diff options
Diffstat (limited to 'tcllib/modules/math/exact.tcl')
-rw-r--r-- | tcllib/modules/math/exact.tcl | 4059 |
1 files changed, 4059 insertions, 0 deletions
diff --git a/tcllib/modules/math/exact.tcl b/tcllib/modules/math/exact.tcl new file mode 100644 index 0000000..177c3df --- /dev/null +++ b/tcllib/modules/math/exact.tcl @@ -0,0 +1,4059 @@ +# exact.tcl -- +# +# Tcl package for exact real arithmetic. +# +# Copyright (c) 2015 by Kevin B. Kenny +# +# See the file "license.terms" for information on usage and redistribution of +# this file, and for a DISCLAIMER OF ALL WARRANTIES. +# +# This package provides a library for performing exact +# computations over the computable real numbers. The algorithms +# are largely based on the ones described in: +# +# Potts, Peter John. _Exact Real Arithmetic using Möbius Transformations._ +# PhD thesis, University of London, July 1998. +# http://www.doc.ic.ac.uk/~ae/papers/potts-phd.pdf +# +# Some of the algorithms for the elementary functions are found instead +# in: +# +# Menissier-Morain, Valérie. _Arbitrary Precision Real Arithmetic: +# Design and Algorithms. J. Symbolic Computation 11 (1996) +# http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.8983 +# +#----------------------------------------------------------------------------- + +package require Tcl 8.6 +package require grammar::aycock 1.0 + +namespace eval math::exact { + + namespace eval function { + namespace path ::math::exact + } + namespace path ::tcl::mathop + + # math::exact::parser -- + # + # Grammar for parsing expressions in the exact real calculator + # + # The expression syntax is almost exactly that of Tcl expressions, + # minus Tcl arrays, square-bracket substitution, and noncomputable + # operations such as equality, comparisons, bit and Boolean operations, + # and ?:. + + variable parser [grammar::aycock::parser { + + target ::= expression { + lindex $_ 0 + } + + expression ::= expression addop term { + {*}$_ + } + expression ::= term { + lindex $_ 0 + } + addop ::= + { + lindex $_ 0 + } + addop ::= - { + lindex $_ 0 + } + + term ::= term mulop factor { + {*}$_ + } + term ::= factor { + lindex $_ 0 + } + mulop ::= * { + lindex $_ 0 + } + mulop ::= / { + lindex $_ 0 + } + + factor ::= addop factor { + switch -exact -- [lindex $_ 0] { + + { + set result [lindex $_ 1] + } + - { + set result [[lindex $_ 1] U-] + } + } + set result + } + factor ::= primary ** factor { + {*}$_ + } + factor ::= primary { + lindex $_ 0 + } + + primary ::= {$} bareword { + uplevel [dict get $clientData caller] set [lindex $_ 1] + } + primary ::= number { + [dict get $clientData namespace]::V new [list [lindex $_ 0] 1] + } + primary ::= bareword ( ) { + [dict get $clientData namespace]::function::[lindex $_ 0] + } + primary ::= bareword ( arglist ) { + [dict get $clientData namespace]::function::[lindex $_ 0] \ + {*}[lindex $_ 2] + } + primary ::= ( expression ) { + lindex $_ 1 + } + arglist ::= expression { + set _ + } + arglist ::= arglist , expression { + linsert [lindex $_ 0] end [lindex $_ 2] + } + + }] +} + +# math::exact::Lexer -- +# +# Lexer for the arithmetic expressions that the 'math::exact' package +# can evaluate. +# +# Results: +# Returns a two element list. The first element is a list of the +# lexical values of the tokens that were found in the expression; +# the second is a list of the semantic values of the tokens. The +# two sublists are the same length. + +proc math::exact::Lexer {expression} { + set start 0 + set tokens {} + set values {} + while {$expression ne {}} { + if {[regexp {^\*\*(.*)} $expression -> rest]} { + + # Exponentiation + + lappend tokens ** + lappend values ** + } elseif {[regexp {^([-+/*$(),])(.*)} $expression -> token rest]} { + + # Single-character operators + + lappend tokens $token + lappend values $token + } elseif {[regexp {^([[:alpha:]][[:alnum:]_]*)(.*)} \ + $expression -> token rest]} { + + # Variable and function names + + lappend tokens bareword + lappend values $token + } elseif {[regexp -nocase {^([[:digit:]]+)(.*)} $expression -> \ + token rest] } { + + # Numbers + + lappend tokens number + lappend values $token + + } elseif {[regexp {^[[:space:]]+(.*)} $expression -> rest]} { + + # Whitespace + + } else { + + # Anything else is an error + + return -code error \ + -errorcode [list MATH EXACT EXPR INVCHAR \ + [string index $expression 0]] \ + [list invalid character [string index $expression 0]] \ + } + set expression $rest + } + return [list $tokens $values] +} + +# math::exact::K -- +# +# K combinator. Returns its first argumetn +# +# Parameters: +# a - Return value +# b - Value to discard +# +# Results: +# Returns the first argument + +proc math::exact::K {a b} {return $a} + +# math::exact::exactexpr -- +# +# Evaluates an exact real expression. +# +# Parameters: +# expr - Expression to evaluate. Variables in the expression are +# assumed to be reals, which are represented as Tcl objects. +# +# Results: +# Returns a Tcl object representing the expression's value. +# +# The returned object must have its refcount incremented with [ref] if +# the caller retains a reference, and in general it is expected that a +# user of a real will [ref] the object when storing it in a variable and +# [unref] it again when the variable goes out of scope or is overwritten. + +proc math::exact::exactexpr {expr} { + variable parser + set result [$parser parse {*}[Lexer $expr] \ + [dict create \ + caller "#[expr {[info level] - 1}]" \ + namespace [namespace current]]] +} + +# Basic data types + +# A vector is a list {a b}. It can represent the rational number {a/b} + +# A matrix is a list of its columns {{a b} {c d}}. In addition to +# the ordinary rules of linear algebra, it represents the linear +# transform (ax+b)/(cx+d). + +# If x is presumed to lie in the interval [0, Inf) then this transform +# applied to x will lie in the interval [b/d, a/c), so the matrix +# {{a b} {c d}} can represent that interval. The interval [0,Inf) +# can be represented by the identity matrix {{1 0} {0 1}} + +# Moreover, if x = {p/q} is a rational number, then +# (ax+b)/(cx+d) = (a(p/q)+b)/(c(p/q)+d) +# = ((ap+bq)/q)/(cp+dq)/q) +# = (ap+bq)/(cp+dq) +# which is the rational number represented by {{a c} {b d}} {p q} +# using the conventional rule of vector-matrix multiplication. + +# Note that matrices used for this purpose are unique only up to scaling. +# If (ax+b)/(cx+d) is a rational number, then (eax+eb)/(ecx+ed) represents +# the same rational number. This means that matrix inversion may be replaced +# by matrix reversion: for {{a b} {c d}}, simply form the list of cofactors +# {{d -b} {-c a}}, without dividing by the determinant. The reverse of a matrix +# is well defined even if the matrix is singular. + +# A tensor of the third degree is a list of its levels: +# {{{a b} {c d}} {{e f} {g h}}} + +# math::exact::gcd -- +# +# Greatest common divisor of a set of integers +# +# Parameters: +# The integers whose gcd is to be found +# +# Results: +# Returns the gcd + +proc math::exact::gcd {a args} { + foreach b $args { + if {$a > $b} { + set t $b; set b $a; set a $t + } + while {$b > 0} { + set t $b + set b [expr {$a % $b}] + set a $t + } + } + return $a +} + +# math::exact::trans -- +# +# Transposes a 2x2 matrix or a 2x2x2 tensor +# +# Parameters: +# x - Object to transpose +# +# Results: +# Returns the transpose + +proc math::exact::trans {x} { + lassign $x ab cd + lassign $ab a b + lassign $cd c d + tailcall list [list $a $c] [list $b $d] +} + +# math::exact::determinant -- +# +# Calculates the determinant of a 2x2 matrix +# +# Parameters: +# x - Matrix +# +# Results: +# Returns the determinant. + +proc math::exact::determinant {x} { + lassign $x ab cd + lassign $ab a b + lassign $cd c d + return [expr {$a*$d - $b*$c}] +} + +# math::exact::reverse -- +# +# Calculates the reverse of a 2x2 matrix, which is its inverse times +# its determinant. +# +# Parameters: +# x - Matrix +# +# Results: +# Returns reverse[x]. +# +# Notes: +# The reverse is well defined even for singular matrices. + +proc math::exact::reverse {x} { + lassign $x ab cd + lassign $ab a b + lassign $cd c d + tailcall list [list $d [expr {-$b}]] [list [expr {-$c}] $a] +} + +# math::exact::veven -- +# +# Tests if both components of a 2-vector are even. +# +# Parameters: +# x - Vector to test +# +# Results: +# Returns 1 if both components are even, 0 otherwise. + +proc math::exact::veven {x} { + lassign $x a b + return [expr {($a % 2 == 0) && ($b % 2 == 0)}] +} + +# math::exact::meven -- +# +# Tests if all components of a 2x2 matrix are even. +# +# Parameters: +# x - Matrix to test +# +# Results: +# Returns 1 if all components are even, 0 otherwise. + +proc math::exact::meven {x} { + lassign $x a b + return [expr {[veven $a] && [veven $b]}] +} + +# math::exact::teven -- +# +# Tests if all components of a 2x2x2 tensor are even +# +# Parameters: +# x - Tensor to test +# +# Results: +# Returns 1 if all components are even, 0 otherwise + +proc math::exact::teven {x} { + lassign $x a b + return [expr {[meven $a] && [meven $b]}] +} + +# math::exact::vhalf -- +# +# Divides both components of a 2-vector by 2 +# +# Parameters: +# x - Vector to scale +# +# Results: +# Returns the scaled vector + +proc math::exact::vhalf {x} { + lassign $x a b + tailcall list [expr {$a / 2}] [expr {$b / 2}] +} + +# math::exact::mhalf -- +# +# Divides all components of a 2x2 matrix by 2 +# +# Parameters: +# x - Matrix to scale +# +# Results: +# Returns the scaled matrix + +proc math::exact::mhalf {x} { + lassign $x a b + tailcall list [vhalf $a] [vhalf $b] +} + +# math::exact::thalf -- +# +# Divides all components of a 2x2x2 tensor by 2 +# +# Parameters: +# x - Tensor to scale +# +# Results: +# Returns the scaled tensor + +proc math::exact::thalf {x} { + lassign $x a b + tailcall list [mhalf $a] [mhalf $b] +} + +# math::exact::vscale -- +# +# Removes all common factors of 2 from the two components of a 2-vector +# +# Paramters: +# x - Vector to scale +# +# Results: +# Returns the scaled vector + +proc math::exact::vscale {x} { + while {[veven $x]} { + set x [vhalf $x] + } + return $x +} + +# math::exact::mscale -- +# +# Removes all common factors of 2 from the two components of a +# 2x2 matrix +# +# Paramters: +# x - Matrix to scale +# +# Results: +# Returns the scaled matrix + +proc math::exact::mscale {x} { + while {[meven $x]} { + set x [mhalf $x] + } + return $x +} + +# math::exact::tscale -- +# +# Removes all common factors of 2 from the two components of a +# 2x2x2 tensor +# +# Paramters: +# x - Tensor to scale +# +# Results: +# Returns the scaled tensor + +proc math::exact::tscale {x} { + while {[teven $x]} { + set x [thalf $x] + } + return $x +} + +# math::exact::vreduce -- +# +# Reduces a vector (i.e., a rational number) to lowest terms +# +# Parameters: +# x - Vector to scale +# +# Results: +# Returns the scaled vector + +proc math::exact::vreduce {x} { + lassign $x a b + set g [gcd $a $b] + tailcall list [expr {$a / $g}] [expr {$b / $g}] +} + +# math::exact::mreduce -- +# +# Removes all common factors from the two components of a +# 2x2 matrix +# +# Paramters: +# x - Matrix to scale +# +# Results: +# Returns the scaled matrix +# +# This procedure suffices to reduce the matrix to lowest terms if the matrix +# was constructed by pre- or post-multiplying a series of sign and digit +# matrices. + +proc math::exact::mreduce {x} { + lassign $x ab cd + lassign $ab a b + lassign $cd c d + set g [gcd $a $b $c $d] + tailcall list \ + [list [expr {$a / $g}] [expr {$b / $g}]] \ + [list [expr {$c / $g}] [expr {$d / $g}]] +} + +# math::exact::treduce -- +# +# Removes all common factors from the components of a +# 2x2x2 tensor +# +# Paramters: +# x - Tensor to scale +# +# Results: +# Returns the scaled tensor +# +# This procedure suffices to reduce a tensor to lowest terms if it was +# constructed by absorbing a digit matrix into a tensor that was already +# in lowest terms. + +proc math::exact::treduce {x} { + lassign $x abcd efgh + lassign $abcd ab cd + lassign $ab a b + lassign $cd c d + lassign $efgh ef gh + lassign $ef e f + lassign $gh g h + set G [gcd $a $b $c $d $e $f $g $h] + tailcall list \ + [list \ + [list [expr {$a / $G}] [expr {$b / $G}]] \ + [list [expr {$c / $G}] [expr {$d / $G}]]] \ + [list \ + [list [expr {$e / $G}] [expr {$f / $G}]] \ + [list [expr {$g / $G}] [expr {$h / $G}]]] +} + +# math::exact::vadd -- +# +# Adds two 2-vectors +# +# Parameters: +# x - First vector +# y - Second vector +# +# Results: +# Returns the vector sum + +proc math::exact::vadd {x y} { + lmap p $x q $y {expr {$p + $q}} +} + +# math::exact::madd -- +# +# Adds two 2x2 matrices +# +# Parameters: +# A - First matrix +# B - Second matrix +# +# Results: +# Returns the matrix sum + +proc math::exact::madd {A B} { + lmap x $A y $B { + lmap p $x q $y {expr {$p + $q}} + } +} + +# math::exact::tadd -- +# +# Adds two 2x2x2 tensors +# +# Parameters: +# U - First tensor +# V - Second tensor +# +# Results: +# Returns the tensor sum + +proc math::exact::tadd {U V} { + lmap A $U B $V { + lmap x $A y $B { + lmap p $x q $y {expr {$p + $q}} + } + } +} + +# math::exact::mdotv -- +# +# 2x2 matrix times 2-vector +# +# Parameters; +# A - Matrix +# x - Vector +# +# Results: +# Returns the product vector + +proc math::exact::mdotv {A x} { + lassign $A ab cd + lassign $ab a b + lassign $cd c d + lassign $x e f + tailcall list [expr {$a*$e + $c*$f}] [expr {$b*$e + $d*$f}] +} + +# math::exact::mdotm -- +# +# Product of two matrices +# +# Parameters: +# A - Left matrix +# B - Right matrix +# +# Results: +# Returns the matrix product + +proc math::exact::mdotm {A B} { + lassign $B x y + tailcall list [mdotv $A $x] [mdotv $A $y] +} + +# math::exact::mdott -- +# +# Product of a matrix and a tensor +# +# Parameters: +# A - Matrix +# T - Tensor +# +# Results: +# Returns the product tensor + +proc math::exact::mdott {A T} { + lassign $T B C + tailcall list [mdotm $A $B] [mdotm $A $C] +} + +# math::exact::trightv -- +# +# Right product of a tensor and a vector +# +# Parameters: +# T - Tensor +# v - Right-hand vector +# +# Results: +# Returns the product matrix + +proc math::exact::trightv {T v} { + lassign $T m n + tailcall list [mdotv $m $v] [mdotv $n $v] +} + +# math::exact::trightm -- +# +# Right product of a tensor and a matrix +# +# Parameters: +# T - Tensor +# A - Right-hand matrix +# +# Results: +# Returns the product tensor + +proc math::exact::trightm {T A} { + lassign $T m n + tailcall list [mdotm $m $A] [mdotm $n $A] +} + +# math::exact::tleftv -- +# +# Left product of a tensor and a vector +# +# Parameters: +# T - Tensor +# v - Left-hand vector +# +# Results: +# Returns the product matrix + +proc math::exact::tleftv {T v} { + tailcall trightv [trans $T] $v +} + +# math::exact::tleftm -- +# +# Left product of a tensor and a matrix +# +# Parameters: +# T - Tensor +# A - Left-hand matrix +# +# Results: +# Returns the product tensor + +proc math::exact::tleftm {T A} { + tailcall trans [trightm [trans $T] $A] +} + +# math::exact::vsign -- +# +# Computes the 'sign function' of a vector. +# +# Parameters: +# v - Vector whose sign function is needed +# +# Results: +# Returns the result of the sign function. +# +# a b sign +# - - -1 +# - 0 -1 +# - + 0 +# 0 - -1 +# 0 0 0 +# 0 + 1 +# + - 0 +# + 0 1 +# + + 1 +# +# If the quotient a/b is negative or indeterminate, the result is zero. +# If the quotient a/b is zero, the result is the sign of b. +# If the quotient a/b is positive, the result is the common sign of the +# operands, which are known to be of like sign +# If the quotient a/b is infinite, the result is the sign of a. + +proc math::exact::sign {v} { + lassign $v a b + if {$a < 0} { + if {$b <= 0} { + return -1 + } else { + return 0 + } + } elseif {$a == 0} { + if {$b < 0} { + return -1 + } elseif {$b == 0} { + return 0 + } else { + return 1 + } + } else { + if {$b < 0} { + return 0 + } else { + return 1 + } + } +} + +# math::exact::vrefines -- +# +# Test if a vector refines. +# +# Parameters: +# v - Vector to test +# +# Results: +# 1 if the vector refines, 0 otherwise. + +proc math::exact::vrefines {v} { + return [expr {[sign $v] != 0}] +} + +# math::exact::mrefines -- +# +# Test whether a matrix refines +# +# Parameters: +# A - Matrix to test +# +# Results: +# 1 if the matrix refines, 0 otherwise. + +proc math::exact::mrefines {A} { + lassign $A v w + set a [sign $v] + set b [sign $w] + return [expr {$a == $b && $b != 0}] +} + +# math::exact::trefines -- +# +# Tests whether a tensor refines +# +# Parameters: +# T - Tensor to test. +# +# Results: +# 1 if the tensor refines, 0 otherwise. + +proc math::exact::trefines {T} { + lassign $T vw xy + lassign $vw v w + lassign $xy x y + set a [sign $v] + set b [sign $w] + set c [sign $x] + set d [sign $y] + return [expr {$a == $b && $b == $c && $c == $d && $d != 0}] +} + +# math::exact::vlessv - +# +# Test whether one rational is less than another +# +# Parameters: +# v, w - Two rational numbers +# +# Returns: +# The result of the comparison. + +proc math::exact::vlessv {v w} { + expr {[determinant [list $v $w]] < 0} +} + +# math::exact::mlessv - +# +# Tests whether a rational interval is less than a vector +# +# Parameters: +# m - Matrix representing the interval +# x - Rational to compare against +# +# Results: +# Returns 1 if m < x, 0 otherwise + +proc math::exact::mlessv {m x} { + lassign $m v w + expr {[vlessv $v $x] && [vlessv $w $x]} +} + +# math::exact::mlessm - +# +# Tests whether one rational interval is strictly less than another +# +# Parameters: +# m - First interval +# n - Second interval +# +# Results: +# Returns 1 if m < n, 0 otherwise + +proc math::exact::mlessm {m n} { + lassign $n v w + expr {[mlessv $m $v] && [mlessv $m $w]} +} + +# math::exact::mdisjointm - +# +# Tests whether two rational intervals are disjoint +# +# Parameters: +# m - First interval +# n - Second interval +# +# Results: +# Returns 1 if the intervals are disjoint, 0 otherwise + +proc math::exact::mdisjointm {m n} { + expr {[mlessm $m $n] || [mlessm $n $m]} +} + +# math::exact::mAsFloat +# +# Formats a matrix that represents a rational interval as a floating +# point number, stopping as soon as a digit is not determined. +# +# Parameters: +# m - Matrix to format +# +# Results: +# Returns the floating point number in scientific notation, with no +# digits to the left of the decimal point. + +proc math::exact::mAsFloat {m} { + + # Special case: If a number is exact, the determinant is zero. + + set d [determinant $m] + lassign [lindex $m 0] p q + if {$d == 0} { + if {$q < 0} { + set p [expr {-$p}] + set q [expr {-$q}] + } + if {$p == 0} { + if {$q == 0} { + return NaN + } else { + return 0 + } + } elseif {$q == 0} { + return Inf + } elseif {$q == 1} { + return $p + } else { + set G [gcd $p $q] + return [expr {$p/$G}]/[expr {$q/$G}] + } + } else { + tailcall eFormat [scientificNotation $m] + } +} + +# math::exact::scientificNotation -- +# +# Takes a matrix representing a rational interval, and extracts as +# many decimal digits as can be determined unambiguously +# +# Parameters: +# m - Matrix to format +# +# Results: +# Returns a list comprising the decimal exponent, followed by a series of +# digits of the significand. The decimal point is to the left of the +# leftmost digit of the significand. +# +# Returns the empty string if a number is entirely undetermined. + +proc math::exact::scientificNotation {m} { + set n 0 + while {1} { + if {[vrefines [mdotv [reverse $m] {1 0}]]} { + return {} + } elseif {[mrefines [mdotm $math::exact::iszer $m]]} { + return [linsert [mantissa $m] 0 $n] + } else { + set m [mdotm {{1 0} {0 10}} $m] + incr n + } + } +} + +# math::exact::mantissa -- +# +# Given a matrix m that represents a rational interval whose +# endpoints are in [0,1), formats as many digits of the represented +# number as possible. +# +# Parameters: +# m - Matrix to format +# +# Results: +# Returns a list of digits + +proc math::exact::mantissa {m} { + set retval {} + set done 0 + while {!$done} { + set done 1 + + # Brute force: try each digit in turn. This could no doubt be + # improved on. + + for {set j -9} {$j <= 9} {incr j} { + set digitMatrix \ + [list [list [expr {$j+1}] 10] [list [expr {$j-1}] 10]] + if {[mrefines [mdotm [reverse $digitMatrix] $m]]} { + lappend retval $j + set nextdigit [list {10 0} [list [expr {-$j}] 1]] + set m [mdotm $nextdigit $m] + set done 0 + break + } + } + } + return $retval +} + +# math::exact::eFormat -- +# +# Formats a decimal exponent and significand in E format +# +# Parameters: +# expAndDigits - List whose first element is the exponent and +# whose remaining elements are the digits of the +# significand. + +proc math::exact::eFormat {expAndDigits} { + + # An empty sequence of digits is an indeterminate number + + if {[llength $expAndDigits] < 2} { + return Undetermined + } + set significand [lassign $expAndDigits exponent] + + # Accumulate the digits + set v 0 + foreach digit $significand { + set v [expr {10 * $v + $digit}] + } + + # Adjust the exponent if the significand has too few digits. + + set l [llength $significand] + while {$l > 0 && abs($v) < 10**($l-1)} { + incr l -1 + incr exponent -1 + } + incr exponent -1 + + # Put in the sign + + if {$v < 0} { + set result - + set v [expr {-$v}] + } else { + set result {} + } + + # Put in the significand with the decimal point after the leading digit. + + if {$v == 0} { + append result 0 + } else { + append result [string index $v 0] . [string range $v 1 end] + } + + # Put in the exponent + + append result e $exponent + + return $result +} + +# math::exact::showRat -- +# +# Formats an exact rational for printing in E format. +# +# Parameters: +# v - Two-element list of numerator and denominator. +# +# Results: +# Returns the quotient in E format. Nonzero/zero == Infinity, +# 0/0 == NaN. + +proc math::exact::showRat {v} { + lassign $v p q + if {$p != 0 || $q != 0} { + return [format %e [expr {double($p)/double($q)}]] + } else { + return NaN + } +} + +# math::exact::showInterval -- +# +# Formats a rational interval for printing +# +# Parameters: +# m - Matrix representing the interval +# +# Results: +# Returns a string representing the interval in E format. + +proc math::exact::showInterval {m} { + lassign $m v w + return "\[[showRat $w] .. [showRat $v]\]" +} + +# math::exact::showTensor -- +# +# Formats a tensor for printing +# +# Parameters: +# t - Tensor to print +# +# Results: +# Returns a string containing the left and right matrices of the +# tensor, each represented as an interval. + +proc math::exact::showTensor {t} { + lassign $t m n + return [list [showInterval $m] [showInterval $n]] +} + +# math::exact::counted -- +# +# Reference counted object + +oo::class create math::exact::counted { + variable refcount_ + + # Constructor builds an object with a zero refcount. + constructor {} { + if 0 { + puts {} + puts "construct: [self object] refcount now 0" + for {set i [info frame]} {$i > 0} {incr i -1} { + set frame [info frame $i] + if {[dict get $frame type] eq {source}} { + set line [dict get $frame line] + puts "\t[file tail [dict get $frame file]]:$line" + if {$line < 0} { + if {[dict exists $frame proc]} { + puts "\t\t[dict get $frame proc]" + } + puts "\t\t\[[dict get $frame cmd]\]" + } + } else { + puts $frame + } + } + } + incr refcount_ + set refcount_ 0 + } + + # The 'ref' method adds a reference to this object, and returns this object + method ref {} { + if 0 { + puts {} + puts "ref: [self object] refcount now [expr {$refcount_ + 1}]" + if {$refcount_ == 0} { + puts "\t[my dump]" + } + for {set i [info frame]} {$i > 0} {incr i -1} { + set frame [info frame $i] + if {[dict get $frame type] eq {source}} { + set line [dict get $frame line] + puts "\t[file tail [dict get $frame file]]:$line" + if {$line < 0} { + if {[dict exists $frame proc]} { + puts "\t\t[dict get $frame proc]" + } + puts "\t\t\[[dict get $frame cmd]\]" + } + } else { + puts $frame + } + } + } + incr refcount_ + return [self] + } + + # The 'unref' method removes a reference from this object, and destroys + # this object if the refcount becomes nonpositive. + method unref {} { + if 0 { + puts {} + puts "unref: [self object] refcount now [expr {$refcount_ - 1}]" + for {set i [info frame]} {$i > 0} {incr i -1} { + set frame [info frame $i] + if {[dict get $frame type] eq {source}} { + set line [dict get $frame line] + puts "\t[file tail [dict get $frame file]]:$line" + if {$line < 0} { + if {[dict exists $frame proc]} { + puts "\t\t[dict get $frame proc]" + } + puts "\t\t\[[dict get $frame cmd]\]" + } + } + } + } + + # Destroying this object can result in a long chain of object + # destruction and eventually a stack overflow. Instead of destroying + # immediately, list the objects to be destroyed in + # math::exact::deleteStack, and destroy them only from the outermost + # stack level that's running 'unref'. + + if {[incr refcount_ -1] <= 0} { + variable ::math::exact::deleteStack + + # Is this the outermost level? + set queueActive [expr {[info exists deleteStack]}] + + # Schedule this object's destruction + lappend deleteStack [self object] + if {!