summaryrefslogtreecommitdiffstats
path: root/openssl/doc/apps/rsautl.pod
diff options
context:
space:
mode:
Diffstat (limited to 'openssl/doc/apps/rsautl.pod')
-rw-r--r--openssl/doc/apps/rsautl.pod183
1 files changed, 0 insertions, 183 deletions
diff --git a/openssl/doc/apps/rsautl.pod b/openssl/doc/apps/rsautl.pod
deleted file mode 100644
index 1a498c2..0000000
--- a/openssl/doc/apps/rsautl.pod
+++ /dev/null
@@ -1,183 +0,0 @@
-=pod
-
-=head1 NAME
-
-rsautl - RSA utility
-
-=head1 SYNOPSIS
-
-B<openssl> B<rsautl>
-[B<-in file>]
-[B<-out file>]
-[B<-inkey file>]
-[B<-pubin>]
-[B<-certin>]
-[B<-sign>]
-[B<-verify>]
-[B<-encrypt>]
-[B<-decrypt>]
-[B<-pkcs>]
-[B<-ssl>]
-[B<-raw>]
-[B<-hexdump>]
-[B<-asn1parse>]
-
-=head1 DESCRIPTION
-
-The B<rsautl> command can be used to sign, verify, encrypt and decrypt
-data using the RSA algorithm.
-
-=head1 COMMAND OPTIONS
-
-=over 4
-
-=item B<-in filename>
-
-This specifies the input filename to read data from or standard input
-if this option is not specified.
-
-=item B<-out filename>
-
-specifies the output filename to write to or standard output by
-default.
-
-=item B<-inkey file>
-
-the input key file, by default it should be an RSA private key.
-
-=item B<-pubin>
-
-the input file is an RSA public key.
-
-=item B<-certin>
-
-the input is a certificate containing an RSA public key.
-
-=item B<-sign>
-
-sign the input data and output the signed result. This requires
-and RSA private key.
-
-=item B<-verify>
-
-verify the input data and output the recovered data.
-
-=item B<-encrypt>
-
-encrypt the input data using an RSA public key.
-
-=item B<-decrypt>
-
-decrypt the input data using an RSA private key.
-
-=item B<-pkcs, -oaep, -ssl, -raw>
-
-the padding to use: PKCS#1 v1.5 (the default), PKCS#1 OAEP,
-special padding used in SSL v2 backwards compatible handshakes,
-or no padding, respectively.
-For signatures, only B<-pkcs> and B<-raw> can be used.
-
-=item B<-hexdump>
-
-hex dump the output data.
-
-=item B<-asn1parse>
-
-asn1parse the output data, this is useful when combined with the
-B<-verify> option.
-
-=back
-
-=head1 NOTES
-
-B<rsautl> because it uses the RSA algorithm directly can only be
-used to sign or verify small pieces of data.
-
-=head1 EXAMPLES
-
-Sign some data using a private key:
-
- openssl rsautl -sign -in file -inkey key.pem -out sig
-
-Recover the signed data
-
- openssl rsautl -verify -in sig -inkey key.pem
-
-Examine the raw signed data:
-
- openssl rsautl -verify -in file -inkey key.pem -raw -hexdump
-
- 0000 - 00 01 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
- 0010 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
- 0020 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
- 0030 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
- 0040 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
- 0050 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
- 0060 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ................
- 0070 - ff ff ff ff 00 68 65 6c-6c 6f 20 77 6f 72 6c 64 .....hello world
-
-The PKCS#1 block formatting is evident from this. If this was done using
-encrypt and decrypt the block would have been of type 2 (the second byte)
-and random padding data visible instead of the 0xff bytes.
-
-It is possible to analyse the signature of certificates using this
-utility in conjunction with B<asn1parse>. Consider the self signed
-example in certs/pca-cert.pem . Running B<asn1parse> as follows yields:
-
- openssl asn1parse -in pca-cert.pem
-
- 0:d=0 hl=4 l= 742 cons: SEQUENCE
- 4:d=1 hl=4 l= 591 cons: SEQUENCE
- 8:d=2 hl=2 l= 3 cons: cont [ 0 ]
- 10:d=3 hl=2 l= 1 prim: INTEGER :02
- 13:d=2 hl=2 l= 1 prim: INTEGER :00
- 16:d=2 hl=2 l= 13 cons: SEQUENCE
- 18:d=3 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
- 29:d=3 hl=2 l= 0 prim: NULL
- 31:d=2 hl=2 l= 92 cons: SEQUENCE
- 33:d=3 hl=2 l= 11 cons: SET
- 35:d=4 hl=2 l= 9 cons: SEQUENCE
- 37:d=5 hl=2 l= 3 prim: OBJECT :countryName
- 42:d=5 hl=2 l= 2 prim: PRINTABLESTRING :AU
- ....
- 599:d=1 hl=2 l= 13 cons: SEQUENCE
- 601:d=2 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
- 612:d=2 hl=2 l= 0 prim: NULL
- 614:d=1 hl=3 l= 129 prim: BIT STRING
-
-
-The final BIT STRING contains the actual signature. It can be extracted with:
-
- openssl asn1parse -in pca-cert.pem -out sig -noout -strparse 614
-
-The certificate public key can be extracted with:
-
- openssl x509 -in test/testx509.pem -pubkey -noout >pubkey.pem
-
-The signature can be analysed with:
-
- openssl rsautl -in sig -verify -asn1parse -inkey pubkey.pem -pubin
-
- 0:d=0 hl=2 l= 32 cons: SEQUENCE
- 2:d=1 hl=2 l= 12 cons: SEQUENCE
- 4:d=2 hl=2 l= 8 prim: OBJECT :md5
- 14:d=2 hl=2 l= 0 prim: NULL
- 16:d=1 hl=2 l= 16 prim: OCTET STRING
- 0000 - f3 46 9e aa 1a 4a 73 c9-37 ea 93 00 48 25 08 b5 .F...Js.7...H%..
-
-This is the parsed version of an ASN1 DigestInfo structure. It can be seen that
-the digest used was md5. The actual part of the certificate that was signed can
-be extracted with:
-
- openssl asn1parse -in pca-cert.pem -out tbs -noout -strparse 4
-
-and its digest computed with:
-
- openssl md5 -c tbs
- MD5(tbs)= f3:46:9e:aa:1a:4a:73:c9:37:ea:93:00:48:25:08:b5
-
-which it can be seen agrees with the recovered value above.
-
-=head1 SEE ALSO
-
-L<dgst(1)|dgst(1)>, L<rsa(1)|rsa(1)>, L<genrsa(1)|genrsa(1)>