+ used_form = DIAGONAL;
+
+/* If a full MatrixMap is being created, then memory is needed to hold
+ all the terms. */
+ } else {
+ nel = nin*nout ;
+ used_form = FULL;
+ }
+
+/* Allocate memory for the forward matrix, storing the supplied matrix
+ values in it. */
+ fmat = (double *) astStore( NULL, (void *) matrix,
+ sizeof(double)*(size_t)nel );
+
+/* Replace any NaNs by AST__BAD and count the number of usable values. */
+ if( nel > 0 ) {
+ nuse = 0;
+ for( i = 0; i < nel; i++ ) {
+ if( !astISFINITE(fmat[ i ]) ) {
+ fmat[ i ] = AST__BAD;
+ } else if( fmat[ i ] != AST__BAD ) {
+ nuse++;
+ }
+ }
+
+/* Report an error if there are no usable values. */
+ if( nuse == 0 && astOK ) {
+ astError( AST__MTRMT, "astInitMatrixMap(%s): Supplied matrix "
+ "contains only bad values.", status, name );
+ }
+ }
+
+/* Create an inverse matrix if possible. */
+ imat = InvertMatrix( used_form, nout, nin, fmat, status );
+
+/* Store the matrix arrays. */
+ new->form = used_form;
+ new->f_matrix = fmat;
+ new->i_matrix = imat;
+
+/* Attempt to compress the MatrixMap into DIAGONAL or UNIT form. */
+ CompressMatrix( new, status );
+
+/* If an error occurred, clean up by deleting the new MatrixMap. */
+ if ( !astOK ) new = astDelete( new );
+ }
+ }
+
+/* Return a pointer to the new MatrixMap. */
+ return new;
+}
+
+AstMatrixMap *astLoadMatrixMap_( void *mem, size_t size,
+ AstMatrixMapVtab *vtab, const char *name,
+ AstChannel *channel, int *status ) {
+/*
+*+
+* Name:
+* astLoadMatrixMap
+
+* Purpose:
+* Load a MatrixMap.
+
+* Type:
+* Protected function.
+
+* Synopsis:
+* #include "matrixmap.h"
+* AstMatrixMap *astLoadMatrixMap( void *mem, size_t size,
+* AstMatrixMapVtab *vtab, const char *name,
+* AstChannel *channel )
+
+* Class Membership:
+* MatrixMap loader.
+
+* Description:
+* This function is provided to load a new MatrixMap using data read
+* from a Channel. It first loads the data used by the parent class
+* (which allocates memory if necessary) and then initialises a
+* MatrixMap structure in this memory, using data read from the input
+* Channel.
+*
+* If the "init" flag is set, it also initialises the contents of a
+* virtual function table for a MatrixMap at the start of the memory
+* passed via the "vtab" parameter.
+
+
+* Parameters:
+* mem
+* A pointer to the memory into which the MatrixMap is to be
+* loaded. This must be of sufficient size to accommodate the
+* MatrixMap data (sizeof(MatrixMap)) plus any data used by derived
+* classes. If a value of NULL is given, this function will
+* allocate the memory itself using the "size" parameter to
+* determine its size.
+* size
+* The amount of memory used by the MatrixMap (plus derived class
+* data). This will be used to allocate memory if a value of
+* NULL is given for the "mem" parameter. This value is also
+* stored in the MatrixMap structure, so a valid value must be
+* supplied even if not required for allocating memory.
+*
+* If the "vtab" parameter is NULL, the "size" value is ignored
+* and sizeof(AstMatrixMap) is used instead.
+* vtab
+* Pointer to the start of the virtual function table to be
+* associated with the new MatrixMap. If this is NULL, a pointer
+* to the (static) virtual function table for the MatrixMap class
+* is used instead.
+* name
+* Pointer to a constant null-terminated character string which
+* contains the name of the class to which the new object
+* belongs (it is this pointer value that will subsequently be
+* returned by the astGetClass method).
+*
+* If the "vtab" parameter is NULL, the "name" value is ignored
+* and a pointer to the string "MatrixMap" is used instead.
+
+* Returned Value:
+* A pointer to the new MatrixMap.
+
+* Notes:
+* - A null pointer will be returned if this function is invoked
+* with the global error status set, or if it should fail for any
+* reason.