$queueActive} { + + # At outermost level, destroy all scheduled objects. + # Destroying one may schedule another. + while {[llength $deleteStack] != 0} { + set obj [lindex $deleteStack end] + set deleteStack \ + [lreplace $deleteStack[set deleteStack {}] end end] + $obj destroy + } + + # Once everything quiesces, delete the list. + unset deleteStack + } + } + } + + # The 'refcount' method returns the reference count of this object for + # debugging. + method refcount {} { + return $refcount_ + } + + destructor { + } +} + +# An expression is a vector, a matrix applied to an expression, +# or a tensor applied to two expressions. The inner expressions +# may be constructed lazily. + +oo::class create math::exact::Expression { + superclass math::exact::counted + + # absorbed_, signAndMagnitude_, and leadingDigitAndRest_ + # memoize the return values of the 'absorb', 'getSignAndMagnitude', + # and 'getLeadingDigitAndRest' methods. + + variable absorbed_ signAndMagnitude_ leadingDigitAndRest_ + + # Constructor initializes refcount + constructor {} { + next + } + + # Destructor releases memoized objects + destructor { + if {[info exists signAndMagnitude_]} { + [lindex $signAndMagnitude_ 1] unref + } + if {[info exists absorbed_]} { + $absorbed_ unref + } + if {[info exists leadingDigitAndRest_]} { + [lindex $leadingDigitAndRest_ 1] unref + } + next + } + + # getSignAndMagnitude returns a two-element list: + # the sign matrix, which is one of ispos, isneg, isinf, and iszer, + # the magnitude, which is another exact real. + method getSignAndMagnitude {} { + if {![info exists signAndMagnitude_]} { + if {[my refinesM $::math::exact::ispos]} { + set signAndMagnitude_ \ + [list $::math::exact::spos \ + [[my applyM $::math::exact::ispos] ref]] + } elseif {[my refinesM $::math::exact::isneg]} { + set signAndMagnitude_ \ + [list $::math::exact::sneg \ + [[my applyM $::math::exact::isneg] ref]] + } elseif {[my refinesM $::math::exact::isinf]} { + set signAndMagnitude_ \ + [list $::math::exact::sinf \ + [[my applyM $::math::exact::isinf] ref]] + } elseif {[my refinesM $::math::exact::iszer]} { + set signAndMagnitude_ \ + [list $::math::exact::szer \ + [[my applyM $::math::exact::iszer] ref]] + } else { + set absorbed_ [my absorb] + set signAndMagnitude_ [$absorbed_ getSignAndMagnitude] + [lindex $signAndMagnitude_ 1] ref + } + } + return $signAndMagnitude_ + } + + # The 'getLeadingDigitAndRest' method accepts a flag for whether + # a digit must be extracted (1) or a rational number may be returned + # directly (0). It returns a two-element list: a digit matrix, which + # is one of $dpos, $dneg or $dzer, and an exact real representing + # the number by which the given digit matrix must be postmultiplied. + method getLeadingDigitAndRest {needDigit} { + if {![info exists leadingDigitAndRest_]} { + if {[my refinesM $::math::exact::idpos]} { + set leadingDigitAndRest_ \ + [list $::math::exact::dpos \ + [[my applyM $::math::exact::idpos] ref]] + } elseif {[my refinesM $::math::exact::idneg]} { + set leadingDigitAndRest_ \ + [list $::math::exact::dneg \ + [[my applyM $::math::exact::idneg] ref]] + } elseif {[my refinesM $::math::exact::idzer]} { + set leadingDigitAndRest_ \ + [list $::math::exact::dzer \ + [[my applyM $::math::exact::idzer] ref]] + } else { + set absorbed_ [my absorb] + set newval $absorbed_ + $newval ref + set leadingDigitAndRest_ \ + [$newval getLeadingDigitAndRest $needDigit] + if {[llength $leadingDigitAndRest_] >= 2} { + [lindex $leadingDigitAndRest_ 1] ref + } + $newval unref + } + } + return $leadingDigitAndRest_ + } + + # getInterval -- + # Accumulates 'nDigits' digit matrices, and returns their product, + # which is a matrix representing the interval that the digits represent. + method getInterval {nDigits} { + lassign [my getSignAndMagnitude] interval e + $e ref + lassign [$e getLeadingDigitAndRest 1] ld f + set interval [math::exact::mdotm $interval $ld] + $f ref; $e unref; set e $f + set d $ld + while {[incr nDigits -1] > 0} { + lassign [$e getLeadingDigitAndRest 1] d f + set interval [math::exact::mdotm $interval $d] + $f ref; $e unref; set e $f + } + $e unref + return $interval + } + + # asReal -- + # Coerces an object from rational to real + # + # Parameters: + # None. + # + # Results: + # Returns this object + method asReal {} {self object} + + # asFloat -- + # Represents this number in E format, after accumulating 'relDigits' + # digit matrices. + method asFloat {relDigits} { + set v [[my asReal] ref] + set result [math::exact::mAsFloat [$v getInterval $relDigits]] + $v unref + return $result + } + + # asPrint -- + # Represents this number for printing. Represents rationals exactly, + # others after accumulating 'relDigits' digit matrices. + method asPrint {relDigits} { + tailcall math::exact::mAsFloat [my getInterval $relDigits] + } + + # Derived classes are expected to implement the following methods: + # method dump {} { + # # Formats the object for debugging + # # Returns the formatted string + # } + method dump {} { + error "[info object class [self object]] does not implement the 'dump' method." + } + + # method refinesM {m} { + # # Returns 1 if premultiplying by the matrix m refines this object + # # Returns 0 otherwise + # } + method refinesM {m} { + error "[info object class [self object]] does not implement the 'refinesM' method." + } + + # method applyM {m} { + # # Premultiplies this object by the matrix m + # } + method applyM {m} { + error "[info object class [self object]] does not implement the 'applyM' method." + } + + # method applyTLeft {t r} { + # # Computes the left product of the tensor t with this object, and + # # applies the result to the right operand r. + # # Returns a new exact real representing the product + # } + method applyTLeft {t r} { + error "[info object class [self object]] does not implement the 'applyTLeft' method." + } + + # method applyTRight {t l} { + # # Computes the right product of the tensor t with this object, and + # # applies the result to the left operand l. + # # Returns a new exact real representing the product + # } + method applyTRight {t l} { + error "[info object class [self object]] does not implement the 'applyTRight' method." + } + + # method absorb {} { + # # Absorbs the next subexpression or digit into this expression + # # Returns the result of absorption, which always represents a + # # smaller interval than this expression + # } + method absorb {} { + error "[info object class [self object]] does not implement the 'absorb' method." + } + + # U- -- + # + # Unary - applied to this object + # + # Results: + # Returns the negation. + + method U- {} { + my ref + lassign [my getSignAndMagnitude] sA mA + set m [math::exact::mdotm {{-1 0} {0 1}} $sA] + set result [math::exact::Mstrict new $m $mA] + my unref + return $result + }; export U- + + # + -- + # Adds this object to another. + # + # Parameters: + # r - Right addend + # + # Results: + # Returns the sum + # + # Either object may be rational (an instance of V) or real (any other + # Expression). + # + # This method is a Consumer with respect to the current object and to r. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method + {r} { + return [$r E+ [self object]] + }; export + + + # E+ -- + # Adds two exact reals. + # + # Parameters: + # l - Left addend + # + # Results: + # Returns the sum. + # + # Neither object is an instance of V (that is, neither is a rational). + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E+ {l} { + tailcall math::exact::+real $l [self object] + }; export E+ + + # V+ -- + # Adds a rational and an exact real + # + # Parameters: + # l - Left addend + # + # Results: + # Returns the sum. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method V+ {l} { + tailcall math::exact::+real $l [self object] + }; export V+ + + # - -- + # Subtracts another object from this object + # + # Parameters: + # r - Subtrahend + # + # Results: + # Returns the difference + # + # Either object may be rational (an instance of V) or real (any other + # Expression). + # + # This method is a Consumer with respect to the current object and to r. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method - {r} { + return [$r E- [self object]] + }; export - + + # E- -- + # Subtracts this exact real from another + # + # Parameters: + # l - Minuend + # + # Results: + # Returns the difference + # + # Neither object is an instance of V (that is, neither is a rational). + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E- {l} { + tailcall math::exact::-real $l [self object] + }; export E- + + # V- -- + # Subtracts this exact real from a rational + # + # Parameters: + # l - Minuend + # + # Results: + # Returns the difference + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method V- {l} { + tailcall math::exact::-real $l [self object] + }; export V- + + # * -- + # Multiplies this object by another. + # + # Parameters: + # r - Right argument to the multiplication + # + # Results: + # Returns the product + # + # Either object may be rational (an instance of V) or real (any other + # Expression). + # + # This method is a Consumer with respect to the current object and to r. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method * {r} { + return [$r E* [self object]] + }; export * + + # E* -- + # Multiplies two exact reals. + # + # Parameters: + # l - Left argument to the multiplication + # + # Results: + # Returns the product. + # + # Neither object is an instance of V (that is, neither is a rational). + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E* {l} { + tailcall math::exact::*real $l [self object] + }; export E* + + # V* -- + # Multiplies a rational and an exact real + # + # Parameters: + # l - Left argument to the multiplication + # + # Results: + # Returns the product. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method V* {l} { + tailcall math::exact::*real $l [self object] + }; export V* + + # / -- + # Divides this object by another. + # + # Parameters: + # r - Divisor + # + # Results: + # Returns the quotient + # + # Either object may be rational (an instance of V) or real (any other + # Expression). + # + # This method is a Consumer with respect to the current object and to r. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method / {r} { + return [$r E/ [self object]] + }; export / + + # E/ -- + # Divides two exact reals. + # + # Parameters: + # l - Dividend + # + # Results: + # Returns the quotient. + # + # Neither object is an instance of V (that is, neither is a rational). + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E/ {l} { + tailcall math::exact::/real $l [self object] + }; export E/ + + # V/ -- + # Divides a rational by an exact real + # + # Parameters: + # l - Dividend + # + # Results: + # Returns the product. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method V/ {l} { + tailcall math::exact::/real $l [self object] + }; export V/ + + # ** - + # Raises an exact real to a power + # + # Parameters: + # r - Exponent + # + # Results: + # Returns the power. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method ** {r} { + tailcall $r E** [self object] + }; export ** + + # E** - + # Raises an exact real to the power of an exact real + # + # Parameters: + # l - Base to exponentiate + # + # Results: + # Returns the power + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E** {l} { + # This doesn't work as a tailcall, because this object could have + # been destroyed by the time we're trying to invoke the tailcall, + # and that will keep command names from resolving because the + # tailcall mechanism will try to find them in the destroyed namespace. + return [math::exact::function::exp \ + [my * [math::exact::function::log $l]]] + }; export E** + + # V** - + # Raises a rational to the power of an exact real + # + # Parameters: + # l - Base to exponentiate + # + # Results: + # Returns the power + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method V** {l} { + # This doesn't work as a tailcall, because this object could have + # been destroyed by the time we're trying to invoke the tailcall, + # and that will keep command names from resolving because the + # tailcall mechanism will try to find them in the destroyed namespace. + return [math::exact::function::exp \ + [my * [math::exact::function::log $l]]] + }; export V** + + # sqrt -- + # + # Create an expression representing the square root of an exact + # real argument. + # + # Results: + # Returns the square root. + # + # This procedure is a Consumer with respect the the argument and a + # Constructor with respect to the result, returning a zero-reference + # result. + + method sqrt {} { + variable ::math::exact::isneg + variable ::math::exact::idzer + variable ::math::exact::idneg + variable ::math::exact::idpos + + # The algorithm is a modified Newton-Raphson from the Potts and + # Menissier-Morain papers. The algorithm for sqrt(x) converges + # rapidly only if x is close to 1, so we rescale to make sure that + # x is between 1/3 and 3. Specifically: + # - if x is known to be negative (that is, if $idneg refines it) + # then error. + # - if x is close to 1, $idzer refines it, and we can calculate the + # square root directly. + # - if x is less than 1, $idneg refines it, and we calculate sqrt(4*x) + # and multiply by 1/2. + # - if x is greater than 1, $idpos refines it, and we calculate + # sqrt(x/4) and multiply by 2. + # - if none of the above hold, we have insufficient information about + # the magnitude of x and perform a digit exchange. + + my ref + if {[my refinesM $isneg]} { + # Negative argument is an error + return -code error -errorcode {MATH EXACT SQRTNEGATIVE} \ + "sqrt of negative argument" + } elseif {[my refinesM $idzer]} { + # Argument close to 1 + set res [::math::exact::SqrtWorker new [self object]] + } elseif {[my refinesM $idneg]} { + # Small argument - multiply by 4 and halve the square root + set y [[my applyM {{4 0} {0 1}}] ref] + set z [[$y sqrt] ref] + set res [$z applyM {{1 0} {0 2}}] + $z unref + $y unref + } elseif {[my refinesM $idpos]} { + # Large argument - divide by 4 and double the square root + set y [[my applyM {{1 0} {0 4}}] ref] + set z [[$y sqrt] ref] + set res [$z applyM {{2 0} {0 1}}] + $z unref + $y unref + } else { + # Unclassified argyment. Perform a digit exchange and try again. + set y [[my absorb] ref] + set res [$y sqrt] + $y unref + } + my unref + return $res + } +} + +# math::exact::V -- +# Vector object +# +# A vector object represents a rational number. It is always strict; no +# methods need to perform lazy evaluation. + +oo::class create math::exact::V { + superclass math::exact::Expression + + # v_ is the vector represented. + variable v_ + + # Constructor accepts the vector as a two-element list {n d} + # where n is by convention the numerator and d the denominator. + # It is expected that either n or d is nonzero, and that gcd(n,d) == 0. + # It is also expected that the fraction will be in lowest terms. + constructor {v} { + next + set v_ $v + } + + # Destructor need only update reference counts + destructor { + next + } + + # If a rational is acceptable, getLeadingDigitAndRest may simply return + # this object. + method getLeadingDigitAndRest {needDigit} { + if {$needDigit} { + return [next $needDigit] + } else { + # Note that the result MUST NOT be memoized, as that would lead + # to a circular reference, breaking the refcount system. + return [self object] + } + } + + # Print this object + method dump {} { + return "V($v_)" + } + + # Test if the vector refines when premultiplied by a matrix + method refinesM {m} { + return [math::exact::vrefines [math::exact::mdotv $m $v_]] + } + + # Apply a matrix to the vector. + # Precondition: v is in lowest terms + + method applyM {m} { + set d [math::exact::determinant $m] + if {$d < 0} { set d [expr {-$d}] } + if {($d & ($d-1)) != 0} { + return [math::exact::V new \ + [math::exact::vreduce [math::exact::mdotv $m $v_]]] + } else { + return [math::exact::V new \ + [math::exact::vscale [math::exact::mdotv $m $v_]]] + } + } + + # Left-multiply a tensor t by the vector, and apply the result to + # an expression 'r' + method applyTLeft {t r} { + set u [math::exact::mscale [math::exact::tleftv $t $v_]] + set det [math::exact::determinant $u] + if {$det < 0} { set det [expr {-$det}] } + if {($det & ($det-1)) == 0} { + # determinant is a power of 2 + set res [$r applyM $u] + return $res + } else { + return [math::exact::Mstrict new $u $r] + } + } + + # Right-multiply a tensor t by the vector, and apply the result + # to an expression 'l' + method applyTRight {t l} { + set u [math::exact::mscale [math::exact::trightv $t $v_]] + set det [math::exact::determinant $u] + if {$det < 0} { set det [expr {-$det}] } + if {($det & ($det-1)) == 0} { + # determinant is a power of 2 + set res [$l applyM $u] + return $res + } else { + return [math::exact::Mstrict new $u $l] + } + } + + # Get the vector components + method getV {} { + return $v_ + } + + # Get the (zero-width) interval that the vector represents. + method getInterval {nDigits} { + return [list $v_ $v_] + } + + # Absorb more information + method absorb {} { + # Nothing should ever call this, because a vector's information is + # already complete. + error "cannot absorb anything into a vector" + } + + # asReal -- + # Coerces an object from rational to real + # + # Parameters: + # None. + # + # Results: + # Returns this object converted to an exact real. + method asReal {} { + my ref + lassign [my getSignAndMagnitude] s m + set result [math::exact::Mstrict new $s $m] + my unref + return $result + } + + # U- -- + # + # Unary - applied to this object + # + # Results: + # Returns the negation. + + method U- {} { + my ref + lassign $v_ p q + set result [math::exact::V new [list [expr {-$p}] $q]] + my unref + return $result + }; export U- + + # + -- + # Adds a vector to another object + # + # Parameters: + # r - Right addend + # + # Results: + # Returns the sum + # + # The right-hand addend may be rational (an instance of V) or real + # (any other Expression). + # + # This method is a Consumer with respect to the current object and to r. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method + {r} { + return [$r V+ [self object]] + }; export + + + # E+ -- + # Adds an exact real and a vector + # + # Parameters: + # l - Left addend + # + # Results: + # Returns the sim. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E+ {l} { + tailcall math::exact::+real $l [self object] + }; export E+ + + # V+ -- + # Adds two rationals + # + # Parameters: + # l - Rational multiplicand + # + # Results: + # Returns the product. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + method V+ {l} { + my ref + $l ref + lassign [$l getV] a b + lassign $v_ c d + $l unref + my unref + return [math::exact::V new \ + [math::exact::vreduce \ + [list [expr {$a*$d+$b*$c}] [expr {$b*$d}]]]] + }; export V+ + + # - -- + # Subtracts another object from a vector + # + # Parameters: + # r - Subtrahend + # + # Results: + # Returns the difference + # + # The right-hand operand may be rational (an instance of V) or real + # (any other Expression). + # + # This method is a Consumer with respect to the current object and to r. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method - {r} { + return [$r V- [self object]] + }; export - + + # E- -- + # Subtracts this exact real from a rational + # + # Parameters: + # l - Left addend + # + # Results: + # Returns the difference. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E- {l} { + tailcall math::exact::-real $l [self object] + }; export E- + + # V- -- + # Subtracts this rational from another + # + # Parameters: + # l - Rational minuend + # + # Results: + # Returns the difference. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + method V- {l} { + my ref + $l ref + lassign [$l getV] a b + lassign $v_ c d + $l unref + my unref + return [math::exact::V new \ + [math::exact::vreduce \ + [list [expr {$a*$d-$b*$c}] [expr {$b*$d}]]]] + }; export V- + + # * -- + # Multiplies a rational by another object + # + # Parameters: + # r - Right-hand factor + # + # Results: + # Returns the difference + # + # The right-hand operand may be rational (an instance of V) or real + # (any other Expression). + # + # This method is a Consumer with respect to the current object and to r. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method * {r} { + return [$r V* [self object]] + }; export * + + # E* -- + # Multiplies an exact real and a rational + # + # Parameters: + # l - Multiplicand + # + # Results: + # Returns the product. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E* {l} { + tailcall math::exact::*real $l [self object] + }; export E* + + # V* -- + # Multiplies two rationals + # + # Parameters: + # l - Rational multiplicand + # + # Results: + # Returns the product. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + method V* {l} { + my ref + $l ref + lassign [$l getV] a b + lassign $v_ c d + $l unref + my unref + return [math::exact::V new \ + [math::exact::vreduce \ + [list [expr {$a*$c}] [expr {$b*$d}]]]] + }; export V* + + # / -- + # Divides this object by another. + # + # Parameters: + # r - Divisor + # + # Results: + # Returns the quotient + # + # Either object may be rational (an instance of V) or real (any other + # Expression). + # + # This method is a Consumer with respect to the current object and to r. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method / {r} { + return [$r V/ [self object]] + }; export / + + # E/ -- + # Divides an exact real and a rational + # + # Parameters: + # l - Dividend + # + # Results: + # Returns the quotient. + # + # The divisor is not a rationa. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E/ {l} { + tailcall math::exact::/real $l [self object] + }; export E/ + + # V/ -- + # Divides two rationals + # + # Parameters: + # l - Dividend + # + # Results: + # Returns the quotient. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + method V/ {l} { + my ref + $l ref + lassign [$l getV] a b + lassign $v_ c d + set result [math::exact::V new \ + [math::exact::vreduce \ + [list [expr {$a*$d}] [expr {$b*$c}]]]] + $l unref + my unref + return $result + }; export V/ + + # ** - + # Raises a rational to a power + # + # Parameters: + # r - Exponent + # + # Results: + # Returns the power. + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method ** {r} { + tailcall $r V** [self object] + }; export ** + + # E** - + # Raises an exact real to a rational power + # + # Parameters: + # l - Base to exponentiate + # + # Results: + # Returns the power + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method E** {l} { + + # Extract numerator and demominator of the exponent, and consume the + # exponent. + my ref + lassign $v_ c d + my unref + + # Normalize the sign of the exponent + if {$d < 0} { + set c [expr {-$c}] + set d [expr {-$d}] + } + + # Don't choke if somehow a 0/0 gets here. + if {$c == 0 && $d == 0} { + $l unref + return -code error -errorcode "MATH EXACT ZERODIVZERO" \ + "zero divided by zero" + } + + # Handle integer powers + if {$d == 1} { + return [math::exact::real**int $l $c] + } + + # Other rational powers come here. + # We know that $d > 0, and we're not just doing + # exponentiation by an integer + + return [math::exact::real**rat $l $c $d] + }; export E** + + # V** - + # Raises a rational base to a rational power + # + # Parameters: + # l - Base to exponentiate + # + # Results: + # Returns the power + # + # This method is a Consumer with respect to the current object and to l. + # It is a Constructor with respect to its result, returning a zero-ref + # object. + + method V** {l} { + + # Extract the numerator and denominator of the base and consume + # the base. + $l ref + lassign [$l getV] a b + $l unref + + # Extract numerator and demominator of the exponent, and consume the + # exponent. + my ref + lassign $v_ c d + my unref + + # Normalize the signs of the arguments + if {$b < 0} { + set a [expr {-$a}] + set b [expr {-$b}] + } + if {$d < 0} { + set c [expr {-$c}] + set d [expr {-$d}] + } + + # Don't choke if somehow a 0/0 gets here. + if {$a == 0 && $b == 0 || $c == 0 && $d == 0} { + return -code error -errorcode "MATH EXACT ZERODIVZERO" \ + "zero divided by zero" + } + + # b >= 0 and d >= 0 + + if {$a == 0} { + if {$c == 0} { + return -code error -errorcode "MATH EXACT ZEROPOWZERO" \ + "zero to zero power" + } elseif {$d == 0} { + return -code error -errorcode "MATH EXACT ZEROPOWINF" \ + "zero to infinite power" + } else { + return [math::exact::V new {0 1}] + } + } + + # a != 0, b >= 0, d >= 0 + + if {$b == 0} { + if {$c == 0} { + return -code error -errorcode "MATH EXACT INFPOWZERO" \ + "infinity to zero power" + } elseif {$c < 0} { + return [math::exact::V new {0 1}] + } else { + return [math::exact::V new {1 0}] + } + } + + # a != 0, b > 0, d >= 0 + + if {$c == 0} { + return [math::exact::V new {1 1}] + } + + # handle integer exponents + + if {$d == 1} { + return [math::exact::rat**int $a $b $c] + } + + # a != 0, b > 0, c != 0, d >= 0 + + return [math::exact::rat**rat $a $b $c $d] + }; export V** + + # sqrt -- + # + # Calculates the square root of this object + # + # Results: + # Returns the square root as an exact real. + # + # This method is a Consumer with respect to this object and a Constructor + # with respect to the result, returning a zero-ref object. + method sqrt {} { + my ref + if {([lindex $v_ 0] < 0) ^ ([lindex $v_ 1] < 0)} { + return -code error -errorCode "MATH EXACT SQRTNEGATIVE" \ + {square root of negative argument} + } + set result [::math::exact::Sqrtrat new {*}$v_] + my unref + return $result + } + +} + +# math::exact::M -- +# Expression consisting of a matrix times another expression +# +# The matrix {a c} {b d} represents the homography (a*x + b) / (c*x + d). +# +# The inner expression may need to be evaluated lazily. Whether evaluation +# is strict or lazy, the 'e' method will return the expression. + +oo::class create math::exact::M { + superclass math::exact::Expression + + # m_ is the matrix; e_ the inner expression; absorbed_ a cache of the + # result of the 'absorb' method. + variable m_ e_ absorbed_ + + # constructor accepts the matrix only. The expression is managed in + # derived classes. + constructor {m} { + next + set m_ $m + } + + # destructor deletes the memoized expression if one has been stored. + # The base class destructor handles cleaning up the result of 'absorb' + destructor { + if {[info exists e_]} { + $e_ unref + } + next + } + + # Test if the matrix refines when premultiplied by another matrix n + method refinesM {n} { + return [math::exact::mrefines [math::exact::mdotm $n $m_]] + } + + # Premultiply the matrix by another matrix n + method applyM {n} { + set d [math::exact::determinant $n] + if {$d < 0} {set d [expr {-$d}]} + if {($d & ($d-1)) != 0} { + return [math::exact::Mstrict new \ + [math::exact::mreduce [math::exact::mdotm $n $m_]] \ + [my e]] + } else { + return [math::exact::Mstrict new \ + [math::exact::mscale [math::exact::mdotm $n $m_]] \ + [my e]] + } + } + + # Compute the left product of a tensor t with this matrix, and + # apply the resulting tensor to the expression 'r'. + method applyTLeft {t r} { + return [math::exact::Tstrict new \ + [math::exact::tscale [math::exact::tleftm $t $m_]] \ + 1 [my e] $r] + } + + # Compute the right product of a tensor t with this matrix, and + # apply the resulting tensor to the expression 'l'. + method applyTRight {t l} { + return [math::exact::Tstrict new \ + [math::exact::tscale [math::exact::trightm $t $m_]] \ + 0 $l [my e]] + } + + # Absorb a digit into this matrix. + method absorb {} { + if {![info exists absorbed_]} { + set absorbed_ [[[my e] applyM $m_] ref] + } + return $absorbed_ + } + + # Derived classes are expected to implement: + # method e {} { + # # Returns the expression to which this matrix is applied. + # # Optionally memoizes the result in $e_. + # } + method e {} { + error "[info object class [self object]] does not implement the 'e' method." + } +} + +# math::exact::Mstrict -- +# +# Expression representing the product of a matrix and another +# expression. +# +# In this version of the class, the expression is known in advance - +# evaluated strictly. + +oo::class create math::exact::Mstrict { + superclass math::exact::M + + # m_ is the matrix. + # e_ is the expression + # absorbed_ caches the result of the 'absorb' method. + variable m_ e_ absorbed_ + + # Constructor accepts the matrix and the expression to which + # it applies. + constructor {m e} { + next $m + set e_ [$e ref] + } + + # All the heavy lifting of destruction is performed in the base class. + destructor { + next + } + + # The 'e' method returns the expression. + method e {} { + return $e_ + } + + # The 'dump' method formats this object for debugging. + method dump {} { + return "M($m_,[$e_ dump])" + } +} + +# math::exact::T -- +# Expression representing a 2x2x2 tensor of the third order, +# applied to two subexpressions. + +oo::class create math::exact::T { + superclass math::exact::Expression + + # t_ - the tensor + # i_ A flag indicating whether the next 'absorb' should come from the + # left (0) or the right (1). + # l_ - the left subexpression + # r_ - the right subexpression + # absorbed_ - the result of an 'absorb' operation + + variable t_ i_ l_ r_ absorbed_ + + # constructor accepts the tensor and the initial state for absorption + constructor {t i} { + next + set t_ $t + set i_ $i + } + + # destructor removes cached items. + destructor { + if {[info exists l_]} { + $l_ unref + } + if {[info exists r_]} { + $r_ unref + } + next; # The base class will clean up absorbed_ + } + + # refinesM -- + # + # Tests if this tensor refines when premultiplied by a matrix + # + # Parameters: + # m - matrix to test + # + # Results: + # Returns a Boolean indicator that is true if the product refines. + + method refinesM {m} { + return [math::exact::trefines [math::exact::mdott $m $t_]] + } + + # applyM -- + # + # Left multiplies this tensor by a matrix + # + # Parameters: + # m - Matrix to multiply + # + # Results: + # Returns the product + # + # This operation has the side effect of making the product strict at + # the uppermost level, by calling [my l] [my r] to instantiate the + # subexpressions. + + method applyM {m} { + set d [math::exact::determinant $m] + if {$d < 0} {set d [expr {-$d}]} + if {($d & ($d-1)) != 0} { + return [math::exact::Tstrict new \ + [math::exact::treduce [math::exact::mdott $m $t_]] \ + 0 [my l] [my r]] + } else { + return [math::exact::Tstrict new \ + [math::exact::tscale [math::exact::mdott $m $t_]] \ + 0 [my l] [my r]] + } + } + + # absorb -- + # + # Absorbs information from the subexpressions. + # + # Results: + # Returns a copy of the current object, with information from + # at least one subexpression absorbed so that more information is + # immediately available. + + method absorb {} { + if {![info exists absorbed_]} { + if {[math::exact::trefines $t_]} { + lassign [math::exact::trans $t_] m n + set side [math::exact::mdisjointm $m $n] + } else { + set side $i_ + } + if {$side} { + set absorbed_ [[[my r] applyTRight $t_ [my l]] ref] + } else { + set absorbed_ [[[my l] applyTLeft $t_ [my r]] ref] + } + } + return $absorbed_ + } + + # applyTRight -- + # + # Right-multiplies a tensor by this expression + # + # Results: + # Returns 't' left-product l right-product $r_. + + method applyTRight {t l} { + # This is the hard case of digit exchange. We have to + # get the leading digit from this tensor, absorbing as + # necessary, right-multiply it into the tensor $t, and + # compose the new object. + # + # Note that unless 'rest' is empty, 'ld' is a digit matrix, + # so we need to check only for powers of 2 when reducing to + # lowest terms + lassign [my getLeadingDigitAndRest 0] ld rest + if {$rest eq {}} { + set u [math::exact::mreduce [math::exact::trightv $t $ld]] + return [math::exact::Mstrict new $u $l] + } else { + set u [math::exact::tscale [math::exact::trightm $t $ld]] + return [math::exact::Tstrict new $u 0 $l $rest] + } + } + + # applyTLeft -- + # + # Left-multiplies a tensor by this expression + # + # Results: + # Returns 't' left-product $l_ right-product 'r' + method applyTLeft {t r} { + # This is the hard case of digit exchange. We have to + # get the leading digit from this tensor, absorbing as + # necessary, left-multiply it into the tensor $t, and + # compose the new object + # + # Note that unless 'rest' is empty, 'ld' is a digit matrix, + # so we need to check only for powers of 2 when reducing to + # lowest terms + lassign [my getLeadingDigitAndRest 0] ld rest + if {$rest eq {}} { + set u [math::exact::mreduce [math::exact::tleftv $t $ld]] + return [math::exact::Mstrict $u $r] + } else { + set u [math::exact::tscale [math::exact::tleftm $t $ld]] + return [math::exact::Tstrict new $u 1 $rest $r] + } + } + + # Derived classes are expected to implement the following: + # l -- + # + # Returns the left operand + method l {} { + error "[info object class [self object]] does not implement the 'l' method" + } + + # r -- + # + # Returns the right operand + method r {} { + error "[info object class [self object]] does not implement the 'r' method" + } + +} + +# math::exact::Tstrict -- +# +# A strict tensor - one where the subexpressions are both known in +# advance. + +oo::class create math::exact::Tstrict { + superclass math::exact::T + + # t_ - the tensor + # i_ A flag indicating whether the next 'absorb' should come from the + # left (0) or the right (1). + # l_ - the left subexpression + # r_ - the right subexpression + # absorbed_ - the result of an 'absorb' operation + + variable t_ i_ l_ r_ absorbed_ + + # constructor