+*-
+*/
+
+#define KEY_LEN 50 /* Maximum length of a keyword */
+
+ astDECLARE_GLOBALS /* Pointer to thread-specific global data */
+/* Local Variables: */
+ AstMatrixMap *new; /* Pointer to the new MatrixMap */
+ char buff[ KEY_LEN + 1 ]; /* Buffer for keyword string */
+ const char *form; /* String form */
+ int def; /* Is the matrix defined? */
+ int el; /* Element index */
+ int nel; /* No. of elements in the matrix */
+ int nin; /* No. of input coords */
+ int nout; /* No. of output coords */
+
+/* Get a pointer to the thread specific global data structure. */
+ astGET_GLOBALS(channel);
+
+/* Initialise. */
+ new = NULL;
+
+/* Check the global error status. */
+ if ( !astOK ) return new;
+
+/* If a NULL virtual function table has been supplied, then this is
+ the first loader to be invoked for this MatrixMap. In this case the
+ MatrixMap belongs to this class, so supply appropriate values to be
+ passed to the parent class loader (and its parent, etc.). */
+ if ( !vtab ) {
+ size = sizeof( AstMatrixMap );
+ vtab = &class_vtab;
+ name = "MatrixMap";
+
+/* If required, initialise the virtual function table for this class. */
+ if ( !class_init ) {
+ astInitMatrixMapVtab( vtab, name );
+ class_init = 1;
+ }
+ }
+
+/* Invoke the parent class loader to load data for all the ancestral
+ classes of the current one, returning a pointer to the resulting
+ partly-built MatrixMap. */
+ new = astLoadMapping( mem, size, (AstMappingVtab *) vtab, name,
+ channel );
+
+ if ( astOK ) {
+
+/* Read input data. */
+/* ================ */
+/* Request the input Channel to read all the input data appropriate to
+ this class into the internal "values list". */
+ astReadClassData( channel, "MatrixMap" );
+
+/* Now obtain the Matrix storage form from this list. */
+ form = astReadString( channel, "form", Form[FULL] );
+ new->form = FindString( 3, Form, form, "the MatrixMap component 'Form'",
+ "astRead", astGetClass( channel ), status );
+ form = astFree( (void *) form );
+
+/* Find the number of elements stored for each matrix. */
+ nin = astGetNin( (AstMapping *) new );
+ nout = astGetNout( (AstMapping *) new );
+
+ if( new->form == FULL ){
+ nel = nin*nout;
+
+ } else if( new->form == DIAGONAL ){
+ nel = astMIN( nin, nout );
+
+ } else {
+ nel = 0;
+ }
+
+/* Allocate memory to hold the forward matrix. */
+ new->f_matrix = (double *) astMalloc( sizeof(double)*(size_t)nel );
+
+/* Now read the other data items from the list and use them to
+ initialise the appropriate instance variable(s) for this class. */
+
+/* The forward matrix. */
+ if( new->f_matrix ){
+ def = 0;
+
+ for( el = 0; el < nel; el++ ){
+ (void) sprintf( buff, "m%d", el );
+ (new->f_matrix)[ el ] = astReadDouble( channel, buff, AST__BAD );
+ if( (new->f_matrix)[ el ] != AST__BAD ) def = 1;
+ }
+
+/* Store a NULL pointer if no elements of the matrix were found. */
+ if( !def ) new->f_matrix = (double *) astFree( (void *) new->f_matrix );
+
+ }
+
+/* The inverse matrix. */
+ new->i_matrix = (double *) astMalloc( sizeof(double)*(size_t)nel );
+ if( new->i_matrix ){
+ def = 0;
+
+ for( el = 0; el < nel; el++ ){
+ (void) sprintf( buff, "im%d", el );
+ (new->i_matrix)[ el ] = astReadDouble( channel, buff, AST__BAD );
+ if( (new->i_matrix)[ el ] != AST__BAD ) def = 1;
+ }
+
+/* If no elements of the matrix were found, create an inverse matrix if
+ possible, otherwise store a NULL pointer. Note, prior to AST 8.6.3, the
+ inverse matrix was not included in the dump - it was always recalculated
+ using InvertMatrix, but this led to small round-trip errors in cases,
+ where the original inverse matrix was not created using InvertMatrix
+ (e.g. was created by astMtrRot). */
+ if( !def ) {
+ new->i_matrix = (double *) astFree( (void *) new->i_matrix );
+ if( new->f_matrix ){
+ new->i_matrix = InvertMatrix( new->form, nout, nin, new->f_matrix, status );
+ } else {
+ new->i_matrix = NULL;
+ }
+ }
+ }
+
+/* If an error occurred, clean up by deleting the new MatrixMap. */
+ if ( !astOK ) new = astDelete( new );
+ }
+
+/* Return the new MatrixMap pointer. */
+ return new;
+
+/* Undefine macros local to this function. */
+#undef KEY_LEN
+}
+
+/* Virtual function interfaces. */
+/* ============================ */
+/* These provide the external interface to the virtual functions defined by
+ this class. Each simply checks the global error status and then locates and
+ executes the appropriate member function, using the function pointer stored
+ in the object's virtual function table (this pointer is located using the
+ astMEMBER macro defined in "object.h").
+
+ Note that the member function may not be the one defined here, as it may
+ have been over-ridden by a derived class. However, it should still have the
+ same interface. */
+
+AstMatrixMap *astMtrRot_( AstMatrixMap *this, double theta,
+ const double axis[], int *status ){
+ if( !astOK ) return NULL;
+ return (**astMEMBER(this,MatrixMap,MtrRot))( this, theta, axis, status );
+}
+
+AstMatrixMap *astMtrMult_( AstMatrixMap *this, AstMatrixMap *a, int *status ){
+ if( !astOK ) return NULL;
+ return (**astMEMBER(this,MatrixMap,MtrMult))( this, a, status );
+}
+
+
+
+