accepts the tensor, the absorption state, and the + # left and right operands. + constructor {t i l r} { + next $t $i + set l_ [$l ref] + set r_ [$r ref] + } + + # base class handles all cleanup + destructor { + next + } + + # l -- + # + # Returns the left operand + method l {} { + return $l_ + } + + # r -- + # + # Returns the right operand + method r {} { + return $r_ + } + + # dump -- + # + # Formats this object for debugging + method dump {} { + return T($t_,$i_\;[$l_ dump],[$r_ dump]) + } +} + +# math::exact::opreal -- +# +# Applies a bihomography (bilinear fractional transformation) +# to two expressions. +# +# Parameters: +# op - Tensor {{{a b} {c d}} {{e f} {g h}}} representing the operation +# x - left operand +# y - right operand +# +# Results: +# Returns an expression that represents the form: +# (axy + cx + ey + g) / (bxy + dx + fy + h) +# +# Notes: +# Note that the four basic arithmetic operations are included here. +# In addition, this procedure may be used to craft other useful +# transformations. For example, (1 - u**2) / (1 + u**2) +# could be constructed as [opreal {{{-1 1} {0 0}} {{0 0} {1 1}}} $u $u] + +proc math::exact::opreal {op x y {kludge {}}} { + # split x and y into sign and magnitude + $x ref; $y ref + lassign [$x getSignAndMagnitude] sx mx + lassign [$y getSignAndMagnitude] sy my + $mx ref; $my ref + $x unref; $y unref + set t [tleftm [trightm $op $sy] $sx] + set r [math::exact::Tstrict new $t 0 $mx $my] + $mx unref; $my unref + return $r +} + +# math::exact::+real -- +# math::exact::-real -- +# math::exact::*real -- +# math::exact::/real -- +# +# Sum, difference, product and quotient of exact reals +# +# Parameters: +# x - First operand +# y - Second operand +# +# Results: +# Returns x+y, x-y, x*y or x/y as requested. + +proc math::exact::+real {a b} { variable tadd; return [opreal $tadd $a $b] } +proc math::exact::-real {a b} { variable tsub; return [opreal $tsub $a $b] } +proc math::exact::*real {a b} { variable tmul; return [opreal $tmul $a $b] } +proc math::exact::/real {a b} { variable tdiv; return [opreal $tdiv $a $b] } + +# real -- +# +# Coerce an argument to exact-real (possibly from rational) +# +# Parameters: +# x - Argument to coerce. +# +# Results: +# Returns the argument coerced to a real. +# +# This operation either does nothing and returns its argument, or is a +# Consumer with respect to its argument and a Constructor with respect to +# its result. + +proc math::exact::function::real {x} { + tailcall $x asReal +} + +# SqrtWorker -- +# +# Class to calculate the square root of a real. + + +oo::class create math::exact::SqrtWorker { + superclass math::exact::T + variable l_ r_ + + # e - The expression whose square root should be calculated. + # e should be between close to 1 for good performance. The + # 'sqrtreal' procedure below handles the scaling. + constructor {e} { + next {{{1 0} {2 1}} {{1 2} {0 1}}} 0 + set l_ [$e ref] + } + method l {} { + return $l_ + } + method r {} { + if {![info exists r_]} { + set r_ [[math::exact::SqrtWorker new $l_] ref] + } + return $r_ + } + method dump {} { + return "sqrt([$l_ dump])" + } +} + +# sqrt -- +# +# Returns the square root of a number +# +# Parameters: +# x - Exact real number whose square root is needed. +# +# Results: +# Returns the square root as an exact real. +# +# The number may be rational or real. There is a special optimization used +# if the number is rational + +proc math::exact::function::sqrt {x} { + tailcall $x sqrt +} + +# ExpWorker -- +# +# Class that evaluates the exponential function for small exact reals + +oo::class create math::exact::ExpWorker { + superclass math::exact::T + variable t_ l_ r_ n_ + + # Constructor -- + # + # Parameters: + # e - Argument whose exponential is to be computed. (What is + # actually passed in is S0'(x) = (1+x)/(1-x)) + # n - Number of the convergent of the continued fraction + # + # This class is implemented by expanding the continued fraction + # as needed for precision. Each successive step becomes a new right + # subexpression of the tensor product. + + constructor {e {n 0}} { + next [list \ + [list \ + [list [expr {2*$n + 2}] [expr {2*$n + 1}]] \ + [list [expr {2*$n + 1}] [expr {2*$n}]]] \ + [list \ + [list [expr {2*$n}] [expr {2*$n + 1}]] \ + [list [expr {2*$n + 1}] [expr {2*$n + 2}]]]] 0 + set l_ [$e ref] + set n_ [expr {$n + 1}] + } + + # l -- + # + # Returns the left subexpression; that is, the argument to the + # exponential + method l {} { + return $l_ + } + + # r -- + # Returns the right subexpresison - the next convergent, creating it + # if necessary + method r {} { + if {![info exists r_]} { + set r_ [[math::exact::ExpWorker new $l_ $n_] ref] + } + return $r_ + } + + # dump -- + # + # Displays this object for debugging + method dump {} { + return ExpWorker([$l_ dump],[expr {$n_-1}]) + } +} + +# exp -- +# +# Evaluates the exponential function of an exact real +# +# Parameters: +# x - Quantity to be exponentiated +# +# Results: +# Returns the exact real function value. +# +# This procedure is a Consumer with respect to its argument and a +# Constructor with respect to its result, returning a zero-ref object. + +proc math::exact::function::exp {x} { + variable ::math::exact::iszer + variable ::math::exact::tmul + + # The continued fraction converges only for arguments between -1 and 1. + # If $iszer refines the argument, then it is in the correct range and + # we launch ExpWorker to evaluate the continued fraction. If the argument + # is outside the range [-1/2..1/2], then we evaluate exp(x/2) and square + # the result. If neither of the above is true, then we perform a digit + # exchange to get more information about the magnitude of the argument. + + $x ref + if {[$x refinesM $iszer]} { + # Argument's absolute value is small - evaluate the exponential + set y [$x applyM $iszer] + set result [ExpWorker new $y] + } elseif {[$x refinesM {{2 2} {-1 1}}]} { + # Argument's absolute value is large - evaluate exp(x/2)**2 + set xover2 [$x applyM {{1 0} {0 2}}] + set expxover2 [exp $xover2] + set result [*real $expxover2 $expxover2] + } else { + # Argument's absolute value is uncharacterized - perform a digit + # exchange to get more information. + set result [exp [$x absorb]] + } + $x unref + return $result +} + +# LogWorker -- +# +# Helper class for evaluating logarithm of an exact real argument. +# +# The algorithm used is a continued fraction representation from Peter Potts's +# paper. This worker evaluates the second and subsequent convergents. The +# first convergent is in the 'log' procedure below, and follows a different +# pattern from the rest of them. + +oo::class create math::exact::LogWorker { + superclass math::exact::T + variable t_ l_ r_ n_ + + # Constructor - + # + # Parameters: + # e - Argument whose log is to be extracted + # n - Number of the convergent. + constructor {e {n 1}} { + next [list \ + [list \ + [list $n 0] \ + [list [expr {2*$n + 1}] [expr {$n+1}]]] \ + [list \ + [list [expr {$n + 1}] [expr {2*$n + 1}]] \ + [list 0 $n]]] 0 + set l_ [$e ref] + set n_ [expr {$n + 1}] + } + + # l - + # Returns the argument whose log is to be extracted + method l {} { + return $l_ + } + + # r - + # Returns the next convergent, constructing it if necessary. + method r {} { + if {![info exists r_]} { + set r_ [[math::exact::LogWorker new $l_ $n_] ref] + } + return $r_ + } + + # dump - + # Dumps this object for debugging + method dump {} { + return LogWorker([$l_ dump],[expr {$n_-1}]) + } +} + +# log - +# +# Calculates the natural logarithm of an exact real argument. +# +# Parameters: +# x - Quantity whose log is to be extracted. +# +# Results: +# Returns the logarithm +# +# This procedure is a Consumer with respect to its argument and a Constructor +# with respect to its result, returning a zero-ref object. + +proc math::exact::function::log {x} { + variable ::math::exact::ispos + variable ::math::exact::isneg + variable ::math::exact::idpos + variable ::math::exact::idneg + variable ::math::exact::log2 + + # If x is between 1/2 and 2, the continued fraction will converge. If + # y = LogWorker(x), then log(x) = (xy + x - y - 1)/(x + y), and the + # latter function is a bihomography that can be evaluated by 'opreal' + # directly. + # + # If x is negative, that's an error. + # If x > 1, idpos will refine it, and we compute log(x/2) + log(2) + # If x < 1, idneg will refine it, and we compute log(2x) - log(2) + # If none of the above can be proven, perform a digit exchange and + # try again. + + $x ref + if {[$x refinesM {{2 -1} {-1 2}}]} { + # argument in bounds + set result [math::exact::opreal {{{1 0} {1 1}} {{-1 1} {-1 0}}} \ + $x \ + [LogWorker new $x]] + } elseif {[$x refinesM $isneg]} { + # domain error + return -code error -errorcode {MATH EXACT LOGNEGATIVE} \ + "log of negative argument" + } elseif {[$x refinesM $idpos]} { + # large argument, reduce it and try again + set result [+real [function::log [$x applyM {{1 0} {0 2}}]] $log2] + } elseif {[$x refinesM $idneg]} { + # small argument, increase it and try again + set result [-real [function::log [$x applyM {{2 0} {0 1}}]] $log2] + } else { + # too little information, perform digit exchange. + set result [function::log [$x absorb]] + } + $x unref + return $result +} + +# TanWorker -- +# +# Auxiliary function for tangent of an exact real argument +# +# This class develops the second and subsequent convergents of the continued +# fraction expansion in Potts's paper +oo::class create math::exact::TanWorker { + superclass math::exact::T + variable t_ l_ r_ n_ + + # Constructor - + # + # Parameters: + # e - S0'(x) = (1+x)/(1-x), where we wish to evaluate tan(x). + # n - Ordinal position of the convergent + constructor {e {n 1}} { + next [list \ + [list \ + [list [expr {2*$n + 1}] [expr {2*$n + 3}]] \ + [list [expr {2*$n - 1}] [expr {2*$n + 1}]]] \ + [list \ + [list [expr {2*$n + 1}] [expr {2*$n - 1}]] \ + [list [expr {2*$n + 3}] [expr {2*$n + 1}]]]] 0 + set l_ [$e ref] + set n_ [expr {$n + 1}] + } + + # l - + # Returns the argument S0'(x) + method l {} { + return $l_ + } + + # r - + # Returns the next convergent, constructing it if necessary + method r {} { + if {![info exists r_]} { + set r_ [[math::exact::TanWorker new $l_ $n_] ref] + } + return $r_ + } + + # dump - + # Displays this object for debugging + method dump {} { + return TanWorker([$l_ dump],[expr {$n_-1}]) + } +} + +# tan -- +# Tangent of an exact real argument +# +# Parameters: +# x - Quantity whose tangent is to be computed. +# +# Results: +# Returns the tangent +# +# This procedure is a Consumer with respect to its argument and a Constructor +# with respect to its result, returning a zero-ref object. + +proc math::exact::function::tan {x} { + variable ::math::exact::iszer + + # If |x| < 1, then we use Potts's formula for the tangent. + # If |x| > 1/2, then we compute y = tan(x/2) and then use the + # trig identity tan(x) = 2*y/(1-y**2), recognizing that the latter + # expression can be expressed as a bihomography applied to y and itself, + # allowing opreal to do the job. + # If neither can be proven, we perform a digit exchange to get more + # information. + # tan((2*n+1)*pi/2), for n an integer, is a well-behaved pole. + # In particular, 1/tan(pi/2) will correctly return zero. + + $x ref + if {[$x refinesM $iszer]} { + set xx [$x applyM $iszer] + set result [math::exact::Tstrict new {{{1 2} {1 0}} {{-1 0} {-1 2}}} 0 \ + $xx [TanWorker new $xx]] + } elseif {[$x refinesM {{2 2} {-1 1}}]} { + set xover2 [$x applyM {{1 0} {0 2}}] + set tanxover2 [function::tan $xover2] + set result [opreal {{{0 -1} {1 0}} {{1 0} {0 1}}} $tanxover2 $tanxover2] + } else { + set result [function::tan [$x absorb]] + } + $x unref + return $result +} + +# sin -- +# Sine of an exact real argument +# +# Parameters: +# x - Quantity whose sine is to be computed. +# +# Results: +# Returns the sine +# +# This procedure is a Consumer with respect to its argument and a Constructor +# with respect to its result, returning a zero-ref object. + +proc math::exact::function::sin {x} { + $x ref + set tanxover2 [tan [$x applyM {{1 0} {0 2}}]] + $x unref + return [opreal {{{0 1} {1 0}} {{1 0} {0 1}}} $tanxover2 $tanxover2] +} + +# cos -- +# Cosine of an exact real argument +# +# Parameters: +# x - Quantity whose cosine is to be computed. +# +# Results: +# Returns the cosine +# +# This procedure is a Consumer with respect to its argument and a Constructor +# with respect to its result, returning a zero-ref object. + +proc math::exact::function::cos {x} { + $x ref + set tanxover2 [tan [$x applyM {{1 0} {0 2}}]] + $x unref + return [opreal {{{-1 1} {0 0}} {{0 0} {1 1}}} $tanxover2 $tanxover2] +} + +# AtanWorker -- +# +# Auxiliary function for arctangent of an exact real argument +# +# This class develops the second and subsequent convergents of the continued +# fraction expansion in Potts's paper. The argument lies in [-1,1]. + +oo::class create math::exact::AtanWorker { + superclass math::exact::T + variable t_ l_ r_ n_ + # Constructor - + # + # Parameters: + # e - S0(x) = (x-1)/(x+1), where we wish to evaluate atan(x). + # n - Ordinal position of the convergent + constructor {e {n 1}} { + next [list \ + [list \ + [list [expr {2*$n + 1}] [expr {$n + 1}]] \ + [list $n 0]] \ + [list \ + [list 0 $n] \ + [list [expr {$n + 1}] [expr {2*$n + 1}]]]] 0 + set l_ [$e ref] + set n_ [expr {$n + 1}] + } + + # l - + # Returns the argument S0(x) + method l {} { + return $l_ + } + + # r - + # Returns the next convergent, constructing it if necessary + method r {} { + if {![info exists r_]} { + set r_ [[math::exact::AtanWorker new $l_ $n_] ref] + } + return $r_ + } + + # dump - + # Displays this object for debugging + method dump {} { + return AtanWorker([$l_ dump],[expr {$n_-1}]) + } +} + +# atanS0 - +# +# Evaluates the arctangent of S0(x) = (x-1)/(x+1) +# +# Parameters: +# x - Exact real argumetn +# +# Results: +# Returns atan((x-1)/(x+1)) +# +# This function is a Consumer with respect to its argument and a Constructor +# with respect to its result, returning a 0-reference object. + +proc math::exact::atanS0 {x} { + return [opreal {{{1 2} {1 0}} {{-1 0} {-1 2}}} $x [AtanWorker new $x]] +} + +# atan - +# +# Arctangent of an exact real +# +# Parameters: +# x - Exact real argument +# +# Results: +# Returns atan(x) +# +# This function is a Consumer with respect to its argument and a Constructor +# with respect to its result, returning a 0-reference object. +# +# atan(1/0) is undefined and may cause an infinite loop. + +proc math::exact::function::atan {x} { + + # TODO - find p/q close to the real number x - can be done by + # getting a few digits - and do + # arctan(p/q + eps) = arctan(p/q) + arctan(q**2*eps/(p*q*eps+p**q+q**2)) + # using [$eps applyM] to compute the argument of the second arctan + + variable ::math::exact::szer + variable ::math::exact::spos + variable ::math::exact::sinf + variable ::math::exact::sneg + variable ::math::exact::pi + + # Four cases, depending on which octant the arctangent lies in. + + $x ref + lassign [$x getSignAndMagnitude] signum mag + $mag ref + $x unref + set aS0x [atanS0 $mag] + $mag unref + if {$signum eq $szer} { + # -1 < x < 1 + return $aS0x + } elseif {$signum eq $spos} { + # x > 0 + return [opreal {{{0 0} {4 0}} {{1 0} {0 4}}} $aS0x $pi] + } elseif {$signum eq $sinf} { + # x < -1 or x > 1 + return [opreal {{{0 0} {2 0}} {{1 0} {0 2}}} $aS0x $pi] + } elseif {$signum eq $sneg} { + # x < 0 + return [opreal {{{0 0} {4 0}} {{-1 0} {0 4}}} $aS0x $pi] + } else { + # can't happen + error "wrong sign: $signum" + } +} + +# asinreal - +# +# Computes the arcsine of an exact real argument. +# +# The arcsine is computed from the arctangent by trigonometric identities +# +# This function is a Consumer with respect to its argument and a Constructor +# with respect to its result, returning a 0-reference object. +# +# The function is defined only over the open interval (-1,1). Outside +# that range INCLUDING AT THE ENDPOINTS, it may fail and give an infinite +# loop or stack overflow. + +proc math::exact::asinreal {x} { + variable iszer + variable pi + + # Potts's formula doesn't work here - it's singular at zero, + # and undefined over negative numbers. But some messing with the + # algebra gives us: + # asin(S0*x) = 2*atan(sqrt(x)) - pi/2 + # = (4*atan(sqrt(x)) - pi) / 2 + # which is continuous and computable over (-1..1) + $x ref + set y [$x applyM $iszer] + $x unref + return [opreal {{{0 0} {-1 0}} {{4 0} {0 2}}} \ + $pi \ + [function::atan [function::sqrt $y]]] +} + +interp alias {} math::exact::function::asin {} math::exact::asinreal + +# acosreal - +# +# Computes the arccosine of an exact real argument. +# +# The arccosine is computed from the arctangent by trigonometric identities +# +# This function is a Consumer with respect to its argument and a Constructor +# with respect to its result, returning a 0-reference object. +# +# The function is defined only over the open interval (-1,1). Outside +# that range INCLUDING AT THE ENDPOINTS, it may fail and give an infinite +# loop or stack overflow. + +proc math::exact::acosreal {x} { + variable iszer + variable pi + # Potts's formula doesn't work here - it's singular at zero, + # and undefined over negative numbers. But some messing with the + # algebra gives us: + # acos(S0*x) = pi - 2*atan(sqrt(x)) + $x ref + set y [$x applyM $iszer] + $x unref + return [opreal {{{0 0} {1 0}} {{-2 0} {0 1}}} \ + $pi \ + [function::atan [function::sqrt $y]]] +} + +interp alias {} math::exact::function::acos {} math::exact::acosreal + +# sinhreal, coshreal, tanhreal -- +# +# Hyperbolic functions of exact real arguments +# +# Parameter: +# x - Argument at which to evaluate the function +# +# Results: +# Return sinh(x), cosh(x), tanh(x), respectively. +# +# These functions are all Consumers with respect to their arguments and +# Constructors with respect to their results, returning zero-ref objects. +# +# The three functions are well defined over all the finite reals, but +# are ill-behaved at infinity. + +proc math::exact::sinhreal {x} { + set expx [function::exp $x] + return [opreal {{{1 0} {0 1}} {{0 1} {-1 0}}} $expx $expx] +} + +interp alias {} math::exact::function::sinh {} math::exact::sinhreal + +proc math::exact::coshreal {x} { + set expx [function::exp $x] + return [opreal {{{1 0} {0 1}} {{0 1} {1 0}}} $expx $expx] +} + +interp alias {} math::exact::function::cosh {} math::exact::coshreal + +proc math::exact::tanhreal {x} { + set expx [function::exp $x] + return [opreal {{{1 1} {0 0}} {{0 0} {-1 1}}} $expx $expx] +} + +interp alias {} math::exact::function::tanh {} math::exact::tanhreal + +# asinhreal, acoshreal, atanhreal -- +# +# Inverse hyperbolic functions of exact real arguments +# +# Parameter: +# x - Argument at which to evaluate the function +# +# Results: +# Return asinh(x), acosh(x), atanh(x), respectively. +# +# These functions are all Consumers with respect to their arguments and +# Constructors with respect to their results, returning zero-ref objects. +# +# asinh is defined over the entire real number line, with the exception +# of the point at infinity. acosh is defined over x > 1 (NOT x=1, which +# is singular). atanh is defined over (-1..1) (NOT the endpoints of the +# interval.) + +proc math::exact::asinhreal {x} { + # domain (-Inf .. Inf) + # asinh(x) = log(x + sqrt(x**2 + 1)) + $x ref + set retval [function::log \ + [+real $x \ + [function::sqrt \ + [opreal {{{1 0} {0 0}} {{0 0} {1 1}}} $x $x]]]] + $x unref + return $retval +} + +interp alias {} math::exact::function::asinh {} math::exact::asinhreal + +proc math::exact::acoshreal {x} { + # domain (1 .. Inf) + # asinh(x) = log(x + sqrt(x**2 - 1)) + $x ref + set retval [function::log \ + [+real $x \ + [function::sqrt \ + [opreal {{{1 0} {0 0}} {{0 0} {-1 1}}} $x $x]]]] + $x unref + return $retval +} + +interp alias {} math::exact::function::acosh {} math::exact::acoshreal + +proc math::exact::atanhreal {x} { + # domain (-1 .. 1) + variable sinf + #atanh(x) = log(Sinf[x])/2 + + $x ref + set y [$x applyM $sinf] + $y ref + $x unref + set z [function::log $y] + $z ref + $y unref + set retval [$z applyM {{1 0} {0 2}}] + $z unref + return $retval +} + +interp alias {} math::exact::function::atanh {} math::exact::atanhreal + +# EWorker -- +# +# Evaluates the constant 'e' (the base of the natural logarithms +# +# This class is intended to be singleton. It returns 2.71828.... (the +# base of the natural logarithms) as an exact real. + +oo::class create math::exact::EWorker { + superclass math::exact::M + variable m_ e_ n_ + + # Constructor accepts the number of the continuant. + + constructor {{n 0}} { + set n_ [expr {$n + 1}] + next [list [list [expr {2*$n + 2}] [expr {2*$n + 1}]] \ + [list [expr {2*$n + 1}] [expr {2*$n}]]] + } + destructor { + next + } + + # e -- Returns the next continuant after this one. + + method e {} { + if {![info exists e_]} { + set e_ [[math::exact::EWorker new $n_] ref] + } + return $e_ + } + + # Formats this object for debugging + + method dump {} { + return M($m_,EWorker($n_)) + } +} + +# PiWorker -- +# +# Auxiliary object used in evaluating pi. +# +# This class evaluates the second and subsequent continuants in +# Ramanaujan's formula for sqrt(10005)/pi. The Potts paper presents +# the algorithm, almost without commentary. + +oo::class create math::exact::PiWorker { + superclass math::exact::M + variable m_ e_ n_ + + # Constructor accepts the number of the continuant + + constructor {{n 1}} { + set n_ [expr {$n + 1}] + set nsq [expr {$n * $n}] + set n4 [expr {$nsq * $nsq}] + set b [expr {(2*$n - 1) * (6*$n - 5) * (6*$n - 1)}] + set c [expr {$b * (545140134 * $n + 13591409)}] + set d [expr {$b * ($n + 1)}] + set e [expr {10939058860032000 * $n4}] + set p [list [expr {$e - $d - $c}] [expr {$e + $d + $c}]] + set q [list [expr {$e + $d - $c}] [expr {$e - $d + $c}]] + next [list $p $q] + } + destructor { + next + } + + # e -- + # + # Returns the next continuant after this one + + method e {} { + if {![info exists e_]} { + set e_ [[math::exact::PiWorker new $n_] ref] + } + return $e_ + } + + # dump -- + # + # Formats this object for debugging + method dump {} { + return M($m_,PiWorker($n_)) + } +} + +# Log2Worker -- +# +# Auxiliary class for evaluating log(2). +# +# This object represents the constant (1-2*log(2))/(log(2)-1), the +# product of the second, third, ... nth LFT's of the representation of log(2). + +oo::class create math::exact::Log2Worker { + superclass math::exact::M + variable m_ e_ n_ + + # Constructor accepts the number of the continuant + constructor {{n 1}} { + set n_ [expr {$n + 1}] + set a [expr {3*$n + 1}] + set b [expr {2*$n + 1}] + set c [expr {4*$n + 2}] + set d [expr {3*$n + 2}] + next [list [list $a $b] [list $c $d]] + } + destructor { + next + } + + # e -- + # + # Returns the next continuant after this one. + method e {} { + if {![info exists e_]} { + set e_ [[math::exact::Log2Worker new $n_] ref] + } + return $e_ + } + + # dump -- + # + # Displays this object for debugging + method dump {} { + return M($m_,Log2Worker($n_)) + } +} + +# Sqrtrat -- +# +# Class that evaluates the square root of a rational + +oo::class create math::exact::Sqrtrat { + superclass math::exact::M + variable m_ e_ a_ b_ c_ + + # Constructor accepts the numerator and denominator. The third argument + # is an intermediate result for the second and later continuants. + constructor {a b {c {}}} { + if {$c eq {}} { + set c [expr {$a - $b}] + } + set d [expr {2*($b-$a) + $c}] + if {$d >= 0} { + next $math::exact::dneg + set a_ [expr {4 * $a}] + set b_ $d + set c_ $c + } else { + next $math::exact::dpos + set a_ [expr {-$d}] + set b_ [expr {4 * $b}] + set c_ $c + } + } + destructor { + next + } + + # e -- + # + # Returns the next continuant after this one. + method e {} { + if {![info exists e_]} { + set e_ [[math::exact::Sqrtrat new $a_ $b_ $c_] ref] + } + return $e_ + } + + # dump -- + # Formats this object for debugging. + + method dump {} { + return "M($m_,Sqrtrat($a_,$b_,$c_))" + } +} + +# math::exact::rat**int -- +# +# Service procedure to raise a rational number to an integer power +# +# Parameters: +# a - Numerator of the rational +# b - Denominator of the rational +# n - Power +# +# Preconditions: +# n is not zero, a is not zero, b is positive. +# +# Results: +# Returns the power +# +# This procedure is a Consumer with respect to its arguments and a +# Constructor with respect to its result, returning a zero-ref object. + +proc math::exact::rat**int {a b n} { + if {$n < 0} { + return [V new [list [expr {$b**(-$n)}] [expr {$a**(-$n)}]]] + } elseif {$n > 0} { + return [V new [list [expr {$a**($n)}] [expr {$b**($n)}]]] + } else { ;# zero power shouldn't get here + return [V new {1 1}] + } +} + +# math::exact::rat**rat -- +# +# Service procedure to raise a rational number to a rational power +# +# Parameters: +# a - Numerator of the base +# b - Denominator of the base +# m - Numerator of the exponent +# n - Denominator of the exponent +# +# Results: +# Returns the power as an exact real +# +# Preconditions: +# a != 0, b > 0, m != 0, n > 0 +# +# This procedure is a Constructor with respect to its result + +proc math::exact::rat**rat {a b m n} { + + # It would be attractive to special case this, but the real mechanism + # works as well for the moment. + + tailcall real**rat [V new [list $a $b]] $m $n +} + +# PowWorker -- +# +# Auxiliary class to compute +# ((p/q)**n + b)**(m/n), +# where 0<m<n are integers, p, q are integers, b is an exact real + +oo::class create math::exact::PowWorker { + superclass math::exact::T + + variable t_ l_ r_ delta_ + + # Self-method: start + # + # Sets up to find z**(m/n) (1 <= m < n), with + # z = (p/q)**n + y for integers p and q. + # + # Parameters: + # p - numerator of the estimated nth root + # q - denominator of the estimated nth root + # y - residual of the quantity whose root is being extracted + # m - numerator of the exponent + # n - denominator of the exponent (1 <= m < n) + # + # Results: + # Returns the power, as an exact real. + + self method start {p q y m n} { + set pm [expr {$p ** $m}] + set pnmm [expr {$p ** ($n-$m)}] + set pn [expr {$pm * $pnmm}] + set qm [expr {$q ** $m}] + set qnmm [expr {$q ** ($n-$m)}] + set qn [expr {$qm * $qnmm}] + + set t0 \ + [list \ + [list \ + [list [expr {$m * $qn}] [expr {$n*$pnmm*$qm}]] \ + [list 0 [expr {($n-$m) * $qn}]]] \ + [list \ + [list [expr {2 * $n * $pn}] 0] \ + [list [expr {2 * ($n-$m) * $pm * $qnmm}] 0]]] + set t1 \ + [list \ + [list \ + [list [expr {$n * $qn}] [expr {2*$n * $pnmm*$qm}]] \ + [list 0 [expr {$n * $qn}]]] \ + [list \ + [list [expr {4 * $n * $pn}] 0] \ + [list [expr {2 * $n * $pm * $qnmm}] 0]]] + + set tinit \ + [list \ + [list \ + [list [expr {$m * $qn}] 0] \ + [list 0 0]] \ + [list \ + [list [expr {$n * $pn}] [expr {$n * $pnmm * $qm}]] \ + [list \ + [expr {($n-$m) * $pm * $qnmm}] \ + [expr {($n-$m) * $qn}]]]] + $y ref + set result [$y applyTLeft $tinit [my new $t0 $t1 $y]] + $y unref + return $result + } + + # Constructor -- + # + # Parameters: + # t0 - Tensor from the previous iteration + # delta - Increment to use + # y - Residual + # + # The constructor should not be called directly. Instead, the 'start' + # method should be called to initialize the iteration + + constructor {t0 delta y} { + set t [math::exact::tadd $t0 $delta] + next $t 0 + set l_ [$y ref] + set delta_ $delta + } + + # l -- + # + # Returns the left subexpression: that is, the 'y' parameter + method l {} { + return $l_ + } + + # r -- + # + # Returns the right subexpression: that is, the next continuant, + # creating it if necessary + method r {} { + if {![info exists r_]} { + set r_ [[math::exact::PowWorker new $t_ $delta_ $l_] ref] + } + return $r_ + } + + method dump {} { + set res "PowWorker($t_,$delta_,[$l_ dump]," + if {[info exists r_]} { + append res [$r_ dump] + } else { + append res ... + } + append res ")" + return $res + } + +} + +# math::exact::real**int -- +# +# Service procedure to raise a real number to an integer power. +# +# Parameters: +# b - Number to exponentiate +# e - Power to raise b to. +# +# Results: +# Returns the power. +# +# This procedure is a Consumer with respect to its arguments and a +# Constructor with respect to its result, returning a zero-ref object. + +proc math::exact::real**int {b e} { + + # Handle a negative power by raising the reciprocal of the base to + # a positive power + if {$e < 0} { + set e [expr {-$e}] + set b [K [[$b ref] applyM {{0 1} {1 0}}] [$b unref]] + } + + # Reduce using square-and-add + $b ref + set result [V new {1 1}] + while {$e != 0} { + if {$e & 1} { + set result [$b * $result] + set e [expr {$e & ~1}] + } + if {$e == 0} break + set b [K [[$b * $b] ref] [$b unref]] + set e [expr {$e>>1}] + } + $b unref + return $result +} + +# math::exact::real**rat -- +# +# Service procedure to raise a real number to a rational power. +# +# Parameters - +# +# b - The base to be exponentiated +# m - The numerator of the power +# n - The denominator of the power +# +# Preconditions: +# n > 0 +# +# Results: +# Returns the power. +# +# This procedure is a Consumer with respect to its arguments and a +# Constructor with respect to its result, returning a zero-ref object. + +proc math::exact::real**rat {b m n} { + + variable isneg + variable ispos + + # At this point we need to know the sign of b. Try to determine it. + # (This can be an infinite loop if b is zero or infinite) + while {1} { + if {[$b refinesM $ispos]} { + break + } elseif {[$b refinesM $isneg]} { + # negative number to rational power. The denominator must be + # odd. + if {$n % 2 == 0} { + return -code error -errorCode {MATH EXACT NEGATIVEPOWREAL} \ + "negative number to real power" + } else { + set b [K [[$b ref] U-] [$b unref]] + tailcall [math::exact::real**rat $b $m $n] U- + } + } else { + # can't determine positive or negative yet + $b ref + set nextb [$b absorb] + set result [math::exact::real**rat $nextb $m $n] + $b unref + return $result + } + } + + # Handle b(-m/n) by taking (1/b)(m/n) + if {$m < 0} { + set m [expr {-$m}] + set b [K [[$b ref] applyM {{0 1} {1 0}}] [$b unref]] + } + + # Break m/n apart into integer and fractional parts + set i [expr {$m / $n}] + set m [expr {$m % $n}] + + # Do the integer part + $b ref + set result [real**int $b $i] + if {$m == 0} { + # We really shouldn't get here if m/n is an integer, but don't choke + $b unref + return $result + } + + # Come up with a rational approximation for b**(1/n) + # real: exp(log(b)/n) + set approx [[math::exact::function::exp \ + [[math::exact::function::log $b] \ + * [math::exact::V new [list 1 $n]]]] ref] + lassign [$approx getSignAndMagnitude] partial rest + $rest ref + $approx unref + while {1} { + lassign [$rest getLeadingDigitAndRest 0] digit y + $y ref + $rest unref + set partial [math::exact::mscale [math::exact::mdotm $partial $digit]] + set rest $y + lassign $partial pq rs + lassign $pq p q + lassign $rs r s + set qrn [expr {($q*$r)**$n}] + set t1 [expr {$qrn}] + set t2 [expr {2 * ($p*$s)**$n}] + set t3 [expr {4 * $qrn}] + if {$t1 < $t2 && $t2 < $t3} break + } + $y unref + + # Get the residual + + lassign [math::exact::vscale [list $r $s]] p q + set xn [math::exact::V new [list [expr {$p**$n}] [expr {$q**$n}]]] + set y [$b - $xn]; $b unref + + # Launch a worker process to perform quasi-Newton iteration to refine + # the result + + set retval [$result * [math::exact::PowWorker start $p $q $y $m $n]] + return $retval +} + +# pi -- +# +# Returns pi as an exact real + +proc math::exact::function::pi {} { + variable ::math::exact::pi + return $pi +} + +# e -- +# +# Returns e as an exact real + +proc math::exact::function::e {} { + variable ::math::exact::e + return $e +} + +# math::exact::signum1 -- +# +# Tests an argument's sign. +# +# Parameters: +# x - Exact real number to test. +# +# Results: +# Returns -1 if x < -1. Returns 1 if x > 1. May return -1, 0 or 1 if +# -1 <= x <= 1. +# +# Equality of exact reals is not decidable, so a weaker version of comparison +# testing is needed. This function provides the guts of such a thing. It +# returns an approximation to the signum function that is exact for +# |x| > 1, and arbitrary for |x| < 1. +# +# A typical use would be to replace a test p < q with a test that +# looks like signum1((p-q) / epsilon) == -1. This test is decidable, +# and becomes a test that is true if p < q - epsilon, false if p > q+epsilon, +# and indeterminate if p lies within epsilon of q. This test is enough for +# most checks for convergence or for selecting a branch of a function. +# +# This function is not decidable if it is not decidable whether x is finite. + +proc math::exact::signum1 {x} { + variable ispos + variable isneg + variable iszer + while {1} { + if {[$x refinesM $ispos]} { + return 1 + } elseif {[$x refinesM $isneg]} { + return -1 + } elseif {[$x refinesM $iszer]} { + return 0 + } else { + set x [$x absorb] + } + } +} + +# math::exact::abs1 - +# +# Test whether an exact real is 'small' in absolute value. +# +# Parameters: +# x - Exact real number to test +# +# Results: +# Returns 0 if |x| is 'close to zero', 1 if |x| is 'far from zero' +# and either 0, or 1 if |x| is close to 1. +# +# This function is another useful comparator for convergence testing. +# It returns a three-way indication: +# |x| < 1/2 : 0 +# |x| > 1 : 1 +# 1/2 <= |x| <= 2 : May return -1, 0, 1 +# +# This function is useful for convergence testing, where it is desired +# to know whether a given value has an absolute value less than a given +# tolerance. + +proc math::exact::abs1 {x} { + variable iszer + while 1 { + if {[$x refinesM $iszer]} { + return 0 + } elseif {[$x refinesM {{2 1} {-2 1}}]} { + return 1 + } else { + set x [$x absorb] + } + } +} + +namespace eval math::exact { + + # Constant vectors, matrices and tensors + + ; # the identity matrix + variable identity {{ 1 0} { 0 1}} + ; # sign matrices for exact floating point + variable spos $identity + variable sinf {{ 1 -1} { 1 1}} + variable sneg {{ 0 1} {-1 0}} + variable szer {{ 1 1} {-1 1}} + + ; # inverses of the sign matrices + variable ispos [reverse $spos] + variable isinf [reverse $sinf] + variable isneg [reverse $sneg] + variable iszer [reverse $szer] + + ; # digit matrices for exact floating point + variable dneg {{ 1 1} { 0 2}} + variable dzer {{ 3 1} { 1 3}} + variable dpos {{ 2 0} { 1 1}} + + ; # inverses of the digit matrices + variable idneg [reverse $dneg] + variable idzer [reverse $dzer] + variable idpos [reverse $dpos] + + ; # aritmetic operators as tensors + variable tadd {{{ 0 0} { 1 0}} {{ 1 0} { 0 1}}} + variable tsub {{{ 0 0} { 1 0}} {{-1 0} { 0 1}}} + variable tmul {{{ 1 0} { 0 0}} {{ 0 0} { 0 1}}} + variable tdiv {{{ 0 0} { 1 0}} {{ 0 1} { 0 0}}} + + proc init {} { + + # Variables for fundamental constants e, pi, log2 + + variable e [[EWorker new] ref] + + set worker \ + [[math::exact::Mstrict new {{6795705 213440} {6795704 213440}} \ + [math::exact::PiWorker new]] ref] + variable pi [[/real [function::sqrt [V new {10005 1}]] $worker] ref] + $worker unref + + set worker [[Log2Worker new] ref] + variable log2 [[$worker applyM {{1 1} {1 2}}] ref] + $worker unref + + } + init + rename init {} + + namespace export exactexpr abs1 signum1 +} + +package provide math::exact 1.0 + +#----------------------------------------------------------------------- |